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Abstract

In this paper we propose an extension of the semiparametric P-Spline model
to spatio-temporal data including a non-parametric trend, as well as a spatial lag
of the dependent variable. This model is able to simultaneously control for func-

tional form bias, spatial dependence bias, spatial heterogeneity bias, and omitted

time-related factors bias. Speci�cally, we consider a spatio-temporal ANOVA model
disaggregating the trend in spatial and temporal main e�ects, and second and third
order interactions between them. The model can include both linear and non-linear
e�ects of the covariates, and other additional �xed or random e�ects. Recent al-
gorithms based on spatial anisotropic penalties (SAP) are used to estimate all the
parameters in a closed form without the need of multidimensional optimization. An
empirical case compares the performance of this model against alternatives models
like spatial panel data models.

JEL classi�cation: C33, C14, C63.
Keywords: spatio-temporal trend, mixed models, P-splines, PS-ANOVA, SAR, spatial
panel.
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1 Introduction

A recent strand of the spatial econometric literature has proposed Spatial Autoregres-

sive Semiparametric Geoadditive Models to simultaneously deal with di�erent critical
issues typically met when using spatial economic data, that is spatial dependence, spatial
heterogeneity and unknown functional form (Montero et al., 2012; Basile et al., 2014).
This approach combines penalized regression spline (PS) methods (Eilers et al., 2015)
with standard cross-section spatial autoregressive models (such as SAR, SEM, SDM and
SLX). An important feature of these models is the possibility to include within the same
speci�cation i) spatial autoregressive terms to capture spatial interaction or network
e�ects, ii) parametric and nonparametric (smooth) terms to identify nonlinear relation-
ships between the response variable and the covariates, and iii) a geoadditive term, that
is a smooth function of the spatial coordinates, to capture a spatial trend e�ect, that is
to capture spatially autocorrelated unobserved heterogeneity.

In this paper we propose an extension of the P-Spline spatial auto-regressive model
(PS-SAR) to spatio-temporal data when both a large cross-section and a large time
series dimensions are available. With this kind of data it is possible to estimate not
only spatial trends, but also spatio-temporal trends in a nonparametric way (Lee and
Durbán, 2011), so as to capture region-speci�c nonlinear time trends net of the e�ect
of spatial autocorrelation. In other words, this approach allows to answer questions
like: How do unobserved time-related factors (i.e. common factors), such as economic-
wide technological or demand shocks, heterogeneously a�ect long term dynamics of all
units in the sample? And how does their inclusion in the model a�ect the estimation
of spatial interaction e�ects? In this sense, the PS-SAR model with spatio-temporal
trend represents an alternative to parametric methods aimed at disentangling common

factors e�ects (such as common business cycle e�ects) and spatial dependence e�ects (local
interactions between regions generating spillover e�ects), where the former is sometimes
regarded as 'strong' cross-sectional dependence and the latter as 'weak' cross-sectional
dependence (Chudik et al., 2011).

Recently, Bai and Li (2015) and Shi and Lee (2016) have proposed the quasi maximum
likelihood method (QML) to estimate dynamic spatial panel data models with common
shocks, thus accommodating both strong and weak cross-sectional dependence. Spatial
correlations and common shocks are also considered by Pesaran and Tosetti (2011), but
they specify the spatial autocorrelation on the idiosyncratic errors (ε) and not on the
observable dependent variable (yn). Bailey et al. (2016) and Vega and Elhorst (2016)
have also proposed a two-step and one-step approach, respectively, to address both forms
of cross-sectional dependence, but without including explanatory variables in the model.
All these approaches are still parametric and do not properly allow for capturing nonlin-
earities. On the other hand, Su and Jin (2012) have considered the problem of estimating
semiparametric panel data models with cross section dependence, where the individual-
speci�c regressors enter the model nonparametrically, and the common factors enter the
model linearly, thus extending Pesaran (2006)'s common correlated e�ects (CCE) esti-
mator to a semiparametric framework. Nevertheless, they do not take spatial contagion
e�ects (i.e. weak cross-section dependence) into account. By relying on the PS-SAR
model with spatio-temporal trends, we handle simultaneously four main econometric is-
sues which are relevant when modeling spatio-temporal data, namely functional form
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bias, spatial dependence bias, spatial heterogeneity bias, and omitted time-related factors

bias.
The econometric model proposed here might seem complicated and computationally

demanding. Nevertheless, we consider a decomposition of the spatio-temporal trend
into several components (spatial and temporal main e�ects, and second and third order
interactions between them) that gives further insights into the dynamics of the data.
Furthermore, we use a mixed model representation that allows us to use the methods
already developed in this area for estimation and inference, and to implementation of
the necessary identi�ability constraints in a straightforward manner. We also present
an extension of the algorithm derived by Rodriguez-Alvarez et al. (2015) (for variance
components estimation) to the case of PS-SAR model that dramatically reduces the
computational time needed to estimate the parameters in the model. Also, the use of
B-spline nested basis (Lee et al., 2013) for the interaction components contributes to the
e�ciency of the �tting procedure without compromising the goodness of �t of the model.

We apply the PS-SAR model with a spatio-temporal trend to real data on regional
unemployment rates in Italy.1 As well known, these data are characterized by spatial de-
pendence, unobserved spatial heterogeneity and unobserved common e�ects. Substantive
spatial dependence (weak dependence) occurs due to interregional trade, labor migra-
tion and commuting, and knowledge spillovers; it can be captured by including spatial
interaction e�ects in the model (Burridge and Gordon, 1981; Molho, 1995; Henry G. Over-
man, 2002; Patacchini and Zenou, 2007). Unobserved spatial heterogeneity is mainly due
to a strong North-South spatial trend which can be hardly captured by the explana-
tory variables: regional unemployment rates largely increase moving from the North to
the South, re�ecting the well-known regional development divide within the Country.
A time-invariant smooth spatial trend might be used to �ltering out unobserved het-
erogeneity; thus, the spatial trend assumes the same role as the �xed regional e�ects.
Several unobserved common factors (e.g. aggregate demand shocks, aggregate technolog-
ical shocks, and global labor market policies) may also heterogeneously a�ect the level of
regional unemployment. The econometric results suggest that the PS-SAR model with
a spatio-temporal trend outperforms several parametric and nonparametric competing
models both in terms of model �tting and diagnostics of the residuals. In particular, the
spatio-temporal trend e�ectively captures the strong cross-sectional dependence (due to
common factors), while the parameter associated to the spatial lag term Wny reveals
the existence of signi�cant spatial spillovers (weak dependence) net of the e�ect of the
observed and unobserved common factors.

The plan of the paper is as follows. Section 2 sets out the PS-SAR model with a
spatio-temporal trend and discusses various technical aspects related to its identi�cation
and estimation. Section 3 reports the results of Monte Carlo experiments, while Section
4 discusses the results of the application of the model to regional unemployment data.
Section 5 concludes by identifying important areas for extensions and further develop-
ments.

1We implemented new functions in the R software to estimate PS-SAR models with spatio-temporal
trends.
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2 Spatio-Temporal Autoregressive Models

2.1 P-splines Mixed Models

Semiparametric models are a �exible tool to incorporate non-linear functional relation-
ships into a regression model. The general form of a semiparametric model is given
by:

y = X∗β∗ + f1(x1) + f2(x2) + f3,4(x3,x4) + . . .+ ε ε ∼ N(0, σ2) (1)

where y is a continuous response variable, X∗β∗ is the linear predictor (containing the
intercept and categorical and continuous covariates whose functional relationship with
the response is linear), and fk() are unknown smooth functions of single covariates or
interaction surfaces. Several approaches have appeared in the literature to �t such models
(Green and Yandell, 1985; Hastie and Tibshirani, 1990). We use a penalized regression
approach which combines a basis representation of the functions with a penalty to control
the wiggliness of the curve/surface. In particular, we use the approach introduced by
Eilers and Marx (1996) where each univariate smooth term is represented by:

fk(xk) =

ck∑
j=1

Bj(xk)θj, j = 1, ..., ck

with Bj a B-spline basis function and θj a vector of regression coe�cients of length ck.
The smooth interaction terms are

fi,k(xi,xk) =

ci∑
j=1

ck∑
l=1

Bj(xi)Bl(xk)θjl, with j = 1, ..., ci and l = 1, ..., ck,

where Bj(xi)Bl(xk) is the tensor product of two marginal B-spline bases, and θjl is a
vector of coe�cients of length cick × 1. In matrix notation, model (1) becomes:

E[y|X∗,x1,x2,x3,x4 . . .] = Bθ, (2)

where B is the full regression matrix, and θ = (β∗,θ1,θ2,θ[3,4], . . .)
′ is a vector of regres-

sion coe�cients. The model matrix is de�ned by blocks:

B = [X∗|B1|B2|B[3,4]| . . .], (3)

with marginal bases of the covariates B1 = B1(x1) and B2 = B2(x2) and interaction basis
B[3,4] as the tensor product of the two marginals, i.e.

B[3,4] = B3�B4 = (B3 ⊗ 1′n) ∗ (1′n ⊗B4), of dimension n× c3c4. (4)

where the symbols �, ⊗, and ∗ indicate the box product, the Kronecker product, and the
element-by-element product, respectively. The size, ck, of each individual basis should be
large enough (in general, between 4 and 40) to identify nonlinearities, and the smoothness
of each term is controlled by a quadratic penalty term, yielding the following penalized
regression problem:

‖(y−Bθ)′(y−Bθ)‖2 + θ′Pθ.
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Typically, the quadratic penalty term is equivalent to an integral of squared second
derivatives of the function, but sometimes (especially in the case of interactions) its
calculation is not straightforward. Thus, following Eilers and Marx (1996), we use second-
order di�erences among adjacent coe�cients. The penalty matrix (1) is therefore:

P = blockdiag(Pi) (5)

with Pi = λiD
′
iDi or Pi = λijD

′
jDj ⊗ I+ λikI⊗D′kDk in the case of interaction e�ects.

This last penalty allows for a separate amount of smoothing per covariate (anisotropy).
Since the intercept of the model is contained in X∗β∗ and a column of 1's is also

spanned by each basis Bi, there is a problem of identi�ability (common to any additive
model). There are several ways to solve it, but we choose to re-parametrize model (1) as
a mixed model:

y = Xβ + Zα + ε α ∼ N(0,G) ε ∼ N(0, σ2I) (6)

by transforming the bases and the penalty. Several transformations are possible, but the
most popular one is based on the singular value decomposition of the penalty matrix
(see Lee, 2010b, for details). Matrix X will include parametric components such as
the intercept, continuous covariates and categorical covariates, while Z includes all the
nonlinear components of the smooth e�ects. The covariance matrix of random e�ects, G,
is a diagonal matrix which depends on the eigenvalues of the singular value decomposition
and variance components τ 2i , and the smoothing parameters become λi = σ2/τ 2i .

The estimates of the coe�cients β and α follow from the standard mixed model theory
(see Searle et al., 1992):

β̂ = (X′V−1X)−1X′V−1y (7)

α̂ = GZ′V−1(y−Xβ̂), (8)

where V = σ2I+ ZGZ′.
Variance components (and, therefore, smoothing parameters) may be estimated by

maximizing the residual log-likelihood (REML) of Patterson and Thompson (1971):

`(τ2i , σ
2) = −1

2
log |V| − 1

2
log |X′V−1X| − 1

2
y′(V−1 −V−1X(X′V−1X)−1X′V−1)y. (9)

The estimated values of the observed variable are obtained as:

ŷ = Xβ̂ + Zα̂ = Hy

where H is the hat matrix of the model given by:

H = [X : Z]

[
X′X X′Z
Z′X Z′Z+G−1

]−1
[X : Z]′ . (10)

The trace of this matrix is de�ned as the e�ective dimension, which is a measure of
the complexity of the model. Also, con�dence bands for the estimated values can be
calculated using an approximation of the variance�covariance matrix of the estimation
error given by V (y− ŷ) = σ2

εH.
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2.2 Spatio-Temporal Smooth Models

When data are collected over space and time, models deal with these types of e�ects
in di�erent ways, but their formulation is constrained by the size of the data set, and
the level of complexity used to estimate these models. Spatio-temporal smoothing is an
approach computationally e�cient, and, at the same time, it allows for the estimation of
complex trends. The simplest example of this type of models is the additive model:

f(space) + f(time),

proposed by Kneib and Fahrmeir (2006) which ignores the space-time interaction, and
cannot re�ect important features in the data. This model also implies a spatio-temporal
correlation structure given by separable covariance matrices for the spatial and temporal
components. In most real applications, this approach is too simplistic, and its natural ex-
tension includes space-time interaction terms. Our proposal is based on the PS-ANOVA
model introduced by Lee and Durbán (2011), including second- and third-order interac-
tions between spatial and temporal components.

Let us assume that the data are collected at n spatial locations at t time points (the
model could be easily generalized to the case in which the response variable is measured
at di�erent time points in each location), and no further covariates are available (in the
next section we will combine this model with the semiparametric model introduced in
the previous section). The smooth space-time model has the form:

y = γ + f1(xs1) + f2(xs2) + ft(xt) +

f1,2(xs1 ,xs2) + f1,t(xs1 ,xt) + f2,t(xs2 ,xt) +

f1,2,t(xs1 ,xs2 ,xt) + ε (11)

where xs1 and xs2 are the geographical coordinates of the spatial location, and xt the
vector of time points. The B-spline basis for model (11) would be:

B = [1|Bs1 |Bs2 |Bt|Bs1�Bs2|Bs1 ⊗Bt|Bs2 ⊗Bt|(Bs1�Bs2)⊗Bt]

and the penalty matrix is block-diagonal with blocks corresponding to the di�erent terms
in the model. In this case, several constrained need to be imposed, since the space spanned
by Bi ⊗Bj, already spans the space spanned by the marginal bases Bi and Bj (see Lee,
2010a, for more details). Again, the transformation of model (11) into a mixed model,
using the singular value decomposition of marginal penalties, will solve the identi�ability
problem yielding matrices:

� X = [(Xs1�Xs2)⊗Xt]

� Z = [(Zs1�Xs2)⊗Xt|(Xs1�Zs2)⊗Xt|(Xs1�Xs2)⊗ Zt|(Zs1�Zs2)⊗Xt

(Zs1�Xs2)⊗ Zt|(Xs1�Zs2)⊗ Zt|(Zs1�Zs2)⊗ Zt],

where Xsk , Zsk (k = 1, 2), Xt, and Zt are the mixed model matrices obtained for the
reparametrization of the marginal basis and penalties (Lee and Durbán, 2011). The
covariance matrix of random e�ects,G, is given by

G−1 = blockdiag

(
0,

1

τ 21
Λ̃1,

1

τ 22
Λ̃2,

1

τ 23
Λ̃3,

1

τ 24
Λ̃4 +

1

τ 25
Λ̃5,

1

τ 26
Λ̃6 +

1

τ 27
Λ̃7,

1

τ 28
Λ̃8 +

1

τ 29
Λ̃9,

1

τ 210
Λ̃10 +

1

τ 211
Λ̃11 +

1

τ 212
Λ̃12

)
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where

Λ̃1 = Σ̃s1 , Λ̃2 = Σ̃s2 , Λ̃3 = Σ̃t

Λ̃4 = Σ̃s1 ⊗ Ics2−qs2 , Λ̃5 = Ics1−qs1 ⊗ Σ̃s2 , Λ̃6 = Σ̃s1 ⊗ Iqs2
Λ̃7 = Ics1−qs1 ⊗ Iqs2 , Λ̃8 = Σ̃s2 ⊗ Ict−qt Λ̃9 = Ics2−qs2 ⊗ Σ̃t

Λ̃10 = Σ̃s1 ⊗ Ics2−qs2 ⊗ Ict−qt , Λ̃11 = Ics1−qs1 ⊗ Σ̃s2 ⊗ Ict−qt , Λ̃12 = Ics1−qs1 ⊗ Ics2−qs2 ⊗ Σ̃t

and Σ̃ matrices correspond to the eigenvectors of the singular value decomposition of
penalty matrices, and ck and qk are the dimensions of the bases and the order of the
penalty used for the marginal smooth. It is worth noticing that the dimension of the
matrices involved in interaction terms can increase very quickly if the size of the marginal
bases is large, and so the estimation of the model can become very slow or intractable. We
follow Lee et al. (2013) in using nested B-spline bases for the interactions terms, in order
to reduce the computational burden without compromising the �t of the model. The idea
is to use a matrix B̆ in the interaction, such that the space spanned by this matrix is a
subset of the space spanned by B. The use of this simpler matrix for the construction of
the interaction terms will not be a problem since, in general, the information about the
interaction usually is sparse. In the ANOVA context, the main e�ects are more important
than the interactions, so in most situations this would be reasonable. The way to ensure
that the new basis is nested relative to the original basis is to assume that the number of
knots (ndx∗) in B̆ is a divisor of the number of knots used to construct the original basis
(ndx):

ndx
∗ of B̆ =

ndx of B

div
⇒ span(B̆) ⊂ span(B).

Then, the number of parameters is dramatically reduced, but the model is still �exible
enough to capture the complex space-time structure in the data. Matrices Zsk and Zt

would be modi�ed by the corresponding Z̆sk and Z̆t in f(1,2), f(1,t), f(2,t) and f(1,2,t).
Estimation of �xed and random e�ects and variance components would proceed as in the
case of a semiparametric model.

Before concluding this subsection, it is important to give some insights about the rel-
evance and the meaning of the spatio-temporal components of the PS-ANOVA model 11
in applied econometric studies. First of all, as already pointed out in Basile et al. (2014),
the geoadditive terms (f1(xs1), f2(xs2), and f1,2(xs1 ,xs2)) work as control functions to �l-
ter the spatial trend out of the residuals, and transfer it to the mean response in a model
speci�cation. Thus, they allow to capture the shape of the spatial distribution of y, even-
tually conditional on the determinants included in the model. This control function also
isolates stochastic spatial dependence in the residuals, that is spatially autocorrelated un-
observed heterogeneity. Thus, it can be regarded as an alternative to individual regional
dummies to capture unobserved spatial heterogeneity as long as the latter is smoothly
distributed over space. Regional dummies peak signi�cantly higher and lower levels of the
mean response variable. If these peaks are smoothly distributed over a two-dimensional
surface (i.e. if unobserved spatial heterogeneity is spatially auto-correlated), the smooth
spatial trend is able to capture them.

The smooth time trend, ft(xt), and the smooth interactions between space and time
- f1,t(xs1 ,xt), f2,t(xs2 ,xt), and f1,2,t(xs1 ,xs2 ,xt) - work as control functions to capture
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the heterogeneous e�ect of common shocks, thus allowing for strong cross-sectional de-
pendence in the data. In this sense, the PS-ANOVA model 11 works as an alternative
to the Common Correlated E�ects (CCE) method proposed by Pesaran (2006) based on
the use of cross-sectional averages of the observations. Nevertheless, like the CCE model,
also the spatio-temporal ANOVA model 11 (even if combined with the semiparametric
model 1) neglects the presence of weak cross-dependence (i.e. spatial spillovers) in the
data. While Bai and Li (2015), Shi and Lee (2016), Pesaran and Tosetti (2011), Bailey
et al. (2016) and Vega and Elhorst (2016) have proposed parametric spatial panel exten-
sions of common factors models to accommodate both strong and weak cross-sectional
dependence, here we rely on a combination of the ANOVA spatio-temporal trend model
described above and the PS-SAR model developed by Montero et al. (2012); Basile et al.
(2014) to handle simultaneously spatial spillovers and strong cross-sectional dependence
(see the next subsection).

2.3 Spatio-Temporal PS-SAR Models

As mentioned above, spatio-temporal models do not permit to distinguish between strong
and weak cross-sectional dependence (Chudik et al., 2011), because all the correlation
between spatial units is collected by the spatio-temporal trend and, perhaps, by the
e�ect of covariates. In order to assess the presence of residual spatial spillovers net of the
e�ect of common factors, we combine the PS-ANOVA model 11 described in the previous
section with the spatial lag model. By including also linear (X∗), and nonlinear (zj)
additive covariates, the full model becomes:

(A⊗ IT )y = f1(xs1) + f2(xs2) + ft(xt) + f1,2(xs1 ,xs2)+

+ f1,t(xs1 ,xt) + f2,t(xs2 ,xt) + f1,2,t(xs1 ,xs2 ,xt)+

+X∗β∗ +
l∑

j=1

f(zj) + ε ∼ N(0, σ2INT ) (12)

A = IN − ρWN

where WN is a neighborhood spatial matrix, and ρ is the spatial parameter associ-
ated to WN matrix. It measures the degree of the spatial weak dependence net of
the strong dependence. This model is �exible enough to gather both types of cross-
sectional dependence. Speci�cally, the inclusion of the ANOVA decomposition of the
spatio-temporal trend helps interpret the evidence of signi�cance spatial spillovers as
weak cross-dependence net of the e�ect of common e�ects (strong dependence). In this
sense, model 12 can be regarded as a valid alternative to Bai and Li (2015), Shi and Lee
(2016), or Bailey et al. (2016) which consider a jointly modeling of both spatial interac-
tion e�ects and common-shocks e�ects. Our framework is also �exible enough to control
for residual spatial heterogeneity (due to a spatial trend) and for the linear and non-linear
functional relationships between the dependent variable and the covariates.

To estimate all the parameters of the model it is possible to maximize REML function
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as in (9) slightly modi�ed by the kronecker matrix product (A⊗ IT ) :

`(τ 2i , σ
2, ρ) = −1

2
log |V| − 1

2
log |X′V−1X|

− 1

2
[(A⊗ IT )y]′ (V−1 −V−1X(X′V−1X)−1X′V−1) [(A⊗ IT )y] +

+ log |A⊗ IT | (13)

where the matrices V and X are obtained as described above (if linear and non-linear
covariates have been added, X and Z matrices are augmented in an additive suitable
way).

To get estimates for all the parameters, we need to maximize the REML function
which is a very complex numerical problem. Recently, Rodriguez-Alvarez et al. (2015)
have developed an algorithm named SAP (Separation of Anisotropic Penalties), which is
based on the fact that the inverse variance-covariance matrix of the random e�ects, G−1,
is a linear combination of precision matrices:

G−1 =
12∑
i=1

1

τ 2i
Λi, Λi = blockdiag(0, . . . , Λ̃i, . . . ,0) (14)

This expression allows to get closed estimates for all the variance component parameters
τ 2i and σ2 very e�ciently. We have adapted this algorithm to include also the estimation
of ρ parameter. The steps to apply SAP algorithm to optimize (13) can be summarized
as follows:

1. Initialization. Set

� Set k = 0

� β̂
(k)

= 0; α̂(k) = 0

� τ̂
2,(k)
i = 1 i = 1, 2, · · · , 12, · · · , zj, · · ·

� σ̂2,(k) = var(y)

� ρ̂(k) = 0

2. Compute Ĝ
(k)
, V̂

(k)
, P̂

(k)
, Â

(k)
matrices using next expressions:

Ĝ
−1,(k)

=
12∑
i=1

1

τ 2i
Λ

(k)
i

V̂
(k)

= σ̂2,(k)InT + ZĜ
(k)
Z

P̂
(k)

= V̂
−1,(k)

− V̂
−1,(k)

X(X′V̂
−1,(k)

X)−1X′V̂
−1,(k)

Â
(k)

= IN − ρ̂(k)WN

3. Compute the estimates:

β̂
(k)

= (X′V̂
−1,(k)

X)−1(X′V̂
−1,(k)

Â
(k)
y)

α̂(k) = Ĝ
(k)
Z′V̂

−1,(k)
(Â

(k)
y−Xβ̂

(k)
)

ed
(k)
i = trace(Z′P̂

(k)
ZĜ

(k) 1

τ̂
2,(k)
i

ΛiĜ
(k)

) i = 1, 2, · · · , 12, · · · , zj, · · ·
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where Λi i = 1, · · · , 12 is de�ned in (14) and Λzj = blockdiag
(
0, · · · , Σ̃zj , · · · ,0

)
.

4. Estimate the variance components:

τ̂
2,(k+1)
i =

α̂(k)′Λiα̂
(k)

ed
(k)
i

i = 1 · · · , 12, · · · , zj · · ·

Estimate the variance of the noise as:

σ̂2,(k+1) =
(Â

(k)
y−Xβ̂

(k)
− Zα̂(k))′(Â

(k)
y−Xβ̂

(k)
− Zα̂(k))

n−
∑

i ed
(k)
i − rank(X)− 1

5. Estimate the spatial parameter ρ̂(k+1) solving numerically the non-linear univariate
equation obtained by equating to zero the score of REML function with respect to ρ
(this additional step is the only di�erence with respect to the usual SAP algorithm):

∂`(.)

∂ρ
=− 1

2

[
2P̂

(k)
((A⊗ IT )y)

]′(∂(A⊗ IT )

∂ρ
y

)
+ trace

(
(A⊗ IT )−1

∂(A⊗ IT )

∂ρ

)
=

=y′(A⊗ I′T )P̂
(k)

(WN ⊗ IT )y− T trace(A−1WN) = 0

6. Set k = k + 1 and go to step (2) until convergence.

Once the convergence is obtained, the e�ective degrees of freedom of the model can
be estimated as:

edf =
∑
i

ed
(k)
i + rank(X) + 1

This quantity is increased in one unit with respect to spatio-temporal smooth models
because of the need to estimate the ρ parameter.

The previous algorithm allows to get estimates of all the parameters of model (12)
without the necessity to use numerical optimization and, as a consequence, a huge re-
duction of computational burden. Moreover, the inference techniques usually applied in
REML estimation of mixed models can also be used for this case.

3 Empirical Case

Starting from Partridge and Rickman (1997) and Taylor and Bradley (1997), regional un-
employment di�erentials have been subject of intensive research in the literature. Recent
contributions apply spatial econometric models both in a cross-sectional setting (Molho,
1995; Aragon et al., 2003; Cracolici et al., 2007) and in a (static and dynamic) spatial
panel framework (Lottmann, 2012; Basile et al., 2012; Rios, 2014). However, all these
studies neglect the role of spatio-temporal trends. In particular, they do not consider
the possibility that the observed spatial dependence in regional unemployment rates is
partially driven by the existence of a spatial trend or a spatio-temporal trend in the data.

Moving from these considerations, we analyze the performance of the PS-SAR model
with a spatio-temporal trend against di�erent competing parametric and semiparametric
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models using data on regional unemployment in Italy. We �rst describe these data and
their features in terms of spatial and temporal trend (section 3.1). Then, we brie�y discuss
the theoretical background and the set of variables used to explain regional unemployment
di�erentials (section 3.2). Finally, we report the results of the econometric analysis
(section 6).

3.1 Regional unemployment data

The data on regional unemployment rates (unratei,t) for each Italian province i = 1, ..., N
(N=103) which corresponds to an Italian NUTS-3 region, and for each time period t =
1996, ..., 2014 (T=19) used in this analysis are provided online by the Italian National

Institute of Statistics (ISTAT). They are de�ned as unratei,t = 100× Ui,t

LFi,t

, where Ui,t is

the number of unemployed and LFi,t is the labor force.
Regional unemployment rates di�er strongly in Italy. In 2014, Southern provinces

showed an average unemployment rate of 20% with a standard deviation of 4%, while
Northern provinces registered an average rate of 10% with a standard deviation of
3%. In the same year, the province with the lowest unemployment exhibited a rate
of 4.4% (Bolzano in Trentino-Alto-Adige), while the highest regional unemployment rate
amounted to 27.8% (Cosenza in Calabria). In 1996, the North-South gap was already
very high: Southern provinces registered an average unemployment rate of 17% (the
standard deviation was 6%), while Northern provinces had an average rate of 7% (the
standard deviation was 3%). The province with the lowest unemployment rate (2.2%)
in 1996 was Lecco (in Lombardia), while the province with the highest rate (32%) was
Enna (in Sicily).

3.1.1 Spatial and time trends

The North-South divide can also be depicted by mapping the predicted values of a simple
regression of provincial unemployment rates on the smooth interaction between longitude
and latitude (�gure 1). A clear (albeit nonlinear) spatial trend emerges and is persistent
over time. These �ndings might suggest that the nature of regional unemployment dispar-
ities in Italy is the result of a long-run equilibrium rather than a short-term disequilibrium
caused by temporary shocks and, as Marston (1985) points out, �If unemployment is of
equilibrium nature, any policy oriented to reduce regional disparities is useless since it

cannot reduce unemployment anywhere for long�. Nevertheless, we cannot exclude that
the strong persistence of regional unemployment di�erentials is caused by both structural
problems in the economy and the inability of Italian regions to absorb speci�c shocks (on
the demand or on the supply side).

A nonlinear time trend also characterizes unemployment data. The national unem-
ployment rate (red line in Figure 2) shows a fall from 1996 (11.2%) to 2007 (6.1%); with
the outbreak of the �nancial crisis and its extension to the productive economy in the
subsequent years, it picked up reaching 12.7% in 2014. Both Northern and Southern
provinces followed a similar time path, thus suggesting that common business cycles fac-
tors a�ect all the regions. However, it is also evident from Figure 2 that there are relevant
di�erences across provinces, thus indicating that regions may di�er in their elasticity to
common shocks. This feature is rather usual in regional unemployment studies. Thus,
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(a) Year: 1996 (b) Year: 2014

Figure 1

Spatial trend of provincial unemployment rates

in order to obtain coe�cients of the determinants that measure their impact on regional
unemployment rates net of aggregate cyclical factors, these studies adopt one of two main
approaches. The �rst one is to include time-period �xed e�ects in the model (Elhorst,
1995; Partridge and Rickman, 1997). However, this is a homogeneous approach since it
assumes that the impact of common factors is the same across regions, while the usual
�nding in many applied settings is that some regions are more sensitive than others to
aggregate �uctuations. The alternative approach is to take the di�erence between the
regional and national unemployment rates as a way to appraise dispersion and factor out
country-speci�c dynamics (Thirlwall, 1966; Blanchard et al., 1992; Decressin and Fatas,
1995). This `factoring out' of aggregate cyclical factors has also a clear resemblance to the
common factor approach proposed in Pesaran (2007), where common factors are modeled
by cross-sectional averages of the variables at each point in time.

3.1.2 Spatial dependence and cross-sectional dependence

As mentioned above, recent studies have applied spatial econometric models to analyze
the determinants of regional unemployment. Spatial autocorrelation is justi�ed on the
basis of a theoretical framework which builds on Blanchard et al. (1992) regional la-
bor market model, including neighboring e�ects due to interregional trade, migration,
and knowledge spillovers (Zeilstra and Elhorst, 2014). Starting from a steady state pat-
tern of regional unemployment, a region-speci�c shock will not only a�ect the respective
labor market, but spills over to neighboring regions. Given this interdependence, the
induced changes of unemployment in neighboring areas may spill over again to adjacent
labor markets, including the location where the shock originated. This implies that the
unemployment rate of a particular region is a�ected not only by its own labor market
characteristics, but also by the labor market performance of all other regions.

Many empirical studies con�rm the existence of positive spatial autocorrelation (or
`weak cross-section' dependence) in the data. Nevertheless, they neglect the possibility
that the observed spatial dependence in regional unemployment rates may be (at least
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(a) North (b) South

Figure 2

Time trend of provincial unemployment rates: 1996-2014

in part) the result of the existence of a strong spatial trend in the data. To clarify the
issue, we compute year-by-year Moran I statistics for the regional unemployment rates
with and without �ltering out the spatial trend in the data (Figure 3).2

A distance based spatial weights matrix (W ) has been used to compute Moran's I
statistics as well as to estimate spatial lag models throughout the paper. A general
element of this matrix, wij, represents a combination of a binary spatial weight based
on the critical cut-o� criterion and a decreasing function of pure geographical distance,
namely the inverse distance function, d−1ij :

νij =

{
d−1ij /

∑
j 6=i d

−1
ij if 0 < dij < d∗

0 if i = j or if dij > d∗

where dij is the great-circle distance between the centroids of provinces i and j.3 The se-
lected cut-o� distance (d∗) corresponds to the minimum distance that allows all provinces
to have at least one neighbor.

Using the raw data, the standardized Moran's I ranges between 8 and 11, thus sug-
gesting a very strong spatial autocorrelation. Then, to capture the North-South trend
emerging from Figure 1, we simply regress for each year the unemployment rates on the
latitude and test for spatial autocorrelation in the residuals. Removing such a linear
trend, the Moran I values decrease a lot, ranging between 3 and 5, but still they always
provide evidence of a signi�cant positive spatial autocorrelation. Finally, once we �lter
out a non-linear smooth trend (that is once we regress for each year the unemployment

2As well known, the Moran's I test test does not correct for serial dependence among observations.
Therefore, the results reported in Figure 3 must only be considered as a way to assess the e�ect of the
spatial trend on the spatial dependence.

3Geographic distance has frictional e�ects on labor market activity. Workers prefer to �nd a job
in their closer environment because commuting and moving entail monetary and psychological costs.
Therefore, we use great circle distances between centroids of provinces to de�ne the entries of the spatial
weights matrix.
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Figure 3

Moran I statistics of provincial unemployment rates: 1996-2014

rate on the smooth interaction between latitude and longitude and test for spatial au-
tocorrelation in the residuals), the Moran's I statistic is always lower than 2.7 and in 6
cases out 19 (during the period between 2004 and 2011) it turns out to be not statistically
signi�cant.

The evidence of positive spatial autocorrelation (or `weak cross-section' dependence)
in the data may also mask the existence of `strong' cross-sectional dependence due to com-
mon cyclical factors. Strong cross-sectional dependence can be tested using th CD test
developed in Pesaran (2004) and Pesaran (2015). Di�erently from the the Moran's I test,
the CD test uses the pair-wise correlation coe�cients between the time-series for each
panel unit. The CD statistics computed on our sample of regional unemployment rates
(CD=180.7) is highly signi�cant, con�rming the existence of cross-sectional dependence
(see Table 1). Applying the same test on the residuals of an AR(2) model (to accommo-
date for serial correlation), we obtain a CD value of 87.4 still highly signi�cant. As also
suggested by Bailey et al. (2016), however, this result does not exclude the possibility
that both forms of dependence (weak and strong) are present in the data. Therefore, we
may conclude that potential sources of interaction between regions are both weak due to
for example commuting �ows, and strong due to common factors.

Test statistic p-value

Without control for serial correlation 180.7 0.00
With control for serial correlation 87.4 0.000

Table 1

Cross-sectional dependence test (Pesaran, 2004, 2015)

An important issue is to assess the stationarity of regional unemployment rates series.
To this end, we use panel unit root tests. The results of both the standard and the
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cross-sectionally demeaned Im et al. (2003) (IPS) tests do not allow us to reject the null
hypothesis of a unit root in regional unemployment rates. However, the robust cross-
sectional dependence test proposed by Pesaran (2007) clearly rejects the hypothesis of
a unit root at all reasonable signi�cance levels. Hence, these test results give a strong
indication regarding stationarity of the data once cross-sectional dependence is taken into
account.

Deterministic Standard IPS Cross-sectionally Robust against cross-sectional
component demeaned IPS dependence IPS

None 0.625 -0.626 -1.462∗

Drift -0.930 -1.603 -2.387∗∗

Drift and trend -1.603 -1.603 -10.109∗∗

Table 2

Panel unit root tests for regional unemployment rates

3.2 Background and explanatory variables

3.2.1 Equilibrium and disequilibrium view

Economic theory provides two di�erent explanations on the nature of regional unemploy-
ment disparities: the equilibrium view and the disequilibrium view. The �rst approach
is based on the hypothesis of a stable equilibrium of spatial labor markets, where equi-
librium is de�ned as �a situation of uniform utility across areas for (each) homogeneous
labour group, such that there are no incentives for further labour migration (a further
condition would be uniform pro�ts such that capital movements are eliminated)� (Molho,
1995, p. 642). Accordingly, long-run di�erentials represent an equilibrium where factors
such as favorable climatic conditions or an attractive social or institutional environment
encourage people to stay in regions where unemployment rates are high (Marston, 1985).
Each region tends to its own equilibrium unemployment rate which is determined by
regional demand and supply factors, amenities and institutions. Therefore, a high un-
employment rate in a given area needs to be compensated by some other positive factors
which act as a disincentive to migration.

According to the disequilibrium view, in the long run all regions tend to a competitive
equilibrium unemployment rate and the unemployment rate will level o� across areas
(Blanchard et al., 1992). In the short run, however, regional disparities may re�ect labor
market rigidities that restrict mobility or slow adjustment processes to asymmetric shocks
(e.g., a shortage of labor demand). The adjustment process may be faster or slower, and
depending on its speed, local unemployment disparities could persist for a long time.
The speed of adjustment may depend on determining factors connected to both labor
demand and supply. This view stems from neoclassical theory where with increased
economic integration and the removal of impediments to the free �ow of production
factors, unemployment rates should converge given the convergence in factor returns.

Thus, the unemployment rate is a reduced form function of a variety of factors a�ecting
labor demand, supply and wages. According to the pioneering work of Partridge and
Rickman (1997), these factors can be broadly categorized as disequilibrium factors (e.g.,
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employment growth rates), and market equilibrium factors (e.g., industry and services
shares, demographic variables and amenities). For the choice of the actual variables in
these categories, we take into account the empirical regional unemployment literature.
However, the set of our variables is limited by data availability.

3.2.2 Selection of explanatory variables

Seven explanatory variables have been selected for the econometric analysis: i) Employ-
ment growth rate (empgrowth), ii) Employment share in agriculture (agri), iii) Employ-
ment share in industry (ind), iv) Employment share in construction (cons), v) Employ-
ment share in services (serv), vi) Labor force participation rate (partrate), vii) Population
density in logs (lpopdens). Table 3 reports simple descriptive statistics of these variables.

Variable Min. 1st Qu. Median Mean 3rd Qu. Max. Std. dev.

unrate 1.33 4.78 7.71 9.23 12.50 32.72 5.65
empgrowth -14.68 -1.54 0.40 0.37 2.27 13.91 3.21
agri 0.05 3.52 6.80 7.77 10.99 30.57 5.30
ind 5.54 13.57 20.53 21.32 27.96 46.33 9.22
cons 3.59 6.71 7.75 7.83 8.77 14.68 1.64
serv 45.09 58.75 63.96 64.27 69.51 86.09 7.88
partrate 27.04 37.73 42.85 41.52 45.16 53.19 4.70
lpopdens -3.49 -2.24 -1.75 -1.76 -1.32 0.98 0.77

Table 3

Summary statistics

In order to account for regional disequilibrium labor market dynamics, the employ-

ment growth rate (empgrowthi,t = 100×Empi,t − Empi,t−1
Empi,t−1

), i.e. the annual growth rate

in province employment, is included in the set of explanatory variables. It is expected
to have a negative e�ect on unemployment. This is not surprising because the change in
employment directly a�ects unemployment. Another variable capturing disequilibrium
e�ects are wages or unit labor costs. Unfortunately, this data is only available at NUTS-
2 level and not at the NUTS-3 (province) level. So, we decided to exclude it from the
analysis.

The other variables are proxies of equilibrium variables. First of all, di�erences in the
industrial mix should impact the geographical distribution of unemployment. Provinces
specializing in a declining economic sector, such as agriculture and industry, might show
higher structural unemployment rates than provinces specializing in services and con-

struction. The share of employment in agriculture (agrii,t = 100 × Agrii,t
Empi,t

), in the

industry sector (indi,t = 100× Indi,t
Empi,t

), in the service sector (servi,t = 100× Servi,t
Empi,t

) and

in the construction sector (consi,t = 100× Consi,t
Empi,t

) over total provincial employment are

proxies of the provincial economic structure.

The labor force participation rate (partratei,t = 100× LFi,t

Workpopi,t
) is the ratio between

16



total labor force and the working population (population aged between 16 and 65 years).
It is an indicator of labor supply. The expected e�ect is negative since factors determining
low participation rates in a particular region also re�ect relatively low investments in
human capital and low commitment to working life, resulting in higher risks for people
with these characteristics to become unemployed. However, a positive e�ect may also
occur if a faster growth of the labour force (i.e., young people) is not compensated by an
as mush faster growth of new jobs (or vacancies).

As stated above, amenities are considered as a compensating di�erential for the higher
probability of unemployment. Variables used to proxy for producer and consumer ameni-
ties are largely conditioned by the availability of data and we only included the log of
population density, that is the ratio between total population and the area surface of the

province (lpopdensi,t = log
Popi,t
Areai

), as a proxy for urbanization following López-Bazo et al.

(2005) and Cracolici et al. (2007). However, the sign of its coe�cient is not unambiguous.
On the one hand, a high urban density may increase the e�ciency of matching workers to
jobs (unemployed persons have more employment opportunities and the matching process
is expected to be more e�cient in urban areas), but on the other hand, it may increase
the time spent by workers to collect information about vacancies on the job market.

Obviously, population density cannot capture all kinds of regional amenities explaining
regional di�erences in unemployment rates. In addition, there are many other equilibrium
and disequilibrium variables a�ecting regional unemployment di�erentials. These include
workers migration and commuting, which are relevant in this type of spatial context, the
age structure of the population and human capital variables. This means that there is
a huge amount of spatial unobserved heterogeneity in modeling regional unemployment
rates. The inclusion of a spatial trend in the model is a way to clean up the residuals.
In other words, the spatial trend captures all time-invariant region-speci�c unobserv-
able factors, simultaneously allowing these factors to be freely correlated with observable
determinants of regional unemployment rates. The alternative approach used in the liter-
ature consists of introducing spatial �xed e�ects in the model to measure time-invariant
unobservable equilibrium e�ects.

Moreover, as stated above, unobserved common business cycle factors may in�uence
labor market dynamics with a heterogeneous e�ect across regions and the CCE approach
(or a combination of the CCE with a spatial model) has been recently proposed as a
possible solution (Bai and Li, 2015; Shi and Lee, 2016; Pesaran and Tosetti, 2011; Bailey
et al., 2016; Vega and Elhorst, 2016). The PS-ANOVA model with spatio-temporal trend
is used here as an alternative model to control for unobserved common factors. Finally,
we include the spatial lag of the regional unemployment rate (

∑
jtwijunratejt) on the

right-hand side of the model. It is important to remark again that this endogenous vari-
able should only capture substantive spatial dependent (i.e. externalities in regional labor
markets) � which implies that the unemployment rate of a particular region is a�ected
not only by its own labor market characteristics but also by the labor market performance
experienced by the remaining regions � rather than spatially correlated unobserved het-
erogeneity or common time e�ects.
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3.3 Econometric results

3.3.1 Model selection and diagnostrics

We use the data described above to compare the performance of the spatio-temporal PS-
SARmodel against di�erent competing parametric and semiparametric models in terms of
model �tting and residual diagnostics, focusing on the test for cross-sectional dependence
in the residuals (see Table 4 for the list of models considered and the Appendix for their
formal representation).

Linear parametric panel data models

Model 1 Fixed spatial e�ects model (FE)
Model 2 Fixed spatial and time e�ects model (FE/TE)
Model 3 SAR model with �xed spatial e�ects (SAR-FE)
Model 4 SAR model with �xed spatial and time e�ects (SAR-FE/TE)
Model 5 Model with unobserved common e�ects (CCEP)
Model 6 SAR model with unobserved common e�ects (SAR-CCEP)

Spatio-temporal penalized spline (PS) ANOVA models

Model 7 Spatio-Temporal model with linear terms (PS-ANOVA-Linear)
Model 8 Spatio-Temporal SAR model with linear terms (PS-SAR-ANOVA-Linear)
Model 9 Spatio-Temporal model with nonlinear terms (PS-ANOVA-Nonlinear)
Model 10 Spatio-Temporal SAR model with nonlinear terms (PS-SAR-ANOVA-Nonlinear)

Table 4

List of models

The most restricted speci�cations are the parametric a-spatial linear models with spa-
tial �xed e�ects (Model 1) and with spatial and time �xed e�ects (Model 2), estimated
using the standard �xed e�ects estimator. Clearly, they cannot capture the presence of
cross-sectionally correlated error terms, either strong or weak, as indicated by the results
of the CD test. Including interactions between individual �xed e�ects and cross-sectional
averages of the data (Model 5) (that is using the pooled common correlated e�ects -
CCEP - estimator proposed by Pesaran, 2006), the evidence of cross-dependence disap-
pears (see Table 5).4 These results strongly con�rm the existing literature. However,
using the CCEP method, we cannot disentangle strong and weak cross-dependence, that
is we cannot assess the presence of spatial interaction (network) e�ects net of the e�ect of
strong cross-sectional dependence. Moreover, using the CCEP estimator, the unobserved
common factors are treated as unknown parameters but the factor loadings are interac-
tive individual e�ects that induce an incidental parameter problem since their number
grows with N . In other words, the CCEP estimator requires a huge number of degrees
of freedom (edf) which is re�ected in a high BIC value. 5

4Pesaran (2006) noted that linear combinations of the unobserved factors can be well approximated
by cross-sectional averages of the dependent variable and the observed regressors. This leads to a new
set of estimators, referred to as the Common Correlated E�ects (CCE) estimators, that can be computed
by running standard panel regressions augmented with the cross-sectional averages of the dependent and
independent variables.

5The EDF's values include the parametric (�xed part in mixed model) and non-parametric (random
part in mixed model) for each additive covariate. Therefore, they correspond to the total value of
estimated degrees of freedom for each variable.
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Table 5

Model selection and diagnostics

Model CD test p-value rho LR test p-value total EDF σ2 BIC
Parametric models

Model 1 86.64 (0.00) 110.00 4.78 3791.07
Model 2 2.48 (0.01) 128.00 3.12 3069.46
Model 3 -0.13 (0.90) 0.46 23.76 (0.00) 111.00 3.43 3146.04
Model 4 0.26 (0.80) 0.25 11.07 (0.00) 129.00 2.85 2898.96
Model 5 -1.54 (0.12) 934.00 0.90 5601.85
Model 6 0.16 (0.87) 0.04 1.48 (0.14) 953.00 0.91 5742.51

Spatio-temporal models
Model 7 -0.09 (0.93) 124.58 2.64 2720.39
Model 8 -0.37 (0.71) 0.13 72.16 (0.00) 124.60 2.54 2646.94
Model 9 0.14 (0.89) 163.24 2.24 2648.92
Model 10 -0.19 (0.85) 0.10 45.17 (0.00) 162.96 2.19 2607.62

On the other hand, with the spatial lag �xed e�ects models (SAR-FE and SAR-
FE/TE;Models 3 and 4) widely used in the recent applied spatial panel data literature
(Elhorst, 2014b), we are implicitly assuming that only weak cross-dependence (i.e. spatial
dependence) exists. The CD test for the residuals of models 3 and 4 reveals that the null
cannot be rejected, but the ρ parameter is quite high, suggesting that likely the spatial lag
term has captured all cross-dependence (both strong and weak). Combining the SAR-
FE speci�cation and the CCEP model (Model 6), that is estimating a linear spatial
lag model with �xed e�ects and cross-sectional averaged of dependent and independent
variables, in line with recent contributions (Bai and Li, 2015; Shi and Lee, 2016; Bailey
et al., 2016; Vega and Elhorst, 2016), we should allow for both strong and weak cross-
dependence. Nevertheless, the evidence is only in favor of strong dependence as the ρ
parameter is not statistically signi�cant (according to the results of a likelihood ratio
test) and, obviously, Model 6 shares with model 5 the problem of the large number of
edf (and, thus, high BIC).

The results of the CD test on the residuals con�rm that the smooth spatio-temporal
trend (Models 7-10) is able to capture the unobserved cross-sectional dependence and,
thus, it represents a valid alternative to the inclusion of cross-sectional averages in the
model (i.e. the CCE method). With respect to �xed e�ects models and to CCEP
models, the PS-ANOVA models are less a�ected by the incidental (nuisance)
parameter problem as a result of the e�ective penalizing estimation procedure
described in section 2. Indeed, the BIC values of PS-ANOVA models are much lower
than those computed for any other model. Moreover, the estimated ρ parameter for the
two SAR versions (Models 8 and 10) is statistically signi�cant, indicating the existence
of weak dependence net of the e�ect of common business cycle e�ects. This parameter,
however, is much lower than the one estimated with the SAR-FE (0.46) and the SAR-
FE/TE models (0.25). In absolute terms, Model 10 (i.e. the spatio-temporal ANOVA
SAR model with nonlinear terms) shows the best performance with a BIC value of 2,607,
lower than its linear counterpart (model 8), suggesting that the functional form of the
relationship between the response variable (regional unemployment) and the covariates
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cannot be assumed to be linear. It is also worth noticing that, by allowing for nonlinear-
ities, the value of the estimated ρ parameter decreases from 0.13 to 0.10, con�rming the
trade-o� between spatial autocorrelation and nonlinearities.

Finally, we have more deeply investigated the role of the ANOVA spatio-temporal
trend in capturing the unobserved cross-sectional dependence. Speci�cally, we have tested
the assumption that the smooth time trend, ft(xt), along with the smooth interaction
between space and time - f1,t(xs1 ,xt), f2,t(xs2 ,xt), and f1,2,t(xs1 ,xs2 ,xt) - work as con-
trol functions to capture the heterogeneous e�ect of common shocks. To this end, we
have re-estimated model 9 with only the spatial trend - that is with f1(xs1), f2(xs2),
and f1,2(xs1 ,xs2), and without ft(xt), f1,t(xs1 ,xt), f2,t(xs2 ,xt), and f1,2,t(xs1 ,xs2 ,xt). Pe-
saran's CD statistics computed on the residuals of this model turned out to be equal
to 81.2, clearly indicating that the null hypothesis of no cross-sectional dependence is
rejected. We have also estimated this spatial ANOVA model including the main time
trend, ft(xt), but not the interactions between space and time. Although the CD statis-
tics decreases a lot (from 81 .5 to 9.4), it remains still signi�cant. All in all, we may
conclude that the heterogeneous e�ect of common shocks is only partially gathered by
ft(xt) (consistently with the result of the CD test for the residuals of the parametric
FE/TE model), while the interaction terms between space and time trends - f1,t(xs1 ,xt),
f2,t(xs2 ,xt), and f1,2,t(xs1 ,xs2 ,xt) - are necessary control functions to fully capture strong
cross-sectional dependence.

3.3.2 Estimation results

Table 6 reports the estimated β parameters of the linear terms included in models 1-8,
along with the associated standard errors. Obviously, these parameters can be interpreted
as marginal e�ects only in non-spatial models (models 1, 2, 5 and 7), while the interpre-
tation of the various SAR speci�cations (models 3, 4, 6 and 8) requires the computation
of direct and indirect marginal e�ects, reported in Table 7.6

6Any SAR model allows for interdependence among spatial units and corresponds to a long-run
equilibrium relation between the response variable and its covariates. The spatial multiplier matrix,
An ≡ (In − ρWn)

−1 ≡ In + ρWn + ρ2W2
n + ..., in the reduced form of any SAR model pre-multiplies

both observed and unobserved factors: the outcome in a location i will not only be a�ected by the
exogenous characteristics of i, but also by those in any other location j through the inverse spatial
transformation. The impact therefore is global. The powers of ρ matching the powers of Wn (higher
orders of neighbors) ensure that a distance decay e�ect is present. Thus, it is customary to distinguish
between direct, indirect and total spatial e�ects. Direct e�ects measure the impact of a change in regressor
xk in region i on the outcome of the same region: ∂yi

∂xki
, while indirect e�ects measure the impact of a

change in regressor xk in region j on the outcome of region i: ∂yi

∂xkj
. Total marginal e�ects are simply

the sum of direct and indirect e�ects. The problem with these e�ects is that, conditional on the model,
both direct and indirect e�ects are speci�c to the pair of regions involved (i, j). Thus, average measures
are typically used to summmarize the results. In the SAR model, the average total marginal e�ect is

computed as M
k

tot = (1− ρ̂)−1
β̂k. The average direct impact is M

k

dir = n−1tr
[
(In − ρ̂Wn)

−1
Inβ̂k

]
,

while the average indirect impact is M
k

ind =M
k

ind =M
k

tot −M
k

dir. In order to draw inference regarding
the statistical signi�cance of the average direct and indirect e�ects, LeSage and Pace (2009, p.39) suggest
simulating the distribution of the direct and indirect e�ects using the variance-covariance matrix implied
by the ML estimates. E�cient simulation approaches can be used to produce an empirical distribution
of the parameters β,θ, ρ, σ2 that are needed to calculate the scalar summary measures. This distribution
can be constructed using a large number of simulated parameters drawn from the multivariate distribution
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Table 6

Estimation results

Model empgrowth ln popdens partrate agri ind cons serv

β̂ and sd(β̂) (between parenthesis) for linear terms
Model 1 -0.15 6.88 0.46 0.71 0.47 -0.42 0.38

(0.02) (1.86) (0.03) (0.06) (0.02) (0.06) (0.04)
Model 2 -0.16 16.88 0.52 0.21 0.20 -0.05 0.30

(0.01) (1.71) (0.03) (0.07) (0.06) (0.06) (0.07)
Model 3 -0.13 3.95 0.38 0.32 0.23 -0.40 0.15

(0.01) (1.53) (0.03) (0.05) (0.02) (0.05) (0.03)
Model 4 -0.15 13.49 0.47 0.18 0.20 -0.07 0.27

(0.01) (1.61) (0.03) (0.07) (0.05) (0.06) (0.06)
Model 5 -0.18 35.47 0.59 -0.01 -0.07 0.05 -0.10

(0.01) (12.27) (0.04) (0.16) (0.14) (0.12) (0.15)
Model 6 -0.18 35.23 0.59 -0.01 -0.07 0.04 -0.10

(0.01) (8.39) (0.03) (0.11) (0.10) (0.09) (0.10)
Model 7 -0.10 0.36 0.15 0.18 0.12 0.01 0.17

(0.01) (0.13) (0.03) (0.04) (0.04) (0.05) (0.04)
Model 8 -0.11 0.27 0.15 0.16 0.10 -0.01 0.15

(0.01) (0.13) (0.03) (0.04) (0.04) (0.05) (0.04)
EDF for non-linear terms

Model 9 4.84 4.92 6.16 5.18 5.55 5.18 5.74
Model 10 4.84 4.70 6.16 5.12 5.39 5.22 5.72

The results suggest that there is a clear explanation of unemployment di�erentials in
terms of spatial equilibrium and disequilibrium factors and a signi�cant degree of spatial
dependence among labor markets at the provincial level in Italy. In all non-spatial models
higher employment growth rates lowers provincial unemployment rates, as suggested by
the disequilibrium approach. The magnitude of the estimated β parameter associated
to the variable empgrowth is rather stable across the non-spatial models in spite of
the strong di�erences among the various speci�cations. Both average direct and indirect
marginal e�ects of this variable computed for the �xed e�ects SAR models (3 and 4) have
a negative sign and are strongly signi�cant indicating that an increase in the employment
growth rate in one region reduces not only the unemployment rate of that region, but
also the unemployment rate of the other provinces with a distance decay e�ect. However,
spatial spillovers (indirect e�ects) are not signi�cant in the case of model 6 (SAR-CCEP)
and they are much lower in the case of the spatio-temporal ANOVA PS-SAR model 8.

Regional unemployment rates turn out to be positively a�ected by labor force partic-
ipation rates in any model. The positive e�ect of the participation rate along with the
negative e�ect of the employment growth rate suggests, in particular, that labor market
conditions in the South have worsened as a result of a faster growth of the labor force
(i.e., young people) in contrast to a lower growth of new jobs (or vacancies). Increasing
population density exerts detrimental e�ects on local labor market performances; the
parameters associated to the variable ln popdens vary greatly among the di�erent non-

of the parameters implied by the ML estimates.

21



spatial model speci�cations. Both direct and indirect marginal e�ects of these variables
computed for the four SAR models have a positive sign.

The coe�cients of the regressors related to the structure of the economy also turn out
to be very di�erent among the various speci�cations. Furthermore, the shares of employed
persons working in the construction industry have a negative or a null impact on regional
unemployment. Hence, provinces that are specialized in these industries exhibit lower
unemployment than provinces with a di�erent industrial structure.

Table 7

Direct, indirect and total marginal e�ects in SAR models. ∗∗ (∗) indicates signi�cance at 1% (5%)

Model empgr. ln popd. partr. agri ind cons serv
Model 3 Direct -0.14∗∗ 4.25∗∗ 0.41∗∗ 0.34∗∗ 0.25∗∗ -0.43∗∗ 0.16∗∗

Indirect -0.10∗∗ 3.04∗∗ 0.29∗∗ 0.25∗∗ 0.18∗∗ -0.31∗∗ 0.12∗∗

Total -0.25∗∗ 7.29∗∗ 0.70∗∗ 0.59∗∗ 0.42∗∗ -0.73∗∗ 0.28∗∗

Model 4 Direct -0.16∗∗ 13.75∗∗ 0.48∗∗ 0.18∗∗ 0.20∗∗ -0.07 0.28∗∗

Indirect -0.05∗∗ 4.22∗∗ 0.15∗∗ 0.06∗∗ 0.06∗∗ -0.02 0.08∗∗

Total -0.21∗∗ 17.98∗∗ 0.63∗∗ 0.24∗∗ 0.26∗∗ -0.09 0.36∗∗

Model 6 Direct -0.18∗∗ 35.25∗∗ 0.59∗∗ -0.01 -0.07 0.04 -0.10
Indirect 0.00 1.29 0.02 0.00 0.00 0.00 0.00
Total -0.18∗∗ 36.54∗∗ 0.61∗∗ -0.01 -0.07 0.04 -0.10

Model 8 Direct -0.11∗∗ 0.27∗ 0.15∗∗ 0.16∗∗ 0.10∗ -0.01 0.15∗∗

Indirect -0.02∗∗ 0.04∗ 0.02∗∗ 0.02∗∗ 0.01 0.00 0.02∗∗

Total -0.13∗∗ 0.31∗ 0.17∗∗ 0.18∗∗ 0.11∗ -0.01 0.17∗∗

Table 6 also reports the edf for the nonlinear terms included in models 9 and 10, a
broad measure of nonlinearity (an edf equal to 1 indicates linearity, while a value higher
than 1 indicates nonlinearity). Focusing on model 10, that is the one with the best
performance, we report the plots of direct and indirect e�ects of the smooth terms in
�gure 4. Starting from direct e�ects, nonlinearities in the relationship between regional
unemployment rates and the covariates are clearly detected, although most of the �gures
display monotonic relationships. Speci�cally, an increase in the employment growth rate
within a province is negatively associated with a reduction in the unemployment rate
in the same province, but the direct e�ect vanishes for employment growth rates higher
than 5%. The positive direct e�ect of the participation rate is particularly strong and
highly signi�cant at low levels of the variable, as indicated by the narrow con�dence band.
This means that, starting from very low levels of the participation rate (a status which
characterizes Southern provinces), a faster growth of the labor force (due to the enter of
young or previously discouraged people) is not compensated by an as much faster growth
of new jobs. After a certain threshold, the detrimental e�ect of the participation rate
decreases, probably because after such a threshold people entering the labor force have
a lower risk to become unemployed. The level of uncertainty in the relationship between
population density and unemployment rates is rather high (the con�dence band contains
the zero horizontal line for a large range of values of this explanatory variable) and does
not allow us to make any ultimate statement. The direct e�ect of agri, ind and serv
appears monotonically positive for most of the range of these independent variables, while
the direct e�ect of cons turns out to be negative for low and high levels of the variable,
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con�rming that provinces specialized in construction exhibit lower unemployment than
provinces with a di�erent sectoral structure. As expected, indirect e�ects are always
much lower than direct e�ects; nevertheless, these e�ects remain statistically signi�cant
since the point-wise con�dence interval crosses the zero horizontal line.

Finally, �gures 6 and 5 report the yearly estimated spatial trend maps, and the regional
speci�c time trends, respectively, from model 10. The map plots clearly show that, even
after controlling for the role of equilibria and disequilibria factors, as well as for common
time e�ects, the spatial distribution of expected regional unemployment rates remains
persistently characterized by a strong North-South spatial trend. The estimated regional
speci�c temporal trends also con�rm the presence of common business cycles factors
heterogeneously a�ecting all the regions.

23



Figure 4

Direct and Indirect functions for each covariate in Spatio-Temporal ANOVA SAR with
nonlinear terms (Model 10). The intervals correspond to 95% of con�dence
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Figure 5

Regional time trends estimated by the Spatio-Temporal ANOVA SAR with nonlinear terms
(Model 10)
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4 Conclusions

Many large spatial panel data sets used in cross-regional and cross-country empirical
analyses exhibit cross-sectional dependence which may arise from both spatial interac-
tions (spatial spillovers) or common factors (aggregate shocks). Spatial spillovers are
the results of local interactions and, thus, are classi�ed as weak dependence e�ects; while
common factors represent latent economic-wide technological and/or demand shocks, het-
erogeneously a�ecting all regions' dynamics and, thus, are classi�ed as strong dependence
e�ects.

Traditionally, each type of e�ect has been analyzed separately in the literature by the
so-called `factor' approach and `spatial econometric' approach, respectively. Recently,
however, some authors have proposed a joint modeling of both types to determine whether
one or both of these e�ects are present (Bailey et al., 2016; Vega and Elhorst, 2016; Bai
and Li, 2015; Shi and Lee, 2016). Speci�cally, Bailey et al. (2016) and Vega and Elhorst
(2016) follow Pesaran (2006) in using cross-sectional averages of the observed variables
as proxies for common factors.

In the present paper, we have shown that, the spatio-temporal trend can be interpreted
as an alternative to cross-sectional averages of the observations to capture the hetero-
geneous e�ect of unobserved common factors. Speci�cally, the ANOVA decomposition
of the spatio-temporal trend in a spatial trend, a time trend and second- and third-
order interactions works e�ectively to control for both unobserved spatial heterogeneity
and unobserved common factors. Thus, the inclusion of the ANOVA decomposition of
the spatio-temporal trend helps interpret the evidence of signi�cance spatial spillovers
as weak cross-dependence net of the e�ect of common e�ects (strong dependence). In
this sense, our proposed framework can be regarded as a valid alternative to paramet-
ric approaches which considers a jointly modeling of both spatial interaction e�ects and
common-shocks e�ects. We have implemented this new framework using real data on
unemployment rates in Italy. The results clearly suggest that the PS-SAR model with
the ANOVA spatio-temporal trend outperforms parametric panel data SAR models with
common e�ects.
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As a concluding remark, it is worth noticing that regional unemployment rates, like
many other regional and national economic variables, are typically characterized by strong
persistence over time. Thus, a control for serial correlation is de�nitely needed. Our
future research agenda will address this challenge by extending the PS-SAR model with
the ANOVA spatio-temporal trend to a dynamic speci�cation.
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Appendix: Estimated models

The analysis of regional unemployment rates in Italy is based on the comparison of ten
di�erent econometric models. The �rst four are fully parametric standard �xed e�ects
models with and without a spatial lag; the �fth and the sixth are still parametric models
but with unobserved common e�ects; while the last four are semiparametric models with
spatio-temporal trends.

Models 1-4 - Fixed e�ects models with and without spatial lag terms (FE,
FE/TE, SAR-FE and SAR-FE/TE)

Let yit be the observation on the i -th cross section unit at time t for i = 1, 2, ..., N and
t = 1, 2, ..., T and suppose that it is generated according to the following linear panel
data model

yit = αi + τt + x′itβ + εit [Model 2 (FE/TE)]

where xit is a k×1 vector of explanatory variables, and β the associated set of coe�cients.
The nuisance parameters αi capture unobserved time-invariant spatial heterogeneity (spa-
tial �xed e�ects), while τt capture unobserved temporal heterogeneity, that is the e�ect
of the omitted variables that are peculiar to each time period. αi and τt are allowed
to be correlated with xit, while the idiosyncratic errors, εit, are assumed to be indepen-
dently distributed over xit. Consistent β parameters are estimated using the standard
within-group estimator.

Model 1 is obtained from model 2 by imposing the restrictive assumption τt = 0:

yit = αi + x′itβ + εit [Model 1 (FE)]

Fixed e�ects models can be extended to a spatially lagged dependent variable:

yit = αi + τt + ρ
N∑
j=1

wij,Nyjt + x′itβ + εit [Model 4 (SAR− FE/TE)]

where WN = (wij,N)N×N is a speci�ed spatial weights matrix whose diagonal elements

wii,N are 0; and εit are the idiosyncratic errors. ρ
∑N

j=1wij,Nyjt captures the spatial
spillover e�ects. This model is estimated using a quasi-maximum likelihood estimator
(QMLE) (Elhorst, 2014a; Lee and Yu, 2010).

Model 3 is obtained from model 4 by imposing the restrictive assumption τt = 0:

yit = αi + ρ
N∑
j=1

wij,Nyjt + x′itβ + εit [Model 3 (SAR− FE)]

Model 5-6 - Models with unobserved common e�ects (CCEP and SAR-CCEP)

Now, suppose that yit is generated according to the following linear heterogeneous panel
data model

yit = αi + x′itβ + γ
′

ift + εit [Model 5 (CCEP )]
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where ft is the m× 1 vector of unobserved common e�ects (introduced to allow for cross-
sectional dependence) with γi the corresponding heterogeneous response. The common
factors are allowed to be correlated with xit, while the idiosyncratic errors, εit, are as-
sumed to be independently distributed over xit. Pesaran (2006) has shown that, for
su�ciently large N , it is valid to use cross-sectional averages of yit and xit as observable
proxies for ft. Thus, consistent β parameters can be estimated using the so-called Com-
mon Correlated E�ects Pooled (CCEP) estimator, that can be viewed as a generalized
�xed e�ects estimator.

Using slightly di�erent frameworks, Bailey et al. (2016), Vega and Elhorst (2016), Bai
and Li (2015) and Shi and Lee (2016) consider a joint modeling of spatial interaction
e�ects and common-shocks e�ects:

yit = αi + ρ

N∑
j=1

wij,Nyjt + x′itβ + γ
′

ift + εit [Model 6 (SAR− CCEP )]

This model allows one to test which type of e�ects (common shock, γ
′
ift, and/or spatial

spillover, ρ
∑N

j=1wij,Nyjt) is responsible for the cross sectional dependence. Bai and Li
(2015) and Shi and Lee (2016) use principle components to estimate common factors,
while Bailey et al. (2016) and Vega and Elhorst (2016) follow Pesaran (2006) in using
cross-sectional averages of yit and xit as observable proxies for ft. Bailey et al. (2016)
propose a two-stage estimation and inference strategy, whereby in the �rst step strong
cross-sectional dependence is modeled by means of a factor model. Residuals from such
factor models, referred to as de-factored observations, are then used to model the re-
maining weak cross dependencies, making use of spatial econometrics techniques. Vega
and Elhorst (2016), instead, suggest to model common factors and spatial dependence
simultaneously in a single step procedure. All these authors show that the QMLE is an
e�ective way of estimating this model.

Models 7-10 - Spatio-Temporal models (PS-ANOVA-Linear, PS-SAR-ANOVA-
Linear, PS-ANOVA-Nonlinear, PS-SAR-ANOVA-Nonlinear)

The last 4 speci�cations are semiparametric models always including an ANOVA spatio-
temporal trend. Model 7 is based on the restrictive linearity assumption for the main
r.h.s. terms:

yit = f1(s1,i) + f2(s2,i) + ft(t) + f1,2(s1,i, s2,i) +

f1,t(s1,i, t) + f2,t(s2,i, t) + f1,2,t(s1,i, s2,i, t) + x′itβ + εit [Model 7]

Its spatial lag extension (model 8) is:

yit = f1(s1,i) + f2(s2,i) + ft(t) + f1,2(s1,i, s2,i) +

f1,t(s1,i, t) + f2,t(s2,i, t) + f1,2,t(s1,i, s2,i, t) +

+ρ
N∑
j=1

wij,Nyjt + x′itβ + εit [Model 8]
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Model 9 relaxes the linearity assumption for the main r.h.s. terms

yit = f1(s1,i) + f2(s2,i) + ft(t) + f1,2(s1,i, s2,i) +

f1,t(s1,i, t) + f2,t(s2,i, t) + f1,2,t(s1,i, s2,i, t) +

+ρ
N∑
j=1

wij,Nyjt +
K∑
k=1

fk(xk,it) + εit [Model 9]

and its spatial lag extension (model 10) is:

yit = f1(s1,i) + f2(s2,i) + ft(t) + f1,2(s1,i, s2,i) +

f1,t(s1,i, t) + f2,t(s2,i, t) + f1,2,t(s1,i, s2,i, t) +

+ρ
N∑
j=1

wij,Nyjt +
K∑
k=1

fk(xk,it) + εit [Model 10]

As discussed in the main text, the geoadditive terms (f1(s1,i), f2(s2,i), and f1,2(s1,i, s2,i)),
work as control functions to �lter spatial trend out of the residuals and transfer it to the
mean response in a model speci�cation, while the smooth time trend, ft(t), and the
smooth interaction between space and time - f1,t(s1,i, t), f2,t(s2,i, t), and f1,2,t(s1,i, s2,i, t)
- work as control functions to capture the heterogeneous e�ect of common shocks, thus
allowing for cross-section dependence in alternative to cross-sectional averages of the ob-
servations. Thus, the inclusion of the ANOVA decomposition of the spatio-temporal trend
helps interpret the evidence of signi�cance spatial spillovers as weak cross-dependence net
of the e�ect of common e�ects (strong dependence).
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