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1 Introduction

The integration of electricity markets in Europe is among the main goals of the 2030
Climate-Energy Package, approved by the European Council in October 2014. The
existence of energy islands is identified as one of the main impediments towards the
single electricity market. Understandably, the investment targets outlined in the package
are influenced by geopolitical considerations, motivating the focus on the Baltic States,
that are integrated with the Russian grid but not sufficiently with the EU partners.
Not less relevant in economic and geopolitical terms are the bottlenecks that separate
the Iberian peninsula from France, Ireland from Great Britain, and Sicily from the
Italian mainland. Ten years after market liberalization, in 2014 Sicily was separated for
about 80% of the hours from the rest of Italy. From a purely geographical viewpoint, the
Sicilian interconnection problem is rather similar to the Irish one and Sicily is a potential
bridge towards Northern Africa just like the Iberian countries (see Cambini and Rubino
2014). Yet, Sicily faces less workable southward interconnection opportunities, due to
the Libyan civil war and Tunisia’s slow post-revolutionary recovery, than those facing
Spain and Portugal (Morocco, a rather stable and favorable destination for FDIs).

The energy isolation of Sicily may lie behind its less than satisfactory price perfor-
mance. Following the subsidized boom in new renewable energy investments, the annual
reports of the Italian Power Exchange (IPEx) have shed light on the declining trend in
the wholesale price in the renewable-rich southern regions, leading southern prices to
undercut the historically lower northern ones (see GME 2012, 2013). Sicily strikingly
departs from this trend, despite its large wind and solar penetration rates. Between
2011 and 2012, the price in Sicily increased by 2.2%, in line with Sardinia (+2.2%)
and the South zone (+1.9%) and below the other market zones (GME 2012). Yet, the
marked price plunges observed between 2012 and 2013 (from -16.8% in the North zone
to -24.7% in Sardinia) were not replicated in Sicily (-3.4%) (GME 2013). And while the
average national price fell below 50 Eur/MWh in the summer of 2014, Sicilian prices
reached 95 Eur/MWh on average in July and 108 Eur/MWh in August, roughly twice
the price in the neighboring South zone. Therefore the win-win outcome of renewables
support (stable subsidized revenues for producers, lower prices for wholesale purchasers)
is not available in Sicily, causing an equity issue that needs to be solved by providing
policy-makers with sound information about the roots of such price dynamics.

In this paper, we explore the determinants of wholesale electricity prices in Sicily by
estimating a regime switching model with time-varying transition probabilities, using
daily data in the 2012-2014 period. Explanatory variables in both the price equation
and the switching equation include power demand, the supply of renewable energy, a
measure of market power, and a congestion indicator. Testing theoretical hypotheses on
price regimes is rife with potentially fruitful insights, in view of the high policy-making
returns from appropriate modeling of the price process. Indeed, regime switching model
have been successfully applied to the electricity market (e.g. in Huisman and Mahieu
2003, Weron et al. 2004, Mari 2006, Karakatsani and Bunn 2008, Janczura and Weron
2010 among others), thanks to their fit performance and their consistency with multiple
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equilibria and tacit collusion rooted in repeated interaction among oligopolistic power
generating companies (since Green and Newbery 1992, von der Fehr and Harbord 1993).

Finding price regimes in Sicily could testify to the role of tacit collusion in the ob-
served upward trend. Yet, while persistence in a high-price regime would be consistent
with a collusive focal point, it may alternatively occur because of congestion, which
may keep the price in a high regime even if generators fail to collude. The high fre-
quency of congestion episodes is a powerful limit to competition on the island, in line
with the pioneering theoretical analysis performed by Liu and Hobbs (2013), showing
how strategic (de)congestion and the generators’ ability to anticipate the moves by the
transmission system operator sustain collusion. Joint ownerships at both sides of the
transmission line can also exacerbate the collusive temptations (Boffa and Scarpa 2009).1

Consistently, one may interpret that sky-rocketing prices in the summer of 2014 as the
attempt of generating companies to reap large profits before the expected upgrade of the
Sorgente-Rizziconi cable linking Sicily with the Italian mainland, that was scheduled to
be completed in 2015. At the same time, generators in Sicily face highly volatile resid-
ual demands, as renewable supply is growing and the paucity of hydropower resources
implies limited flexibility and storage. Coupled with a contractionary demand trend
after the financial crisis, volatility defies the otherwise clear expectation that Sicilian
generators would easily sustain a tacit collusion agreement.2

The tacit collusion hypothesis, empirically assessed e.g. by Fabra and Toro (2005)
and Sweeting (2007), needs to be tested against alternative hypotheses, grounded in the
existing empirical literature and concerning, besides congestion (Haldrup and Nielsen
2006a, 2006b, Sapio 2015a, 2015b), the shape of the market-wide cost function (Kana-
mura and Ohashi 2008) and the arbitrary exercise of market power (Janczura and Weron
2010, Orea and Steinbuks 2012).

The regime-switching model that we build is able to encompass the above mentioned
four hypotheses. Depending on the signs of the parameters in the price equation and in
the switching equation, one can obtain four different models, nested in the general one,
that correspond to the competing hypotheses. Unlike Fabra and Toro (2005), we allow
all coefficients in the mean price equation to vary across regimes, not just the constant,
and consider the possible effects of intermittent renewables and network congestion. In
our analysis, persistence in a high-price regime will be attributed to sustained implicit
collusion only if the whole set of estimated parameters rules out alternative interpreta-
tions.

We empirically identify two regimes - high and low - and find that in each regime, the
electricity price in Sicily can be explained by positive drivers (demand, market power,
congestion) but its level is mitigated by the supply of renewables, confirming the merit
order effect shown by a number of works (Sensfuss et al. 2008, Guerci and Sapio 2012,
Ketterer 2014, Paraschiv et al. 2014, Veraart 2015 and references therein). Market

1The former monopolist, Enel, operates thermal power and hydropower plants in both Sicily and
Calabria.

2Collusive incentives are pro-cyclical according to Green and Porter (1984). Renewable energy pro-
ducers receive a regulated tariff, hence they have no incentive to partake in the collusion game.
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power, thus, does not translate into occasional random spikes, ruling out the arbitrary
market power hypothesis. The cost profile hypothesis, too, is discredited, as price levels
reflect something more than cost information. Both the high and low regimes are strongly
persistent, consistent with both the congestion and the tacit collusion hypotheses. The
congestion indicator helps predicting the regime transitions, but it displays statistically
significant variation within each regime, suggesting that it is not the main explanation
for price regimes. Supporting the tacit collusion hypothesis, the transition probability
from the high to the low regime increases when demand, market power, and congestion
are relatively low, and when RE supply is relatively high. This is consistent with the
theoretical conditions triggering price wars (see Ivaldi et al. 2003).

The paper is structured as follows. After a literature review, Section 2 outlines the
competing hypotheses to be tested through the model described in Section 3. Section 4
presents the dataset and the empirical results, before the concluding Section 5.

2 Literature review

Regime switching models are built for widely different goals, from improving the forecast
performance of power price models, to the valuation of electricity-based contracts, to
the detection of price wars in repeated games. One can classify regime switching models
of electricity prices according to the underlying main drivers of the regime dynamics,
namely strategic behavior, the distribution of marginal costs, tacit collusion, and network
congestion. We shall organize the following literature review on regime switching models
along these lines.

2.1 Strategic behavior and market power

A first class of models defines a base regime, wherein the electricity price is driven
by a mean-reverting autoregressive process and/or by fundamentals, a spike regime,
corresponding to a random draw from a given probability distribution, and sometimes
a drop regime, in which the price drops in a similarly random fashion. A three-regime
model has been estimated by Huisman and Mahieu (2003) and Janczura and Weron
(2010), but also Karakatsani and Bunn (2008) found it to be a superior representation
of the price process in peak periods. The switching process is typically Markovian, and
the fit is usually improved by assuming transition probabilities that depend on time-
varying variables, i.e. load and the reserve margin (see Mount et al. 2006).

Modeling price in the spike regime as a purely random variable, without any serial
correlation and no relationship with fundamentals, is consistent with a view of an arbi-
trary strategic behavior on the part of power generating companies, or one that cannot
be rationalized by using public information alone. The drop regime is interpreted as the
outcome of unexpected technical events that cause sudden price drops (see Janczura and
Weron 2010). Although not in a regime switching framework, the empirical model in
Orea and Steinbuks (2012) assumes firm-specific, random conduct parameters, allowing
for a market power exercise that is gradually changing and unpredictable.
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A debated issue in this literature is whether the functional form of the price equation
in the base regime should be linear or log-linear. While it provides a superior empirical
fit, e.g. in Janczura and Weron (2010), the assumption of linearity is consistent with
a uniform distribution of marginal costs across power generating units - an assumption
that underlies some theoretical approaches (e.g. the supply function equilibrium model
of Baldick et al. 2004), but it is empirically tenable only if it is consistent with the
underlying distribution of marginal costs. This leads to a second possible determinant
of price regimes.

2.2 The distribution of marginal costs

Suppose marginal costs of power generation are uniformly distributed in a positive range,
and suppose that all units are offered in the market at full capacity and at their marginal
costs. Then, the resulting supply stack will be linear, with a null intercept and a slope
that depends on the marginal cost of the least efficient unit in the system.

Under some (admittedly restrictive) assumptions (no entry of new units, no time vari-
ation in marginal costs, no intermittent capacity, no strategic behavior), the electricity
price is only a function of power demand because of the market clearing requirement,
and due to linearity, the marginal effect of demand on price is constant. Hence, no
regime appears. By the same token, no regime emerges anytime the supply stack is
approximated by a continuous function with stable parameters.

The modeling strategy of Kanamura and Ohashi (2008) generates price regimes
through a piece-wise linear supply stack without relaxing the above mentioned restric-
tive assumptions. This is equivalent to assuming that marginal costs are uniformly dis-
tributed with support [0, c′] within a given capacity interval, and follow another uniform
distribution (with support [c′, c′′]) in the capacity interval including the least efficient
units. As demand fluctuates in a mean-reverting fashion, price regimes emerge because
of a kink in the market-wide marginal costs curve and do not necessarily reflect market
power exercise.

As an implication of the assumed supply function structure, Kanamura and Ohashi
show that transition probabilities depend on exogenous fundamental variables, such as
the long-term trend in demand, the temporary deviations of demand from its trend,
and the gap between current demand and the supply threshold that triggers the regime
switch. This would match the empirical observation that price spikes are more frequent
when demand is relatively high. The shape of this relationship reflects the probability
distribution function of the error term in the price equation, which the authors assume
to be Gaussian without loss of generality.

The Kanamura-Ohashi model lends itself to an alternative interpretation, one in
which marginal costs are uniformly distributed across the whole capacity, but once de-
mand grows beyond a certain threshold, power generating companies add a markup that
is linearly increasing with demand - thus shifting up the supply stack slope. Indeed, the
kinked profile of the supply stack can be exacerbated by market power, as noted by
Wolak and Patrick (2001). If so, the model would suggest cost structures and strategic
behaviors as joint determinants of price regimes, but here strategic behaviors would be
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partly predictable (increasing with demand) and thus not arbitrary as in the previously
reviewed class of models.

2.3 Tacit collusion

The regime switching models just reviewed are often quite generic about the source
and type of market power exercised by power generating companies. As argued by
Karakatsani and Bunn (2008), the base regime can be conceived as a focal point in a
repeated game, with an autoregressive structure that is meant to capture the learning
processes involving power generating companies. Repeated electricity market games are
increasingly analyzed in the literature, from the early attempt by Fabra (2003) to more
recent works (Boffa and Scarpa 2009, Liu and Hobbs 2013), moving away from single-
stage game representations (reviewed in Ventosa et al. 2005). Simulation models, such
as Bunn and Martoccia (2005), Tallidou and Bakirtzis (2007), and Anderson and Cau
(2009), have highlighted the role of learning in the build-up and support of the collusive
strategies. Motivating evidence of price patterns consistent with tacit collusion includes
Macatangay (2002) and Sweeting (2007) on the England & Wales market, Harvey and
Hogan (2000) and Borenstein et al. (2002) on the California crisis.

The link between regime switching models and multiple equilibria in electricity mar-
kets is fully explored by Fabra and Toro (2005), whose time-varying Markov regime
switching model explains Spanish price levels in the collusive and price war regimes
through duopolistic production levels and costs; the regime switches are triggered by
changes in market shares, in concentration, in company-level revenues or in average
prices. A move from a high-price to a low-price equilibrium is interpreted as a price war,
and one of the duopolists (Iberdrola) is identified as the responsible for the deviation, in
line with the predictions of repeated games (as outlined e.g. in Ivaldi et al. 2003, Green
and Porter 1984).

In Fabra and Toro (2005), only the constant term of the price equation is subject to
switches, hence the marginal effect of cost and production variables is the same across
regimes. Their empirical results show that the electricity price positively depends on the
marginal costs and production of the largest generator (Endesa), while supply from fringe
generators has a negative impact. Market power indicators are not explicitly included
in the regression model, yet market concentration is theoretically and empirically shown
to be higher in the price war regime, because a deviation from the collusive agreement
causes the asymmetry in market shares to increase.

2.4 Network congestion

The above models were based on latent regimes. Indeed, the demand and supply con-
ditions that trigger market power exercise are only imperfectly observed (Sections 2.1
and 2.3), and similarly for the kink in the supply stack (Section 2.2), although bid-based
data could be used to estimate the latter.

However, the price determinants and their effects can change when the transmission
capacity of the grid is saturated. Consider a country whose power grid consists of
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two zones, connected through a transmission line of given capacity. Whenever the power
flows from either zone exceed the transmission capacity, the line is congested. This allows
to distinguish between two different regimes: a congested regime and a non-congested
regime.

In the congested regime, zonal prices differ, and the price in each zone is determined
by local demand, local supply and the amount of electricity imported (if the local price
is relatively high) or exported (if it is relatively low). In the non-congested regime,
the zones are fully integrated, hence zonal prices are equal and are both determined by
the national demand and supply for electricity. The shape of the relationship between
the price and its determinants in each zone changes across regimes; the sets of plants
involved in the computation of the zonal price differ, and the cost information related
to them, too. The congested regime is supposedly more prone to market power exercise,
because zonal generating companies are shielded from competition, yet the causality
may be reversed, especially if the same company runs units at both sides of the possible
bottleneck, leading to a sort of multi-market contact issue (Boffa and Scarpa 2009), and
can strategically cause or relieve congestion by means of capacity withholding schemes.

Unlike latent determinants of price regimes, congestion is observable using market-
level data. Regime switching models with known regimes identified by congestion
episodes have been built by Haldrup and Nielsen (2006a, 2006b). The authors (in their
2006b article) estimate the transition probabilities from the observable congestion events
in the NordPool area, as empirical frequencies of changes in grid states (from congested
to non-congested and vice versa), and model the (log of) the price ratio between neigh-
boring zones. In all cases, autoregressive models are estimated, allowing for fractional
integration. In the no congestion regime, the log of the price ratio is zero, because
prices are equal, hence all coefficients are restricted to zero, only to switch to non-zero
values whenever congestion arises, according to the transition probabilities previously
estimated. For a given status of the grid (congested in import/congested in export/non
congested), the price equation coefficients are constant, hence any latent regime trigger
is assumed away. The long-memory properties of the series differ across regimes and
grid locations. This, however, tells little about the role of fundamentals that may make
congestion more or less likely.

In Sapio (2015a, 2015b) an endogenous switching mechanism is considered, whereby
the congestion probability depends on the relative balances between supply and de-
mand in each zone as well as on the transmission capacity, using Sicily as the test case.
Congestion is found to be significantly related to power demand and renewable energy
supply both in import and in export. The results from the vector autoregression analy-
sis performed by Sapio (2014) suggest that zonal market power exercise (proxied by the
residual supply index or by the Herfindahl-Hirschmann index) is higher when the grid
is congested.

In this modeling strategy, price regimes can emerge even without strategic behaviors,
e.g. when renewable energy supply increases suddenly and faster than demand. This
does not deny that market power can be a price determinant. In fact, it can be a
determinant also in the low-price regime, e.g. if the reserve margin at the national level
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is thin, but the transmission capacity is large enough to guarantee market integration.

2.5 Building hypotheses

Based on insights from the above literature review, four alternative hypotheses can
be outlined in an empirically testable form, concerning the ultimate determinants of
the regime structure of electricity prices: the arbitrary market power, the cost profile,
the tacit collusion, and the congestion hypothesis. For the sake of simplicity, these
hypotheses shall be built under the assumption that electricity prices undergo a 2-regime
dynamics, although statistical tests may indicate otherwise. We shall refer to the two
regimes as the high-price and the low-price regime (high and low in short). We could
have called them the spike and drop regime, as in Janczura and Weron (2010), or the
collusive and price war regimes (Fabra and Toro 2005); yet, our goal is precisely to assess
the empirical plausibility of the alternative interpretations of price regimes, which the
mentioned terminologies are associated with. The four hypotheses are schematized in
Table A.1, summarizing the expected impact of some relevant variables (demand, RE
supply, market power, and congestion indicators) on price levels in the two regimes as
well as on the transitions between regimes.3 In particular, we shall focus on the high-
to-low transition, which mimics the outbreak of a price war following a deviation from
a collusive agreement.

In the arbitrary market power hypothesis, a transition from the high to the low
regime is caused by a decrease in market power, but the magnitude of strategic behavior
in the high regime, as mirrored in the price level, is entirely random (as with the spike
regime in Janczura and Weron 2010). The price level in the low regime only depends on
exogenous demand and supply fundamentals.

The cost profile hypothesis postulates that the transition probabilities and the price
levels in both regimes only depend on demand and RE supply, as the switching dynamics
is only dictated by the presence of a kink in the cost-reflective supply stack. In a perhaps
simplified reading of the proposition in Kanamura and Ohashi (2008), market power has
no role to play.

The core of the tacit collusion hypothesis lies in the conditions that trigger price
wars (Ivaldi et al. 2003, Fabra and Toro 2005). When colluding generators face a below
average residual demand, they expect to receive lower collusive profits. This may hap-
pen because of low demand as well as because of a relatively high supply of renewables.
Uncertainty in the available amount of the renewable resource makes coordination diffi-
cult, as shown in the simulation analysis by Banal-Estanol and Ruperez-Micola (2011).
Evidence of profitability thinning due to wind power has been produced by Sioshansi
(2011) and Hirth (2013). Compliance with a collusive agreement would be less attractive
in those circumstances. A more concentrated market, with less competitors or with a
pivotal supplier would instead enforce collusion and increase persistence in the high price
regime. Anderson and Cau (2011) have theoretically shown that the collusive potential
is maximized at intermediate levels of market power, and less likely in competitive and

3All tables and plots are in the Appendix.
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symmetric duopolistic settings. By limiting competition, network congestion goes in
the same direction of sustaining tacit collusion. Liu and Hobbs (2013) provide perhaps
the first theoretical analysis of how transmission constraints affect collusive incentives,
inspired by the evidence of strategic exploitation of loop flows (Cicchetti et al. 2004).
Once the price enters a certain regime, demand, market power and congestion are posi-
tive drivers of the price level, whereas a merit order effect associated to RE supply acts
as a mitigating factor.

Finally, under the congestion hypothesis, demand, supply, and congestion give rise
to regime transitions, in turn triggering market power exercise in the high regime (which
is likely to correspond to a congested grid and hence to a more concentrated zonal
market). If regimes were perfectly predicted by congestion, a congestion indicator (such
as a dummy equal to 1 if the line is congested, 0 otherwise, or the number of congested
hours in a day) would display very little variance, if any, within each price regime. Hence,
the congestion hypothesis predicts that the coefficients associated to congestion in both
regimes would not be statistically significant.

[Table A.1 here]

3 The model

Testing the hypotheses formulated in the previous section requires the set up of a rather
general regime-switching model, assuming the existence of a relationship between the
electricity price and exogenously determined demand and supply fundamentals, such as
the power load and the supply of renewable energy, as well as with endogenous drivers,
i.e. market power and congestion indicators. Regime transitions will be allowed to vary
with respect to potential triggers of switching dynamics.

The regime-switching model considered in this paper allows for shifts in the mean
that is, for positive and negative changes in prices, and is given by:

yt = µ(st) +
4∑

i=1

βiyt−i + α(st)xt + δ(st)zt + λ(st)wt + θ(st)vt + εt, (t ∈ T) ,

µ(st) =
2∑

i=1

µ(i)1{st = i}, (1)

where yt = (pricest), xt = (demandt), zt = (renewable energy supplyt), wt = (residual
supply indext) and vt = (congestion frequencyt). Autoregressive terms (up to four
lags) are considered. Therefore, the parameters vector of the mean return equation
(1) is defined by µ(i) (i = h, l) which are real constants, the autoregressive terms 4

i=1βi,
and the parameters α, δ, λ, and θ, which measure the impact of demand, renewable
energy supply, the residual supply index and congestion, respectively. The number of
autoregressive lags has been selected through the Schwartz Information Criterion. {εt}
are i.i.d. errors with E(εt) = 0 and E(ε2t ) = 1, and {st} are random variables in S = {h, l}
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that indicate the unobserved state of the system at date t. Throughout, the regime
indicators {st} are assumed to form a Markov chain on S with transition probability
matrix P′ = [pij ]2×2, where

pij = Pr(st = j|st−1 = i), i, j ∈ S, (2)

and pih = 1 − pil (i ∈ S) , where each column sums to unity and all elements are non-
negative. It is also assumed that {εt} and {st} are independent.

We then modify the model in Eqs. (1)–(2) by allowing the transition probabilities
to vary over time. The conditional mean equation becomes

yt = µ(st) +
4∑

i=1

βiyt−i + εt, (t ∈ T) ,

µ(st) =
2∑

i=1

µ(i)1{st = i}, (3)

and we assume that each conditional mean value (µl for negative changes in price and
µh for positive changes in price) follows an independent regime-shifting process (Diebold
et al., 1994) with the transition mechanism governing {st} given by:

plt =
exp

(
cl + αlxt + δlzt + λlwt + θlvt

)
1 + exp (cl + αlxt + δlzt + λlwt + θlvt)

,

pht =
exp

(
ch + αhxt + δhzt + λhwt + θhvt

)
1 + exp (ch + αhxt + δhzt + λhwt + θhvt)

(4)

where demand (xt) , renewable energy production (zt) , the residual supply index
(wt) and congestion (vt) are variables that are now allowed to affect the state transition
probabilities. Note that, since pht /dxt

(
pht /dzt, p

h
t /dwt, p

h
t /dvt

)
has the same sign as αh(

δh, λh, θh
)
, αh > 0

(
δh > 0, λh > 0, θh > 0

)
implies that an increase in xt (zt, wt, vt)

increases the probability of remaining in the state characterized by a positive changes in
price. Similarly, αl > 0

(
δl > 0, λl > 0, θl > 0

)
implies that an increase in xt (zt, wt, vt)

will increase the probability of remaining in the low regime (negative changes in price).

4 Empirical Analysis

4.1 Data sources

Day-ahead wholesale trading of electricity takes place in the Italian Power Exchange
(IPEx), managed by State-owned Gestore dei Mercati Energetici (GME). The IPEx
day-ahead market is a closed, non-discriminatory, uniform-price double auction. Each
day, market participants can submit bids and offers valid for each hour of the next day,
used by GME to clear the market using a merit order rule.
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If transmission constraints do not bind, all day-ahead supply offers are remunerated
by the same price, the System Marginal Price (SMP), except for holders of long-term
contracts, who receive the contract price, and subsidized plants, receiving the regulated
tariffs. The optimal dispatch solution involves the calculation of zonal prices when
lines are congested, in which case the Italian grid is segmented into up to 6 market
zones (North, Center-North, Center-South, South, Sicily, and Sardinia) and 5 limited
production poles.4 Sicily is the zone most frequently separated and is only connected
with the South zone through the Rossano production pole.5

Data on the wholesale day-ahead electricity market have been collected from the IPEx
website (www.mercatoelettrico.org) for the period Jan 1, 2012-Dec 31, 2014. These data
are recorded with a hourly frequency and include: zonal prices (Euros/MWh), zonal
purchased quantities (MWh) and the residual supply index (RSI). In the econometric
analysis, we focus on the Sicily zone and we aggregate these hourly variables on a daily
horizon, by taking daily averages (in the case of zonal prices and the RSI) or the sum
across hours (purchased quantities). The daily purchased quantity on the day-ahead
market is a good proxy for the overall electricity demand in Sicily, considering the high
liquidity of the IPEx market (roughly between 60% and 70% in the sample period; source
GME 2012, 2013 and website). Moreover, one can safely consider demand as price-
inelastic. End users who have not switched to competitive retailers are served by the
publicly-owned company Acquirente Unico (single acquirer), and the available evidence
cast doubts on the efficacy of existing demand responsiveness programs, despite the
relatively good diffusion of meters in Italy.6

As it is well known, power markets are imperfectly competitive, with strategic ex-
ploitation of market power opportunities leading to higher than marginal cost clearing
prices. Traditional measures of market power (Lerner index, concentration measures)
have been shown to be less than satisfactory in a sector, such as electricity, charac-
terized by non-storability, capacity constraints, and network congestion (Borenstein et
al. 1999). The residual supply index (RSI) is a more appropriate measure, aiming to
catch the ability of a generator to impede market clearing through the threat of capacity
withholding (Sheffrin 2002, Swinand et al. 2010). The RSI published by the IPEx is
defined as the sum of the overall quantities offered by sale, minus the number of the
operators multiplied by the difference between the sum of the overall quantities offered
by sale and the sum of the overall quantities sold.7 We use the daily median, which is
to be preferred to the mean because of the very skewed within-day distribution of the
hourly RSI values.

4A zone is a subset of the transmission network that groups local unconstrained connections. Zones
are defined and updated by the transmission system operator, or TSO (Terna in Italy) based on the
structure of the transmission power-flow constraints.

5In all cases, electricity buyers pay a weighted average of zonal prices, called PUN (Prezzo Unico
Nazionale, or single national price), with weights equal to zonal demand shares.

6By the end of 2009, about 90% of final customers were equipped with smart meters supplied by
Enel, the largest generating company in Italy. Time-of-use pricing has had a limited impact, because of
a fixed, regulated peak-off peak price differences for retail customers (Lo Schiavo et al., 2011).

7This is the negative of the sum (over companies) of the RSI index presented in Gianfreda and Grossi
(2012), hence it is increasing in market power.
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Network congestion, a major determinant of price dynamics in Sicily, is measured
as the daily number of hours when prices in Sicily and in the South zone differed or,
alternatively, as the daily change in the number of congested hours.

Besides being an energy island in most market sessions, Sicily is also quite rich in
renewables, thanks to good insolation and wind speeds. Omitting them would seriously
undermine the understanding of price dynamics. Data on the actual generation of inter-
mittent renewables are downloaded from the Terna website (www.terna.it). We sum the
zonal sold quantities for the two available technologies (on-shore wind, photovoltaics) for
each hour, and then take the daily sums. Detailed biomass and hydropower production
data were not available for the whole sample period, while geothermal is absent in Sicily.

For each variable, 1096 daily data points are available. Table A.2 summarizes the
notation, definitions, and sources of the variables used in the econometric analysis.8

[Table A.2 here]

4.2 Summary statistics

Summary statistics for the sample are given in Table A.3 for the Sicily zone, before
applying filters. Sicilian power demand averaged 52,271 MWh per day in the sample
period, corresponding to 6.6% of the national power demand. 12,540 MWh per day were
accounted for by intermittent renewables. The whole sample statistics about Sicilian
electricity prices hide the differences due to network congestion. The line between Sicily
and the South zone was congested in about 80% of the hourly market sessions; hence, on
average, Sicily was separated from the rest of Italian system about 20 hours per day on
average. Congestion was nearly always in import, i.e. from the Italian peninsula to Sicily,
resulting in higher prices in Sicily (on average, 95.41 Eur/MWh under congestion, with
a maximum of 3000 Eur/MWh in a hourly session, vs. an average of 51.81 Eur/MWh).
The penetration rates of wind and photovoltaics in Sicily were, respectively, 16.0% and
8.2% in the sample period. These figures have been computed by summing the total RE
sold quantities in Sicily for each source, and dividing them by the total power demand
in Sicily in the sample period. Sicily ranked very high among Italian regions in terms of
wind power (20.4% of the national wind power capacity in 2013), and fairly good also
in regards to photovoltaic production (a 6.9% capacity share).9

[Table A.3 here]

Fig. A.1 and A.2 depict the time series of the variables of interest. Fig. A.1
features the daily average electricity prices (top panel) and the daily purchases (bottom

8Data from previous years have not been considered, because the spatial configuration of the grid
changed over time: the former Calabria zone was merged with the South zone since January 2009; the
SAPEI cable between Sardinia and the Center-South zone was inaugurated in March 2011. Concerning
the use of fuel prices, see footnote 13.

9Authors’ elaborations on data from GSE (2013). Hydropower capacity in Sicily was rather marginal
(0.01% of the national hydropower capacity in 2013; hydropower production was 2.3% of the Sicilian
electricity demand in 2012). Its exclusion from the analysis should not affect the results.
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panel) in Sicily. The two annual peaks in the demand series correspond to the winter
and summer seasons, due to, respectively, heating and cooling needs. The price series
retains the seasonal pattern in quite a milder fashion, as its behavior is more erratic
and is occasionally punctuated by sudden and short-lived spikes (the tallest one on
August 21, 2012, an average daily price of 273.64 Eur/MWh). A downward trend in
demand is visible, motivated more by deteriorating macroeconomic conditions than by
improvements in energy efficiency, but the price seems to have fallen significantly only
during the winter between 2013 and 2014; electricity in the summer of 2014 was on
average as expensive as in the summer of 2012, except for the different spike magnitudes.

The time series of daily supply from intermittent renewables (mid-panel of Fig. A.2)
shows relatively low and stable amounts only during the summer seasons, meaning that
the seasonality is mainly in the variance of the RE generating process and is characterized
by an annual frequency. The relatively high volatility of the wintertime RE supply
reflects the relatively large availability of wind power, versus the preponderance of the
more predictable photovoltaic resources in the summer months. Similarly, the number
of congested hours (bottom panel of Fig. A.2) was on average higher and less variable
during the summer than in the other seasons. It stayed at its highest (24 hours) for
several consecutive days during the infamous summer of 2014, which we have cited in
the Introduction as a time of sky-rocketing prices.10 An interesting qualitative change
is detected in the time series of the RSI index (top panel of Fig. A.2), which after
fluctuating wildly and reaching very high values in the first 8 months of 2012, collapsed
to values often close to zero with occasional outbursts of lower magnitude than in the
past. This was due to entry of new plants (GME 2012).

[Fig. A.1 and A.2 here]

In line with the above mentioned trends, seasonals, and spikes, unit root tests (Aug-
mented Dickey-Fuller, Phillips-Perron) performed on the time series of electricity prices,
demand, and supply variables cannot reject the null of mean stationarity. The null of
stationarity tested through the KPSS is rejected, too.11 The logs of price, demand,
and supply are thus treated by means of the recursive filter on (log-)prices (RFP) pro-
posed by Janczura et al. (2010).12 Natural logarithms of the variables are taken after
adding 1 to their values, in order to avoid missing observations whenever a variables was
zero-valued, as it is sometimes the case with prices and solar power production. The
descriptive statistics of the filtered data are in Table A.4.13

10Daily averaging in Fig. A.1 smooths out the otherwise extreme excursions that have been mentioned
in the Introduction.

11The results of the tests are available upon request to the authors.
12The RFP is an iterative outlier detection method, wherein the outliers are defined in each iteration

as the observations lying more than three standard deviations away from the mean of the de-seasonalized
prices. The data are de-seasonalized here in two steps: the short-term seasonal is removed by means of
7-day moving averages; then a Daubechies 5 wavelet is computed as the long-term seasonal component
and subtracted. Any observation identified as an outlier/spike is replaced by the average offer price for
the corresponding week-day.

13Filtering allows to interpret the data as short-term deviations from seasonals and long-term trends,
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[Table A.4 and Fig. A.3 here]

Fig. A.3 shows the plots of the filtered electricity prices, yt. The filtered electricity
price behaved more erratically in the second and fourth quarters, approximately corre-
sponding to spring and fall, while the amplitude of its fluctuations tended to narrow
down in the first and third quarters (winter and summer), with apparently some more
serial correlation. Winters and summers are also the time locations of the demand peaks
(see the bottom panel of Fig. A.1).

4.3 Results

The null hypothesis of linearity against the alternative of Markov regime switching can-
not be tested directly using a standard likelihood ratio (LR) test14. We properly test
for multiple regimes against linearity using the Hansen (1992) test. The results (Table
A.4) support a two-states regime-switching model. The presence of a third state was
also tested for and rejected.

Maximum likelihood (ML) estimates of the model described above are reported in
Table A.5. The filter identifies two regimes, with the estimated changes in electricity
prices in Sicily being (in absolute value) approximately four times larger in periods of
high (0.1131), positive, than in periods of low (-0.0273), negative, changes. The model
appears to be well identified: parameters are significant and the standardized residuals
exhibit no signs of linear or nonlinear dependence. The periods of positive and negative
changes in prices seem to be accurately identified by the filter probabilities.

[Table A.5 here]

The fixed transition probability model shows that changes in demand has a significant
effect on prices only in the high regime (αh = 0.5031). Furthermore, results show that
renewable energies are more effective in their downward pressure on prices are in a high
regime

(
δh > δl

)
. The same pattern is observed for the residual supply index

(
λh > λl

)
and congestion

(
θh > θl

)
.

Looking at the time varying transition probability model, in order to assess whether
demand, renewable energy supply, residual supply index and change in congestion con-
tribute to predict changes in the electricity prices in Sicily we need to both (i) analyze
the sign (and significance) of the parameters of the time-varying transition probabilities
(this will enable us to find whether the independent variables affect the probability of
staying in, or switching regime) and (ii) inquire, by looking at the temporal evolution

including the co-integrating relationships between electricity and fossil fuel prices found, among others,
by Bunn et al. (2015) (see Janczura and Weron 2010 for a similar reasoning). In fact, the measure of fuel
prices that is most widely used by practitioners in Italy is the ITEC12/REF-E index (published by the
energy consultancy company REF-E), a monthly-frequency weighted average of international coal and
natural gas prices, adjusted for average thermal efficiencies, with weights corresponding to the average
coal and natural gas shares in the Italian generation capacity.

14Standard regularity conditions for likelihood-based inference are violated under the null hypothesis
of linearity. Under such circumstances the information matrix is singular.
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of the time varying transition probabilities, whether changes in regime are triggered by
changes in the independent variables.

The estimated coefficients for the transition probability functions, presented in Table
A.6, show that: an increase (decrease) in the renewable energies raises (decreases) the
probability of remaining in the low (high) regime; an increase (decrease) in the reserve
supply raises (decreases) the probability of remaining in the high (low) regime; whereas
an increase (decrease) in congestion raises (decreases) the probability of remaining in
the high (low) regime.

Interestingly, the impact of demand on the probability to stay in the low regime is not
significant whereas it has a strong and significant effect (αh = 24.59) on the probability
to remain in the high regime. Demand and renewables, though, display the highest
coefficients in magnitude, consistent with their roles as market fundamentals.

In comparison, the coefficients associated to the RSI (λl and λh) are higher in mag-
nitude than those related to congestion (θl and θh), and more unequal across regimes.
A 10% increase in congestion yields a fall in the log-odds of the low-regime probability
by -4.36% and increases the log-odds of the high-regime probability by +3.75%, whereas
the effects induced by a 10% increase in the RSI amount to, respectively, -35.46% and
+7.26%. Market power, thus, looks like a stronger driver of regime switches than con-
gestion.

[Table A.6 and Figures A.4-A.5 here]

Figure A.4 displays the estimated smoothed regime probabilities (low regime on top,
high regime in the bottom panel). The Sicilian electricity zone remained in a high-price
regime more frequently during the winter and summer months. Notice, however, that
the high-regime probability was on average higher in 2012 than it would be later. It
never fell below 0.5 from approximately mid-January to the beginning of April, and
again from the end of May to late September. These two long spells were interrupted
by a rather persistent stay in the low regime (April) and a shorter dip in mid-May.
The same pattern was not replicated in 2013, when transitions to the low regime were
more frequent, especially in the second quarter. The first quarter of 2014 was markedly
different from the first quarter of 2012, as testified by the frequently alternating regimes,
while some persistence resumed in the second quarter and even more in the third. Apart
from a short spell in the low regime in late August, the high regime probability was
above 0.90 from mid-July to mid-October.

It is hard to reconcile these changing patterns with the dynamics of either demand
or renewables. Congestion (bottom panel of Fig. A.2) behaved very similarly in 2012
and 2013, although persistence in the high regime in the summer of 2014 can easily be
linked to the amazingly long streak of fully congested days. More insights come from the
change in the qualitative behavior of the RSI time series after August 2012. The lower
ability of the system to sustain the high regime in 2013 may be due to the diminished
power of the pivotal supplier, although this is not consistent with the persistence in
the high regime persistence detected in 2014. As these observations imply, both the
congestion and the tacit collusion stories have explanatory power to some extent.
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Figure A.5, which presents the evolution of time varying transition probabilities, is
very informative. It is clear that the transition probabilities of remaining in the same
state vary throughout the sample. Comparing the transition probabilities with the ”raw”
values of the explanatory variables (Fig. A.1 and A.2), we find that the probability of
remaining in the high regime (phh) is rather well in sync with the summer demand
peaks, but not with the winter peaks. Interestingly, in summer months the probability
of remaining in the low regime (pll) is high, too, outlining a clearer regime structure in
the price process than in other seasons.

One reason for lack of synchronization between the high-regime persistence and the
winter demand peak may rest with the volatile behavior of renewables during the winter
season. Looking at Fig. A.2 (mid-panel), it is rather clear that the supply of renewables is
often abundant during the winter, presumably because of wind power production, hence
countervailing the wintertime increase in demand, while the relative scarcity of renew-
ables during the summer reinforces the residual demand available to power producers and
their market power opportunities.15 Adding to this, congestion on the Sicily-Rossano
line is on average less frequent during the winter. There is, instead, a nice visual associ-
ation between the probability to persist in the high regime and the congestion indicator.
The coefficient estimates, though, point to market power as a stronger determinant of
regime transitions.

5 Discussion and conclusion

By means of a time-varying regime-switching model of the day-ahead electricity price in
Sicily over the 2012-2014 period, this paper is able to compare theoretical hypotheses
on the determinants of price regimes, that help shed light on the reasons why Sicilian
prices kept rising despite the general declining trend induced by renewables in Italy.

Our statistical tests identify two regimes, both of which display a relatively high
persistence, yet the price process is not absorbed in either. This would be consistent
with a collusion story, in which tacit agreements between generators are sustained for
rather long spells and punishment periods are similarly long. Yet, one may obtain
a similar pattern from a scenario in which the line connecting Sicily with the Italian
mainland is congested due to protracted supply deficits on the island. As a matter of
fact, in the three sample years, summer seasons in Sicily have lasted longer than usual,
keeping up the power demand and requiring massive inflows of electricity from the South
zone. The serial correlation of our congestion proxy, consistently, is .468 after 1 daily lag
and tapers off quite slowly (around .10 between lags 15 and 20, and .16 at the 21-days
lags). By the same token, persistence in the high regime obtains if demand stays above
the supply kink hypothesized by Kanamura and Ohashi (2008).

Conditioning the transition probabilities is the key to discriminating among the com-
peting hypotheses. If regimes were only due to a kinked cost profile, the RSI and con-
gestion would not have the explanatory power they display (see the time-varying regime

15It is worth recalling that the photovoltaic penetration rate in Sicily is about half the wind power
penetration rate (see Section 4.2).
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switching results). In days with more congestion, high-to-low transitions are less fre-
quent, and conversely, congestion seems to drive transitions towards the high regime
and to increase its persistence. This would support the congestion hypothesis, yet the
variance in the congestion indicator within each regime is not negligible, as implied
by the price equation estimates. Congestion, then, does not seem the sole driver of
regime switches. The evidence of significant effects of congestion and market power on
transitions is also enough to rule out the cost profile hypothesis. What casts doubts
on the arbitrary market power hypothesis, instead, is finding that price levels in the
high regime are predictable by means of data on demand, supply, market power, and
congestion. Hence, while in the high regime, generators do not seem to randomize.

As a bottom line, the estimated patterns seem to only be consistent with a tacit
collusion story. According to our results, high-to-low transitions are more likely when
the supply of renewables cover a large share of power demand, when the pivotal supplier
cannot affect market clearing, and when Sicily is integrated with the rest of Italy. In all
these cases, the profit share lost by deviating is relatively small, in line with theoretical
insights from repeated games with multiple equilibria.

Our paper adds to the existing evidence on tacit collusion, but its key message
concerns the interplay between tacit collusion and transmission constraints, responding
to the challenge presented by Liu and Hobbs (2013). While the tacit collusion story is
more empirically sound than a ”pure” congestion story, it must be stressed that without
the bottlenecks arising in the Sicily-Rossano line, the collusive incentives would have
been much weaker. An implied message is that the reinforcement of the cable connecting
Sicily to the Italian peninsula will curb market power, but at least as importantly, our
results point to the tacit collusion literature as a source of alternative weapons against
the threat of soaring electricity prices.

Infrastructural investments, indeed, prove less viable in austerity times. Completion
of the Sorgente-Rizziconi line, scheduled for 2015, 5 years after authorization, has been
meeting opposition from environmental associations, leading the regional administration
to call for a revision in the project and prompting judiciary investigations. Relaxing
the transmission constraints can also yield unwelcome market power ”export” effects
when the excess capacity in one zone can be deployed in others after integration (Boffa
and Scarpa 2009) or when integration allows a low-cost dominant generator to access a
more competitive zone (Bunn and Zachmann 2010). The experience of lower prices in
Sardinia after the inauguration of the SAPEI cable in 2011 is reassuring in this respect.
Sardinia is similar to Sicily as regards climate conditions, renewable energy potential
and hydropower scarcity.

Alternative anti-collusive means include reforming the day-ahead auction format,
limiting multi-market contracts, and stimulating renewables. Fabra (2003) showed how
collusion is harder to enforce in pay-as-bid auctions. Regulatory discussions almost
led to replacing the day-ahead uniform price auction in the Italian power exchange in
2009 under pressure from industrial consumers, before the project was halted by the new
government. Multi-market contacts across the forward curve, with companies competing
in several derivative markets, need to be carefully regulated. This task is far from easy,

17



in light of the proliferation of trading venues for forwards (MTE - Mercato a Termine
per l’Energia, run by GME), futures and options (IDEX, managed by Borsa Italiana).
Derivatives regulation and day-ahead auction formats are subtly linked, as pay-as-bid
auctions are expected to yield lower volatility (Rassenti et al. 2003) and hence reduce
the demand for hedging and the associated multi-market contacts.

Fostering further diffusion of renewable energy sources is yet another way to go.
Their effectiveness as a pro-competitive tool is easily mis-perceived by looking at the
crude, aggregate data: lower prices have not followed despite soaring penetration rates.
Our estimates, though, suggest that more renewables keep the price process in the low
regime and, within each regime, perform a mitigating function on price. Related work
(Sapio 2015b), moreover, highlights the beneficial role of renewables as substitutes for
electricity imports from neighboring zones.

Our results should be taken into account in regulatory and policy-making circles,
such as in the implementation of the projects of common interest envisioned by the 2030
Climate-Energy Package. The case studies of Baltic States, Ireland and the Iberian coun-
tries all have their own peculiarities, yet the evidence on Sicily provides new and useful
information on the potential benefits and risks associated to different infrastructural
and institutional architectures. Behind the discussion on anti-collusive tools, outlined
above, lies the tension between investments in the generation and transmission segments
of the electricity industry. These entertain non-trivial complementarity and substitution
relationships whose full understanding is a challenging task for future research.
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Appendix

Table A.1: Hypotheses on the determinants of price regimes and their predictions. +
(−) indicates a positive (negative) and statistically significant coefficient. no means lack
of statistical significance.

Variables → Low-price regime High-price regime High-to-low transition
↓ Hypotheses

Arbitrary market power
Demand + no -
RE supply - no +
Market power no no -
Congestion no no no

Cost profile
Demand + + -
RE supply - - +
Market power no no no
Congestion no no no

Tacit collusion
Demand + + -
RE supply - - +
Market power + + -
Congestion + + -

Congestion
Demand + + -
RE supply - - +
Market power no + no
Congestion no no -

Table A.2: Notation, definitions, and sources of the variables used in the econometric
analysis.

Notation Short name Variable definition Source

yt Price Daily average of hourly electricity prices in the Sicily zone IPEx (day-ahead)
xt Demand Daily purchased quantities of electricity in the Sicily zone ”
vt Congestion Daily number of hours when the prices in the Sicily and South ”

zones differed; or: Daily change in the number of congestion hours ”
wt RSI Daily average of the residual supply index for the Sicily zone ”
zt Renewables Daily production of intermittent renewables in the Sicily zone Terna
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Table A.3: Descriptive statistics of the sample used in the econometric analysis on
the Sicilian electricity market zone: variables before de-seasonalization and de-spiking.
Number of observations: 1096.

Mean Std. dev. Skewness Kurtosis Min Max

Daily average price 89.401 19.418 .451 11.009 20.608 273.637
Daily purchases 52271.08 5498.788 .253 2.874 35570.56 71830.18
Daily RE sold quantities 12540.05 6275.72 1.072 3.640 1366 34528
Daily median RSI 33.778 94.742 3.967 22.197 0 812.298
Daily n. of congested hours 20.694 4.154 -1.264 3.736 5 24

Table A.4: Descriptive statistics of the de-seasonalized and de-spiked variables and sta-
tistical tests.

Mean Std. dev. Skewness Kurtosis Jarque-Bera

yt 0.0151 0.1378 −0.1978 3.5966 23.408
xt 0.0028 0.0305 −0.0649 3.0534 0.9008
zt 0.0063 0.4345 0.0898 2.7824 3.6347
wt −0.1816 1.0508 0.8337 4.7416 28.893
vt −0.0063 4.2811 −0.1489 4.8508 16.332

Markov Switching State Dimension: Hansen Test∗

Standardized LR test Linearity vs two-states Two-states vs three-states
LR 3.7765 0.4591
M = 0 (0.0012) (0.6987)
M = 1 (0.0026) (0.6900)
M = 2 (0.0054) (0.6987)
M = 3 (0.0059) (0.7034)
M = 4 (0.0131) (0.7124)

Note: The Hansen’s standardized likelihood ratio test p-values are calculated according to the method

described in Hansen (1992), using 1,000 random draws from the relevant limiting Gaussian processes and

bandwidth parameter M = 0, 1, . . . , 4. Test results for the presence of a third state are also reported.
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Table A.5: Maximum likelihood estimation results for the fixed transition probability
model.

Low Regime High Regime

Parameters S.E Parameters S.E.

µl −0.0273 (0.0001) µh 0.1131 (0.0001)
αl 0.0008 (0.7998) αh 0.5031 (0.0001)
δl −0.1359 (0.0000) δh −0.1460 (0.0001)
λl 0.0061 (0.0169) λh 0.0164 (0.0001)
θl 0.0048 (0.0010) θh 0.0064 (0.0001)

σ 0.4354 (0.0403)

p11 0.9317 (0.0103) p22 0.8562 (0.0093)
Duration 14.6573 6.95873

LB(5) 1.4232
[0.8962]

LogLik 917.1313

LB2
(5) 3.5576

[0.5422]

Note: Autocorrelation and heteroscedasticity-consistent standard errors, computed using the Newey and

West (1987) variance covariance matrix, are reported in brackets. LB(5) and LB2
(5) are respectively the

Ljung-Box test (1978) of significance of autocorrelations of five lags in the standardized and standard-

ized squared residuals, p-values are reported in brackets. Duration indicates the number of days the

independent variable stays in each regime.
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Table A.6: Maximum likelihood estimation results for the time-varying transition prob-
ability model.

Mean Equation Transition Probabilities

Parameters S.E Parameters S.E.

µl −0.0796 (0.0001) cl 5.1001 (0.0004)
µh 0.0989 (0.0001) ch −1.8461 (0.0001)

αl −8.9683 (0.6109)
αh 24.5948 (0.0027)

σ 0.4116 (0.0397) δl 5.9763 (0.0004)
δh −4.8764 (0.0000)
λl −3.5461 (0.0044)
λh 0.7261 (0.0124)
θl −0.4359 (0.0036)
θh 0.3749 (0.0000)

LB(5) 2.8293
[0.7262]

LogLik 836.6509

LB2
(5) 5.1578

[0.3969]

Note: See Notes Table 5. The time varying transition probabilities evolve according to Eq. 4 where:

αl and αhmeasure the effects of power demand on the probability to remain in the low and high regime

respectively. The effects of renewable energy production, the RSI, and congestion are measured by(
δl, δh

)
,
(
λl, λh

)
and

(
θl, θh

)
respectively.
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Figure A.1: Daily average electricity price (top) and daily purchases (bottom) in Sicily,
2012-2014. 27
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Figure A.2: Daily median residual supply index (top), daily total production of inter-
mittent renewable energy (middle), and number of congested hours (bottom) in Sicily,
2012-2014.
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Figure A.3: Deseasonalized and despiked daily average electricity prices in Sicily, 2012-
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Figure A.4: Smoothed probabilities that the price process be in the low (P (S(t) = l))
and high (P (S(t) = h)) states.
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Figure A.5: Transition probabilities in the time varying transition probabilities model
(Eq. 3 and 4). phh and pll denote the probability of staying in the high regime (state h)
and the probability of staying in the low regime (state l) respectively, whereas plh and
phl denote the probability of switching to the high regime (state h) and the probability
of switching to the low regime (state l) respectively.
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