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Abstract

We present a natural environment that sustains full cooperation in one-shot social

dilemmas among a finite number of self-interested agents. Players sequentially de-

cide whether to contribute to a public good. They do not know their position in the

sequence, but observe the actions of some predecessors. Since agents realise that their

own action may be observed, they have an incentive to contribute in order to induce

potential successors to also do so. Full contribution can then emerge in equilibrium.

The same environment leads to full cooperation in the prisoners’ dilemma.
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1. Introduction

In social dilemmas, individual incentives and collective interests are at odds. Whenever

cooperation is costly, the possibility to free ride on the effort of others can hinder the

achievement of socially optimal outcomes. Cooperation between self-interested agents

typically requires strategic interactions repeated over an infinite horizon. Alternatively, it

can emerge when agents have nonstandard preferences (for instance, if they experience

warm-glow effects from cooperating) or are not fully rational.

In this paper we show how full cooperation can arise in a natural environment, even

when the interaction is one-shot, the number of players is finite, and agents are self-

interested. We present our result in the context of a public good game. To fix ideas,

consider several wealthy individuals who may contribute to a new project for the com-

munity. Each potential contributor obtains utility from the project, but would rather have

others funding it.

We show that contribution by all agents can emerge when individuals make decisions

sequentially, do not know their position in the sequence, and observe the decisions of

some of their predecessors. Consider a strategy that prescribes contribution, unless de-

fection is observed. If agents knew their position, then those placed early in the sequence

would contribute if they could induce their successors to do the same. However, late

players would rather free ride on the effort of early contributors. Contribution would

thus unravel. Instead, an agent who does not know her position bases her decision on the

average payoffs from all possible positions. She contributes to induce her potential succes-

sors to do the same.

We present a simple environment: a finite number of agents must choose whether to

contribute to a public good. Agents choose sequentially but do not know their position

in the sequence: they are equally likely to be placed in any position. Before choosing an

action, each agent observes her immediate predecessors’ decisions. After all n players

have made their decisions, the total amount invested is multiplied by the return from

contributions parameter r, and then equally shared among all agents. This multiplication

factor satisfies 1 < r < n, so although it is socially optimal that all agents contribute, each
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agent would prefer not to contribute herself.

In our main result we show that full contribution can occur in equilibrium. Proposi-

tion 1 characterises the maximum level of contribution that can be achieved as a function

of the return from contributions r. If r is lower than a simple bound, no agent contributes

in equilibrium. If instead r exceeds this bound, there exists an equilibrium where all

agents contribute. The equilibrium strategy profile that leads to full contribution pre-

scribes contribution unless defection is observed.

To see why an agent contributes when she observes no defectors, note that if she con-

tributes, then all her successors will also do so. If she instead defects, all her successors

will also defect. Whether it makes sense to pay a cost (the contribution itself) to convince

all her successors to contribute depends on the number of successors. However, agents

are uncertain about their positions. Since only samples where all agents contribute are

observed on the equilibrium path, an agent who observes such a sample is equally likely

to be in any position. So she believes to be on average roughly in the middle of the se-

quence. Then, whenever inducing contributions from half of the agents is more valuable

than the cost of contributing, agents optimally choose to contribute. This corresponds to

a return from contributions r larger than approximately two.

Incentives off the equilibrium path depend on the sample size. When the sample size

is larger than one, an agent who receives a sample that contains defection cannot herself

prevent further defection by contributing (Lemma 1). Since she cannot affect her succes-

sors’ decisions, she is better off responding to defection with defection. When instead the

sample size is one, an agent who observes defection can restore contribution by contribut-

ing herself. This makes contributing after observing defection more appealing. We show

that a (possibly) mixed equilibrium generates full contribution in this case too (Lemma 2).

Agents contribute after observing contribution but randomize after observing defection

(i.e. they forgive defection with positive probability).

We finally show that when the multiplication factor r is too low to sustain full contri-

bution, then no contribution can emerge (Lemma 3). This completes the proof of Propo-

sition 1. To see this, note that the profile of play that leads to full contribution provides

strong incentives to contribute. An agent who contributes makes everybody after her
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contribute, while if she defects nobody does so. For any other profile of play, incentives

are weaker. Then, if the return from contributions r is too low to sustain full contribution,

it is also too low to sustain any positive level of contribution in equilibrium.

Finally, we relax the assumption of complete position uncertainty by letting agents

receive noisy signals about the position they are in. Lemma 4 shows that full contribution

can still emerge, but it requires a higher multiplication factor r. We also discuss how our

result applies to other social dilemmas. We focus on the most prominent example: the

prisoners’ dilemma. Lemma 5 shows that full cooperation is an equilibrium outcome.

1.1 Related Literature

A large literature studies how cooperation can arise in social dilemmas. Most of the early

work has focused on the prisoners’ dilemma. Friedman’s seminal work [1971] shows how

sufficiently patient agents cooperate in an infinitely repeated prisoners’ dilemma.1 Dal Bó

[2005], Duffy and Ochs [2009] and several other papers provide experimental evidence in

this direction. See Dal Bó and Fréchette [2018] for a recent survey on experimental studies

about cooperation in infinitely repeated games.

Cooperation is not an equilibrium outcome of a finitely repeated prisoners’ dilemma

played by self-interested agents.2 However, experimental evidence shows that positive

levels of cooperation also arise in finite settings (see Embrey, Fréchette, and Yuksel [2018]

for a survey). Kreps, Milgrom, Roberts, and Wilson [1982] show that incomplete informa-

tion about agents’ types can explain cooperation. Long initial streaks of cooperation can

occur when players believe that their opponents may be altruistic. However, defection

eventually prevails. Andreoni [1990] and Fehr and Gächter [2000] suggest that coopera-

tion can also arise when players’ incentives are not exclusively determined by monetary

payoffs. Andreoni focus on warm-glow effects from behaving altruistically, whereas Fehr

and Gächter highlight the role of punishment. Our result differs in that we show coop-

eration can emerge when 1) there is a finite number of agents, 2) who are self-interested,

1See Lockwood and Thomas [2002] and Guéron [2015] for a discussion on cooperation with gradualism
and irreversibility in one’s own level of cooperation.

2If instead the stage game has multiple Nash equilibria, cooperation can occur in equilibrium in finitely
repeated games (see Benoit and Krishna [1985] and Benoit and Krishna [1987]).
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and 3) each agent plays only once.3

We study an environment with both position uncertainty and direct observation of

predecessors’ actions. Previous work on games with position uncertainty typically takes

a different approach: there exists a principal who can choose flexibly which information

about past actions to reveal to agents. We instead borrow from the literature on observa-

tional learning: agents directly observe the actions of others. Our environment with direct

observation of actions is natural, but adds several hurdles, especially off the equilibrium.

To see this, consider the related work by Nishihara [1997]. He shows how a planner can

induce cooperation in a prisoners’ dilemma with position uncertainty. The planner must

immediately inform all agents when defection occurs. On the equilibrium path, agents

cooperate for the same reason as they contribute in our paper: to induce potential succes-

sors to also do so. Off the equilibrium path, all agents in Nishihara [1997] are immediately

informed when defection occurs. Then, no agent can convince his successors to cooperate.

We focus instead on environments where observability is local and unconditional:

agents observe their immediate predecessors’ actions. Then, an agent who observes de-

fection may prevent further defection by choosing to contribute. Our approach is different

on this dimension also relative to Gershkov and Szentes [2009], Doval and Ely [2016] and

Salcedo [2017]. Gershkov and Szentes [2009] focus on optimal voting schemes and study

the protocol a principal should choose to induce voters to acquire costly information and

reveal it truthfully. In more general games, Doval and Ely [2016] and Salcedo [2017] study

which recommendations a principal should convey for players to select the socially opti-

mal action. In all these papers, as in Nishihara [1997], there is a principal who observes

past actions and decides whether and how to reveal this information. The natural envi-

ronment of direct observability makes the off the equilibrium analysis harder. We show

how to solve for this difficulty, and characterise the maximum level of contributions for

any return from contributions r.

3A different line of work studies repeated games that end with positive probability after each round
(see Samuelson [1987] and Neyman [1999] for theoretical models, and Roth and Murnighan [1978] and
Normann and Wallace [2012] for experimental evidence). Our model differs from this line of research
in two main aspects: in our setting each agent moves only once and the total duration of the game is
deterministic. Instead, a repeated game with a termination rule finishes in finite time almost surely, but
lasts for any arbitrary large number of periods with positive probability.
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Previous work on the voluntary provision of public goods studies how the timing of

contributors’ moves can determine the total amount that a principal can raise. In Var-

ian’s [1994] model, sequential timing lowers total contributions. However, experimental

evidence (Andreoni, Brown, and Vesterlund [2002] and Gächter, Nosenzo, Renner, and

Sefton [2010]) suggests that sequential mechanisms may raise more funds than simulta-

neous ones. Andreoni [1998], Romano and Yildirim [2001], Vesterlund [2003] and Potters,

Sefton, and Vesterlund [2005] argue that the sequential structure allows for the strategic

release of information over time.

2. The Model

Let I = {1, . . . , n} be a set of risk-neutral agents. Agents are exogenously placed in a

sequence that determines the order of play. The random variable Q assigns each agent a

position in the sequence. Let q : {1, 2, . . . , n} → {1, 2, . . . , n} be a permutation and Q be

the set of all possible permutations. We assume that all permutations are ex-ante equally

likely: Pr (Q = q) = 1
n! for all q ∈ Q.4 Agent i’s position is thus denoted by Q(i).

When it is her turn to play, agent i ∈ I observes a sample of her predecessors’ ac-

tions. She then chooses one of two actions ai ∈ {C, D}. Action ai = C means contributing

a fixed amount 1 to a common pool, while defection (ai = D) means investing 0.5 Af-

ter all players choose an action, the total amount invested gets multiplied by the return

from contributions parameter r, and then equally shared among all agents. Let G−i =

∑j 6=i 1
{

aj = C
}

denote the number of opponents who contribute, so G−i ∈ {0, . . . , n− 1}.

Payoffs u(ai, G−i) can thus be expressed as:

ui(C, G−i) =
r
n
(G−i + 1)− 1 and ui(D, G−i) =

r
n

G−i.

We assume that 1 < r < n so although contribution by all agents is socially optimal, each

agent strictly prefers to defect for any given G−i. Thus, payoffs from the public good are

4This setup corresponds to the case of symmetric position beliefs as defined in Monzón and Rapp [2014].
5The focus on a binary action space is made for simplicity. All our results extend to a setting in which

agents can choose their level of contribution Ci from a finite grid {0, ..., Cmax}. In particular, the social
optimum in which all agents contribute the amount Cmax is an equilibrium of the game.
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standard (see for instance Varian [1994], Potters et al. [2005], or Gächter et al. [2010]).

2.1 Sampling

Let ht = (a1, a2, . . . , at−1) denote a possible history of actions up to period t − 1. The

random variable Ht with realizations ht ∈ Ht = {C, D}t−1 indexes all possible nodes in

position t. LetH1 = {∅}.

Before choosing an action, each agent observes how many of her m ≥ 1 immediate

predecessors contributed. Agents in positions 1 to m have less than m predecessors, so

they observe less than m actions. A sample ξ = (ξ ′, ξ ′′) is a pair, where the first compo-

nent states the number of agents sampled, and the second component is the number of

contributors in the sample.6 Formally, ξt : Ht → Ξ = N2 is given by

ξt(ht) =
(

min {m, t− 1} , ∑t−1
τ=max{1,t−m} 1 {aτ = C}

)
.

The first agent in the sequence observes nobody’s action, so she receives sample ξ1 =

(0, 0). Agents in positions 2 to m observe the actions of all their predecessors. Thus, the

first m agents can infer their exact position from the size of the sample that they receive.

2.2 Equilibrium Concept and Beliefs

Players face an extensive-form game with imperfect information. They observe a sample

of past actions and do not know their position in the sequence. Thus, when asked to

play, they must form beliefs both about their own position and about the play of their

predecessors.

We use the notion of sequential equilibrium as in Kreps and Wilson [1982]. Agent i’s

strategy is a function σi (C | ξ) : Ξ → [0, 1] that specifies a probability of contributing

given the sample received. Let σ = {σi}i∈I denote a strategy profile and µ = {µi}i∈I a

system of beliefs. A pair (σ, µ) represents an assessment. Assessment (σ∗, µ∗) is a sequen-

6For example, let h5 = (C, C, D, C) be the history of actions up to period 4 and let m = 2. Agents
in positions 1 to 5 receive the following samples before they play: ξ1 = (0, 0), ξ2 = (1, 1), ξ3 = (2, 2),
ξ4 = (2, 1), and ξ5 = (2, 1). Note that samples are unordered.
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tial equilibrium if σ∗ is sequentially rational given µ∗, and µ∗ is consistent given σ∗.

Agents form beliefs about their position in the game, and also about the history of

actions that led to this position. LetH = ∪n
t=1Ht be the list of all possible histories. Given

a profile of play σ, let µi denote agent i’s beliefs about the history of play: µi (h | ξ) :

H× Ξ→ [0, 1] with ∑h∈H µi (h | ξ) = 1 for all ξ ∈ Ξ.

To better illustrate how beliefs are formed, consider a game with only three agents

and a sample of size one. When asked to play, an agent knows that there are seven pos-

sible histories of past play: {∅, (C) , (D) , (C, C) , (C, D) , (D, C) , (D, D)}. Each point in

Figure 1 corresponds to one such history.7 After receiving the sample, agents form beliefs

about the history of past play. An agent who observes ξ = (0, 0) realises that the history

of past play is h1 = ∅ and thus she is in the first position (the square in Figure 1). Instead,

an agent who observes ξ = (1, 1) knows that she is not in the first position. She may be

in any position with a history of play that features contribution as last action (the circles

in Figure 1). Similarly, an agent who observes ξ = (1, 0) knows that the history of play

features defection as last action (the three triangles).

C D C D

C D

∅

(D)

(D, D)(C, D)

(C)

(D, C)(C, C)

Figure 1: All possible histories of past play with 3 agents.

7Figure 1 represents all possible histories of past play, but does not represent the game tree. The game tree is
significantly larger. It features an initial move by Nature who chooses the ordering, followed by a sequence
of three moves for each possible order.
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3. Full Contribution in Equilibrium

In this section we present our main result. When the return from contributions is high

enough, there exists an equilibrium with full contribution. If instead the return is below

the threshold, then nobody contributes.

PROPOSITION 1. FULL CONTRIBUTION WITH POSITION UNCERTAINTY.

(a) If r ≥ 2
(

1 + m−1
n−m+1

)
, then there exists an equilibrium in which all agents contribute.

(b) If instead r < 2
(

1 + m−1
n−m+1

)
, then no agent contributes in equilibrium.

We present the proof of Proposition 1 through a series of lemmas. Lemma 1 shows

that full contribution is an equilibrium outcome when agents observe the actions of more

than one predecessor (m ≥ 2). Next, Lemma 2 proves that this is also true when agents

only observe the action of their immediate predecessor (m = 1). Finally, Lemma 3 shows

that when the return from contributions is too low, then nobody contributes.

3.1 Samples of Size m ≥ 2

The equilibrium with full contribution features a simple profile of play: agents contribute

unless they observe a defection. Let ΞC include all samples without defection. This set con-

sists of all samples where the number of observed individuals ξ ′ is equal to the number

of observed individuals who contributed ξ ′′. That is, ξ = (ξ ′, ξ ′′) ∈ ΞC ⇔ ξ ′ = ξ ′′. Note

that the first agent in the sequence receives a sample without defection: (0, 0) ∈ ΞC.

In what follows we let {σk}∞
k=1 be a sequence of perturbed strategy profiles that places

equal probability on all deviations. This sequence induces beliefs µk
i with limk→∞ µk =

µ∗.8

LEMMA 1. FULL CONTRIBUTION WITH SAMPLE SIZE m ≥ 2. Consider the following

profile of play:

σ∗i (C | ξ) =

1 if ξ ∈ ΞC

0 if ξ 6∈ ΞC
for all i ∈ I

8Specifically, σk
i (C | ξ) = 1 − k−1 for all ξ ∈ ΞC and σk

i (C | ξ) = k−1 for all ξ 6∈ ΞC. We consider
equivalent sequences of perturbed strategies for all results in this paper, so we omit them hereafter.
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Then (σ∗, µ∗) is a sequential equilibrium of the game whenever r ≥ 2
(

1 + m−1
n−m+1

)
.

The next two sections provide the intuition for this result for samples without and

with defection, respectively (see Appendix A.1 for the proof).

3.1.1 Samples without Defection

Consider first an agent who observes a sample without defection: ξ ∈ ΞC. This occurs

on the equilibrium path, so the agent infers that all her predecessors contributed. She

knows that if she contributes, then all subsequent players will also do so. Therefore, i’s

expected payoff from contributing is Eµ∗ [u (C, G−i) | ξ] = r− 1 for all ξ ∈ ΞC. This payoff

is independent of agent i’s beliefs about her position in the sequence.

An agent’s payoff from defecting does depend on her beliefs about her position. To

see this, assume first that agent i knows that she is in position Q(i) = t. All her pre-

decessors contributed, but none of her successors will do so (since she herself does not

contribute). Then, exactly t− 1 players contribute. The payoff from defecting is simply

Eµ̃ [u (D, G−i) | ξ, Q(i) = t] = r
n (t− 1) for all ξ ∈ ΞC, where µ̃ are the beliefs induced by

the deviation. Figure 2 illustrates agent i’s payoffs as a function of her position. For agents

placed early in the sequence, the payoff from contributing is larger than from defecting.

Later agents prefer defection though. Then if agents knew their position, contribution

would unravel.

t

1.5

10

2.25

1 2

0.25

3 4 5 6 7 8 9

payoffs from defecting

payoffs from contributing

Figure 2: Payoffs conditional on position and on sample ξ ∈ ΞC (r = 2.5, n = 10).
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The fact that players do not know their position can make every agent who observes

only contributors willing to contribute. Consider an agent who observes m agents con-

tributing. Then, she knows that she is not in the first m positions. Other than that, she

has an equal probability of being in any position {m + 1, . . . , n}. Thus, her expected po-

sition is n+m+1
2 , i.e., she expects n+m−1

2 agents to have already contributed. Therefore, the

expected payoff from defecting is Eµ̃ [u (D, G−i) | ξ = (m, m)] = r
n

n+m−1
2 . Contribution

then requires r− 1 ≥ r
n

n+m−1
2 , which simplifies to the following condition:

r ≥ 2
(

1 +
m− 1

n−m + 1

)
(1)

If instead the sample contains ξ ′ < m total actions, the agent knows that she is in

position ξ ′+ 1. The number of agents who contributed so far is ξ ′. Therefore, the expected

payoff from defecting is even lower: r
n ξ ′ < r

n
n+m−1

2 . Equation (1) thus also guarantees

that agents in the first m positions contribute.

3.1.2 Samples with Defection

Consider next an agent who observes a sample with defection: ξ 6∈ ΞC. The equilib-

rium profile of play requires that she herself defects. The key to understanding why this

is optimal is that an agent who observes defection cannot prevent her successors from

defecting. We explain this claim case by case. First, take an agent in one of the first m

positions who receives a sample with at least one defector. Her immediate successor will

also receive a sample with (at least) one defector, and will thus defect. Next, consider an

agent who receives a sample with more than one defector. Her successor will also defect.

For example, let m = 2 and assume that agent i receives sample ξ = (2, 0). The only

histories h ∈ H consistent with this sample are those with ht = (. . . , D, D). Then, the

next period’s history will be of the form ht+1 = (. . . , D, ai). It follows that, regardless of

agent i’s choice, her successor will defect, and so will all the remaining players.

So an agent may hope to prevent further defection only after receiving a sample

ξ = (m, m− 1); that is, observing m actions with only one defection. For this to be true,

the sole defector in the sample must be in position t−m. Otherwise, her successor would
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still observe one defection in his sample, and this would make him defect. However, an

agent who observes a sample ξ = (m, m − 1) assigns zero probability to the player de-

fecting being in position t − m. To see this, consider again the case with m = 2. When

the agent receives the sample ξ = (2, 1), she does not know in principle whether it was

her immediate predecessor (t − 1), or the one before (t − 2) who defected. If it was her

immediate predecessor, the history of play is of the form ht = (. . . , C, D). This history

is consistent with only one mistake with respect to the equilibrium strategy. If it was the

agent before, then ht = (. . . , D, C). At least two mistakes occurred: not only that someone

defected (which does not happen on the equilibrium path), but also that somebody con-

tributed after observing defection. Therefore, the agent assigns zero probability to history

being of the form ht = (. . . , D, C).

It follows that an agent who observes defection cannot affect her successors’ actions,

regardless of the value of r. This explains why agents always defect after observing a

defection in their sample.

3.2 Samples of Size m = 1

The case when only one agent is observed requires a separate discussion. When m = 1,

an agent who observes defection can prevent further defection by choosing to contribute.

Then, if the return from contributions is too high, the simple strategy of contributing

unless defection is observed cannot be an equilibrium. Agents would find it optimal

to contribute after observing contribution, but would not find it optimal to defect after

observing a defection. When r is too high, an agent who observes defection finds the cost

of contributing worth paying in order to induce all her successors to contribute. Then,

she would choose to contribute instead of defecting. However, since r < n, the strategy

profile in which all agents contribute is not an equilibrium, because players who observe

contribution would deviate to defecting. This implies that a pure strategy equilibrium with

full contribution cannot arise.

When the multiplication factor r is large, full contribution can arise in a mixed strategy

equilibrium. We construct a profile of play in which agents respond to contribution with
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contribution and “forgive” defection with probability γ ∈ [0, 1). The possibility of future

forgiveness makes defecting more attractive: successors may restore contribution. This

makes the threat of defection credible off the equilibrium path.

LEMMA 2. FULL CONTRIBUTION WITH SAMPLE SIZE m = 1. Consider the following

profile of play:

σ∗i (C | ξ) =

1 if ξ ∈ {(0, 0), (1, 1)}

γ if ξ = (1, 0)
for all i ∈ I

For any r ≥ 2 there exists γ ∈ [0, 1) such that (σ∗, µ∗) is a sequential equilibrium of the game.

See Appendix A.2 for the proof.

In line with Lemma 1, there is an equilibrium with full contribution whenever r ≥ 2.

For r ∈ [2, 3− 3/(n + 1)] the equilibrium is pure, while for r ∈ (3− 3/(n + 1), n) the

equilibrium is mixed (γ > 0).

3.3 Comparative Statics

Together, the conditions that sustain full contribution when m ≥ 2 and when m = 1 prove

the first part of Proposition 1: an equilibrium with full contribution exists for any m ≥ 1

and any r ≥ 2
(

1 + m−1
n−m+1

)
. Corollary 1 immediately follows.

COROLLARY 1. The lower bound on r for full contribution strictly increases in m.

Thus, the range on the multiplication factor r consistent with full contribution is the

largest for m = 1.9

3.4 No Contribution for Low r

We complete the proof of Proposition 1 by showing that when the return from contribu-

tions is not high enough to achieve full contribution, then nobody contributes.

LEMMA 3. NO CONTRIBUTION FOR LOW r. Whenever r < 2
(

1 + m−1
n−m+1

)
, no agent

contributes in equilibrium.

9If m = 0 (i.e., agents get no information about their predecessors’ actions) the setting becomes analo-
gous to a simultaneous game and thus an equilibrium with full contribution does not exist.
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See Appendix A.3 for the proof.

The intuition is as follows. Assume that contribution occurs in equilibrium and con-

sider the incentives of an agent i who contributes after observing a sample ξ. Her benefit

from contributing is given by contributions from successors who would otherwise defect.

The cost is 1, the contribution itself.

The equilibrium profile we propose in Lemma 1 provides strong incentives to con-

tribute on the equilibrium path. An agent who contributes gets everybody after her to

do so. On the contrary, if she defects, nobody after her contributes. Then, for any other

possible profile of play, the number of successors who contribute instead of defecting be-

cause of agent i’s contribution is at most everybody after i. A necessary condition for i to

contribute after observing sample ξ is thus that:

upper bound on benefit from contributing︷ ︸︸ ︷
r
n

Eµ

 ∑
τ≥Q(i)

1 {aτ = C}
∣∣∣∣ai = C, ξ

 ≥
cost of

contributing︷︸︸︷
1

Therefore, an agent who contributes expects that there are at least n/r − 1 contributors

among her successors: Eµ

[
∑τ>Q(i) 1 {aτ = C} | ai = C, ξ

]
≥ n/r− 1.

The average number of successors who contribute follows a simple rule (see Ap-

pendix A.3 for further details). When m = 1, it cannot exceed n/2− 1. Then, contribution

cannot emerge if r < 2. When m > 1, the condition becomes r < 2
(

1 + m−1
n−m+1

)
.

4. Extensions

The following extensions shed further light on how cooperation can emerge with position

uncertainty. First, we show that our result is robust to agents having noisy information

about their position. Second, we discuss how our framework sustains full cooperation in

a prisoners’ dilemma.
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4.1 Noisy Information on Positions

Assume that before observing a sample of past actions, each agent receives a noisy signal

about her position in the sequence. Let agent i be in position Q(i) = t. Signal St, which

takes values s ∈ S = {1, 2, . . . , n}, follows:

St =

t with probability λ ∈ (1/n, 1)

τ with probability (1− λ)/(n− 1) for all τ ∈ {1, . . . , n} with τ 6= t

Therefore, an agent who receives signal s and has not yet observed the sample of past

actions believes that she is position s with probability λ. She then observes the sample,

updates her beliefs, and chooses to contribute or defect. A strategy is a map σi (C | s, ξ) :

S × Ξ→ [0, 1].

LEMMA 4. NOISY INFORMATION ON POSITIONS. Let m ≥ 2. Consider the following

profile of play:

σ∗i (C | s, ξ) =

1 if ξ ∈ ΞC

0 if ξ 6∈ ΞC
for all i ∈ I

Then, (σ∗, µ∗) is a sequential equilibrium of the game if and only if

r ≥ 2n
[

2 +
(n− 1−m)(n−m)

(n− 1)/(1− λ)−m

]−1

. (2)

See Appendix A.4 for the proof.

Intuitively, signals make agents less uncertain about their position, and thus in some

cases less inclined to contribute. Condition (2) guarantees that an agent contributes even

after receiving a signal s = n. She does so because with positive probability she is placed

elsewhere in the sequence. Condition (2) defines a lower bound on r that increases in λ;

the stronger the signal about the player being in the last position, the higher the multipli-

cation factor r needed to convince her to contribute.

The following straightforward corollary shows that as long as signals are not perfectly

informative, there is always a high enough multiplication factor r that sustains full con-
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tribution as an equilibrium.

COROLLARY 2. For all λ < 1 there exists r < n such that (σ∗, µ∗) is a sequential equilibrium

of the game.

4.2 Prisoners’ Dilemma

Consider the following simple modification to the model presented in Section 2. Agents

sequentially choose whether to cooperate or defect. After all players have chosen their ac-

tions, each agent is matched to all of her n− 1 opponents in a series of pairwise prisoners’

dilemma interactions. Payoffs to agent i from each interaction are shown in Table 1.

opponent’s action
C D

agent i’s action C 1 −l
D 1 + g 0

Table 1: Payoffs to agent i in the prisoners’ dilemma

As usual, g > 0 represents the gain from defecting when the opponent cooperates,

while l > 0 represents the loss from cooperating when the opponent defects. Agent i’s

total payoffs are the sum of the payoffs from each pairwise interaction: ui(C, G−i) =

G−i − (n− 1− G−i) l and ui(D, G−i) = (1 + g)G−i.

Lemma 5 illustrates how full cooperation can emerge when agents play sequentially,

are uncertain about their positions, and observe the actions of some of their immediate

predecessors.

LEMMA 5. FULL COOPERATION IN A PRISONERS’ DILEMMA. Let m ≥ 2. Consider the

following profile of play:

σ∗i (C | ξ) =

1 if ξ ∈ ΞC

0 if ξ 6∈ ΞC
for all i ∈ I

Then (σ∗, µ∗) is a sequential equilibrium of the game whenever g ≤ 1− 2m
n+m−1 .

The proof closely follows that of Lemma 1 (see Appendix A.5 for the details).
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5. Discussion

We describe a natural environment that fosters cooperation in social dilemmas. In social

dilemmas, which are at the core of many economic problems, it is socially optimal that

agents cooperate, but they have private incentives not to do so. A large body of work has

studied several ways to sustain cooperation. We show how full cooperation can emerge

in a context where it may seem ex-ante hard to achieve: one-shot games with a finite

number of self-interested players.

We present our results in a public good game. Players choose sequentially whether

to contribute or defect, are uncertain about their position in the sequence, and observe a

sample of their predecessors’ choices. Because of partial observability of past actions,

agents contribute to induce others to also do so. Full contribution can emerge when

the return from contributions is above a threshold approximately equal to two. Multi-

plication factors both below and above two have been commonly used in experimental

work (Zelmer [2003] reports that multiplication factors typically range from 1.6 to 4). In

fundraising activities with multiplication factors lower than the threshold, charities can

consider partially matching agents’ contributions to exploit our result. We also show how

our result applies to a prisoners’ dilemma.

Although outside of the scope of this paper, future experimental work can investi-

gate whether, as predicted by our model, position uncertainty and partial observation of

others’ actions foster cooperation.

A. Proofs

A.1 Proof of Lemma 1

Consider first a sample ξ̃ ∈ ΞC. Agent i’s alternative strategy σ̃i is equal to σ∗i except
that it specifies defection after observing sample ξ̃, i.e., σ̃i(C | ξ̃) = 0. Induced beliefs are
denoted by µ̃. Agent i contributes as long as:

Eµ∗

[
ui (ai, G−i) | ξ̃

]
≥ Eµ̃

[
ui (ai, G−i) | ξ̃

]
r− 1 ≥ r

n
Eµ̃[Q(i)− 1 | ξ̃] (3)
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where the last step follows directly from our discussion in Section 3.1.1.
If the sample ξ̃ includes m actions, agent i understands that she is equally likely to be

in any position but the first m. Her expected position is Eµ̃[Q(i) | ξ̃] = 1
n−m ∑n

t=m+1 t =
n+m+1

2 . Equation (3) becomes:

r− 1 ≥ r
n

(
n + m + 1

2
− 1
)
⇔ r ≥ 2

(
1 +

m− 1
n−m + 1

)
As discussed in section 3.1.1, after receiving a sample without defection and with ξ̃ ′ <

m total actions, the agent learns her position. Payoffs from defecting are even lower, so
condition (1) suffices.

Consider next samples with defection ξ 6∈ ΞC. Let HD denote the set of all nodes that
generate a sample with defection and where successors always defect. That is, ht ∈ HD

whenever 1) ξt(ht) 6∈ ΞC and 2) aτ = D for all τ > t, regardless of at. Note that if an agent’s
successor chooses at+1 = D after the agent contributes (at = C) then ht ∈ HD.

The following intermediate lemma provides a simple characterization of nodes that 1)
generate samples with defection and 2) allow the agent to affect her successors’ actions.
LEMMA 6. Assume that ξt(ht) 6∈ ΞC and ht 6∈ HD. Then t > m and ξt(ht) = (m, m− 1).
Moreover, at−m = D, and aτ = C for t−m + 1 ≤ τ ≤ t− 1. So ht looks as follows:

ht =
(

. . . ,

agents sampled︷ ︸︸ ︷
D, C, C, . . . , C

)
Proof. First, assume ht is such that t ≤ m. Then, regardless of the action of the agent in
position t, ξt+1(ht+1) 6∈ ΞC. Then the agent in position t + 1 defects. Second, assume
that ht is such that t > m and that more than one agent defects in the sample: ξt(ht) 6=
(m, m − 1). Then, regardless of at, the agent in position t + 1 still observes at least one
defection. So at+1 = D. Third, assume that ξt(ht) 6= (m, m− 1) and at−m = C. Then again
there is a defection in ξt+1. So at+1 = D. �

With Lemma 6 in hand it is easy to show that an agent can never affect her successors’
actions if she observes defection. An agent who receives a sample ξ = (m, m− 1) must
form beliefs about the nodes she may be in. Any node ht ∈ HD has at least m deviations.
Consider instead the node ht = (C, . . . , C, D), that is aτ = C for all τ ≤ t− 2 and at−1 = D.
This node has only one deviation. Then, ∑ht∈HD µ∗ (ht | ξ) = 1 for all ξ 6∈ ΞC. Then, an
agent who observes defection never believes that she can prevent further defection. �

A.2 Proof of Lemma 2

Let σ∗ be defined as in the statement of the lemma. Take a generic sample ξ̃ and build
two profiles of play. First, σC =

(
σC

i , σ∗−i
)

with σC
i
(
C | ξ = ξ̃

)
= 1 and σC

i = σ∗i for all
other samples. Second, σD =

(
σD

i , σ∗−i
)

with σD
i
(
C | ξ = ξ̃

)
= 0 and σD

i = σ∗i for all other
samples. Induced beliefs are denoted by µC and µD.
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Let vt(γ) represent the (expected) number of additional contributors an agent gets
by contributing rather than defecting after observing sample ξ̃ and conditional on being
in position t.10 Similarly, let ft(γ) represent the likelihood of being in position t after
observing defection (sample ξ = (1, 0)):

vt(γ) ≡ EµC
[
G−i | ξ = ξ̃, Q(i) = t

]
− EµD

[
G−i | ξ = ξ̃, Q(i) = t

]
+ 1

ft(γ) ≡ µ∗ [Q(i) = t | ξ = (1, 0)]

Then, the agent in the first position in the sequence - who receives sample ξ = (0, 0) -
contributes whenever r

n v1(γ)− 1 ≥ 0. Instead, an agent who receives a sample ξ = (1, 1)

contributes whenever r
n

[
∑n

t=2
1

n−1 vt(γ)
]
− 1 ≥ 0. Finally, an agent who receives sample

ξ = (1, 0) is indifferent when r
n [∑n

t=2 ft(γ)vt(γ)] − 1 = 0. The following intermediate
lemma characterises these functions.
LEMMA 7. The functions vt(γ) : [0, 1]→ R and ft(γ) : [0, 1]→ [0, 1] are as follows:

vt(γ) =

{
γ−1 [1− (1− γ)n−t+1] if γ ∈ (0, 1]
n− t + 1 if γ = 0

ft(γ) =


1−(1−γ)t−1

n−1− 1−γ
γ (1−(1−γ)n−1)

if γ ∈ (0, 1]

2 t−1
n(n−1) if γ = 0

Moreover, vt(γ) and ft(γ) are continuous in γ ∈ [0, 1] and such that vt(γ) > vt+1(γ) and
ft(γ) < ft+1(γ) for all γ ∈ [0, 1). Finally, ∂vt(γ)

∂γ < 0 for t < n and γ < 1.

See Appendix A.2.1 for the proof.
By Lemma 7, r

n v1(γ) > r
n

[
∑n

t=2
1

n−1 vt(γ)
]
. So if agents contribute after observing

ξ = (1, 1), they also do so after observing ξ = (0, 0).
We show next that the CDF given by ft(γ) first order stochastically dominates the

uniform distribution given by 1
n−1 . Note that ft(γ) is strictly increasing in t for all γ ∈

[0, 1). Then, there exists t̃ such that ft(γ) ≤ 1
n−1 for all t ≤ t̃, and ft(γ) ≥ 1

n−1 for all t > t̃.
Therefore, ∑t

τ=2 fτ(γ) ≤ ∑t
τ=2

1
n−1 for all t ≤ t̃. Similarly, ∑n

τ=t fτ(γ) ≥ ∑n
τ=t

1
n−1 for all

t > t̃. Then,

n

∑
τ=t

fτ(γ) ≥
n

∑
τ=t

1
n− 1

⇔ 1−
t−1

∑
τ=2

fτ(γ) ≥ 1−
t−1

∑
τ=2

1
n− 1

⇔
t−1

∑
τ=2

fτ(γ) ≤
t−1

∑
τ=2

1
n− 1

It follows that ∑t
τ=2 fτ(γ) ≤ ∑t

τ=2
1

n−1 for all t ≥ t̃. This, and the fact that vt(γ) is decreas-
ing in γ, imply that ∑n

t=2
1

n−1 vt(γ) ≥ ∑n
t=2 ft(γ)vt(γ). The previous expression holds

with strict inequality if γ ∈ [0, 1).

10An agent who contributes generates a direct effect (her own contribution) and an indirect one, as she
may affect the actions of successors. The last term in the definition of vt(γ) represents the agent’s own
contribution. That is why vn(γ) = 1 for any γ ∈ [0, 1].
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Define H(γ) ≡ r
n [∑n

t=2 ft(γ)vt(γ)] − 1. Note that whenever H(γ) < 0, an agent
defects after observing ξ = (1, 0). Since H(0) = r

3
n+1

n − 1, it follows that whenever 2 ≤
r ≤ 3− 3/(n + 1), a pure equilibrium exists (the lower bound ensures that contribution
follows contribution, the argument replicates the one discussed in the proof of Lemma 1
in the context m = 1). If instead r > 3− 3/(n + 1), then H(0) > 0. For those values of
r, if γ = 0 contributing after a defection is preferred. So no pure equilibrium can sustain
full contribution. If instead γ = 1, then H(1) = r

n − 1 < 0. Note that H(γ) is continuous
in γ ∈ [0, 1], since both ft(γ) and vt(γ) are continuous in γ ∈ [0, 1]. Then, there exists
γ ∈ (0, 1) such that H(γ) = 0. Solving explicitly for H(γ) = 0 leads to:

2
γ
− (n− 1) (1− (1− γ)n)

γn− 1 + (1− γ)n =
n
r
�

A.2.1 Proof of Lemma 7

The expected number of opponents who cooperate, given a particular position and sam-
ple ξ = ξ̃ is given by:

EµC
[
G−i | ξ = ξ̃, Q(i) = t

]
= EµC

[
t−1

∑
τ=1

1 {aτ = C}+
n

∑
τ=t+1

1 {aτ = C} | ξ = ξ̃, Q(i) = t

]

= Eµ∗

[
t−1

∑
τ=1

1 {aτ = C} | ξ = ξ̃, Q(i) = t

]
+ n− t

Similarly,

EµD
[
G−i | ξ = ξ̃, Q(i) = t

]
= EµD

[
t−1

∑
τ=1

1 {aτ = C}+
n

∑
τ=t+1

1 {aτ = C} | ξ = ξ̃, Q(i) = t

]

= Eµ∗

[
t−1

∑
τ=1

1 {aτ = C} | ξ = ξ̃, Q(i) = t

]
+ Eµ∗

[
n

∑
τ=t+1

1 {aτ = C} | at = D

]

So vt(γ) is given by

vt(γ) = n− t + 1− Eµ∗

[
n

∑
τ=t+1

1 {aτ = C} | at = D

]

To solve explicitly for vt(γ), note that vn+1 = n − n + 1 = 1 and vt = 1 + (1− γ)vt+1.
Solving for this first order linear difference equation leads directly to the expression for
vt(γ) in Lemma 7. To see that vt(γ) is continuous also at γ = 0, apply L’Hôpital’s rule. It
is easy to show that for all γ < 1, vt(γ) > vt+1(γ). To see that ∂vt(γ)

∂γ < 0, note that ∂vt(γ)
∂γ =

γ−2 [(1− γ)n−t [1 + γ(n− t)]− 1
]
. We need to show that (1− γ)n−t [1 + γ(n− t)] < 1

for all γ ∈ (0, 1) and for all t < n. This is equivalent to showing (1 − γ)t [1 + tγ] <
1 for all t ≥ 1 and for all γ ∈ (0, 1). We do this by induction. Note that for t = 1,
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(1− γ)(1 + γ) < 1. Assume next that this is true for some t. Then

(1− γ)t [1 + tγ] < 1⇔ (1− γ)t+1 [1 + (t + 1)γ] < 1− γ
(

1− (1− γ)t+1
)
< 1.

Let us turn next to ft(γ):

ft(γ) = Pr [Q(i) = t | ξ = (1, 0)] =
∑t−1

τ=1(1− γ)t−τ−1

∑n
t=2 ∑t−1

τ=1(1− γ)t−τ−1

But ∑t−1
τ=1(1− γ)t−τ−1 = γ−1 [1− (1− γ)t−1]. This leads directly to the expression for

ft(γ) in Lemma 7. To see that ft(γ) is continuous also at γ = 0, apply L’Hôpital’s rule. It
is easy to show that for all γ < 1, ft(γ) < ft+1(γ). �

A.3 Proof of Lemma 3

Assume that there exists an equilibrium profile σ that features a positive level of con-
tribution on the equilibrium path. Take any agent i ∈ I who contributes with positive
probability: σi(C | ξ) > 0 for some sample ξ ∈ Ξ. Let µ be beliefs consistent with σ and µ̃
the beliefs on future events if instead agent i defects. Then,

Eµ [ui (ai, G−i) | ξ] ≥ Eµ̃ [ui (ai, G−i) | ξ]

Eµ [r/n (G−i + 1)− 1 | ξ] ≥ Eµ̃ [r/nG−i | ξ]

Eµ

 r
n

Q(i)−1

∑
τ=1

1 {aτ = C}+
n

∑
τ=Q(i)+1

1 {aτ = C}+ 1

− 1 | ξ

 ≥
Eµ̃

 r
n

Q(i)−1

∑
τ=1

1 {aτ = C}+
n

∑
τ=Q(i)+1

1 {aτ = C}

 | ξ


Eµ

 r
n ∑

τ≥Q(i)
1 {aτ = C} − 1 | ai = C, ξ

 ≥
Eµ

 r
n ∑

τ≥Q(i)
1 {aτ = C} | ai = D, ξ

 ≥ 0

Thus, a necessary condition for agent i to contribute is that at least n/r− 1 of her succes-
sors contribute:

Eµ

 ∑
τ>Q(i)

1 {aτ = C} | ai = C, ξ

 ≥ n
r
− 1 (4)

Let us focus on agents placed in positions m + 1 to n. The random variable Counti
only considers agents who are not in the first m positions. It keeps track of the number of

21



agents who contribute after agent i does so:

Counti ≡ 1 {Q(i) > m} 1 {ai = C} ∑
τ>Q(i)

1 {aτ = C}

Let G̃ ≡ ∑n
t=m+1 1 {at = C}. Then Count ≡ ∑i∈I Counti = G̃(G̃− 1)/2. Let ΞF denote

the set of all the samples that contain m actions.

Eµ (Count) ≡ Eµ

∑
i∈I

1 {Q(i) > m} 1 {ai = C} ∑
τ>Q(i)

1 {aτ = C}


= ∑

i∈I
Eµ

1 {Q(i) > m} 1 {ai = C} ∑
τ>Q(i)

1 {aτ = C}


= ∑

i∈I
∑

ξ∈ΞF

Pr (ξ) Eµ

1 {ai = C} ∑
τ>Q(i)

1 {aτ = C} | ξ


= ∑

i∈I
∑

ξ∈ΞF

Pr (ξ) Eµ

 ∑
τ>Q(i)

1 {aτ = C} | ai = C, ξ

 σi(C | ξ)

Then by equation (4):

Eµ (Count) ≥ ∑
i∈I

∑
ξ∈ΞF

Pr (ξ) (n/r− 1)σi(C | ξ)

= (n/r− 1) ∑
i∈I

E [ai | Q(i) > m]Pr (Q(i) > m) = Eµ

[
(n/r− 1)G̃

]
But the number of successors who contribute is Eµ (Count) = Eµ

[
G̃(G̃− 1)/2

]
. Then,

Eµ

[(n
r
− 1
)

G̃
]
> Eµ

[
n− 1−m

2
G̃
]
≥ Eµ

[
G̃− 1

2
G̃

]
= Eµ (Count) ≥ Eµ

[(n
r
− 1
)

G̃
]

The first (strict) inequality comes from r < 2
(

1 + m−1
n−m+1

)
. The second (weak) inequality

follows from the fact that G̃ ≤ n−m.
This contradiction shows that nobody contributes after observing a full sample of size

m. By backward induction, no one in the first m positions contributes either. Therefore, in
equilibrium there is no contribution if r < 2

(
1 + m−1

n−m+1

)
. �
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A.4 Proof of Lemma 4

Following a similar argument to the one in Lemma 1, an agent who observes defection
also defects. Therefore, the signal SQ(i) may only matter when the agent receives a sample
ξ ∈ ΞC. In two distinct cases the information contained in SQ(i) plays no role. First, if
ξ = (ξ ′, ξ ′′) has ξ ′ < m, the agent learns her position immediately: she is in position
ξ ′ + 1. Then, the signal is uninformative. Second, if ξ = (ξ ′, ξ ′′) is such that ξ ′ = m, the
agent understands that she is not in any of the first m positions. So she disregards any
signal SQ(i) ∈ {1, . . . , m}.

Consider an agent who observes a sample of size m, where all agents cooperate: ξ =
(m, m) ≡ ξ f ull. The agent has the strongest incentives to defect when SQ(i) = n. In
what follows, we derive the condition that guarantees contribution after receiving such a
signal. The same condition then guarantees contribution for any other signal. Let λ′ ≡
Pr
(
Q(i) = n | s = n, ξ = ξ f ull) = λ/[1−m(1− λ)/(n− 1)].
An agent who receives signal s = n and sample ξ = ξ f ull contributes whenever:

Eµ∗

[
u (ai, G−i) | s = n, ξ = ξ f ull

]
≥ Eµ̃

[
u (ai, G−i) | s = n, ξ = ξ f ull

]
r− 1 ≥

n−1

∑
t=m+1

r
n
(t− 1)

1− λ′

n−m− 1
+ λ′

r
n
(n− 1)

Substituting for λ′ leads to:

r ≥ 2n
[

2 +
(n− 1−m)(n−m)

(n− 1)/(1− λ)−m

]−1

�

A.5 Proof of Lemma 5

Consider first ξ 6∈ ΞC. As shown in Lemma 1, an agent who observes defection never
believes that she can prevent further defection. So she herself defects. Consider next
(full) samples without defection: ξ ∈ ΞC. Following similar steps as in Appendix A.1, an
agent cooperates whenever:

Eµ∗ [ui (ai, G−i) | ξ] ≥ Eµ̃ [ui (ai, G−i) | ξ]

n− 1 ≥ 1
n−m

n

∑
t=m+1

(1 + g)(t− 1) =
1 + g

2
(n + m− 1)

Then, an agent who observes a full sample of cooperation cooperates whenever g ≤ 1−
2m/(n + m − 1). If instead the agent observes a sample of cooperation with ξ ′ < m
actions, her incentives to cooperate are even stronger. �
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