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Abstract
This paper develops a new methodology for estimating and testing

the form of anisotropy of homogeneous spatial processes. We derive a
generalised version of the isotropy test proposed by Arbia, Bee and Espa
(2013) and analyse its properties in various settings. In light of this, we
derive a new approach that allows one to estimate and test under mild
conditions any form of anisotropy in homogeneous spatial processes. The
power of the test is studied by means of Monte Carlo simulations performed
both on regularly and irregularly spaced data.

1 Introduction
A stochastic spatial process is said to be isotropic whenever it is stationary

with respect to rotations of its index set about the origin (Ripley 1981, p. 10).
The assumption of isotropy may lead to inconsistent estimates if it is not

borne out by data, similarly to what happens when incorrectly assuming other
forms of stationarity. This is the main reason why it should be formally tested
before fitting any kind of isotropic model.

Over the last decades, the problem of testing isotropy of stochastic spatial
processes has been given more attention than in the past, and isotropy tests
have been proposed for stochastic surfaces (Cabaña 1987), point processes (see
e.g. Guan, Sherman and Calvin 2004), lattice data (Molina and Feito 2002), and
(regularly or irregularly-spaced) areal data (Arbia, Bee and Espa 2013). In this
paper we focus on the problem of testing isotropy in models for areal data.

In some cases, it is possible to apply isotropy tests like those of Guan,
Sherman and Calvin (2004) or Molina and Feito (2002) to irregularly-spaced
areal data, however two features of areal data models may make such adaptations
not suitable, especially in econometric analysis.
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2 1 INTRODUCTION

First, the geometric distance between centroids of cells may not be the most
suitable criterion for assessing isotropy of a process which has been modelled
through a weight matrix. Indeed, most of the times the physical distance has
a minor or no role in defining the weight matrix of an econometric spatial
model. It follows that, in such cases, an isotropy test based on variograms (like
Guan, Sherman and Calvin 2004) or other functions of physical distance may be
inconsistent with the modelling approach being adopted.

Second, samples of irregular areal data are often rather small, especially in
econometric analysis. This implies that isotropy tests requiring large samples to
be applied cannot be used. This is the case, for instance, of the isotropy test
proposed by Molina and Feito (2002), which achieves the independence from
distance over a rectangular grid by randomly choosing observations from the
original sample, and considering just their mutual directions. Although such
method can be adapted in order to be suitable also on irregularly-spaced grids,
it can provide precise and reliable outcomes only in large samples.

The isotropy test proposed by Arbia, Bee and Espa (hereinafter ABE) has
been developed for econometric models, and overcomes both problems just
described. The ABE test requires the neighbours of each cell to be split into
two groups according to an arbitrary direction, and tests whether the spatial
dependence is statistically different between them. The test works well in many
cases, but it may fail to detect some forms of anisotropies, as the following
example shows.

Example 1. Consider the spatial process {yst} defined on a rectangular lattice
Gn:

yst = α(ys−1,t + ys,t+1) + β(ys+1,t + ys,t−1) + εst , (1)

where α 6= β are parameters, and {εst} is an iid spatial process. The process (1)
is clearly anisotropic (since α 6= β).

If we observe the process {yst}, and test for isotropy by means of the ABE
test, we may split neighbours along the NW–SE direction, and fit the model:

yst = ρ1(ys−1,t + ys,t+1) + ρ2(ys+1,t + ys,t−1) + est . (2)

The isotropy assumption is not rejected if ρ1 and ρ2 are not statistically different
from each other. For this specification of the test, model (2) coincides with the
data generating process (1), and it is possible to detect anisotropy provided that
the sample size is large enough.

Now assume that we split neighbours along to a different direction. For
instance, we may choose the SW–NE direction, and fit the following model:

yst = ρ1(ys−1,t + ys,t−1) + ρ2(ys+1,t + ys,t+1) + ust . (3)

Like (2), also model (3) is consistent with the ABE method, however, if model (3)
is fitted, the anisotropy cannot be detected, whatever the sample size is. This
happens because each coefficient ρ synthesises the spatial dependence originating
from a neighbour with coefficient α and one with coefficient β.

Example 1 reveals two problems. First, the ABE test is not rotation-invariant,
that is, its outcome depends on the direction chosen for splitting neighbours,
which may strongly affect the power of the test, as it will be formally shown
hereafter. Second, there may be compensations between coefficients of the
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neighbours belonging to the same half-plane, and this may result in a substantial
reduction in the power of the test.

In this paper we extend the ABE test to a generic number q of groups of
neighbours (this will be called the q-directional ABE test) and provide a formal
analysis of the factors affecting its power and of the kind of anisotropies it is
able to detect.

In light of this analysis, we propose a new approach that allows one to estimate
and test the form of anisotropy of any given spatial process without incurring
the problems outlined above. This method leads to a semi-parametric strategy
for estimating and testing spatial anisotropy, based on a Fourier expansion of
the function that describes the directional dependence. Unlike the q-directional
ABE test, this technique does not suffer from multicollinearity problems when a
fine estimation of the directional dependence function is required.

This approach is flexible and can be easily adapted and applied to models
for areal data like SAR, SEM, SARMA, CAR, etc. Moreover, it allows one to
detect many forms of anisotropy by estimating a small number of parameters.

The paper is organized as follows. Section 2 formally analyses the ABE
test, develops a generalization, focuses on the kind of anisotropies that it can
detect, and studies its power. Section 3 introduces the new modelling approach
and illustrates how the form of anisotropy can be estimated and tested on
both regularly and irregularly spaced data. Section 4 illustrates the outcomes
of the Monte Carlo simulation experiments performed in order to assess the
finite-sample properties of the estimators and the power of the test. Section 5
concludes.

2 The ABE isotropy test

2.1 The original ABE test
Consider the following spatial autoregressive model:{

y = ρWy +Xβ + ε
ε ∼ Nn(0, σ2I) , (4)

defined on a (regular or irregular) grid Gn of n cells, whereW ∈ Rn×n is a spatial
weight matrix, X ∈ Rn×k is a matrix of k exogenous explanatory variables (which
may include a unitary column), β ∈ Rk, σ ∈ R+, and ρ ∈ R is such that I − ρW
is positive definite (Ord 1975).

The ABE test requires that neighbours of each cell of Gn are divided up
into two groups according to a direction described by a straight line with slope
tan θ passing through the centroid of the reference cell. Formally, this result is
achieved by defining two directional matrices W1 and W2 as follows:

(Wj)kh ≡ 1{(ch−ck)∈Hj} wkh , j = 1, 2 , (5)

where wkh is the (k, h) element of W , ck, ch ∈ R2 are the Cartesian coordinates
of the centroids of cells k, h ∈ Gn, 1{·} is the indicator function, and H1, H2 are
the half-planes generated by the straight line passing through the origin (0, 0)
and whose angle with abscissa is θ.
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The ABE isotropy test is based on the comparison of the following model{
y = (ρ1W1 + ρ2W2)y +Xβ + ε
ε ∼ Nn(0, σ2I) (6)

to model (4) in terms of goodness of fit, hence the null hypothesis to be tested
is ρ1 = ρ2, since, if the data generating process {yst} is isotropic, the spatial
dependence (captured by autoregressive parameters ρ1 and ρ2) should be the
same along any direction.

Note that, from definition (5), the following properties hold:

W1 +W2 = W ,

W1 �W2 = 0 ∈ Rn×n ,

where � is the Hadamard product (that is, the elementwise matrix product).
The first property guarantees that (6) coincides with (4) when the isotropy
assumption holds (that is, the models are nested), whereas the latter entails that
each neighbour of the cells is assigned (i.e. it has non-zero weight) either to W1
or to W2.

In light of the notation we have introduced in this section, we may formalise
Example (1) as follows.

Example 2. Models (2) and (3) can be restated in matrix form as (6) without
the regressor matrix X. Define Th1 T k2 yst ≡ ys+h,t+k, and assume that cells of
Gn are identified according to the matrix indexation.

Model (2) results from 0 < θ < π/2. In particular, W1 should include the
T−1

1 and T−1
2 spatial lags, while W2 should pick T1 and T2 out. As explained,

in this case the ABE test will not reject the isotropy hypothesis, since both W1
and W2 include half spatial lags with coefficient α and half with coefficient β.

On the other hand, model (3) is implied by the condition −π/2 < θ < 0. In
this case, if we include T−1

1 and T2 in W1, and T−1
2 and T1 in W2, the ABE test

will be able to detect the anisotropy of {yst}, since W1 contains only the spatial
lags with coefficient α, while W2 includes the spatial lags with coefficient β.

The problems we outlined in Example 1 and 2 are analysed in the framework
of a generalized version of the ABE test, where the neighbours are split into
q ≥ 2 groups.

2.2 The q-directional ABE test
Consider a spatial process {yk} defined on a (regular or irregular) two-

dimensional grid Gn with n cells having centroids with Cartesian coordinates
{ck} (where ck = [ck1 ck2]T). The process is defined as follows:

yk =
n∑
h=1

g(k, h, wkh) yh + εk ,

where g is a real function, wkh is the (k, h) element of the weight matrix
W ∈ Rn×n, and {εk} is an iid spatial process.

We assume that {yk} is homogeneous, thus the function g should depend just
on ch − ck instead of k and h. Moreover, without loss of generality, we assume
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that the weight matrix W incorporates the effect of the Euclidean distance
between centroids (‖ch − ck‖2). Hence, the resulting model is:

yk =
n∑
h=1

f(θkh)wkh yh + εk , (7)

where θkh is the angle of the vector ch−ck expressed in polar coordinates. Finally,
we assume that f : R → R is periodic (with period 2π) and it is expandable
as a Fourier series. We do not, however, make any assumption about the
fundamental period of f , that is, the minimum period of f : we only require that
f(ω + 2π) = f(ω) for any ω ∈ R. Hence, there may exist a positive constant
T < 2π such that f(ω + T ) = f(ω) for any ω ∈ R. Model (7) is isotropic if
f(θkh) is independent of θkh, that is, if f(θkh) is constant.

We may generalise the ABE test by dividing the neighbours according to
q ≥ 2 directions. Consider the following Fourier expansion of f :

f(ω) =
∞∑
m=0

am cos(mω + ϕm) , (8)

and assume that the round angle is divided into q ≥ 2 equal parts starting from
θ. That is, R is partitioned into intervals having the form Ir ≡ [θ + 2π(r −
1)/q, θ + 2πr/q)] for r ∈ Z. We define:

ρkh ≡
q

2π

∫
IQ(θkh)

f(ω)dω , (9)

where Q : R→ Z is the function such that θhk ∈ IQ(θkh), that is, Q(θkh) gives
the value r such that θhk ∈ Ir.

By analogy with the basic ABE method, the q-directional version requires
the unrestricted model

y =
(

q∑
r=1

ρrWr

)
y + ε (10)

to be tested against the restricted model

y = ρ

(
q∑
r=1

Wr

)
y + ε , (11)

where ρr and Wr (r = 1, . . . , q) are the directional parameters and matrices.
In particular, ρr ≡ ρkh for every (k, h) ∈ Gn such that r = Q(θkh), while
(Wr)kh ≡ 1{r=Q(θkh)}wkh. Thus, in this case, the isotropy hypothesis corresponds
to the restriction ρ1 = ρ2 = · · · = ρq.

2.3 Factors affecting the power of the ABE test
Rearranging Equations (8) and (9), we obtain:

ρkh = q

2π

∞∑
m=0

∫
IQ(θkh)

am cos(mω + ϕm)dω , (12)



6 2 THE ABE ISOTROPY TEST

and integrating (12) we have:

ρkh = a0 cosϕ0 + q

2π

∞∑
m=1

am
m

[
sin(mω + ϕm)

]∣∣∣θ+2πQ(θkh)/q

θ+2π(Q(θkh)−1)/q
. (13)

As concerns (13), some remarks are in order.
First, the terms of the sum in (13) converge to zero regardless of the value of

θ and θkh as the angular frequency m of the associated harmonic increases. This
implies that the power of the ABE test is low in detecting anisotropies originating
from high-frequency components of f . As (13) shows, the terms converge to zero
because of the factor m−1, hence, given q, high-frequency harmonics of f can be
detected only if their amplitudes |am| are large enough to counterbalance the
effect of m−1.

Second, the power of the ABE test can be increased for both low and high
frequency components of f by increasing the number of partitions q of the round
angle. This may be appreciated if we note that

sup
θ

{
range
r

([
sin(mω + ϕm)

]∣∣∣θ+2πr/q

θ+2π(r−1)/q

)}
↑ [−1, 1] (14)

as q → ∞. In fact, when the range in (14) is narrow, the power of the q-
directional ABE test in detecting anisotropy originating from the harmonic with
angular frequency m is low because the variability of the coefficients ρr is small.

Third, the power of the q-directional ABE test is significantly affected by the
reference angle θ through harmonics of f whose ratio am/m is relatively high,
and angular frequency is close to q/2. In order to prove this fact, some basics in
signal theory are needed (see e.g. Priemer 1991).

A typical problem of signal theory is to reconstruct an analogue signal (i.e. a
continuous function of time) from a finite number of observations. Such a task
can be easily handled when the signal is periodic, since Fourier analysis allows
one to decompose the original signal as a sum of sine and cosine waves (called
“harmonics”) with various amplitudes, phase, and frequencies. If the observations
of the signal are properly collected, it is possible to detect and estimate the
main harmonics of the analogue signal and reconstruct it with various levels of
accuracy.

The reconstruction of the periodic analogue signal requires it to be observed
(sampled) several times throughout its period. As the number of observations
per period (the so-called “sampling frequency”) increases, the accuracy of the
reconstructed signal improves. This principle is formalised by the Nyquist-
Shannon theorem (see e.g. Bloomfield 2000), which states that when a periodic
signal is sampled at a certain frequency ω, it is possible to identify only its
harmonics whose frequency is not higher than ω/2. The critical frequency ω/2
is known as Nyquist frequency.

In terms of the problem about the ABE test, we may consider the function
f as an analogue signal which has period 2π and is sampled q times at regular
intervals on [0, 2π) (hence, the angular sampling frequency is q). The observa-
tions resulting from such a sampling scheme are the autoregressive coefficients
{ρ1, . . . , ρq} of equation (10). In particular, unlike traditional signal sampling,
the ρrs do not represent point values of f , but are its mean values over intervals
of width 2π/q, as equation (9) clearly shows.
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The peculiarity of the sampling scheme implied by the q-directional ABE test
does not prevent us from considering it as an approximation of the usual signal
sampling scheme as q diverges, since limq→∞ ρkh = f(θkh). In light of this, we
note that q/2 represents the Nyquist frequency, that is the highest-frequency
component of f that can be identified.

The reason why only harmonics with angular frequency m ≈ q/2 have a
strong impact on the power of the q-directional ABE test through θ can be
understood if we note that harmonics with angular frequency m � q/2 are
identified with precision (there are many observations for each period), and thus
a change in θ does not substantially improve their estimates (the range in (14)
is not much affected). On the other hand, the impact of θ on ρkh decreases for
harmonics with angular frequency m� q/2 both because of the coefficient m−1

of the terms in (13), and because there is a confounding phenomenon (called
aliasing) that prevents form correctly identifying such harmonics (as stated in
the Nyquist-Shannon theorem).

To summarise, the power of the q-directional ABE test can be improved by
increasing q or by optimizing θ. The first solution has some limitations, since as
q gets larger, the number of directional autoregressive parameters {ρ1, . . . , ρq}
increases, and this results in a loss of degrees of freedom. Moreover, a high
number of directional weight matrices W1, . . . ,Wq gives rise to multicollinearity
problems among the regressors in (10). Last but not least, processing several
n× n directional matrices may be computationally troublesome.

On the other hand, the optimization of θ is worthwhile when q is small and
harmonics to be detected have angular frequencies close to q/2. Nevertheless,
the optimal reference angle θ∗ cannot be easily estimated because it depends on
f , which is obviously unknown. This problem may be overcome by performing
the q-directional ABE test for several values of θ in order to verify whether
anisotropy is detected for some θ ∈ [0, 1/q). Although no theoretical reason bars
this approach, the construction of many sets of directional matrices (W1, . . . ,Wq)
may be computationally demanding.

The problem of finding the optimal values of q and θ is overcome by the
isotropy test we propose in Section 3, which may be interpreted as a∞-directional
ABE test where the reference angle θ is unnecessary, and the coefficients of the
Fourier expansion of f are estimated instead of the directional autoregressive
parameters ρr.

3 A new isotropy test
The problems discussed in the previous section arise from the discretisation

of the interval [0, 2π) and the consequent need of defining two partitioning
parameters (θ and q) and integrating the function f . These drawbacks of the
q-directional ABE test are wiped out when q →∞.

When q →∞, the autoregressive parameters {ρr} can no longer be estimated
because they are infinite. However it is possible to estimate the Fourier expansion
of f : although the Fourier coefficients are infinite too, usually just a few of them
have to be estimated in order to detect anisotropies. For example, in Fourier
analysis the harmonic with angular frequency m is fully identified by only two
coefficients, while the q-dimensional ABE test requires q ≥ 2m, that is, at least
2m coefficients should be estimated in order to detect the same harmonic.
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A further advantage of the test we are going to develop derives from the
orthogonality of harmonics in a Fourier series. This property allows us to improve
the accuracy of the approximation of f without increasing the multicollinearity
of regressors. This issue distinguishes this test from the q-dimensional ABE test,
where multicollinearity grows as q gets larger.

The new testing approach requires to restate (8) as

f(ω) = ρ+
∞∑
m=1

[ρcm cos(mω) + ρsm sin(mω)] , (15)

where ρ ≡ a0 cosϕ0, ρcm ≡ am cosϕm, ρsm ≡ −am sinϕm. It follows that (7)
can be rewritten as:

yk = ρ

n∑
h=1

wkhyh+

+
∞∑
m=1

(
ρcm

n∑
h=1

cos(mθkh)wkhyh + ρsm

n∑
h=1

sin(mθkh)wkhyh

)
+ εk ,

or, in matrix notation,

y =
(
ρW +

∞∑
m=1

[ρcmAm �W + ρsmBm �W ]
)
y + ε , (16)

where (Am)kh = cos(mθkh), (Bm)kh = sin(mθkh). Given the matrix of coordin-
ates of centroids C ∈ Rn×2, the angles θkh can be computed as follows:

θkh = arctan2
(
(Cy)kh, (Cx)kh

)
,

where:
Cx ≡ (C [ 1 0 ]T ιT

n)T − (C [ 1 0 ]T ιT
n) ,

Cy ≡ (C [ 0 1 ]T ιT
n)T − (C [ 0 1 ]T ιT

n) ,

and arctan2: R2 → [−π, π] is the inverse function of tan.
Model (16) potentially allows one to model, estimate, and test any form of

anisotropy based on any real function f : R→ R of period 2π expandable in a
Fourier series. The isotropy condition is:

ρc1 = ρc2 = · · · = ρs1 = ρs2 = · · · = 0 , (17)

that is, (16) is isotropic when f has no harmonic components, so that it is
constant. If, in addition to (17), we require that ρ = 0, we can test the
hypothesis of no spatial correlation.

As mentioned above, only a finite number of harmonics can be estimated and
tested, and this implies that only some terms of the sum in (16) can be included
into the model to be fitted. Nonetheless, a very small number of harmonics can
provide an accurate approximation of the functions f relevant for applications,
as the high-frequency components of f have a marginal role in defining the
form of anisotropy in econometric analysis. The following example considers a
commonly encountered anisotropy structure.
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Figure 1: Function (18) for κ = π/2
and various values of α (from top to bot-
tom): 0.85, 0.4, 0.15, 0, −0.05, −0.35,
−0.6, −1.05.
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Figure 2: Function (18) with κ = π/2
and α = 0.1 (solid line) and its Four-
ier series truncated at the second term
(dashed line) and at the third term (dot-
ted line).

Example 3. The function

f(ω) = 0.1 + α e−2(ω−κ)2
, (18)

plotted in Figure 1 for various values of α and κ = π/2 may be suitable for
describing the North-South asymmetries existing among regions or administrative
units in a country.

As Figure 1 shows, (18) with κ = π/2 defines a spatial dependence uniform
in all directions except for the North (ω = π/2): as ω gets closer to π/2, the
spatial dependence becomes stronger (when α > 0), weaker (−0.1 < α < 0),
or negative (α < −0.1). The parameters α and κ respectively determine the
strength and the direction of the anisotropy.

Figure 2 shows the Fourier expansions of f for α = 0.1 truncated at the
second and third term. The function is reasonably well approximated by a
Fourier expansion truncated at the second term. The reason why this happens is
related to the Fourier coefficients of f displayed in Figure 3. Figure 3 shows that
the first two harmonics explain most of the variability of f , and only a negligible
improvement is achieved by including also the third or fourth harmonic.

Figure 4 reports the Fourier coefficients of the step function:

f(ω) = 0.1 + 0.1 · 1{ω∈(π/4, 3π/4)} , (19)

whose shape is rather different from (18) with κ = π/2. It is worth noting that
also in this case the first two/three harmonics explain most of the variability
of (19).

The harmonics of f may be given a precise interpretation in terms of the
shape of the anisotropy of a process, especially when there are few components.
In general, the harmonic with angular frequencym describes a spatial dependence
stronger (or weaker) along m directions equally spaced on the round angle.

Consider, for example, the harmonic − cos 2ω illustrated in Figure 5a. In this
case the harmonic describes a positive and symmetric spatial dependence along
the direction identified by angles π/2 (North) and 3π/2 (South), and a negative
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Figure 3: Fourier coefficients ρ, ρc1, . . . ,
ρc10 (upper panel) and ρs1, . . . , ρs10 (lower
panel) of function (18) for κ = π/2 and
α = 0.1.
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Figure 4: Fourier coefficients ρ, ρc1, . . . ,
ρc10 (upper panel) and ρs1, . . . , ρs10 (lower
panel) of function (19).
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(a) f(ω) = − cos 2ω.
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(b) f(ω) = 0.1 + 0.025 sin ω − 0.05 cos 2ω.

Figure 5: The f functions associated to a single harmonic (Figure 5a), and to a
superposition of two harmonics with angular frequencies m = 1 and m = 2 (Figure 5b).

spatial dependence along direction 0 (East) and π (West). In other words, the
effect of the harmonic − cos 2ω consists in (symmetrically) increasing the positive
spatial dependence along the North-South direction, and decreasing (or making
negative) the spatial dependence along the West-East direction. Obviously, the
overall form of the anisotropy depends also on the other harmonics of f , the
constant term and their relative amplitudes.

It is possible to describe a relevant class of anisotropies by means of only one
or two harmonics, as hinted in Example 3. Figure 5b displays the function

f(ω) = 0.1 + 0.025 sinω − 0.05 cos 2ω ,

which consists of two harmonics (with angular frequencies m = 1 and m = 2
respectively) and a constant term. As Figure 5b shows, spatial dependence is
weak along the West-East direction (ω ≈ 0 and ω ≈ π), while it gets stronger
and asymmetric along the North-South direction (ω ≈ π/2 and ω ≈ 3π/2). This
shape of f may be useful for describing a spatial dependence that is both stronger
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(or weaker) and asymmetric along one direction.
The specification of model (16) requires some adaptations when observations

are regularly spaced. In fact, when the data come from regular lattices or other
regular structures, the set of values taken by θkh is regularly spaced too, and
some components of f may be redundant or undersampled (i.e. there is aliasing).
If these components of f are not removed, the model is not identifiable from a
statistical point of view.

Consider, for example, a rectangular grid Gn. We have θkh ∈ {0, π/2, π, 3π/2}
for all θkh ∈ Gn, hence the angular sampling frequency is 4. In this case, according
to the Nyquist-Shannon theorem, only harmonics with angular frequency 1
and 2 should be considered. Moreover, the component sin 2ω is useless, since
sin 2θkh = 0 for any (k, h) ∈ Gn. Thus, the symmetric anisotropies are captured
only by cos 2ω, while asymmetries originate from sinω (along the North-Sourth
direction) and cosω (along the East-West direction). Hence, (16) becomes:

y = (ρW + ρc1A1 �W + ρs1B1 �W + ρc2A2 �W ) y + ε .

The test illustrated in this section can be applied to hypotheses different
from (17). As mentioned above, the restriction ρ = 0 along with (17) defines
the hypothesis of no spatial correlation. It is worth noting that a test based on
these two restrictions may be more powerful in detecting spatial dependence
than a test for restriction ρ = 0 alone. This happens whenever f has form (15)
with ρ = 0 and some ρcm or ρsm different from zero.

In some cases, it may be necessary to test for the presence of a specific form of
anisotropy or the presence of asymmetries or specific directions in f . Such kind
of hypotheses can be easily translated in terms of restrictions on the coefficients
of the Fourier expansion of f and tested like any other parameter restriction.

Testing specific forms of anisotropy may be interesting in itself, or when the
data generating process have to be consistent with certain properties in order to
perform further analyses or to apply some estimation techniques. This is the
case, for example, of unilateral approximation (Arbia et al. 2014), which can
be used for fitting spatial models defined on a rectangular lattice only if the
underlying process is symmetric.

It is worth noting that the possibility of testing specific forms of anisotropy
represents a strong advantage of this testing approach with respect to other
isotropy tests such as the q-directional ABE test or the test suggested by Molina
and Feito (2002) which is implicitly based on a specification of (16) truncated
at the first term (that is, only the fundamental harmonic with unit angular
frequency and the constant term are considered).

In this section, the model used as a reference is (4), which is referred to
as SAR in the spatial econometric literature (see e.g. LeSage and Pace 2009).
However, our testing approach can be easily adapted to other econometric models
for areal data like SEM, Durbin, MESS (see e.g., LeSage and Pace 2009; Arbia
2014), CAR (see e.g. Wall 2004; Cressie 1993), and models based on multiple
weight matrices like SAC and SARMA (LeSage and Pace 2009).

4 Simulation Study
In order to study the power of the test in finite samples, we perform two

Monte Carlo simulation experiments on regular and irregular grids.



12 4 SIMULATION STUDY

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Figure 6: Empirical power of the isotropy
test for model (20) as a function of |ρ1−ρ2|.
Complete results are displayed in Table 1.
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Figure 7: Empirical power of the isotropy
test on the irregular grid as a function of
α, with n = 400, υ = 2, and σ2 = 1
(solid line), σ2 = 1/2 (dashed line), and
σ2 = 1/4 (dotted line). Complete results
are displayed in Table 2.

We have considered a spatial process on a 20× 20 rectangular lattice defined
as follows: {

y = (ρ1W1 + ρ2W2)y +Xβ + u

u ∼ Nn(0, σ2I)
, (20)

where y ∈ Rn, X ∈ Rn, β = 1, σ2 = 1, n = 400. The directional weight matrices
W1 andW2 are defined asW1 ≡ C1�W andW2 ≡ C2�W , where C1 ∈ {0, 1}n×n
and C2 ∈ {0, 1}n×n are the contiguity matrices of neighbours along the vertical
and horizontal direction respectively. The matrix W ∈ Rn×n results from a row-
standardization of a weight matrix based on the rook neighbourhood rule, and its
non-zero elements are independently drawn from the beta distribution B(2, 0.8).
The regressor X consists of a column of values drawn from the standard normal
distribution.

We consider several values of ρ1 and ρ2 (see Table 1). For each pair (ρ1, ρ2)
we simulate 1000 models and test the isotropy hypothesis (ρ1 = ρ2). All the
models share the same directional weight matrices (W1 and W2) and the same
regressor X.

The unrestricted model is based on f(ω) = ρ+ ρc2 cos(2ω), so that the fitted
model is:

y = ρWy + ρc2(A2 �W )y +Xβ + ε .

The isotropy hypothesis (ρc2 = 0) is tested by means of the likelihood ratio
test at a significance level of 5%. Complete results are shown in Table 1, while
Figure 6 summarises the empirical power as a function of |ρ1 − ρ2|.

As Figure 6 clearly shows, the power of the new test sharply increases as
the absolute difference between ρ1 and ρ2 exceeds 0.1, and it basically equals 1
when |ρ1 − ρ2| is larger than 0.50.

The irregular grid Monte Carlo simulations are based on data generating
process (7) with a vector of regressor coefficients β = ι2, and a regressor matrix
X = [ιn, X1] ∈ Rn×2 where X1 is a vector of standard normal random variables.
The grid Gn consists of the unit square [0, 1]2 split into 400 irregular convex
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-0.90 -0.80 -0.70 -0.60 -0.50 -0.40 -0.30 -0.20 -0.10 0.00

−0.90 – – – – – – – – – 1.000
−0.80 – – – – – – – – 1.000 1.000
−0.70 – – – – – – – 0.993 1.000 1.000
−0.60 – – – – – – 0.766 0.943 0.995 1.000
−0.50 – – – – – 0.157 0.436 0.725 0.947 0.990
−0.40 – – – – 0.154 0.064 0.126 0.404 0.726 0.939
−0.30 – – – 0.773 0.429 0.139 0.054 0.153 0.428 0.754
−0.20 – – 0.992 0.945 0.752 0.422 0.141 0.042 0.140 0.417
−0.10 – 1.000 1.000 0.993 0.950 0.751 0.414 0.139 0.051 0.148

0.00 1.000 0.999 1.000 1.000 0.991 0.933 0.751 0.392 0.144 0.035
0.10 – 1.000 1.000 1.000 1.000 0.991 0.913 0.727 0.402 0.142
0.20 – – 1.000 1.000 1.000 1.000 0.997 0.943 0.764 0.412
0.30 – – – 1.000 1.000 1.000 0.999 0.988 0.927 0.750
0.40 – – – – 1.000 1.000 1.000 1.000 0.995 0.943
0.50 – – – – – 1.000 1.000 1.000 1.000 0.995
0.60 – – – – – – 1.000 1.000 1.000 1.000
0.70 – – – – – – – 1.000 1.000 1.000
0.80 – – – – – – – – 1.000 1.000
0.90 – – – – – – – – – 1.000

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

−0.90 – – – – – – – – –
−0.80 1.000 – – – – – – – –
−0.70 1.000 1.000 – – – – – – –
−0.60 1.000 1.000 1.000 – – – – – –
−0.50 1.000 1.000 1.000 1.000 – – – – –
−0.40 0.987 1.000 1.000 1.000 1.000 – – – –
−0.30 0.943 0.992 1.000 1.000 1.000 1.000 – – –
−0.20 0.748 0.921 0.989 0.999 1.000 1.000 1.000 – –
−0.10 0.400 0.725 0.938 0.995 1.000 1.000 1.000 1.000 –

0.00 0.113 0.408 0.732 0.936 0.992 1.000 1.000 1.000 1.000
0.10 0.060 0.148 0.423 0.748 0.941 0.995 1.000 1.000 –
0.20 0.127 0.045 0.143 0.436 0.740 0.958 0.991 – –
0.30 0.396 0.152 0.057 0.139 0.403 0.739 – – –
0.40 0.746 0.416 0.162 0.052 0.149 – – – –
0.50 0.935 0.759 0.429 0.131 – – – – –
0.60 0.991 0.939 0.795 – – – – – –
0.70 1.000 0.995 – – – – – – –
0.80 1.000 – – – – – – – –
0.90 – – – – – – – – –

Table 1: Empirical evaluation of the power of the isotropy test on model (20) for
various values of ρ1 (columns) and ρ2 (rows). The evaluation of the empirical power is
based on 1000 simulations for each couple (ρ1, ρ2). The coefficient restriction has been
tested by means of the likelihood ratio test with a 5% significance level.

polygons obtained by means of a Voronoi tessellation generated by 400 points
drawn from the uniform distribution on [0, 1]2. The weight matrix W results
from row-standardization of a weight matrix W̄ built according to the contiguity
criterion, and whose non-zero elements equal the area of the neighbouring cell.
That is, the (k, h) element of W̄ is defined as:

(W̄ )kh ≡
{
Ah if h is a neighbour of k
0 otherwise

,

where Ah is the area of cell h.
The function f is of type (18), and the simulation has been performed for

several values of α, provided that the invertibility condition is satisfied, that is
|f(ω)| < 1 for any ω ∈ [0, 2π).

The unrestricted models include either the first two (υ = 2) or the first
three (υ = 3) harmonics. The innovation {εst} is an iid Gaussian process with
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variance σ2 = 1, 1/2, 1/4. For each value of α, σ2 and υ, 1000 models have
been simulated, fitted, and tested by means of the likelihood ratio test, with a
significance level equal to 5%. All the models with the same α, σ2 and υ share
the matrix of regressors X and the weight matrix W . The grid Gn is shared too.

In addition to the experiments just described, we have also performed a
simulation on an irregular grid with n = 800 cells. This simulation has been
structured like the previous one with υ = 2 and σ2 = 1, except for the number
of replications, equal to 300 instead of 1000.

Table 2 reports the complete results, while Figure 7 displays the power of
the test as a function of α for models where υ = 2 and n = 400. According to
Table 2, there are no benefits from including the third harmonics, which indeed
seems, in many cases, to reduce the power of the test, although the difference
is not statistically significant at the 5% level. This result is consistent with
Figure 3, according to which the first two harmonics (along with the constant
term) can explain most of the variation of f .

Figure 7 shows that the power of the test is rather sensitive to the variance
of the innovation process. Moreover, we note that the power function in the
case with n = 800 and σ2 = 1 is not statistically different (again at the 5% level)
from the case with n = 400 and σ2 = 1/2.

Finally, it is worth highlighting that in both the lattice and the irregular grid
model a sharp increase of the power of the test is observed when the number of
regressors is larger.

5 Conclusion
The modelling approach proposed in this paper allows one both to estimate

and test the form of the anisotropy of a spatial process. The semi-parametric
nature of this method makes it applicable to various models for areal data
based on weight matrices, while the algebraic properties of the Fourier series
minimise the multicollinearity problems which may be originated by an accurate
specification of the anisotropy function f .

The test relies on the assumption of homogeneity of the data generating
process, and this may be, in some cases, a rather strong assumption. The
generalisation of the test to non-homogeneous spatial processes is a subject that
deserves further research.

References
Arbia, G. (2014). A Primer for Spatial Econometrics. Palgrave.
Arbia, G., M. Bee and G. Espa (2013). ‘Testing Isotropy in Spatial Econometric

Models’. In: Spatial Economic Analysis 8.3, pp. 228–240.
Arbia, G., M. Bee, G. Espa and F. Santi (2014). Fitting Spatial Econometric

Models through the Unilateral Approximation. Discussion Paper 8. Department
of Economics and Management, University of Trento.

Bloomfield, P. (2000). Fourier Analysis of Time Series. 2nd ed. John Wiley &
Sons.

Cabaña, E. M. (1987). ‘Affine Processes: A Test of Isotropy Based on Level Sets’.
In: SIAM Journal on Applied Mathematics 47.4, pp. 886–891.



REFERENCES 15

α
υ = 2 υ = 3 υ = 2 υ = 3 υ = 2 υ = 3 υ = 2
σ2 = 1 σ2 = 1 σ2 = 1/2 σ2 = 1/2 σ2 = 1/4 σ2 = 1/4 σ2 = 1
n = 400 n = 400 n = 400 n = 400 n = 400 n = 400 n = 800

−1.05 0.923 0.888 1.000 0.997 1.000 1.000 1.000
−1.00 0.900 0.870 0.993 0.992 1.000 1.000 1.000
−0.95 0.849 0.817 0.989 0.997 1.000 1.000 0.997
−0.90 0.806 0.771 0.987 0.981 1.000 1.000 0.997
−0.85 0.754 0.735 0.979 0.961 1.000 1.000 0.970
−0.80 0.708 0.642 0.953 0.945 1.000 1.000 0.957
−0.75 0.646 0.605 0.914 0.933 0.999 0.999 0.930
−0.70 0.586 0.540 0.888 0.866 0.997 0.993 0.907
−0.65 0.467 0.469 0.818 0.816 0.995 0.991 0.820
−0.60 0.451 0.435 0.774 0.746 0.986 0.975 0.783
−0.55 0.384 0.347 0.673 0.640 0.946 0.948 0.727
−0.50 0.316 0.266 0.590 0.550 0.908 0.888 0.583
−0.45 0.242 0.221 0.509 0.438 0.825 0.808 0.500
−0.40 0.223 0.188 0.423 0.381 0.709 0.722 0.427
−0.35 0.180 0.155 0.289 0.286 0.628 0.579 0.297
−0.30 0.131 0.115 0.232 0.192 0.452 0.424 0.230
−0.25 0.097 0.088 0.172 0.161 0.312 0.304 0.143
−0.20 0.087 0.090 0.123 0.120 0.212 0.188 0.110
−0.15 0.065 0.073 0.116 0.080 0.141 0.124 0.087
−0.10 0.062 0.064 0.077 0.066 0.099 0.073 0.067
−0.05 0.063 0.055 0.052 0.061 0.070 0.058 0.057

0.00 0.055 0.069 0.056 0.046 0.043 0.047 0.063
0.05 0.037 0.065 0.054 0.046 0.060 0.074 0.067
0.10 0.052 0.068 0.062 0.074 0.092 0.082 0.060
0.15 0.078 0.069 0.102 0.092 0.149 0.121 0.087
0.20 0.083 0.083 0.139 0.121 0.220 0.206 0.147
0.25 0.129 0.112 0.177 0.171 0.342 0.334 0.157
0.30 0.139 0.128 0.250 0.222 0.487 0.453 0.243
0.35 0.171 0.181 0.344 0.330 0.628 0.607 0.280
0.40 0.217 0.207 0.428 0.380 0.794 0.760 0.487
0.45 0.277 0.275 0.587 0.526 0.864 0.860 0.537
0.50 0.336 0.312 0.635 0.657 0.938 0.941 0.657
0.55 0.395 0.372 0.734 0.716 0.968 0.978 0.730
0.60 0.467 0.451 0.824 0.804 0.990 0.986 0.800
0.65 0.573 0.535 0.901 0.888 0.996 1.000 0.893
0.70 0.659 0.600 0.935 0.927 1.000 1.000 0.923
0.75 0.728 0.690 0.966 0.969 1.000 1.000 0.960
0.80 0.770 0.767 0.975 0.989 1.000 1.000 0.990
0.85 0.832 0.818 0.995 0.991 1.000 1.000 0.990

Table 2: Empirical evaluation of the power of the isotropy test for model (7) based
on function (18) with κ = π/2 for various values of α, σ2 n, and υ. The number
of replications used for evaluating the empirical power is 1000 for all models where
n = 400, and 300 for the single model with n = 800. The coefficient restriction has
been tested by means of the likelihood ratio test with a 5% significance level.
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