



## THE INNOVATION'S VIEWPOINT

## • DATA NEEDS



- « High Skilled » is not enough → what about STEM workers and students?
- Europe as both origin and destination

• SPECIFIC TOPICS



#### (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

> (43) International Publication Date 22 October 2009 (22.10.2009)



- (51) International Patent Classification: *H01Q 9/04* (2006.01) *H01Q 1/22* (2006.01)
- (21) International Application Number:

PCT/US2009/037838

(22) International Filing Date:

20 March 2009 (20.03.2009)

- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data: 12/104,359 16 April 2008 (16.04.2008) US
- (71) Applicant (for all designated States except US): APPLE INC. [US/US]; 1 Infinite Loop M/S 40-PAT, Cupertino, CA 95014 (US).

(10) International Publication Number WO 2009/129021 A1

#### (72) Inventors; and

(75) Inventors/Applicants (for US only): CHIANG, Bing [CN/US], 1 Infinite Loop M/S 40-PAT, Cupertino, CA 95014 (US). KOUGH, Douglas, Blake [US/US]; 1 Infinite Loop M/S 40-PAT, Cupertino, CA 95014 (US). AY-ALA VAZQUEZ, Enrique [MX/US]; 1 Infinite Loop M/ S 40-PAT, Cupertino, CA 95014 (US). CAMACHO, Eduardo, Lopez MX/US]; 1 Infinite Loop M/S 40-PAT, Cupertino, CA 95014 (US). SPRINGER, Gregory, Allen [US/US]; 1 Infinite Loop M/S 40-PAT, Cupertino, CA 95014 (US).



### Share of Immigrant Inventors, 1990-2010 (nationality)



Source: Miguelez & Fink, 2013

### Net Migration Position, 2001-2010



| Native                  |           |         | Immigrant               |           |         |
|-------------------------|-----------|---------|-------------------------|-----------|---------|
| Metropolitan Region     | Inventors | Percent | Metropolitan Region     | Inventors | Percent |
| Paris                   | 26,666    | 7.66    | Eindhoven               | 1,674     | 14.35   |
| London                  | 18,074    | 5.19    | London                  | 1,076     | 9.22    |
| Stuttgart               | 13,343    | 3.83    | Paris                   | 842       | 7.22    |
| Munich                  | 12,810    | 3.68    | Munich                  | 390       | 3.34    |
| Eindhoven               | 11,027    | 3.17    | Cambridge               | 384       | 3.29    |
| Berlin                  | 8,167     | 2.35    | Stockholm               | 356       | 3.05    |
| Frankfurt               | 7,640     | 2.19    | Helsinki                | 285       | 2.44    |
| Copenhagen              | 7,522     | 2.16    | Stuttgart               | 248       | 2.13    |
| Stockholm               | 7,077     | 2.03    | Copenhagen              | 242       | 2.07    |
| Helsinki                | 7,016     | 2.02    | Berlin                  | 237       | 2.03    |
| Ruhr district           | 6,435     | 1.85    | Mannheim - Ludwigshafen | 206       | 1.77    |
| Mannheim - Ludwigshafen | 5,738     | 1.65    | Brussels                | 204       | 1.75    |
| Milan                   | 5,544     | 1.59    | Frankfurt               | 175       | 1.50    |
| Nuremberg               | 5,423     | 1.56    | Achen                   | 169       | 1.45    |
| Cambridge               | 5,322     | 1.53    | Vienna                  | 148       | 1.27    |
| Other                   | 200,327   | 57.52   | Other                   | 5,028     | 43.11   |
| Total                   | 348.131   | 100.00  | Total                   | 11,664    | 100.00  |

\*Given the definition of Metropolitan Regions (i.e. agglomerations of at least 250,000 inhabitants) 110,444/2,448 observations were not assigned.)

## **CONTEXT & MOTIVATION**

DATA NEEDS



- « High Skilled » is not enough → what about STEM workers and students?
- Europe as both origin and destination

- TOPICS
  - > MIGRATION & THE MARKET FOR STEM WORKERS
  - BRAIN DRAIN VS BRAIN GAIN
  - MIGRATION & KNOWLEDGE DIFFUSION
  - > MIGRATION & LOCATIONAL ADVANTAGE (VARIETY)



# DIFFUSION

(survey by Lissoni, 2017)



## **MIGRATION AND DIFFUSION /1**



## **MIGRATION AND DIFFUSION /2**

**Destination-to-origin** 

**Collaborations** (Miguelez, World Bank Econ Rev, 2018)

- WIPO-PCT patent data on inventors
- Observations are South-North "corridors", 1990-2010
- Quasi-likelihood "log-gravity model":

*Co-inventorship*<sub>South-North</sub> =

= f (Stock of migrant inventors<sub>South→North</sub> ; Controls)

•  $\Delta 10\%$  migration  $\rightarrow \Delta 2.0\%$  co-inventorship



## **MIGRATION AND DIFFUSION /3**

**Destination-to-origin** 

Citations (Breschi et al., JoEG, 2017)

- Disambiguated EP data on US-resident inventors, 1980-2010
- Name-analysis of inventors → "Ethnic" inventors from 10 important Countries of Origin (CoO)
- Social distance between inventors (co-inventorship networks)





## **DIRECTION OF DIFFUSION FLOWS /4**

**Destination-to-origin** 



# % increase of citation probability if one inventor resides in the US and the other in..



# LOCATIONAL ADVANTAGE ↓ MIGRATION-INDUCED VARIETY



## Migration-induced variety $\rightarrow$ Innovation /1

- ➤ Regional economics : ethnic/cultural diversity of cities/regions → innovation output (productivity growth, patent counts etc.) (survey by Kemeny, 2017) →TWO ISSUES
  - Is migration-induced analysis a local public good or a firm's organizational asset, or both?
  - No separate modelling/measuring of
    - ✓ « variety » → fractionalization index (reciprocal of HH and adjustments)
    - ✓ « separation » → Polarisation indexes of beliefs and norms as per organization/human resource literature



## Migration-induced variety → Innovation /2

#### Database

- PCT applications, 1990-2010 with:
- ✓ at least at least 2 inventors + info on nationality
- ✓ all inventors residing either in the US (~400k patents) or in a country within EU15 (~486k patents)

#### Sample

- ~165k patents by ~347k US-resident inventors
- ~247k patents by ~472k EU15-resident inventors

Patent quality : 3to5toALL-year forward citations, at patent family level

#### **Inventors' migrant status:**

- Foreign inventor in the US = non-US national
- Foreign inventor in EU15 = resident in country X, but not X-national



## **DOES DIVERSITY AFFECT INNOVATION? /1**

Ferrucci and Lissoni (2018) :

- > do variety effects co-exist at team vs local vs firm levels?
- > experiment with separation measurement

$$\begin{split} E(citations_i) &= \beta_0 + \beta_1 team \ diversity_i + \beta_2 firm \ diversity_i + \\ &+ \beta_3 location \ diversity_i + \gamma C_i + \delta f_i + \epsilon_i \end{split}$$

 $E(citations_i) = \beta_0 + \beta_1 team \ diversity_i + \beta_2 separation + \gamma C_i + \delta f_i + \epsilon_i$ 

$$\checkmark diversity_i = 1 - \sum_{m=1}^M s_m^2$$

- ✓ separation<sub>i</sub> = Esteban&Ray's (1994) polarization index, based on Hofstede's "int'l differences in work-related values"
- ✓  $s_m$  = share of inventors from country *m*



Table 6: Patent quality and inventor diversity at the team, firm, and location level (adjusted diversity). Negative binomial regressions (Europe and United States).

|                    | (1)       | (2)         |
|--------------------|-----------|-------------|
|                    | EU15      | US          |
| diversity          | 1.198***  | 1.144***    |
|                    | (0.0159)  | (0.0109)    |
| firm. diversity    | 1.295***  | 0.874***    |
|                    | (0.0285)  | (0.0185)    |
| location diversity | 1.339***  | $1.057^{*}$ |
|                    | (0.0316)  | (0.0276)    |
| Constant           | 0.323***  | 0.810***    |
|                    | (0.00637) | (0.0157)    |
| Controls           | Yes       | Yes         |
| Year dummies       | Yes       | Yes         |
| Tech dummies       | Yes       | Yes         |
| N                  | 215606    | 143167      |
| r2_p               | 0.0410    | 0.0432      |
| chi2               | 26770.3   | 25623.1     |
| 11                 | -403068.2 | -360335.8   |

Exponentiated coefficients; robust standard errors in parentheses



#### Patent quality and inventor diversity (variety) vs separation (Negative Binomial regressions, US vs EU15)

|                         | EU15      | US        |
|-------------------------|-----------|-----------|
| diversity               | 1.495***  | 1.291***  |
|                         | (0.0428)  | (0.0247)  |
| separation              | 1.216     | 0.785***  |
|                         | (0.187)   | (0.0497)  |
| Constant                | 0.360***  | 0.796***  |
|                         | (0.00653) | (0.0131)  |
| α                       | 1.148***  | 1.002     |
| Controls                | Yes       | Yes       |
| Year dummies            | Yes       | Yes       |
| Tech dummies            | Yes       | Yes       |
| N                       | 243460    | 160433    |
| Pseudo - $\mathbb{R}^2$ | 0.0412    | 0.0436    |
| Log-likelihood          | -448376.1 | -404183.0 |

Exponentiated coefficients; Standard errors in parentheses

# **LESSONS FOR ITALY?**

## > DATA NEEDS BEYOND HIGH-SKILLED (AND INVENTORS):

Scientists, Engineers, Hi-Tech entrepreneurs, Liberal professions...

## > ITALY AS A COUNTRY OF ORIGIN

- What benefits from the Italian STEM diaspora?
- Is our diaspora large enough? In Europe? In the US?
- What emigration channels?

## > A DIVERSITY-BASED VIEW OF LOW-SKILL IMMIGRATION

- Does "separation" trumps "variety"?
- Shall high-skill immigration policies target innovative cities



## **BACK-UP SLIDES**



### Sampling /6b – Chinese and Indian inventors in the US

#### nr of foreign inventors – US; main countries of origin



## Foreign inventors in EU15 are mainly intra-EU

#### nr of foreign inventors – EU15; main countries of origin



## Impact of migrant inventors: estimation strategy

### Controls

Team size: nr of inventors on the patent (correlates with presence of migrant inventors & more citations)

- University: the patent applicant is an academic institution (correlates with presence of migrant inventors & more citations)
- Team experience: max(nr of patents signed by each inventor on the patent at patent's priority date)
- Previous collaborations: =1 if at least two co-inventors in the focal patent have been previously co-invented
- International extensions: nr documents in DOCDB family of the focal patent
- Triadic: =1 if patent extended in JP, US and EP

Regions: =1 if the inventors are located in different NUTS3 regions ( $\rightarrow$  spatially dispersed inventors may suffer from lack of interaction)