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Abstract

We revisit the issue of international technology diffusion within the framework of large

panels with strong cross-sectional dependence by adopting a method which extends the

Common Correlated Effects (CCE) approach to nonparametric specifications. Our results

indicate that the adoption of a nonparametric approach provides significant benefits in terms

of predictive ability. This work also refines previous results by showing threshold effects,

nonlinearities and interactions, which are obscured in parametric specifications and which

have relevant policy implications.
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1 Introduction

With the development of endogenous growth theory since the nineties, there has been an increas-

ing interest in international R&D spillovers. A pioneering empirical work by Coe and Helpman

(1995), recently revisited by Coe et al. (2009) – henceforth CH and CHH, respectively – relates

total factor productivity (TFP) to both domestic and foreign R&D and, assuming that technology

spills over across countries through the channel of trade flows, constructs foreign R&D capital

stock as the import-share-weighted average of the domestic R&D capital stocks of the trading

partners. Subsequent studies consider other factors as channels of international spillovers, such

as foreign direct investment, bilateral technological proximity, patent citations between countries,

language skills or geographic proximity.

Recent studies extend the literature on international R&D spillovers by accounting for relevant

methodological issues such as cross-sectional dependence and non-stationarity (Coe et al., 2009;

Lee, 2006; Ertur and Musolesi, 2017) within a parametric framework.

This paper aims at revisiting the issue of international R&D spillovers using nonparametric

methods. This could be relevant from both an economic and a methodological perspective. First,

from an economic and poliy oriented perspective, it may allow to test the validity of the main

results provided in the literature, especially with respect to the possible existence of nonlinearities,

threshold effects, non-additive relations, etc., as nonparametric approaches have been shown to

provide new and useful insights in topics very closely related to the present one (Ma et al., 2015;

Maasoumi et al., 2007). Second, nonparametric approaches, which are recently developing also in

the context of panel data (Rodriguez-Poo and Soberon, 2017; Parmeter and Racine, 2018), have

been shown to significantly improve the predictive ability of parametric models in many cases

(Racine and Parmeter, 2014; Ma et al., 2015; Delgado et al., 2014), even if this is not assured

ex ante because of the curse of dimensionality problem of nonparametric specifications and the

bias-efficiency trade-off, which generally arises when comparing parametric and nonparametric

models. Therefore, it could be of interest to compare parametric and nonparametric models in

the present framework.

The econometric analysis is conducted using annual country-level data for 24 OECD countries

from 1971 to 2004. This dataset is also used, among others, in Coe et al. (2009) and in Ertur

and Musolesi (2017) and this allows for a comparability with previous studies. The analysis is

based on the nonparametric approach by Su and Jin (2012), which allows for a multifactor error

structure and extends the approach by Pesaran (2006). Such an approach combines the flexibility

of sieves with the ability of factor models to allow for cross-sectional dependence and to account

for endogeneity due to unobservables, whereby the explanatory variables are allowed to be corre-

lated with the unobserved factors. Following Su and Jin (2012), the nonparametric component is

estimated using sieves, and particularly splines. Specifically, we adopt a regression splines frame-

work, which provides computationally attractive low rank smoothers. We also employ penalized

regression splines, as they combine the features of regression splines and smoothing splines, and

have proven to be useful empirically in many aspects (Ruppert et al., 2003) while their asymptotic
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properties have been studied in recent years. The choice of the knots is avoided by using knot-

free bases for smooths (Wood, 2003). Finally, as far as model selection is concerned, we compare

alternative specifications by focusing on their predictive ability and adopt the approach recently

proposed by Racine and Parmeter (2014), which is based on a pseudo Monte Carlo experiment

and takes its roots on cross validation.

The paper is organized as follows. In section 2 we describe the model specifications that

we employ as well as the adopted estimation approach. The comparison among the different

model specifications and the results of the estimations, including relevant policy implications, are

presented in section 3. Finally, section 4 concludes.

2 Model specification and estimation method

2.1 The classical parametric approach

The standard parametric specification à la CH/CHH can be expressed as:

log fit = αi + θ logSd
it + γ logSf

it + δ logHit + eit, (1)

where eit is the error term, fit is the TFP of country i = 1, ..., N at time t = 1, ..., T ; αi are

individual fixed effects, Sd
it and Sf

it are domestic and foreign R&D capital stocks, respectively;

Hit is a measure of human capital. Foreign capital stock Sf
it is defined as the weighted arithmetic

mean of Sd
jt for j 6= i, that is Sf

it =
∑

j 6=i ωijS
d
jt, where ωij represents the weighting scheme. We

adopt the same definition proposed by Lichtenberg and van Pottelsberghe de la Potterie (1998),

which has been previously adopted in many other papers (Coe et al., 2009; Lee, 2006; Ertur and

Musolesi, 2017), incorporating information on bilateral imports.

All the existing literature adopts parametric specifications that are variants of (1). Most of

the previous studies follow some of the advances in panel time series econometrics over the last

two decades. In particular, given the large T dimension of our panel, the likely existence of

nonstationarity and cross-sectional dependence (Lee, 2006; Kao et al., 1999; Ertur and Musolesi,

2017) has been investigated.1 Recently, Ertur and Musolesi (2017) highlight the presence of strong

cross-sectional dependence in the data. Further, they use unit roots tests decomposing the panel

into deterministic, common and idiosyncratic components (see, e.g. Bai and Ng, 2004) to identify

the source of possible nonstationarity. They finally find that the series under investigation are

nonstationary and that this property relies on the existence of nonstationary unobserved common

factors rather than on idiosyncratic components. Under this scenario, Kapetanios et al. (2011),

provide both analytical results and a simulation study according to which the cross-sectional

averages augmentation by Pesaran (2006) remains valid.

1Another issue, which is out of the scope of this study, questions the homogeneity of the parameters implicit

in the use of a pooled estimator in favor of heterogeneous regressions.
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In the following, for ease of exposition, we employ the notation:

yit = αi + β
′
xit + eit, (2)

where yit = log fit, xit = [logSd
it, logSf

it, logHit]
′ and β = [θ, γ, δ]′.

2.2 A nonparametric model with a multifactor error structure

We adopt the method proposed by Su and Jin (2012), who consider a panel data model that

extends the multifactor linear specification proposed by Pesaran (2006). Specifically, Su and

Jin (2012) consider the following model, which allows for a nonparametric relation between the

dependent variable and the regressors, while the common factors enter the model parametrically:

yit = α
′

idt + g (xit) + eit, (3)

where dt is an l× 1 vector of observed common effects, αi is the associated vector of parameters

and xit is defined above. The “one-way” fixed effect specification is obtained by simply setting

dt = 1. g is an unknown function to be estimated. For identification purposes, the condition

E(g (xit)) = 0 is imposed. The errors eit have a multifactor structure that is described by:

eit = γ
′

ift + εit, (4)

where ft is an m × 1 vector of unobserved common factors with country-specific factor loadings

γi. Combining (4) and (3), we obtain the following:

yit = α
′

idt + g (xit) + γ
′

ift + εit. (5)

The idiosyncratic errors εit are assumed to be independently distributed over (dt,xit) , whereas

the unobserved factors ft can be correlated with the observed variables (dt,xit). This correlation

is allowed by modeling the explanatory variables as linear functions of the observed common

factors dt and the unobserved common factors ft:

xit = A′idt + Γ′ift + vit, (6)

where Ai and Γi are l× 3 and m× 3 factor loading matrices, and vit = (vi1t, vi2t, vi3t)
′. Following

Pesaran (2006), Su and Jin (2012) proxy the unobservable factors ft in (5) by the cross-sectional

averages zt = N−1
∑N

j=1 zjt, where zit = [yit,x
′
it]
′
. They estimate the nonparametric part of the

model using sieves. It is worth noting that the most common examples of sieve regression are

polynomial series expansions and splines.

2.3 Alternative specifications

Consider (5) for dt = 1, that is yit = αi + g (xit) + γ
′
ift + εit. We are interested in three different

specifications. As a benchmark, the parametric specification is obtained for g (xit) = β
′
xit.
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The estimation is performed applying the common correlated effects pooled (CCEP) approach by

Pesaran (2006). Then, we consider two specifications where xit enter the model nonparametrically.

The first specification assumes an additive structure of g, as follows:

log fit = αi + φ(logSd
it) + ξ(logSf

it) + ψ(logHit) + γ
′

ift + εit, (7)

where φ, ξ and ψ are unknown univariate smooth functions of interest. The second specification

assumes a non-additive structure of g, particularly:

log fit = αi + g(logSd
it, logSf

it, logHit) + γ
′

ift + εit. (8)

2.4 Spline modeling

Su and Jin (2012) estimate the nonparametric component of the model using sieves, and particu-

larly splines, as they typically provide better approximations (see, e.g., Hansen, 2014). Following

Su and Jin (2012), we adopt a regression splines (RS) framework. We also employ penalized

regression splines (PRS), as they combine the features of both regression splines, which use less

knots than data points but do not penalize roughness, and smoothing splines, which control the

smoothness of the fit through a penalty term but use all data points as knots. PRS have proven

to be useful empirically in many aspects (see, e.g. Ruppert et al., 2003) and, in recent years,

their asymptotic properties have been studied and then connected to those of regression splines,

to those of smoothing splines and to the Nadaraya - Watson kernel estimators (Claeskens et al.,

2009; Li and Ruppert, 2008).

Specifically, for both RS and PRS, we use thin plate regression splines (TPRS), which are a low

rank eigen-approximation to thin plate splines. Thin plate splines are somehow ideal smoothers

(see Wood, 2017) but are not computationally attractive because they require the estimation of

as many parameters as the number of data points. TPRS avoid the problem of knot placement

that usually complicates modeling with RS or PRS and more generally have some optimality

properties, as they provide optimal low rank approximations to thin-plate splines, while they also

are computationally efficient (see Wood, 2003). Since our explanatory variables have different

units, in the case of the non-additive specification (8), we avoid isotropy by considering a tensor

product basis, which is constructed by assigning TPRS as the basis for the marginal smooth

of each covariate and then creating their Kronecker product. The tensor product smooths are

invariant to the linear rescaling of covariates, and for this reason, they are appropriate when

the arguments of a smooth have different units (Wood, 2006). Finally note that in the PRS

framework, the smoothing parameter is selected by the restricted maximum likelihood (REML)

estimation, which, relative to other approaches, is less likely to develop multiple minima or to

undersmooth at finite sample sizes (see, e.g. Reiss and Todd Ogden, 2009).2

2The nonparametric specifications are estimated by the R package mgcv.
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3 Results

3.1 Model comparison

To compare the aforementioned specifications, we perform a pseudo Monte Carlo experiment.

In particular, along the lines depicted by Racine and Parmeter (2014), Ma et al. (2015) and

Delgado et al. (2014), using similar macro panel data variables related to economic growth, the

observations are randomly shuffled at 90% into training points and at 10% into evaluation points.

Each model is fitted according to the training sample. Then, the average out-of-sample squared

prediction error (ASPE) is computed using the evaluation sample. The above steps are repeated

a large number of times B = 1000, so that a B × 1 vector of prediction errors is created for each

model.3

The method is linked to cross validation (CV), in the original formulation of which a regression

model fitted on a randomly selected first half of the data was used to predict the second half.

The division into equal halves is not necessary. For instance, a common variant is the leave-

one-out CV, which fits the model to the data excluding one observation each time and then

predicts the remaining point. The average of the prediction errors is the CV measure of the

error. As highlighted in Racine and Parmeter (2014), the method can provide significant power

improvements over existing single-split techniques.

Figure 1 presents the box-and-whisker plots of the ASPE distributions for the different spec-

ifications. A first relevant result is that the median that corresponds to the parametric model

is the largest among the different specifications, while the non-additive penalized model has the

smallest median. In particular, the median ASPEs of the non-additive penalized model relative to

the other models – the parametric, the additive unpenalized, the additive penalized and the non-

additive unpenalized – is 0.6023, 0.9284, 0.9409 and 0.8278, respectively. A second interesting

result is that the penalized regression modeling has a smaller median ASPE than its unpenalized

counterpart for both additive and non-additive specifications. However, although when impos-

ing an additive structure, the two approaches provide quite similar performances, the gain in

terms of predictive ability from using PRS over RS is extremely pronounced when estimating the

non-additive specification, which typically suffers more from the curse of dimensionality problem.

Also, it is worth noting that within the RS framework, the additive specification provides a better

performance than the non-additive one.

Next, figure 2 shows the empirical distribution functions of the ASPEs for each model. Clearly,

the ASPE of the non-additive penalized model is stochastically dominated by the ASPE of any

of the remaining models. This indicates that the non-additive penalized model outperforms all

others in terms of predictive ability. It is also evident that the parametric model underperforms

with respect to the nonparametric ones.

Finally, we compare the different specifications using the test of revealed performance (TRP)

3See also Baltagi et al. (2003) who contrast the out-of-sample forecast performance of alternative parametric

panel data estimators.
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proposed by Racine and Parmeter (2014).4 The results of these paired t-tests are presented in

Table 1. In all cases, the null hypothesis that the difference in means of the ASPEs is zero is

rejected. Thus, the tests complement the above presented results, indicating that this difference

is statistically significant in all cases.

3.2 Estimation results

In this subsection, we present the main estimation results and specifically focus attention on the

nonparametric specifications. We only consider PRS, since they outperform their unpenalized

counterparts. We first provide the results obtained using the additive specification (7) because,

due to the additive structure, the results are directly comparable to those ones of the parametric

specifications adopted in previous studies. Then, we present the results of the non-additive

specification (8), which, according to our findings, provides the best performance. Specifically,

we focus on the interaction between domestic and foreign R&D.

The results concerning the nonparametric part of the additive penalized specification are

presented in figure 3. The three graphs depict the estimated univariate smooth functions, which

all appear to be highly significant, with extremely low p-values associated with the Wald test

(Wood, 2012) that the function equals zero. It is worth mentioning that because the response

as well as the explanatory variables are in logs, the slope of the estimated smooth functions

represents the estimated elasticity. The first plot shows the effect of domestic R&D on TFP. It

appears that for low values of R&D, where data are sparse and large confidence interval bands

are present, the relation is flat. Then, for intermediate values of domestic R&D, the function

is monotonic increasing, with a steep rise in approximately the last two deciles. The policy

implications resulting from the above are clear: an increase in domestic R&D has an effect on

productivity only above a threshold, thus suggesting that a critical mass of investments in R&D is

crucial for R&D to become effective. After this threshold, the estimated output elasticity becomes

positive and increases even more for very high levels of domestic R&D. This can be seen as a

refinement of the results of the existing empirical literature on R&D spillovers, which is based on

parametric models and generally distinguishes between G7 and non-G7 countries. Indeed, Ertur

and Musolesi (2017), employing the CCE approach, show that the estimated output elasticity of

domestic R&D is positive and significant for G7 countries, while it is non-significant for non-G7

countries. Similar results are also found by Coe et al. (2009), who adopt the dynamic OLS for

cointegrated panels, and by Barrio-Castro et al. (2002), who use a standard fixed effects approach.

The second graph shows the effect of foreign R&D on TFP. Again, for low levels of the variable,

data are scarce, making it difficult to identify a clear pattern. Then, the relation is positive and

roughly concave for intermediate values, while it becomes flat for high levels of foreign R&D. The

4The TRP involves estimating the distribution of the true errors for the different models and testing whether

their expectations are statistically different. The true error is associated with out-of-sample measures of fit,

contrasted to the apparent error, which is associated with within sample measures. Typically, the latter is smaller

than the former and frequently overly optimistic (see e.g. Efron, 1982).
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results show that an increase in foreign R&D affects TFP positively, but only up to a certain

level. They complement previous empirical literature such as Coe et al. (2009), who indicate that

trade-related foreign R&D is a significant determinant of TFP. More specifically, our findings

improve the results of Ertur and Musolesi (2017), among others, who find a small, positive and

significant effect of R&D on TFP in non-G7 countries, but no significant effect in the case of

the G7. Nevertheless, in all previous studies, the linearity assumption obscures the fact that the

output elasticity of foreign R&D is not constant but varies with respect to the different levels of

foreign R&D. Indeed, looking at the bottom panel of figure 3, it can be seen that the estimated

elasticity constantly decreases over the range of foreign R&D up to a level where it becomes not

significantly different from zero.

The third graph in figure 3 depicts the effect of human capital on TFP. It again shows scarce

data and large confidence bands for low levels. Then, the relation between human capital and

TFP is approximately flat for intermediate values, while for high values, it seems to be monotonic

increasing, with a steep rise in approximately the last two deciles. In terms of policy perspectives,

the results suggest a threshold that occurs at very high levels of human capital, above which the

estimated elasticity becomes positive. Investing in human capital becomes effective only after

a certain level is reached. These findings add new insights to Ertur and Musolesi (2017), who

find no significant effect of human capital on TFP for both G7 and non-G7 countries and explain

their result on the grounds that the quantity of education no longer has a significant effect when

omitted variable bias is addressed. We find confirmation of such results for most of the domain

of human capital, but we also show that allowing for nonlinearity in the relation between human

capital and TFP is crucial in order to highlight a positive effect for the highest levels of human

capital.

Next, we turn to the estimates of the non-additive specification. Also, in this case, the

estimated (multivariate) smooth function appears to be highly significant. In particular, we

focus on the effect of the interaction between domestic and foreign R&D on TFP. The results are

presented in figure 4, which shows the impact on TFP for a level of human capital fixed to the

first, fifth (the median) and ninth decile. As depicted in the first graph, for low levels of human

capital and irrespective of the level of domestic R&D, foreign R&D has almost no effect on TFP.

In terms of policy implications, these findings suggest that foreign R&D spillovers cannot be

effective if the level of human capital in a country remains low. Moreover, the effect of domestic

R&D on TFP seems not to be linked to the level of foreign R&D, which implies an additive

pattern when the level of human capital is low. Similar to the additive model presented above,

there is a threshold above which domestic R&D becomes effective.

The second and third graphs in figure 4 show the effect on TFP when human capital is

fixed to the median and to the ninth decile, respectively. The results in both graphs suggest a

complementarity between domestic R&D and foreign R&D. For low levels of domestic R&D, the

effect of foreign R&D on TFP is low, and vice versa. Domestic R&D becomes more effective

when the levels of both domestic and foreign R&D are increasing. This is also true for foreign
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R&D. These findings have interesting policy implications; in countries with intermediate or high

levels of human capital, investments in R&D are not very effective if the level of foreign R&D

is low. Further, the benefits of foreign R&D spillovers cannot be exploited unless both human

capital and domestic R&D are above a critical mass. The above results contrast with results from

some previous studies such as in Coe et al. (2009), who report that their estimations considering

interactions between human capital and domestic and foreign R&D do not yield correctly signed

and significant results.

4 Concluding remarks

This paper revisits the analysis of international technology diffusion by adopting the approach

proposed by Su and Jin (2012), which extends the multifactor linear specification proposed by

Pesaran (2006) to nonparametric specifications. We first show that a shift from a parametric

to a nonparametric framework provides a significant improvement in terms of predictive ability.

Moreover, it is also documented that penalized regression splines perform significantly better

than their unpenalized counterparts, especially in the case of a non-additive model. Turning to

the estimation results, our findings suggest the presence of threshold effects and nonlinearities.

Then, the estimation of a non-additive specification provides further insights into the interactions

among explanatory variables without imposing any parametric restrictions and definitively indi-

cating that a critical mass of human capital is necessary to benefit from R&D spillovers and to

observe an interactive effect between domestic and foreign R&D. In general, our findings strongly

highlight that the presence of nonlinearities and complex interactions is an important feature of

the data; these are obviously hidden within a parametric framework and have relevant implica-

tions for policy. Finally, it is worth mentioning that a further extension of the present study

may account for heterogeneity across countries. This work is outside the realm of the nonpara-

metric estimations presented in this paper and could be accomplished, for instance, by resorting

to Bayesian modeling (Kiefer and Racine, 2017) to address the curse of dimensionality problem

raised by heterogeneity.
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Figure 1: Out-of-sample average square prediction error (ASPE) box plots for different factor models:

the parametric, the additive and the non-additive.

TABLE 1 - Paired t-tests of factor models

models
Additive

unpenalized
Additive
penalized

Non-additive
unpenalized

Non-additive
penalized

Parametric 43.683∗∗∗ 45.461∗∗∗ 27.042∗∗∗ 47.992∗∗∗

Additive
unpenalized

9.849∗∗∗ -18.493∗∗∗ 13.138∗∗∗

Additive
penalized

-20.492∗∗∗ 10.697∗∗∗

Non-additive
unpenalized

32.642∗∗∗

Null hypothesis: The true difference in means of the ASPEs of the compared models is zero.

The training sample is 90% of the data-sample; number of resampling iterations B: 1.000

Classification of p-value: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01

13



Figure 2: Empirical Cumulative Distribution Functions (ECDFs) of the ASPE for different factor

models: the linear, the additive and the non-additive models for the OECD data.

Figure 3: Additive Model. Estimated smooths (top panel) and corresponding derivatives (bottom panel)

for the additive penalized regression model. Component smooths are shown with confidence intervals

obtained by computing a Bayesian posterior covariance matrix.
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Figure 4: Non-additive model. The effect of domestic and foreign R&D on TFP for different levels of

human capital. The log of human capital is fixed to the first, fifth and ninth decile, respectively.
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