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Abstract

We estimate a Bayesian dynamic factor model of the euro area core inflation

and real activity. The common cyclical factor is normalized so that it coincides

with the deviation of output from its trend, and hence we call it the output

gap. We examine the precision of inflation forecasts and the robustness of this

output gap in real-time. We find that it helps to introduce multiple activity

indicators, to relate trend inflation to long term inflation expectations, and to

model trends of the remaining variables as random walks. The resulting model

forecasts inflation well and implies that the output gap in the euro area has

been as large as -6% in 2014.
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email:michele.lenza@ecb.europa.eu

1



1 Introduction

Economists monitor and assess real economic activity in a variety of ways and for a

variety of important reasons. In this paper we focus on only one of these reasons:

the slack in real economic activity is potentially useful for forecasting inflation. This

idea follows at least from Phillips (1958), see also e.g. Stock and Watson (1999), and

is reflected in countless academic discussions and policy analyses.

We use a small Bayesian factor model to efficiently summarize multidimensional

economic activity in a single indicator, the output gap, and to forecast core inflation

with it. The model includes a vector of real activity indicators and core inflation.

Long run behavior of the variables is captured by variable-specific persistent trends.

Fluctuations of the variables at business cycle frequency around their trends are cap-

tured by a common factor. Normalization ensures that this common factor coincides

with the current deviation of real GDP from its trend, and is therefore our measure

of the output gap. The model is flexibly specified to account for the possibility that

other variables may be either leading or lagging the real GDP. We apply the model

to the euro area econonomy.

We face a number of modeling choices: Which observable variables to include?

How to specify the trend processes? What priors to use? We find that different

reasonable choices lead to widely disparate estimates of the output gap in the euro

area. These different estimates approximately agree about the timing of peaks and

troughs, but often widely disagree about the level of the output gap. Given that the

output gap is unobservable, how is one to judge which of these estimates is the most

useful?

The approach we take in this paper is that an output gap estimate is only as

useful as the real-time signal it sends about future inflation. Therefore, we use out-

of-sample, real-time forecasts of core inflation as a validation tool for our output gap

models. We find that the best output gap estimates are extracted from a relatively

large set of observable variables, with relatively inflexible trend processes, and it is
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useful to relate trend inflation to long term inflation expectations. The resulting

forecasts of inflation are very good, both before the 2008 crisis, and since its onset,

when we correctly capture the fall in inflation. The output gap in the crisis is large

and by 2014 it may be as large as -6% of euro area GDP!

Whether slow growth results from a large output gap or slow trend growth mat-

ters fundamentally for economic policy makers. A large output gap calls for a de-

mand stimulus, while slow trend growth probably requires supply-side policies. Many

economists believe in a version of ‘secular stagnation’ hypothesis according to which

developed economies, including the euro area, are facing a persistent slow-down of

trend growth (see e.g. Gordon (2014)). We find that specifications of our model

that produce slow trend growth and, consequently, small output gaps, forecast core

inflation poorly. Therefore, our results highlight that reconciling the above version of

the secular stagnation hypothesis with the core inflation data remains a challenge.

We also study real-time reliability of end-of-sample estimates of the output gap,

which is crucial if they are to be of use for policy. In their influential paper, Orphanides

and van Norden (2002) demonstrate that ex post revisions of the real-time end-of-

sample output gap estimates are of the same order of magnitude as the output gap

itself, rendering it virtually useless in practice. To confront this issue convincingly

we take a fully real-time perspective in our econometric analysis. In particular, we

update and use the real-time database for the euro area described in Giannone et al.

(2012), which collects the data appearing in the ECB monthly bulletin since 2001.

We find that small models, similar to the ones studied by Orphanides and van Norden

(2002), are indeed as unreliable as they report. However, we find that the output gap

estimates from our best model, which is much larger, are revised much less as data

accumulate, so they are reasonably reliable in real time.

This paper is related to a large literature on output gap and Phillips curve esti-

mation with unobserved components models. The small-scale Phillips curve model

of Kuttner (1994) initiated this literature. Planas et al. (2008) estimate a Bayesian
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version of Kuttner’s model and we build on their priors. Similarly as Baştürk et al.

(2014) we use non-filtered data and pay much attention to modeling their low fre-

quency behavior. We confirm the finding of Valle e Azevedo et al. (2006) and Basistha

and Startz (2008) that using multiple real activity indicators increases the reliability

of output gap estimates. Following Valle e Azevedo et al. (2006) our model accounts

for the presence of both leading, coincident and lagging indicators, although we use

a different parameterization. Finally, Faust and Wright (2013) and Clark and Doh

(2014) document the advantages of relating trend inflation to data on long-term infla-

tion expectations. Indeed, we find that relating trend inflation to long-term inflation

expectations is a crucial ingredient of a successful output gap model in our applica-

tion.

The output gap concept in the reduced form approaches like ours and the ones

cited above is different from the output gap concepts in structural dynamic stochastic

general equilibrium (DSGE) models. A simple way to see this is to compare the

New-Keynesian Phillips curve equation present in these models with the traditional

Phillips curve present in our model. The New-Kenyesian Phillips curve includes the

next-period inflation expectations, such as e.g. in π̂t = βEtπ̂t+1 + κg̃t + ut, where π̂t

is the deviation of inflation from its trend in period t, g̃t is the appropriate output

gap concept, ut collects the shocks to this equation, and β and κ are coefficients.

The Phillips curve equation in our model reads π̂t = κgt + ut where gt is our output

gap. Clearly, as these are different equations, only by chance would g̃t and gt coincide.

The output gap in DSGE models has often been contrasted with reduced form output

gaps and indeed their time series properties can in principle be very different. For

example, Christiano et al. (2010) show how the DSGE-model consistent output gap

can be either procyclical or countercyclical depending on model assumptions. On the

other hand, e.g. Gaĺı et al. (2012) and Justiniano et al. (2013) produce output gap

measures that look similar to the output gaps from reduced form approaches.

The rest of the paper is organized as follows. Section 2 briefly describes the real-
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time database. Section 3 describes the model and its estimation. Section 4 reports

the empirical results. Section 5 concludes.

2 Data

The macro-econometric literature has emphasized the relevance of the real-time data

uncertainty about the output gap (Orphanides and van Norden, 2002). For this

reason, we adopt a fully real-time perspective, in our paper. Our data source is the

euro area real-time database described in Giannone et al. (2012). The frequency of

our variable is generally quarterly and we take quarterly averages of the variables

that are available at the monthly frequency. All variables are seasonally adjusted, in

real-time.

The first block of our database consists of seven indicators of real economic activity

that we collect in the vector yt: real GDP (y1
t ), real private investment (y2

t ), real

imports (y3
t ), real export (y4

t ), unemployment (y5
t ), consumer confidence (y6

t ) and

capacity utilization (y7
t ). The first four variables are in log levels, the remaining three

in levels.

Our measure of prices is the Harmonized Index of Consumer Prices (HICP) ex-

cluding energy and food prices. The log of this index is denoted pt and the inflation

variable that enters the econometric model is πt = 400(pt − pt−1).

We also use the 5-year ahead inflation expectations (πet ) for the euro area from

Consensus Economics. Consensus Economics collects and publicly releases 5-year in-

flation forecasts of G-7 countries every April and October since 1989. We compute the

5-year inflation expectations for the euro area by weighing the forecasts for Germany,

France and Italy according to their GDP levels. We assign the April release to the

second quarter and the October release to the fourth quarter of the respective year.

Pre-1989 inflation expectations and those of the first and third quarter of each year

are missing.
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For each variable, we collect the 55 real-time data vintages released in the begin-

ning of the third month of each quarter from 2001Q1 to the 2014Q3.1 Consequently,

for the last quarter of each real-time sample we only observe capacity utilization

(which is a survey) and inflation expectations (in the second and fourth quarter of the

year, otherwise the current quarter is also missing), while for the other indicators the

last available release refers to the previous quarter (GDP, inflation, unemployment,

consumer confidence) or to two quarters earlier (investment, exports and imports).

Hence, our real-time database is characterized by a “ragged edge”, i.e. it has miss-

ing values at the end of the sample, in addition to the missing values of inflation

expectations in half of the quarters.

The sample starts in 1985Q1 in each vintage. The observations from 1985Q1 to

1992Q2 are used as a training sample, to inform our prior. Observations starting

from 1992Q3 are used for the estimation.

3 Econometric model

We use the following state space model to estimate output gap and to forecast infla-

tion. The observation equations of the model are

yt = Bn(L)gt + wnt + uy
n

t , (1)

πt = a(L)gt + zt + uπt , (2)

πet = c+ zt + uet , (3)

where uy
n

t , u
π
t , u

e
t are independent Gaussian errors and L denotes the lag operator. n,

the index of real activity variables, ranges from 1 to N .

The first equation relates the real ”n-th” real activity variable ynt to a variable

1The database of Giannone et al. (2012) collects the data vintages reported each month in the
ECB Monthly Bulletin, is regularly updated and publicly available in the ECB Statistical Data
Warehouse.
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specific common trend wnt and to gt, a common factor. The latter may enter the

equations at all leads and lags and, hence, B(L) is a polynomial with both negative

and positive powers of L. In so doing, we accommodate for the presence of both

contemporaneous, lagging and leading indicators in the vector of real activity variables

yt. The first variable, y1
t , is the log of the real GDP and for this variable we restrict

the coefficients of gt to be 1, the coefficients of lagged and future g to be zero, and the

shock variance to zero, so this equation reads y1
t = gt +w1

t . This restriction identifies

gt as the current output gap and ensures that it is expressed in percent of real GDP.

The second equation, referred to as the Phillips Curve, relates inflation to the

current and lagged output gap gt and to trend inflation zt. This specification differs

from the popular “triangle” model of inflation (Gordon, 1997) that relates inflation

to output gap, lagged inflation and cost push variables. In our model, the persistence

of inflation is accounted for by the persistence of trend inflation and the persistence

of the output gap, so we do not need lagged inflation. Moreover, our measure of

inflation is based on HICP excluding energy and food and we found that including

cost-push variables, such as the oil price and the exchange rate did not improve our

inflation forecasts

The third equation relates trend inflation zt to long term inflation expectations

πet , as advocated by e.g. Faust and Wright (2013) and Clark and Doh (2014). A

theoretical justification for such a model of trend inflation is provided in e.g. Cogley

et al. (2010). We could introduce πet directly into the Phillips curve, but we prefer

to have πet among the endogenous variables so that our model can provide a forecast

of inflation without having to impose any off-model future path for the inflation

expectations. zt differs from πet by a level shift c and i.i.d. noise uet , to account for

the fact that inflation expectations πet and inflation πt refer to different concepts of

inflation (headline HICP and HICP excluding energy and food).

The state equations of the model are the following. The output gap is modeled
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as an autoregressive process of order two,

gt = φ1gt−1 + φ2gt−2 + ugt . (4)

Trends of the real activity variables are modeled alternatively as constants, wnt = dn,

random walks with drift, ∆wnt = dn + uw,nt or second order random walks, ∆∆wnt =

uw
n

t . Trend inflation zt is modeled as an autoregressive process of order one, zt =

dz + fzt−1 + uzt . All the shocks are Gaussian.

3.1 Priors

Overall, our prior selection is based on the use of a training sample and an adaptation

of the approaches popularized by the literature on time-invariant and time-varying

parameter Bayesian VARs. Here we only sketch the most relevant aspects, while the

full details on the specification are reported in appendix B at the end.

In practice, we center our priors around the simple model in which each observable

variable is a sum of a random walk trend and an i.i.d. noise. Based on the training

sample we calibrate the prior variances of the shocks to trend and noise so that

they each explain one-half of the variance of the first difference of the variable. The

loadings of each variable on the output gap are centered at zero, with variances scaled

as in a loose variant of the Minnesota prior. We introduce a subjective prior about

the properties of the output gap process, which captures the stylized facts on the

periodicity and persistence of the business cycles.

The functional form of the priors about shock variances is inverted gamma and all

the remaining priors are Gaussian. These functional forms ensure a convenient and

fast computation of the posterior, which is important in our case, since, as explained

below, we recompute the posteriors hundreds of times.
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3.2 Estimation

In the Gibbs sampler we draw the parameters (Bn(L) with n = 1, ..., N , a(L), c,

φ1, φ2, d, f , and all the shock variances) conditionally on the unobserved states (gt,

wnt with n = 1, ..., N , zt for t = 1, ..., T ), and then draw the states conditionally

on the parameters. The conditional posteriors of the parameters are Gaussian and

inverted gamma. The conditional posterior of the states is Gaussian, and we draw

from it using the simulation smoother of Durbin and Koopman (2002), implemented

as explained in Jarociński (2014). To compute each posterior we generate 250,000

draws with this Gibbs sampler, out of which we discard the first 50,000. We confirm

the convergence of the Gibbs sampler using the Geweke (1992) diagnostics.

4 Empirical results

4.1 Model specifications

We estimate six variants of the model. Comparing these variants helps us to under-

stand the role of various features of the model. In particular, the models differ in

three dimensions: the real activity variables included in the model, the inclusion of

long term inflation expectations, and the functional form of the trends of real activity

variables. Table 1 provides an overview.

Model 1 includes only inflation and real GDP, the minimal set of variables to

extract the output gap and forecast inflation. Models 2 extends Model 1 by including

long term inflation expectations that pin down trend inflation. Model 3 extends Model

1 by including all the seven indicators of economic activity. Models 4 to 6 feature

both long term inflation expectations and all the seven indicators of real activity.

In Models 1 to 4 the trends of the real activity variables are modeled as random

walks with drift. By contrast, trends in model Model 5 are more rigid, and in Model

6 more flexible. In Model 5 trends of the a priori stationary real activity variables
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Table 1: Model specifications.

trend y trend π Variables

related to πt πet y1
t y2

t y3
t y4

t y5
t y6

t y7
t

Model 1 RW - x x

Model 2 RW πet x x x

Model 3 RW - x x x x x x x x

Model 4 RW πet x x x x x x x x x

Model 5 RW or constant πet x x x x x x x x x

Model 6 2nd order RW πet x x x x x x x x x

Note: The variables used to estimate each model are indicated with an x in the columns 4 to 12. πt is the quarterly
percentage change in HICP excluding enery and food; πe

t is the five years ahead inflation expectations from Consensus
Economics; y1t is real GDP; y2t : real private investment; y3t : real imports; y4t : real exports; y5t : unemployment rate;
y6t : consumer confidence; y7t : capacity utilization.

(unemployment rate, consumer confidence and capacity utilization) are modeled as

constants.2 In Model 6, the trends of all the real activity variables are modeled as a

second order random walk, which is a more flexible process.3

4.2 Output gap estimates on the last vintage of the data

We start by estimating each of the six models just described on the most recent

sample, 1992Q3 to 2014Q3. Figure 1 plots the point estimates (posterior medians) of

the output gap over time obtained from each of the six models. This figure shows that

the peaks and troughs of the output gap estimates typically coincide across models.

However, the results also highlight that it is of utmost important to discriminate

among the model features we have discussed above because different mixes of trend

specifications and observables lead to substantial disagreements about the size of the

output gap. For example, at the end of the sample, the estimates of the output gap

2The prior mean and variance of these constants are equal to the mean and variance of the
corresponding variable in the training sample.

3The initial value ∆∆wn
1 is centered at δ̃y with standard deviation 5σ̃y. The priors for the shock

variances in these second order random walks are set to 1/500, which is a small value. This value
implies that it takes on average 500 quarters for the growth rate of a variable to change by one
percentage point.
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range between 0 and -6 percent of GDP.
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Figure 1: Point estimates (posterior medians) of the output gap from Models 1 to 6

4.3 Forecasting results

In this subsection, we study the real-time out-of-sample forecasting performance of

our models in order to discriminate among the different measures of output gap. We

proceed as follows. We re-estimate each of the six models over 55 expanding samples

of our real-time data and, at each point in time, we forecast inflation up to two years

ahead. The first estimation sample (data available on 2001Q1) spans the period

1992Q3 - 2001Q1 and the last (data available on 2014Q43) 1992Q3 - 2014Q3.4 Our

4As explained in the data section, however, we have a ragged edge at the end of the sample,
due to the different timeliness in the data releases. The only data release for the current quarter is

11



target measure of inflation for horizon h is the annualized rate of change in consumer

prices πt,t+h defined as

πt,t+h =
4

h
(pt+h − pt) ,

where pt the log-level of consumer prices. We compute the target inflation rate using

the last data vintage (2014Q3). We evaluate both the point and the density forecasts.

We start with the evaluation of point forecasts. Table 2 reports the mean squared

error (MSE) of the nowcast of inflation (h = 0),5 the four (h=4) and eight (h=8)

quarters ahead forecasts. The point forecasts are computed as the median of the

posterior predictive density. The results are cast in terms of ratios of MSE of the

different models over the MSE of the simple benchmark forecast. The benchmark

forecasts come from the random walk with drift for pt.
6 A number smaller than one

indicates that the model outperforms the simple benchmark.

Table 2: MSE relative to the simple benchmark.

Model h = 0 h = 4 h = 8

Model 1 0.62 1.16 2.66

Model 2 0.64 1.12 1.62

Model 3 0.61 1.10 2.26

Model 4 0.52 0.56 0.73

Model 5 0.62 0.58 0.86

Model 6 0.93 1.08 0.97

Note: Ratio of mean squared forecast error of Models 1 to 6 relative to the random walk with drift for pt. Current
quarter (h=0), four quarters ahead (h=4) and eight quarters ahead (h=8) forecasts. Numbers smaller than one
indicate that the model outperforms the random walk.

Table 2 shows that the Phillips curve inflation forecasts (inflation forecasts using

activity variables) can outperform simple benchmarks in the euro area, but the spec-

capacity utilization.
5For example, for the vintage of data available in 2001Q1 the nowcast refers to the inflation rate

in 2001Q1, i.e. the current quarter. In this vintage only capacity utilization is available for 2001Q1
and the latest observation of inflation is from 2000Q4.

6The random walk with drift for pt is the best of the standard simple benchmarks and produces
forecasts that are very difficult to beat in the euro area, see e.g. Diron and Mojon (2008), Fischer
et al. (2009), Giannone et al. (2014).
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ification of the model matters crucially for the forecasting performance. First, the

models including the full set of real economy variables (Models 3 to 6) are generally

performing better than those with real GDP only. This suggests that the larger in-

formation set allows the extraction of a more timely and precise measure of the latent

output gap. The second important result relates to the role of long term inflation

expectations for the estimation of trend inflation. Generally, the models including

the measure of long term inflation expectations provide better forecasts of inflation

(particularly at the four and eight quarters horizon) than those with a comparable set

of real activity variables and excluding inflation expectations. In particular, Model

3, which does not include long term inflation expectations, is dominated by Models

4 to 6, which do include the expectations. The final lesson we draw from the evalua-

tion of the point forecasts is that allowing for the more flexible trend representations

embedded in Model 6, compared to the rest of the models, does not pay in terms of

forecasting accuracy. Summing up, the model delivering the best forecasting perfor-

mance is our Model 4, which includes the whole set of real economy variables, the

measure of inflation expectations to inform the inflation trend and a parsimonious

random walk representation for the trends in the real economy variables. Model 4 is

our baseline model.

Figure 2 presents the quantiles of the predictive density of inflation four quarters

ahead, along with the actual inflation. The solid line shows the annual inflation. The

value of the solid line in period t represent 100(pt − pt−4). The dashed lines show

percentiles 50, 16 and 84 of the predictive density of inflation. The values of the

dashed lines in period t represents the density of 100(pt − pt−4) generated with the

real time data available in t − 4. Two main lessons follow from this figure. First, it

shows that four quarters ahead forecasts become much less volatile when two elements

are present: we use multiple indicators of real activity and we relate trend inflation to

long term inflation expectations. To see this, note that inflation forecasts are much

more volatile in Models 1 to 3 than in Models 4 to 6. Second, the forecasts from
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Figure 2: Four quarters ahead forecasts of inflation (blue line: median, blue shaded
area: percentile 16 to 84) and actual inflation (black line)

Models 4 and 5 are rather similar and track inflation better than the forecasts from

Model 6. However, Model 5 predicts a much too high inflation in 2010, while Model

4 matches that episode almost perfectly.

Table 3 complements the picture by presenting log scores of predictive densities.

This table confirms that Model 4 dominates other specifications. At the four quarter

horizon Models 5 and 6 lose with Models 1 to 3 according to the log score, even

though they produce better point forecasts. The ranking is changed because of the

different behavior of predictive variances. The variances of the forecasts from Models
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Table 3: Average difference of log-scores compared with the simple benchmark.

Model h = 0 h = 4 h = 8

Model 1 0.31 0.26 0.22

Model 2 0.31 0.24 0.37

Model 3 0.31 0.21 0.13

Model 4 0.38 0.29 0.35

Model 5 0.32 0.02 -0.17

Model 6 0.13 -0.06 0.32

Note: Average difference of log-scores of Models 1 to 6 from the log-score of the random walk with drift for pt.
Current quarter (h=0), four quarters ahead (h=4) and eight quarters ahead (h=8) forecasts. Numbers bigger than
zero indicate that the model outperforms the random walk.

5 and 6 are quite low when they make the largest mistake, in 2010. By contrast, the

variances of the forecasts from Models 1 and 3 are very large in 2010, which cushions

the effect of the forecast error on the log score. Model 4, by contrast, has both low

variance and good precision of the point forecast, and hence outperforms the other

models in terms of log scores.

Table 4 reports the marginal likelihoods of Models 4, 5 and 6 computed on the

last vintage of the data. The marginal likelihood is a function of the out-of-sample

predictive density scores for all the variables in the model, hence it is only comparable

across models that have the same variables (i.e. Models 4 to 6). The lesson from this

table is that, also according to the marginal likelihoods, Model 4 is preferable to

Models 5 and 6, i.e. that simple random walk trends are preferable to either more or

less restrictive specifications of trends.

Table 4: Marginal likelihood of Models 4, 5 and 6, latest sample.

Model and main features log marginal likelihood

Model 4: random walk all variables -860

Model 5: stationary variables constant, rest random walk -1030

Model 6: second order random walk -957

Note: The marginal likelihoods of Models 4, 5 and 6 can be compared because these models have the same observables.
We do not present the marginal likelihoods of Models 1, 2 and 3 as these models have different observables and hence
are not comparable.
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4.4 Robustness of the output gap

This subsection reports the robustness of the output gap estimates in real time. The

issue of robustness has attracted much attention especially since Orphanides and van

Norden (2002) who argue that revisions to real-time end-of-sample output gaps are

of the same order of magnitude as the output gaps themselves, rendering the output

gaps virtually useless for a policy maker. Therefore, we study the robustness of our

estimates of output gap in real time. We find that in some models robustness is

indeed a serious concern. However, output gap estimates from our best performing

model, Model 4, turn out to be quite robust in real time.

To summarize the real time revisions of the output gap we compute the envelope

of the 16th and 84th percentiles coming from our 55 real time samples. We compute

the envelope as follows. We have 55 posteriors and hence 55 sets of posterior quantiles

of the output gap, obtained with 55 real time samples. At each date, we take the

lowest of the available 16th percentiles in that date, and the highest of the available

84th percentiles. Figure 3 plots these envelope percentiles over time, along with the

percentiles obtained in the last sample (199Q3-2014Q3). This figure confirms the

validity of Orphanides and van Norden (2002) concerns. In Model 1, which is similar

to the models they study, output gap revisions are indeed of the similar order of

magnitude as the output gap itself, and hence the envelope includes zero in almost

all the periods. However, as shown in the left panel, the lessons about the output

gap coming from Model 4 are robust in real time.

4.5 The output gap in the current crisis: what do we learn

According to our best performing model, Model 4, the output gap is large at the end

of the sample. Taken at face value, this finding suggests that presently a demand

stimulus that would close this output gap is more urgent than structural reforms.

This view is, however, not uncontroversial. Many analysts and policy makers believe

that a crucial problem facing the euro area is that trend GDP growth has stalled and
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Figure 3: 16th and 84th percentiles of the output gap: envelope of all the real time
samples (black line) and the last sample (blue shaded area)

structural reforms are needed to revive it. Figure 4 illustrates these alternative views.

Model 6 is consistent with the view that trend GDP growth has stalled. This view is

also intuitive, but we find that it produces worse inflation forecasts.

5 Conclusions

We estimate the output gap in the euro area with several specifications of a small

Bayesian dynamic factor model. We find that while alternative specifications agree

about the timing of peaks and troughs, they disagree about the sizes of the output

gap. We find that forecasts of inflation generated by these models improves when we

include multiple real activity indicators, when we relate trend inflation to long term

inflation expectations, and when we model real activity trend components as random

walks, instead of either more or less flexible processes.

Our estimate of the output gap has three appealing features from the point of view

of policy makers: it is a measure of the slack of the economy, it helps forecast inflation,

and it is quite reliable in real time. Our estimate suggests that after the crisis the

output gap is as large as -6% and our model correctly predicts falling inflation since

2012.
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Figure 4: Trend output and output gap: random walk trend vs second order random
walk trend

In principle, we could incorporate mixed frequency data to make our output gap

even more timely, but we leave this extension for future research.

Appendix

Appendix A Data appendix

Table A.1 reports for each variable the definition (column 1), mnemonic (column 2),

transformation (column 3), the latest period of availability in the data vintage dated t

(column 4), the data source (column 5) and the part of the training sample for which
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we back-dated the series using the Area Wide Model (AWM) database (Fagan et al.,

2001) (column 6).

Table A.1: The description of the variables

Variable name Symbol Transf. Availability Source Backdating

in vintage t from AWM

HICP excl. energy and food p log-diff (π) t− 1 Euro area RTD 85Q1-89Q4

Real GDP y1 log t− 1 Euro area RTD 85Q1-90Q4

Real private investment y2 log t− 1 Euro area RTD 85Q1-90Q4

Real imports y3 log t− 2 Euro area RTD 85Q1-90Q4

Real exports y4 log t− 2 Euro area RTD 85Q1-90Q4

Unemployment rate y5 raw t− 1 Euro area RTD 85Q1-90Q2

Consumer confidence y6 raw t− 1 Euro area RTD None

Capacity utilization y7 raw t Euro area RTD None

Inflation expectations πe raw t or t− 1 Consensus Economics None

Our training sample goes back to 1985Q1, but for some variables the euro area

RTD data start only in 1990. In those cases, we extend the series back in time

using the growth rates from the Area Wide Model (AWM) database (Fagan et al.

(2001)). Specifically, we take the level of the variable in the earliest available date in

the RTD and we assume that before that date the variable evolved according to the

growth rates of its AWM database counterpart. Note that this back-dating affects

only the training sample, 1985Q1-1992Q2. The post-1992Q2 samples used for the

main analysis come exclusively from the real-time database.

Appendix B The priors

The first step in our strategy for prior selection is to compute the mean and variance

of the first difference of each observable variable in the training sample. Let T tr

denote the size of the training sample. For each variable v ∈ {y1
t , ..., y

N
t , πt, π

e
t} we

compute the mean δ̃v = 1
T tr−1

∑T tr

t=2 ∆vt and variance σ̃2
v = 1

T tr−1

∑T tr

t=2(∆vt − δv)2.

Coefficients of the observation equations. The coefficients Bn(L) in the

equation of a variable ynt other than real GDP (y1
t ) are independent N

(
0, σ̃2

yn/σ̃
2
y1

)
.

The prior mean of zero is a neutral benchmark. The variance is analogous to the
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variance of the Minnesota prior of Litterman (1986): the ratio σ̃2
ynt
/σ̃2

y1 accounts

for the different volatilities of the left-hand-side variable ynt and the right-hand-side

variable gt (which is a component of real GDP). Notice that this prior is rather loose:

for a variable that is equally volatile as real GDP both the elasticity of 1 and -1 are

likely outcomes according to this prior.

The coefficients a(L) in the Phillips curve equation are set as follows. The coeffi-

cient of gt−1 is N (0, σ̃2
π/σ̃

2
y1

), analogously to the coefficients B(L). The coefficients of

gt and gt+1 are fixed at zero (when we relax their prior, the posterior is concentrated

near zero anyway and the marginal likelihood falls).

The prior for the level shift parameter c is N (0, 0.12). Both inflation excluding

energy and food πt and 5-year inflation expectations πet are measured in percentage

points and we consider it likely a priori that they might differ by about 0.1 percentage

point on average.

Coefficients of the state equations. In the baseline version of the model the

trend of real activity variable ynt is a random walk with drift, ∆wnt = dn + uw,nt . The

drift dn is N (δ̃yn , σ̃
2
yn) when ynt might be drifting a priori (this is the case for real

GDP, investment, imports and exports) and it is fixed at 0 when ynt is stationary a

priori (unemployment, consumer confidence, capacity utilization).

Trend inflation zt follows an AR(1) process and we center the prior at the values

that imply the mean of 2% (consistent with the ECB definition of price stability)

and moderate persistence, and we specify a rather large variance. In particular,

the prior for the first order autoregressive parameter f is N (0.8, 0.52). A degree of

persistence of 0.8 is a compromise between our prior intuition that trend inflation

is very persistent (e.g. Cogley et al. (2010)) and the persistence of about 0.6 that

we find in the training sample. The standard deviation 0.5 includes both quickly

mean-reverting and explosive processes. The prior mean dz is N (0.4, 0.5). The value

0.4 in conjunction with the autoregressive coefficient of 0.8 implies the steady state

of 2%.
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The prior about the parameters of the output gap process approximates the ideas

from the literature about the periodicity and persistence of the euro area business

cycles. The prior is

p

φ1

φ2

 = N


 1.352

−0.508

 ,

 0.0806 −0.0578

−0.0597 0.0464


 . (B.1)

To arrive at this prior we start with the auxiliary model

gt = 2a cos(2π/τ)gt−1 − a2gt−2 + ut, ut i.i.d. N (0, 1), a > 0, τ > 0. (B.2)

This model displays decaying cycles, τ is the periodicity, in quarters, and a is the

persistence (the modulus of the root). Harvey et al. (2007) and Planas et al. (2008)

advocate the use of this and related parameterizations, because such parameteriza-

tions allow specifying priors directly about periodicity and persistence, quantities

which are more intuitive than the autoregressive parameters by themselves. Here we

follow Planas et al. (2008) and use their prior about p(τ , a), which is a product of

two Beta densities.7 The prior about τ is centered around 32, implying a business

cycle lasting 32 quarters, or 8 years. The prior about a is centered at 0.7. Planas

et al. (2008), in turn, base their priors on the analysis of the European output gap

performed by Gerlach and Smets (1999) using pre-1998 data. In the second step

we arrive at (B.1) by approximating the same dynamics of g using Gaussian priors

on φ1, φ2. We find the best approximation following the approach of Jarociński and

Marcet (2010).

More in details, let vector g contain the path of the output gap tracked for a

specified number of periods T0. The Planas-Rossi-Fiorentini Beta prior on τ , a implies

certain dynamic properties of the output gap, formally summarized by the density

7The prior is (τ − 2)/(141 − 2) ∼ Beta(2.96, 10.70) and a ∼ Beta(5.82, 2.45), see Planas et al.
(2008), p.23.
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p(g). Our goal is to find a Gaussian prior p(φ) that implies a similar density p(g).

Note that we are focusing on approximating p(g), which is what we have priors

about, and not on approximating the densities of the parameters of the AR(2) model,

which, by themselves, are not interpretable.8 Finding the prior for φ, p(φ), means

approximating the solution of the integral equation

p(g) =

∫
p(g|φ)p(φ)dφ (B.3)

where p(g|φ), implied by (B.2), is the density of g conditional on a particular value

of φ. Jarociński and Marcet (2010) propose an efficient iterative numerical procedure

for approximating the solution of (B.3) with a density from the desired family, (here:

Gaussian). The outcome of their procedure is the prior (B.1).

Figure B.1 illustrates the quality of the approximation. Panel A compares the den-

sities of the coefficients φ1 and φ2 implied by (B.2) with the Planas-Rossi-Fiorentini

prior (left plot) and Gaussian prior (B.1) (right plot). The Gaussian prior has 0.24

probability mass above the parabola φ2
1+4φ2 = 0, i.e. 0.24 probability that the g does

not exhibit sinusoidal cycles, while the Planas-Rossi-Fiorentini places probability 1

on such cycles. This might give impression that the Gaussian approximation is poor,

but panel B qualifies this impression. Panel B compares the densities of the impulse

response, i.e. the dynamics triggered by a unit shock. We can see that the impulse

responses look quite similar. We conclude from Panel B that the Gaussian prior (B.2)

approximates our prior ideas reasonably well.

Shock variances. When setting the priors about the variances of the shocks we

8To see how important it is to think in terms of the behavior of the modeled variable and not
in terms of model parameters, think of the following illustrative example. Consider a process xt
and a model xt = ρxt−1 + εt. Suppose one’s prior on the half-life of xt is centered at 69 periods,
corresponding to ρ = 0.99. When one thinks of similar models in terms of parameters, one might
naively come up with a range ρ ∈ (0.97, 1.01), as both ends of this range are equally close to 0.99.
But values of ρ ≥ 1 imply infinite half-life. By contrast, when one thinks of similar models in terms
of half-life, the range of half-life 69±46 periods corresponds to ρ ∈ (0.97, 0.994), i.e. a very different
range for ρ. This shows that when specifying priors it is important to think in terms of the behavior
of the modeled variable and not in terms of model parameters.
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Planas-Rossi-Fiorentini Gaussian prior (B.1)
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A. Joint densities of φ1, φ2. The triangle delimits the stationarity region and
the parabola delimits the region of cyclical behavior (see e.g. Hamilton (1994)
p.17).
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Figure B.1: Priors about the dynamics of the output gap: the Planas-Rossi-Fiorentini
prior and the Gaussian approximation
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use the rule of thumb that for each observable series vt, when all the coefficients are

at their prior means, the trend and non-trend components account a priori for half

of the variance of ∆vt, and the variance of ∆vt equals the training sample variance

σ̃2
v. We always refer to the variance of ∆vt and not of vt since the series may be non-

stationary. All the variances have inverted gamma priors with 5 degrees of freedom,

so it remains to specify prior means in order to determine the priors uniquely.

For all variables yn, n > 1 (i.e., other than real GDP), the variances of the shocks

in the trend equation uw,nt and in the observation equation for ynt , uy,nt have means

respectively σ̃2
yn/2 and σ̃2

yn/4. To see that these means are consistent with our rule

of thumb that half of the variance of ∆yn is explained by the trend and half by the

transitory shocks, note that at the prior mean ynt = wnt +uy,nt = dn+wnt−1 +uw,nt +uy,nt .

Then ∆ynt = dn+uw,nt +uy,nt −u
y,n
t−1 and var(∆ynt ) = var(uy,nt )+2var(uy,nt ). We follow

the same rule of thumb in the remaining two observation equations: the prior mean

of the variance of uπ is σ̃2
π/4 and the prior mean of the variance of uet is σ̃2

πe/4.

The prior mean of the variance of ugt is 0.2σ̃2
y1

. This mean is consistent with

the prior that, conditional on the prior means of φ1 and φ2, gt accounts for half of

the variance of ∆y1
t . To see this, note first that var(∆y1

t ) = var(uw,nt ) + var(∆gt)

and var(∆gt) = χvar(ugt ) where χ is a function of φ1 and φ2. It is straightforward,

though tedious, to show that χ = 2(1− φ1 − φ2)/
(
(1 + φ2)((1− φ2)2 − φ2

1

)
+ 1. See

e.g. Hamilton (1994) pp.57-58 for similar derivations. Hence, if we want var(∆gt) =

χvar(ugt ) = 0.5σ̃2
y1 we need to set var(ugt ) = 0.5/χσ̃2

y1 and 0.5/χ evaluates to about

0.2 when φ1 = 1.352 and φ2 = −0.508.

The prior mean of the variance of the shocks to trend inflation is σ̃2
πe/2.

Initial states. The prior about the initial states is Gaussian. Let 1 be the first

period of the estimation sample. We center the prior for g1, g0 and g−1 at 0, the prior

for w1 at y0, and the prior for z1 at πe0. The standard deviations are set to 5σ̃v where

v is the respective observable variable. We multiply the standard deviations by 5 in

order to make the prior rather diffuse.
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