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Abstract: Spatial data are often contaminated with a series of imperfections that 

reduce their quality and can dramatically distort the inferential conclusions based 

on spatial econometric modeling. A “clean” ideal situation considered in standard 

spatial econometrics textbooks is when we fit Cliff-Ord-type models to data where 

the spatial units constitute the full population, there are no missing data and there is 

no uncertainty on the spatial observations that are free from measurement and 

locational errors. Unfortunately in practical cases the reality is often very different 

and the datasets contain all sorts of imperfections: they are often based on a sample 

drawn from the whole population, some data are missing and they almost invariably 

contain both attribute and locational errors. This is a situation of “dirty” spatial 

econometric modelling. Through a series of Monte Carlo experiments, this paper 

considers the effects on spatial econometric model estimation and hypothesis 

testing of two specific sources of dirt, namely missing data and locational errors. 

 

 

1. Introduction 

 

Variables observed within territorial units are not randomly scattered and they are 

almost invariably characterized by spatial dependence. Statisticians have long been 

aware of this phenomenon and of its non-negligible impact on parameter estimation 

and hypothesis testing within a regression framework. Following this tradition in 

the last decades a wide class of spatial econometrics models have been introduced 

in the literature to properly accommodate for the various sources of bias and 

inefficiencies in the statistical inference based on spatial data. Such models almost 

invariably can be traced back to the autoregressive paradigm, sometimes referred to 

as Cliff-Ord-type models after the contribution of Cliff and Ord (1972). 

A “clean” ideal situation considered in standard spatial econometrics textbooks 

(Anselin, 1988; Arbia, 2014) is when we fit Cliff-Ord-type models to data where: (i) 

the spatial units (whether they are points in space or regions) constitute a full 

population and not a sample, (ii) a complete cross section of territorial units is 

available with no missing data, (iii) variables are observed directly, (iv) there is no 

uncertainty on the spatial observations that are free from measurement error, and 

(v) the location of the observations is perfectly known. Unfortunately for spatial 

econometricians engaged in empirical analysis the reality is often very different and 

the datasets they have to fight with are made “dirty” with all sorts of imperfections: 

they are often based on a sample drawn from the whole population of spatial 
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locations, some data are missing, some variable only proxy the target variables and 

they almost invariably contain both attribute and locational errors.   

Our aim is to show that such imperfections are not just incidental to the statistical 

analysis, but they can mask and hide the real phenomena up to the point of 

distorting dramatically the inferential conclusions. 

Let us consider three paradigmatic cases. 

A first example is the case of spatial health data. In a recent paper Deuchert and 

Wunsch (2014) analyze a set of Malawi data to assess the effectiveness of health 

policies to reduce infant mortality due to malaria. The observed database is 

constituted by a sample of a household systematically drawn from a list of 

enumeration areas defined in the population census. In this dataset, some of the 

sample units can be missing not at random for various reasons (non-response, 

death, cancellations, clusters of households refusing to answer). In the case of 

Malawi data (as in many other household surveys), field teams routinely use GPS 

receivers with a positional accuracy of 15 meters or less to geo-reference the 

location of the observational unit, but in order to preserve confidentiality the GPS 

coordinates are then displaced according to a “random direction, random distance” 

method  as described, e. g., in Collins (2011). 

A second example concerns plant locations in official statistics.  For example, in Italy 

the National Statistical Institute (ISTAT) collects and disseminates data related to 

the active firms (ASIA archive. See e. g. Cozzi and Filipponi, 2012). At a firm level, the 

ASIA archive includes information concerning a set of economic variables (e. g. the 

firm code, the sector of activity, employees, legal status, firm's birth date and firm's 

termination date) together with the geographic location of plant in terms of latitude-

longitude spatial coordinates. Spatial coordinates are identified automatically on the 

basis of the street address and so they contain a certain location error. Furthermore, 

for a non-negligible numbers of plants for which the address was missing, the 

geographic location, is approximated by the coordinates of the centroid of the 

municipality of the plant.  

A third example is related to forestry. Forest inventories are important tools to 

monitor the state of the environment, to assess the quantity and quality of forestry 

resources, and to measure other important variables such as biomass, growth and 

production capacity. The inventory is often based on samples of trees distributed in 

the study area following a certain spatial design. For instance, the Italian National 

Forestry Inventory (see IFNC, 2015) collects data related to approximately 300,000 

sample points, randomly located and covering the whole Italian territory. Some of 

these analysis involve collecting data about trees whose position is geo-masked. The 

reasons for masking the exact position of the observed trees are mainly connected 

with the need to preserve the information about the value of the trees and of their 

property and in order to avoid conflicts with the owners that may refuse to include 

their trees in the panel. For these reasons the marking of the trees included in the 

INFC sample are invisible (e. g. under the earth) and the information about the 

coordinates are disclosed only in terms of the south-west coordinate of a 1km-by-

1km regular grid. As a consequence the information is geo-masked with a location 

error of up to 1.4 kms. 
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The previous examples are paradigmatic of “dirty” spatial econometric situations 

where both missing data and locational errors are present.  

When dealing with missing data a fundamental distinction is made between data 

missing at random (possibly completely at random) and data missing not at random 

(Roderick and Rubin, 2007). In the spatial case this distinction is particularly 

relevant. In fact, if data are missing not at random in space they can dramatically 

distort the picture by erasing entire spatial patterns. 

Another fundamental distinction has to be made when dealing with locational 

errors of the kind discussed in the examples above. In fact in some instances the 

uncertainty about the position is due to imperfections in the process of data 

acquisition (as it is in the case of the ASIA archive of firms where the location is 

induced from the street address) while in some other case the uncertainty is induces 

by the data producer to preserve confidentiality (as it is the case with the health and 

the forestry data). In this second case the process of geo-masking is disclosed and 

can be used to improve the inferential procedure. 

This paper aims at making researchers aware of problems of this kind when 

employing spatial econometrics standard techniques. In the present work we are 

not suggesting statistical solutions, a task which is left to some further future 

contributions. Here we limit ourselves to show how the inferential results can be 

affected by spatial data imperfections and to point out what are the limits within 

which we can expect our results to vary as a function of the dirt of the dataset. More 

specifically, in the present paper we focus on the analysis of the effects of missing 

data and locational error which are likely to occur in many practical circumstances.  

 

 

2. Missing data and missing location 

 

This paper discusses some issues related to spatial data quality emerging in many 

empirical situations undermining statistical analysis. In particular we will discuss 

issues related to missing data and positional uncertainty. It is important to remark 

right at the beginning that, when dealing with spatial data, there is still currently a 

certain degree of ambiguity in the literature, on the concept of uncertainty and 

missing data. In order to clarify this, let us distinguish preliminarily the case of 

missing data from the case of missing location. In fact, we can have cases when the 

individuals’ location is uncertain or missing, cases where the observation is 

uncertain or missing and cases when both of them are uncertain or missing 

altogether. In practice we can encounter 4 different cases that is important to 

distinguish because the consequences (and the solutions) are intuitively different in 

the different situations. They are reported in the following table. 

 

  Missing data 

  Yes No 

Missing location Yes 1 2 

No 3 4 
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Case 1 relates to the situation of Missing spatial data and spatial location when both 

the location and some measurements are unknown. We know of the presence of 

some individuals in a certain area, but we ignore where exactly they are and, 

furthermore, we do not have information about some or all their characteristics.  

Some individuals are simply not observed on the study-area map. This situation is 

not uncommon in many surveys in developing countries. 

Case 2 refers to Missing spatial data when the location of individuals is perfectly 

known without error, but we are unable to observe some or all individuals’ 

characteristics. This happens, for instance, when we know of the presence of some 

individuals (e. g. a firm) and its exact GPS location, but some or all information are 

missing at a certain moment of time (e. g., the number of employees or the 

production realized by that firm in that location). It is important to remark that this 

case represents the traditional case of missing data as it has been treated at length 

in the statistical literature (Little, 1988; Little and Rubin, 2002; Rubin, 1976; 

Roderick and Rubin, 2007) where solutions have been suggested to replace the 

observations that are missing following different interpolating strategies (e. g. the 

EM algorithm (Dempster, Laird and Rubin, 1977) and multiple imputation methods 

(Rubin, 1987)). These approaches, however, (apart from few remarkable 

exceptions, like e. g. Bihrmann and Ersbøll, 2015), do not treat adequately the 

nature of spatial data and do not suggest solutions to the problem of allocating in 

the space the information that is artificially recovered. 

Case 3 refers to what we will term unintentional positional error that is when 

observations on individuals are available, but their location is missing or not known 

with certainty. For instance, we have a list of firms in a small area (like e. g. a census 

tract) and we also have observations on some of their statistical characteristics, but 

we don’t know their exact address within the area. In this case it is common to 

assign the individual to the centroid of each area, but this procedure generates a 

positional error. In this case, not only the traditional statistical procedures proposed 

in the literature to minimize the fallacies produced by missing data (such as 

multiple imputation etc.) are useless, but even their consequences on statistical 

modelling are still largely unknown (see Bennett, Haining and Griffith, 1984). 

Finally Case 4 refers to what we can call intentional positional error where both 

location and measurement of the single individuals are known. This case is also 

interesting from the statistical point of view because, in some instances, the 

individuals positions might be geo-masked a-posteriori before letting them publicly 

available to the analysts, in order to preserve confidentiality. 

In the present paper we will concentrate on Cases 1 and 4 where we believe there is 

the most urgent need to fill a huge gap in the literature.  In particular we aim at (i) 

treating within the same methodological framework different data quality problems 

that were previously treated separately, (ii) introducing novel approaches to tackle 

them and (iii) examining their consequences on statistical modelling . 

Neighbouring lists and weights matrices (W) are fundamental tools in spatial 

statistics (Cressie and Wilke, 2010) and, specifically, in spatial regression (Arbia, 

2014). Very general definitions that can be used when treating individual 

information may involve some negative function of the inter-point distances (such 
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as, e. g., Wwij ∈ ; α−= ijij dw ; 0>α with dij the inter-point distance) or k-nearest 

neighbours distances (see, e. g. Arbia, 2014). All cases discussed above lead to 
uncertainty about the true W matrix which is, in turn, induced by uncertainty about 

the measurement of inter-individuals’ distances due to either missing (or geo-

masked) location or missing data or both.  

Suppose that the population of interest is constituted by, say, n individuals 
distributed in the study area. In Case 1 the true W matrix is n-by-n, but the observed 

W matrix is, conversely, (n-m)-by-(n-m) if m data are missing (m<n) and this 

produces distortion in spatial inference. In addition, when examining Cases 3 and 4, 

the true W matrix is biased by the fact that the individuals’ position is not observed 

correctly either due to lack of information or to a voluntary decision dictated by 

confidentiality. In this respect it is possible to treat all problems within the same 

methodological framework aiming at characterizing the sensitivity of missing points 

or point displacements to the definition of a spatial weights matrix and at 

developing methods to minimize their distorting effect on inference. 

In the following we will introduce the methodological framework that we will use to 

illustrate the inferential consequences of using dirty datasets in spatial econometric 

modelling. Without loss of generality we will consider the case of a simple linear 

regression just for the sake of illustrating our point. Let us indicate with y the vector 

of observations of the dependent variable in n locations (i = 1, 2, …, n) and let us 

consider the simple linear regression model: 

 

   uxy ++= βα          (1) 

 
with x the vector of observations of the non-stochastic regressor and u a normal 

independent random error. The term “location” can refer either to point data, or to 

areal data summarized by their centroids. The impact of a variation in the 

independent variable observed at location i on the dependent variable in location j 

is given by 
j

i
ij x

y
IMP

∂
∂=  and, in this standard modeling framework, a variation in x at 

location i, has only an effect in that location ( β=iiIMP ) while no impact is observed 

in the neighboring. Consider now (more realistically) a spatial econometric model 

which allows spatial spillover effects. The model (known as spatial lag model) can 

be specified as follows (Arbia, 2006; 2014): 

 

1      <+++= λβαλ uxWyy        (2)  

 
where in addition to the previous notation, W is the already mentioned exogenously 

given weights’ matrix which specifies the topology of the spatial observations, and 

λ  is the spatial correlation parameter. Equation (2) describes the fact that a 

variable x produces a direct effect on location i, but also an indirect effect in some 

neighboring locations. In this new setting the calculation of the impact is different 

and it is now given by (LeSage and Pace, 2009): 
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βλ 1)( −−= WIS          (3) 

 

with S the matrix of the cross-locations impacts such that SIMPij ∈ . A common 

summary measure in this case is the Average Total Impact SiinATI
T1−=  (LeSage 

and Pace, 2009) which highlights how in this new framework the impact depends on 

both λ and β. In fact, if the spatial correlation parameter is positive (i. e. the positive 

effects spill over the neighborhood) it emphasizes the global impact; conversely, if  λ 

is negative (i.e the positive effects in one location produces a negative effect over the 

neighborhood), the global impact will be reduced.  

The model presented here constitutes the framework within which we can monitor 

the distorting effects on regression estimation and hypothesis testing induced by 

missing data and locational errors as we will show in the next  section. 

 

3. The effects of “dirty” spatial data on econometric modelling 

 

3.1 Simulation setup 

 

In this section we will present the results of a series of Monte Carlo experiments run 

to illustrate the effects of missing data and locational error on spatial econometric 

modelling. All Monte Carlo experiments are built using the following procedure. 

Consider an initial set of, say n, spatial locations (points) randomly and 

independently generated on a unit square that will be regarded as the truth. As a 

data generating process for “clean data” we assumed the spatial lag specification 

reported in Equation (2). The single explanatory variable, x, is generated by a zero 

mean normal distribution with standard deviation equal to 1.5. The stochastic 
disturbances u are i.i.d. generated by a standard normal distribution. The intercept 

and slope are both uniformly set to 1 in all simulations. We simulated different sets of 
“clean” values of the independent variable x and of the dependent variable y according to 
different degrees of spatial autocorrelation as identified by different values of the spatial 
lag parameter. More specifically, for each given value of the parameter λ, we obtained a 
vector of n = 100 “clean” values of the dependent variable, under the spatial lag model, as 
follows: 
 

( ) ( ) uWIXWIy 11 −− −+−= λβλ       (4) 
 
We generated increasing intensities of both negative and positive spatial autocorrelation 
by considering the following values for λ: -0.01, -0.25, -0.75, 0.01, 0.10, 0.25, 0.50, 0.75 
and 0.90. In all cases W is a row-standardized binary weight matrix derived from the k-
nearest criterion, setting k = 2 (see Arbia, 2014). The sequence of n values of the 

variable x and y thus generated will be considered the “clean” true values to be 

contrasted with their dirty versions. 

 

3.2 Effects of missing data 
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We will start examining the results of a series of Monte Carlo experiments aiming at 

assessing the effects of missing data on regression estimation and hypothesis 

testing. In particular, through our Monte Carlo simulation, we will aim at assessing 

(i) the effects of missing data on the bias and the precision of the estimation of the 

various regression parameters, and (ii) the effects of missing data on hypothesis 

testing of regression parameters and in particular on the power of the significance 

tests. 
Two major elements are relevant in this respect and need to be controlled for in the 
simulation, namely: (i) the Proportion of Missing Points, (the parameter )1,0(∈PMP

), and (ii) the spatial pattern they display in the study area. This second aspect is 

systematically overlooked in the statistical literature on missing data, but it appears 

to be extremely relevant. In fact, if the missing data points are clustered in the study 

area, some of the geographical features (such as spill-over effects) could be hidden 

or cancelled out. In contrast, points missing randomly in the space are expected to 

produce milder effects on regression estimation and on hypothesis testing.  

In our experiments we considered different situations of missing observations that 

can mimic those encountered in empirical cases. More specifically, we considered 

two spatial missing data mechanism. The first (which we will refer to as 

Mechanism1) reproduces the case where missing data tend to be concentrated in 

some specific zones of the study area. The second (termed Mechanism2), mimics the 

presence of pattern of spatial clusters of missing values around certain points.   

For both mechanisms, we considered different degrees of spatial correlation of the 

dependent variable y (parameter λ), different Proportion of Missing Points (PMP) and 

different intensities of clustering patterns. For each artificial “clean” dataset 

(generated as described in the previous Section 3.1) 10000 “dirty” versions were 

simulated according to different values of the Proportion of Missing Points (PMP) and 

the two missing mechanisms characterized by different spatial intensities.   

In particular, with Mechanism1 we cancel observations randomly with a probability 

that decreases with to the horizontal coordinate (see Figure 1a). The intensity of the 

data deletion is regulated by the parameter ψ  which regulates how steep the 

probability decreases. If ψ = 0 data are cancelled at random without any pattern, 

while higher values of ψ  imply a stronger spatial trend in the missing data structure 

and a concentration in the right side of the unitary square.  

A step-by-step description of the simulation of Mechanism1 is the following: 

 

Step1: For each i-th observation, we derive the probability to be erased given by, 

( ) ∑
=

=
n

i
iii sPMPnsp

1
11
ψψ , with is1  representing the horizontal coordinate of 

observation i.  

Step2: We take a random sample of size PMPn of the observations to be erased from 

the elements of the clean data using without-replacement and the ip ’s as 

probability weights. 
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Step3: Using the “dirty” dataset obtained excluding the erased observations, we 

estimate a Spatial Lag Model using the ML estimator, we perform the 5% 
significance tests on parameters α, β and λ and we compute the impact 

measures.  

 

After repeating steps 1 to 3 10000 times, we compute the expected value, bias and 

root mean square error of λ̂ , β̂  and ATI and the power of the test for the null of 

0=λ .  

       

  
Figure 1: Mechanism 1 for the random deletion of points in the simulations (a) mechanism 1, (b) Mechanism 2 

 

 

With Mechanism2 we randomly identify 5 random points in the study area and we 

build up circular buffering zones centered on the selected points and with a given 

radius d*. The values of the radius d* were selected considering that the maximum 

distance in the unitary circle is 2 . Then PMPn observations located within the 

circle are selected at random and eliminated (see Figure 1b). 

Consequently, the steps used to simulate this second mechanism are the following:  

 

Step1: Randomly select 5 observations (called parent points) among the clean data. 

Step2: Select a set of points (called the offsprings) representing all observations 

located within a distance d*  from at least one of the five parents. 

Step3: Randomly select PMPn observations to be erased amongst the parents and 

the offsprings. 

Step4: Use the “dirty” dataset, obtained excluding the erased observations, to 

estimate a Spatial Lag Model using the ML estimator, perform the 5% 
significance tests on parameters α, β and λ and compute the impact measures.  

 

The main results of or simulations are summarized in the following Figures 2 and 3. 
Only the results for λ > 0 are reported here for the sake of succinctness. Results for 

lambda λ < 0 are substantially symmetrical to those displayed here. 

ψ = 5 PMP = 0.2, d* = 0.2
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Looking at Figure 2 it is evident how the RMSE of  λ̂  increases monotonically with  

PMP and is positively related to the true value of λ. The RMSE of β̂  is less sensitive 

to the presence of missing data unless λ or PMP are also very high. The effect of PMP 

and λ on the precision of the estimates is more evident for ATI in all three situations 

of spatial pattern when the true λ is very high. In all case examined, the increase of 

RMSE for all parameters becomes sharper when the proportion of missing points 

exceeds 15%. In contrast the power appears to be substantially unaffected by 
missing data at all levels of PMP and λ.  

 

       a) ψ = 0 (no spatial pattern)   b) ψ = 1 (weak spatial pattern) 

  
c) ψ = 5 (strong  spatial pattern)   

 
Figure 2: Root mean squared error of the estimation of λ, β and total impact (ATI) and power of the LR test of λ  

for various levels of the spatial correlation parameter λ (0.01; 0.5;0.75,0.9) and for various levels of PMP (0.05, 

0.10, 0.15, 0.20, 0.25). Random cancellation is performed with Mechanism 1 with different intensities of 

clustering of missing data: a) ψ = 0, b) ψ = 1, c) ψ = 5. 

 

0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

PMP

R
M

S
E

 o
f λ̂

λ = 0.01
λ = 0.5
λ = 0.75
λ = 0.9

0.05 0.10 0.15 0.20 0.25

0.
00

0.
10

0.
20

0.
30

PMP

R
M

S
E

 o
f β̂

0.05 0.10 0.15 0.20 0.25

0
1

2
3

4

PMP

R
M

S
E

 o
f 

T
ot

al
 I

m
pa

ct

0.05 0.10 0.15 0.20 0.25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PMP

po
w

er
 o

f 
th

e 
te

st
 f

or
 λ̂

0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

PMP

R
M

S
E

 o
f λ̂

λ = 0.01
λ = 0.5
λ = 0.75
λ = 0.9

0.05 0.10 0.15 0.20 0.25

0.
0

0.
2

0.
4

0.
6

0.
8

PMP

R
M

S
E

 o
f β̂

0.05 0.10 0.15 0.20 0.25

0.
0

1.
0

2.
0

3.
0

PMP

R
M

S
E

 o
f 

T
ot

al
 I

m
pa

ct

0.05 0.10 0.15 0.20 0.25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PMP

po
w

er
 o

f 
th

e 
te

st
 f

or
 λ̂

0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

PMP

R
M

S
E

 o
f λ̂

λ = 0.01
λ = 0.5
λ = 0.75
λ = 0.9

0.05 0.10 0.15 0.20 0.25

0.
0

0.
1

0.
2

0.
3

0.
4

PMP

R
M

S
E

 o
f β̂

0.05 0.10 0.15 0.20 0.25

0
1

2
3

4
5

PMP

R
M

S
E

 o
f 

T
ot

al
 I

m
pa

ct

0.05 0.10 0.15 0.20 0.25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PMP

po
w

er
 o

f 
th

e 
te

st
 f

or
 λ̂



- 10 - 

 

The results of the simulation generated using Mechanism 2 are reported in Figure 3 

and substantially confirm the findings, but with the effects on the precision of the 

estimates that become more evident for all parameters. In particular, we notice a 

sharper increase of the RMSE of β when PMP increases in the estimation especially 

in the case of high clustering of missing data (Figure 3c).  
 

a) d* = 0.25 (weak spatial clustering) 

 

 

b) d* = 0.15 (moderate spatial clustering) 

 

 
c) d* = 0.05 (strong spatial clustering) 

 
 

Figure 3: Root mean squared error of the estimation of λ, β and total impact (ATI) and power of the LR test of λ  

for various levels of the spatial correlation parameter λ (0.01; 0.5;0.75,0.9) and for various levels of PMP (0.05, 

0.10, 0.15, 0.20, 0.25). Random cancellation is performed with Mechanism 2 using different cut-off radius for the 
clustering circles: a) d* =0.05, b) d*=0.15, c) d*=0.25. d* represents the distance measured in the unitary square 

where the maximum distance is 2 . 
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high. Values of the RMSE(ATI) are 0.0389 in the case of low spatial correlation ( λ
=0.01) and small PMP (=0.05) but they become about hundred times bigger 

(RMSE(ATI))=4.4064) in the opposite case of high spatial correlation ( λ =0.9) and 

high PMP (=0.25). 

 
 

3.3 Effects of positional error 

 

To identify the effects of a positional error in spatial regression, we use again the 

same dataset artificially generated as described in Section 3.1. So the observations 

on the variables x and y are assumed to be fixed in all experiments but, at each 

simulation run, we displace the observations using a random mechanism. 

In particular we consider the case of intentional positional error where the 

mechanism of random displacement is often known. We consider the following 

procedure: at each simulation run, for each location we select a random angle and a 

random distance. The random angle is generated from an uniform distribution 

)360,0(U , whereas the random distance is generated from a uniform ),0( ϑU , where 

ϑ  is a further simulation parameter that will be left free to vary in a given range.  In 

particular, we considered θ to vary between 0.05 and 0.25 in a study area defined in 

the unitray square where the maximum distance between points is represented by 

the diagonal and thus equal to 2 . This mechanism is often used in empirical case to 

preserve confidentiality (See, e. g. USAID, 2013). We then displace each point with 

the random angle along the random distance thus generated. Similarly to the 

missing data case, at each step of the replication we estimate the parameters of 

model (2) and we calculate the RMSE of these estimates. We then average the RMSE 

obtained over the simulation runs. We expect the RMSE to increase with the 

distance θ and we study how this behavior is related to the other simulation 

parameters. Similarly, in order to analyze the effects of displacement on hypothesis 

testing in each simulation run we calculate the significance of the test and again we 

reject the null if .05.0≤α  We can then compute how many times we wrongly 

accepted the null and monitor how the empirical power thus evaluated changes by 

increasing the parameter θ . The main results are summarized in Figure 4. 
The effects of location error on the precision of the estimates of all parameteres (λ, β 

and ATI) are dramatic. First of all the RMSE of all parameters increase sharply with 

the radius of the displacement effect (θ). Secondly, while this effect is almost absent 

when λ is close to zero, it increases dramatically when λ gets bigger. The effects of 

locational errors are relevant on the efficiency of the estimates of the Average Total 

Impact which become extremely unreliable in the case of a strong spatial pattern of 

data and of a high intentional locational error. For instance, in the case of very weak 

spatial correlation (λ = 0.01) and small displacement (θ = 0.05) the effect is 

negligible (in this case RMSE(ATI) = 0.1733), in contrast, in the case of very high 

spatial correlation (λ = 0.9) it explodes to values that are very high even in the 

presence of very small locational errors (e. g. RMSE(ATI)= 4.4580 when θ = 0.05) 
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becoming 43 times higher (RMSE(ATI)= 7.5908) in the case of a radius of 

displacement  of θ = 0.25. 

 

 
Figure 4: Root mean squared error of the estimation of λ, β and total impact (ATI) and power of the LR test of λ  

for various levels of the spatial correlation parameter λ (0.01; 0.5;0.75,0.9) and for various levels of the 

dislocation radius θ (0.05, 0.10, 0.15, 0.20, 0.25).  

 

The effects on the LM test of λ are equally dramatic with a clear trend to decrease its 

discriminating power when θ increases. From the graphs it is evident how the test 

can tolerate small values of dislocation errors only if λ is very close to zero, but, as 

soon as the dislocation radius θ is greater than 0.15 and λ is greater than 0.01 the 

power drops dramatically towards zero.  

 

 

4. Conclusions 

 

This paper discussed some of the consequences on estimation and hypothesis 

testing procedures in spatial econometric modelling of having “dirty” spatial 

datasets contaminated by missing data and locational errors. 

The presence of missing data reduces the precision of the estimates and this 

reduction in efficiency is emphasized by the presence of strong spatial correlation. 

Furthermore the effects are more relevant when data are missing in clusters in 

which case entire geographical features, like e. g. spatial spillovers, tend to 

disappear. The practice of intentionally geo-masking individual data for protecting 

confidentiality has also strong effects on the estimation and hypothesis testing. 

These effects are directly related with the entity of the induced displacement and to 
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the degree of spatial correlation in the data. We observed a sharp reduction of the 

efficiency of the estimators of all models’ parameters after a displacement distance 

that is 15% of the side of the study area. Similarly after this distance the LR test of 

significance on the spatial parameter becomes highly unreliable. 

The aim of suggesting procedures to reduce the consequences of dirty data on 

spatial econometric modelling is left to a future study. The results presented in this 

paper aim at making researchers aware of the possible consequences of the 

presence of missing data and locational error while running empirical analyses. 

Ideally any empirical analysis should contain a discussion of the experimental 

situation that led to the data collection, e.g. in terms of the proportion of missing 

points and the amount of positional error present in the dataset, in order to be able 

to stress whether the results obtained can be considered robust to the observed 

data imperfections of the data or if, conversely, their credibility is dramatically 

undermined by them. 
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