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Abstract.  

Technological advancement is among the most frequently advocated strategy for adapting agriculture to possible 

future changes in climate. However, the actual process of innovation in the context of adaptation to climate 

change in the agriculture sector has received little explicit consideration. A panel endogenous switching 

regression modelis applied to estimate the relation between climate change and innovation and the temporal and 

geographical variability of related revenues in European countries, using disaggregated results at firm level. Our 

findings confirm that innovation enhances firms’ performance and we find that the greatest effect appears to be 

generated when innovating firms belong to the Northern European countries and when firms issue patents in the 

agricultural classification of European Patent Office. 
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1. Introduction  

 

Over the coming decades several countries and regions around the world will confront both 

opportunities and challenges deriving from the transition towards low-emission, sustainable societies. 

Policy makers and scholars concur that this transformation revolves greatly around whether 

environmentally sound technologies are developed and adopted in production and distribution systems, 

undermined by climate change effects (Jaffe et al., 2005; Popp et al., 2010; Ahman et al., 2018). 

Recent evidence suggests that the increasing variability of meteo-climatic parameters and frequency of 

extreme weather events will likely raise the incidence of environmental disasters (IPCC 2014), lead to 

depletion of agricultural resources, and endanger global food supply (Stevanovic et al., 2016; EEA, 

2019).  

The global phenomenon of climate change (CC) shows marked local consequences that manifest 

themselves in heterogeneous ways across regions and sectors (IPCC 2014). The economic and social 

systems will be affected differently by climate change, and also, they will adapt differently as a result 

of their heterogeneity (Zilberman et al., 2018). The agriculture sector is expected to suffer the most 

from the negative effects of CC: projected impacts represent a serious threat to crop production and to 

the sustainability of the agricultural system (IPCC, 2014; EEA, 2019). In2018, European agriculture 

experienced a temperature that was amongst the three warmest years on record. The length of growing 

season, flowering, and harvest are already largely affected by CC and the number of warm days1 have 

doubled between 1960 and 2018 (EEA, 2019). The effects on European production by 2050 are to be 

characterized by important regional differences (ECONADPT, 2016).Production and productivity in 

Northern Europe might increase due to a lengthening of the growing season and to an extension of the 

frost-free period. Conversely, southern European countries will likely observe a productivity reduction 

(EEA, 2019), induced by extreme temperature and by lower precipitation and water availability, which 

will intensify problems of droughts, especially in the Mediterranean region (Goubanova and Li, 2006; 

Rodriguez Diaz et al., 2007; IPCC 2014).Space-varying climate effects will translate into different 

climate response as a function of dissimilar adaptive capacity (Vanschoenwinkelaet al., 2016). 

Facing CC threatsimpliesacknowledging the pivotal role that environmental technological innovation 

may play, that is, enabling sufficient adaptation to alleviate most of the negative consequences of CC, 

or prevent them altogether. Nevertheless, the deployment of technologies and the extent to which they 

 
1Warm days are those exceeding the 90th percentile threshold of a baseline period. 
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affect economic performances is highly idiosyncratic.Developing and adopting climate-related or 

climate-induced innovation is not merely a matter of facing the weather and climate threats; it may 

bring about economic opportunities as well (EEA, 2019).  

Focusing on the European agricultural sector during 2007-2015, the aim of the present study is to 

explore the relation between weather variability and firms’ economic performance thought the 

development of innovative capabilities. The latter are captured using data on agricultural patents and 

biotech innovations, which are claimed to play an importantrole in climate change adaptation, other 

than mitigation (James 2013). We work with NUT2 level data to account for differences across 

Europein terms of climate change effects (Iglesias et al., 2009) and adoption of adaptation strategies 

(Niles et al., 2015) – as innovative capability – under different climate change conditions.  

Our paper draws from two literature streams. First, we rely on those studies that investigate whether 

and to what extent environmental/climatic conditions affect innovation. Therein, the so-called induced 

innovation hypothesis has been explored extensively from different perspectives (for an overview of 

these studies see Popp et al., 2010). It posits that innovation is affected by the change in the relative 

price of production factors: i.e. it is introduced to reduce the usage of those factors that become more 

expensive (Hicks, 1932). This hypothesis provided a solid background for several studies that, for 

example, explore the impact of energy prices and environmental regulation on the development of 

green technologies (see e.g. Newell et al., 1999; Popp, 2002; Barbieri, 2015).As CC manifests itself, 

whether and to what extent climate contingences affect innovation is paramount to understanding the 

effectiveness of climate adaptation strategies, especially in the agriculture sector (Rodima-Taylor et al., 

2012). However, while the research community has devoted some efforts to analyze how innovation 

contributes to alleviating climate-change impacts, less obvious remains the debate on how climate-

induced innovations have responded to climate and weather variability (Su and Moaniba, 2017) as a 

means of adaptation strategy. A reason explaining this gap may found on the inherent difficulty in 

testing the role of climate as a stimulant for technological innovation (Abler, et al., 2000). However, 

some insights suggest that technological innovation strongly responds to climate change (Su and 

Moaniba, 2017) and that the changing climate induces adaptive capacity, which involves the 

development and diffusion of innovation both in developed (Smithers and Blay-Palmer, 2001) as well 

as developing countries (Chhetri and Easterling, 2010). Indeed, innovation allows dealing with the 

heterogeneous and uncertain impacts of climate and weather change and can complement different 

forms of adaptation (Zilberman et al., 2018). 
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In analyzing whether innovation affects firms’ performance, the second stream of work on which the 

present paper relies relates to studies that investigate the economic effects of environmental innovation 

(see e.g. Barbieri et al., 2016 for a review). The variability of findings retrieved in this literature 

suggests that the assessment of economic benefits arising from the development and adoption of green 

innovation is a difficult task. The absence of clear-cut evidence is mainly due to the sector involved, 

how innovation is measured (e.g. patents, innovation surveys, R&D expenditures), the performance 

measure (e.g. financial data, employment) or the empirical approaches employed. Overall, we can 

observe that the creation and diffusion of technical knowledge seems to give rise to win-win situations 

(Porter and Van der Linde, 1995). That is, environmental innovation favours the reduction of 

environmentally harmful behaviours and, at the same time, improves trade performance through new 

markets creation (Duchin et al., 1995), leads to a positive net employment effects (Horbach, 2010; 

Horbach and Rennings, 2013) and enhances firms’ profitability (Rexhäuser and Rammer, 2014; 

Gagliardi et al., 2016; Leonciniet al., 2018). 

As far as agricultural innovation is concerned, the majority of the studies focuses on the effects of 

agricultural research and development expenditure on productivity at the macro level (Alston et al., 

2009; Alston, 2010; Alston et al., 2010; Pardeyet al. 2010;Fuglie, 2012). While some studies focus 

primarily on innovation within the agri-food sector (Materia et al. 2017; Ghazalian, and Fakih, 2017, 

Harvey et al., 2017), merely few studies indeed analyze the direct effect of innovation on profit or 

economic sustainability at the farm level (Karafillis and Papanagiotou, 2011 and Läpple and Thorne, 

2019). 

Our paper contributes to the present literature by merging these two streams to shed light on the role of 

technological innovation in the handling of climatic and weather risks and the interaction between the 

effects of climate and weather variability and innovation capabilities, as firms’ adaptation strategy. It 

contributes to the current debate on innovation in agriculture by offering both an investigation at micro 

level (firms), as well as by providing regional results to capture differences across the EU geographical 

extension. 

To emphasize the role of agricultural innovation as a firm’s adaptation strategy and its impact on firms’ 

outcome, as in Murtazashvili and Wooldridge(2016) we apply a panel endogenous switching regression 

model with two sources of endogeneity. Since firms who choose to innovate might be different from 

those who choose not to innovate, the presence of firm unobserved heterogeneity that influences 
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innovation decision represents the main estimation issue. Thus, this unobserved heterogeneity creates 

selection bias as some firms are more likely to innovate than the other firms. Moreover, as in our 

analysis some explanatory variables such as inputs of firms’ production function might be endogenous.  

To address self-selection issue and endogenous regressors we applied a control function approach 

which consists of two stages. In the first stage, a pooled probit is estimated and in the second stage a 

2SLS model is implemented adding generalized residuals to account for the endogeneity of the 

selection variable. In both stages, Mundlak devices (1978) are introduced to combine fixed-effects with 

random effects estimation approaches. 

Our findings confirm that innovation enhances firms’ performance and we find that the greatest effect 

appears to be generated when innovating firms belong to the Northern European countries and when 

firms issue patents in the agricultural classification of European Patent Office. 

The following sections of the article are organized as follows. Section 2 illustrates both the data used 

(2.1) and the conceptual framework (2.2). Section 3 presents the results while section 4 concludes. 

 

2. Data and methods  

2.1 Data  

The analysis is based on three main sources of data. The ORBIS database, issued by Bureau van Dijk, 

provides financial, ownership and legal form information on firms around the world for all the sectors 

of activities. The Worldwide Patent Statistical Database (PATSTAT), collected by the European Patent 

Office (EPO), supplies information on all the patents filed across European countries. Finally, the 

MARS Crop Yield Forecasting System (MCYFS) database by the Joint Research Centre of the 

European Commission, offered climate-related data. Details on the variables use and elaborations 

required to reach the objective of this research are provided below for each data source. 

 

Patents and accounting data 

The ORBIS dataset provides financial and accountancy data on firms placed in Belgium, Denmark, 

Finland, Spain, Italy, Greece, France, Germany, UK, Ireland, Portugal, Sweden and the Netherlands. 

Data are collected yearly 2007-2017and includes 143 firms within the “Agriculture, forestry and 

fishing” sector (Section A - NACE Rev. 2), i.e., the industry which we focus on. From the PATSTAT 
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dataset, the number of total and agricultural patents are selected.We use patents as a convenient 

indicator of innovation for presenting the evolution of inventive capabilities in adaptation-related 

agriculture and food technology over time. Patent counts are indicative of the level of innovative 

activity itself and not only a measure of innovative output (Popp, 2005). 

As measures of innovative activity, R&D spending and patent counts have been widely used. However, 

some drawbacks of these two measures can be underlined. R&D expenditure as an input of innovation 

does not provide any information about the success of the innovation and therefore it fails as indicator 

when innovation takes place without any R&D expenditures. On the other hand, patent counts can be 

considered a good proxy of invention success even if most of them are associated with inventions of 

little value (Hall, 2011). Although patent numbers as a measure of innovative activity have been 

criticized (Griliches, 1990), it is the most commonly used indicator when studying technological 

change and its effect on the environment (Popp, 2005). The use of patents entails particular advantages 

because patent data are easily accessible via databases, are not subject to the problems of vague 

definition and allow comparability between firms (Ernst, 2001, Popp, 2005).  

For the scope of our study, from the PATSTAT and the ORBIS databases we analyzed descriptive 

statistics of major economic financial and accountancy data avoiding the inclusion of variables 

showing important missing information. Operating revenue, material and employment costs, total 

assets and shareholders’ funds are balance sheets items used for both non-innovative and innovative 

firms. Table 1 shows that innovative firms present higher operating revenues and a larger size 

measured by total assets.  Potentially these firms seem more incline to hire high-skilled workers and 

toinvestin the firm itself (higher employment and material costs). Therefore, this evidence does not 

clearly signal a potential relation between climate-related innovation (adaptation) and firm’s 

performance, but requires additional investigation and the application of methods able to account for 

endogeneity and selection problems to the aim of disentangling the effect of innovation on 

performance.  

 
Table 1. Summary statistics. Innovative and non-innovative firms 

 Mean p50 sd min max N 
Non-innovative firms (0 patents declared)       

Operating revenue 11.515 11.409 0.376 11.376 15.943 655 

Materialcosts 10.618 10.494 0.396 10.395 15.307 655 
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Employmentcosts 9.497 9.390 0.355 9.343 13.996 655 

Total assets 11.220 11.043 0.573 10.983 15.920 655 

Shareholder’ funds 10.433 10.241 0.607 9.719 14.819 655 
Innovative firms  
(patents declared>= 1) 

      

Operating revenue 11.861 11.440 0.962 11.377 15.744 178 
Materialcosts 10.947 10.516 1.000 10.469 15.099 178 
Employmentcosts 9.867 9.429 0.968 9.343 13.738 178 
Total assets 11.634 11.078 1.185 10.983 15.777 178 
Shareholder’ funds 10.827 10.282 1.159 10.188 14.661 178 
Total       

Operating revenue 11.589 11.413 0.573 11.376 15.943 833 
Materialcosts 10.689 10.497 0.595 10.395 15.307 833 
Employmentcosts 9.576 9.392 0.567 9.343 13.996 833 
Total assets 11.308 11.046 0.765 10.983 15.920 833 
Shareholder’ funds 10.517 10.246 0.776 9.719 14.819 833 
Note: All values are expressed in constant 2010 Euros and are at logarithm level. 
Sources: Elaboration from ORBIS/PATSTAT 
 

Climate data 

Observed monthly precipitation cumulates as well as monthly averages of minimum, maximum and 

mean daily air temperatures were obtained from the MARS Crop Yield Forecasting System (MCYFS) 

database, established and maintained by the Joint Research Centre of the European Commission for the 

purpose of crop growth monitoring and forecasting (Biavetti et al. 2014). In short, daily meteorological 

data are obtained from around 4200 weather stations, quality controlled, gap-filled and interpolated into 

a regular 25x25 km grid over Europe and neighboring countries. Daily interpolated meteorological data 

is available since 1975 up to near-real time. For the purpose of this study, the daily gridded climatic 

data between 2000 and 2017 have been first used to calculated gridded monthly averages (in case of 

temperature) and cumulates (in case of precipitation), which were then spatially aggregated over arable 

land for each NUTS2 administrative level. Resulting variables were used at seasonal resolution, where 

season is defined by the climatological classification, e.g. winter is December, January and February. 

In particular, following the literature on seasonality (Mendelsohn et al. 1994; Van Passelet al., 2017) 

we use backward-looking rolling means of differences in minimum and maximum temperatures and 

precipitations (Henderson et al. 2017;Woodill and Roberts, 2018), which are assumed to affect firms’ 

probability to innovate.Table 2 presents main climate-related statistics where the rolling mean window 

is calculated over a period of 5 years.  
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Table 2. Summary statistics 
Climatic variables expressed in mm (precipitation) and °C (temperature) 

Variable Mean p50 sd min max N  
      

Precipitation during spring season (rolling mean window over 5 
years) 18.972 13.832 13.212 3.517 57.749 833 

Maximum temperature during summer season (rolling mean 
window over 5 years) 25.989 27.202 4.101 18.015 32.276 833 

Minimum temperature during spring season (rolling mean window 
over 5 years) 9.701 10.321 2.886 3.459 14.346 833 

 

 

2.2 Conceptual and Empirical framework 

 

Theoretical Model 

Since innovation may be considered as an improvement over past technologies and techniques used in 

terms of efficiency (resources used over results obtained) and effectiveness (objective over results), the 

choice of innovating depends mainly on firms’ ability and motivation and on the higher values of 

firms’ outcome after technology innovation (Läpple and Thorne, 2019). As a consequence, firms who 

choose to innovate may be different from those who choose not to innovate. Comparing the outcomes 

of these two different kinds of firms, whether or not exposed to the treatment, represents the main 

object of the program evaluation literature (see for a comprehensive literature review Imbens and 

Wooldridge, 2009). 

Firms’ ability and motivation as well as technology innovation impacts should be evaluated controlling 

for potential selection bias and unobserved heterogeneity. Since these firms’ characteristics are not 

fully (if at all) observable, they may cause endogeneity issues (Lapple and Thorne, 2019). When the 

unobserved heterogeneity linked to the selection process is time-invariant, a panel estimator without 

using instrumental variables can be applied; while whenever time-varying unobserved heterogeneity is 

present in the selection process, self-selection or endogeneity models are needed. The presence of time-

varying unobserved heterogeneity in the innovation choice of an agricultural firm implies that standard 

regression techniques are biased, and an endogenous switching regression model should be estimated 

(Wooldridge, 2010; Kassie, et al. 2018).  

In the endogenous switching regression model, the innovation decision is modeled on the basis of firm-

level characteristics and climatic indicators and subsequently the relationship between the variable of 

interest (i.e. operating revenue) and a set of explanatory variables may vary across the two discrete 
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regimes (i.e., innovators and non-innovators firms). More specifically, in the first stage, a self-selection 

equation is estimated applying a binary variable estimator and in the second stage, the outcome 

equation conditional on the treatment (i.e. innovation decision) is modeled using a standard estimator 

(see among others Fuglie and Bosch, 1995; Alene and Manyong, 2007; Di Falco et al., 2011; 

Teklewold et al., (2013); Läpple et al., 2013; Abdulai and Huffman, 2014; Kassie et al., 2016). In the 

context of a firm’s production function, the switching regression model allows the interaction between 

inputs and technology (i.e. the innovation) meaning that the effect of an innovative choice should be 

evident not only through the intercept of the outcome equation but also across the slope (Murtazashvili 

and Wooldridge, 2016; Kassie et al., 2018). 

The two-stage switching regression model hence has the advantage of estimating separate regression 

equations for innovators and non-innovators as well as determining the counterfactual based on returns 

to characteristics of adopters and non-adopters. This means that even if the average values of these 

characteristics may be the same, they may have different impacts on outcome and innovation choice in 

terms of coefficient estimates (Wooldridge, 2010). Another advantage of the switching regression 

model over, for example, the propensity score matching model consists in overcoming the 

unconfoundedness assumption, which assumes that after controlling for observable characteristics, the 

selection variable i.e. innovation decision may be random and uncorrelated with the outcome variable. 

Actually, differences between innovators and non-innovators are systematic since selection is based on 

unobservable characteristics (Smith and Todd, 2005; Abdulai and Huffman, 2014). 

Starting from the endogenous switching regression approach, first developed by Lee (1982), where 

selectivity is considered as an omitted variable problem (Heckman, 1979), we follow Murtazashvili and 

Wooldridge (2016)’ model to allow for two sources of endogeneity: the selection variable and an 

endogenous explanatory variable. Following this extension, a two-stage switching regression model 

with endogenous switching and endogenous explanatory variables with constant coefficients for panel 

data is implemented. This methodology combines the Mundlak–Chamberlain approach to 

heterogeneity with control function methods for continuous and discrete endogenous variables. 

More specifically, as in Murtazashvili and Wooldridge (2016), the procedure for estimating a control 

function model consists of two stages. In the first step, to take into account of the selection indicator a 

probit correlated random effects model is run. This aims to estimate the relationship between 

innovation choice and firm accounting items as well as environmental variables. In the second step, the 

selection bias is addressed by adding generalized residuals. When a continuous endogenous 
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explanatory variable is included in the outcome equation a two-stage least squares (2SLS) model is 

estimated. Otherwise when all the variables are exogenous an OLS estimation is applied. 

Given that the innovation decision allows observing two different outcomes with different coefficients 

across the different regimes: 

 

𝑦"#$
(&) = 𝑥"#$𝛽& + 𝑐"$& + 𝑢"#$&	

𝑦"#$
($) = 𝑥"#$𝛽$ + 𝑐"$$ + 𝑢"#$$ ∀	𝑖 = 1,… ,𝑁 and 𝑡 = 1,… , 𝑇 (1) 

 

where 𝑦"#$
(&) and 𝑦"#$

($)represent the outcomes in the two regimes for the i-th firm in year t, the vector of 

explanatory variables 𝑥"#$includes an intercept, a set of time dummies or a time trend, some continuous 

endogenous explanatory variables (EEVs) defined 𝑦"#7 , as well as some exogenous explanatory 

variables defined 𝑧"#$. The time-constant individual-specific unobserved effects in both regimes are𝑐"$& 

and 𝑐"$$ . Finally, 𝑢"#$&  and 𝑢"#$$  are the idiosyncratic errors in both regimes which are strictly 

independent of the exogenous explanatory variables 𝑧"#$. 

A panel data version of a switching regression model with constant coefficients which linearly 

combines the two regimes (0 and 1), as developed by Murtazashvili and Wooldridge (2016), can be 

written as: 

 

𝑦"#$ = 𝑥"#$𝛽& + 𝑦"#9𝑥"#$𝛾$ + 𝑐"$& + 𝑦"#9(𝑐"$$ − 𝑐"$&) + 𝑢"#$& + 𝑦"#9(𝑢"#$$ − 𝑢"#$&) 

∀	𝑖 = 1,… ,𝑁 and 𝑡 = 1,… , 𝑇 (2) 

 

where 𝑦"#$  represents the outcome of interest as a linear combination of the two regimes. The 

endogenous switching variable 𝑦"#9  at the basis of the sample selection interacts with both time 

constant and time-varying unobservables. 𝛾$  is the difference of the coefficients of 𝑥"#$  in the two 

regimes which means (𝛽$ − 𝛽&).  

Since the parameters of interest are 𝛽& and 𝛾$, the correlation between individual-specific unobserved 

effects and the strictly exogenous variables is allowed applying the Mundlak (1978) device. Including 

the Mundlak assumption of unobserved heterogeneity linearly related to the mean in time of the 

exogenous variables, the switching regression model with constant coefficients can be re-written as 

follows: 
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𝑦"#$ = 𝑥"#$𝛽& + 𝑦"#9𝑥"#$𝛾$ + 𝑧"̅𝜌& + 𝑦"#9𝑧"̅𝜌$ + 𝑟"#& + 𝑦"#9𝑟"#$∀	𝑖 = 1,… ,𝑁 and 𝑡 = 1,… , 𝑇 (3) 

 

where the Mundlak devices𝑧"̅ are the mean of the exogenous variables 𝑧"̅ = 𝑇?$ ∑ 𝑧"#A
#B$ , 𝑟"#& and 𝑟"#$ 

are the idiosyncratic errors of the Mundlak relationship assumed to be independent of the exogenous 

variables and 𝜌& and𝜌$ represent the parameters to be estimated. 

Using the Mundlak (1978) version of Chamberlain’s binary response correlated random effects model, 

we get the following selection equation: 

 

𝑦"#9 = 1[𝑘#9 + 𝑧"#𝜋9 + 𝑧"̅𝛿9 + 𝑣"# > 0], 𝑣"#~𝑁[0,1]∀	𝑖 = 1,… ,𝑁 and 𝑡 = 1,… , 𝑇 (4) 

 

where the vector 𝑧"# contains all the exogenous variables. This implies that 𝑧"# includes the exogenous 

variables of the outcome equation 𝑧"#$, any instrumental variables that may affect the endogenous input 

𝑦"#7 and the selection variable 𝑦"#9. 𝑘#9 represents the time-specific intercepts usually common in panel 

data applications. Finally, 𝑣"# is the usual error term normally distributed with zero mean and variance 

equals to one. 

Under these assumptions, the conditional expectation of the Mundlak-Chamberlain correlated random 

effects model can be written as a generalized residual function Lℎ(. )O (Vella, 1998): 

 

𝐸(𝑣"#|𝑦"#9, 𝑧") = ℎ(𝑦"#9, 𝑘#9 + 𝑧"#𝜋9 + 𝑧"̅𝛿9) = 𝑦9𝜆(𝑘#9 + 𝑧"#𝜋9 + 𝑧"̅𝛿9) − (1 − 𝑦9)𝜆(−𝑘#9 − 𝑧"#𝜋9 −

𝑧"̅𝛿9)∀	𝑖 = 1,… ,𝑁and 𝑡 = 1,… , 𝑇 (5) 

 

where 𝜆(. )  is the inverse Mills ratio function. As underlined by Vella (1998), this term has two 

important characteristics: i) zero mean and ii) no correlation with the explanatory variables of the 

probit model. 

Assuming 𝑟"#& and 𝑟"#$, the  unobservables error term of equation (3) as a linear function and combining 

the estimated generalized residual function (5) with the outcome equation (3), we may obtain the final 

and complete outcome equation:  

 

𝑦"# = 𝑥"#$𝛽& + 𝑦"#9𝑥"#$𝛾$ + 𝑧"̅𝜌& + 𝑦"#9𝑧"̅𝜌$ + 𝜉&ℎT"#9 + 𝜉$𝑦"#9ℎT"#9 + 𝑎"# 

with 𝐸(𝑎"#|𝑦"#9, 𝑧"#) = 0∀	𝑖 = 1,… ,𝑁 and 𝑡 = 1,… , 𝑇   (6) 

 



 

12 
 

where ℎT"#9 is the generalized residuals which account for the endogeneity of the selection variable; and 

𝑥"#$  incorporates the continuous endogenous explanatory variable. Equation (6) is then estimated 

applying an instrumental variables method for panel data. In this stage, since the estimated generalized 

residuals are included, the standard error should be adjusted through the bootstrapping procedure. The 

only exception to this method arises when the switching model is exogenous. For this reason, the joint 

significance of the parameters 𝜉&and 𝜉$ should be tested by applying the Wald test. 

Of significant interest is also the analysis of the impacts of innovation decision on operating revenues 

for the European agricultural firms. A counterfactual analysis should be carried on by first specifying 

the expected values of the outcomes in the two regimes. The endogenous switching regression model 

can be a useful methodology to compare the expected values of operating revenues of agricultural firms 

which innovate with respect to agricultural firms that do not innovate. Moreover, it allows investigating 

the counterfactual outcomes when the innovating agricultural firms do not innovate, and the non-

innovating agricultural firms do innovate. Splitting equation (6) into the two regimes, we may generate 

the conditional actual and counterfactual expectation of operating revenues for the agricultural firms. 

The expected actual operating revenues of innovating firms and non-innovating firms observed in the 

sample may be computed respectively as:  

 

𝐸V𝑦"#$
($)|𝑦"#9 = 1W = 𝑥"#$𝛽$$ + 𝑧"̅𝜌$$ + 𝜉$$ℎT"#9 (7) 

 

𝐸V𝑦"#$
(&)|𝑦"#9 = 0W = 𝑥"#$𝛽&& + 𝑧"̅𝜌&& + 𝜉&&ℎT"#9 (8) 

 

The expected values of the counterfactual operating revenues of innovating firms had they chosen not 

to innovate (Eq. 11) and non-innovating firms had they chosen to innovate (Eq.12) are given as 

follows: 

 

𝐸V𝑦"#$
($)|𝑦"#9 = 0W = 𝑥"#$𝛽$& + 𝑧"̅𝜌$& + 𝜉$&ℎT"#9 (9) 

 

𝐸V𝑦"#$
(&)|𝑦"#9 = 1W = 𝑥"#$𝛽&$ + 𝑧"̅𝜌&$ + 𝜉&$ℎT"#9 (10) 
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where the parameters 𝛽$ , 𝜌$ , and 𝜉$  are the estimated coefficients and the variables are as defined 

above. 

Following Heckman et al. (2001) and Imbens and Wooldridge (2009), we may calculate the average 

treatment effect on treated firms (ATET). In other words, we may assess the impact on the operating 

revenues of innovation choice on those firms that receive the treatment as the difference between the 

expected outcomes in both regimes for the treated agricultural firms. Combining equations (9) and (12), 

we obtain: 

 

𝐴𝑇𝐸 = 𝐸V𝑦"#$
($)|𝑦"#9 = 1W − 𝐸V𝑦"#$

(&)|𝑦"#9 = 1W = 𝑥"#$(𝛽$ − 𝛽&) + 𝑧"̅(𝜌$ − 𝜌&) + ℎT"#9(𝜉$ − 𝜉&) 

 

which represents the effect of an innovating behaviour induced by climate change on agricultural firms’ 

operating revenues that actually choose to innovate. It is worth to note that if comparative advantage is 

at the basis of selection, then the choice of innovating would imply higher operating revenues (Abdulai 

and Huffman, 2014). 

 

Empirical Specification 

Previous empirical studies have analyzed the issue of technology adoption and its impacts on farms’ 

outcomes as a strategy for adaptation to climate change (CC) in a cross-section context using an 

endogenous switching regression (Fuglie and Bosch, 1995; Alene and Manyong, 2007; Di Falco et al., 

2011; Läpple et al., 2013; Abdulai and Huffman 2014; Kassie et al., 2018), a multinomial endogenous 

switching regression model (Di Falco and Veronesi 2013; Teklewold et al. 2013; Kassie et al., 2015) or 

a propensity score methodology (Kassie, et al. 2011; Läpple and Thorne 2019). However, none of these 

studies has considered the innovation behavior of an agricultural firm in a panel structure as a strategy 

for CC adaptation. Focusing on the capability of firms of issuing at least one patent, our analysis 

models innovation decision as a selection process, where the expected benefits drive agricultural firms’ 

choices. 

Whenever an agricultural firm has to decide whether or not to innovate, potential outcomes such as 

operating revenues are normally taken into consideration. Under the risk-neutral assumption, firms may 

choose to follow an innovative behavior if they may gain maximum operating revenues. In doing so, 

the output equation of the European agricultural firms should be represented as follows: 
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𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔	𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑠"# = 𝛽& + 𝛽$𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙	𝑐𝑜𝑠𝑡𝑠"# + 𝛽7𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡	𝑐𝑜𝑠𝑡𝑠"# + 𝛽9𝑇𝑜𝑡𝑎𝑙	𝑎𝑠𝑠𝑒𝑡𝑠"# +

𝛾$𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛"# + 𝛾7𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙	𝑐𝑜𝑠𝑡𝑠"# ∗ 𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛"# + 𝛾7𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡	𝑐𝑜𝑠𝑡𝑠"# ∗ 𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛"# +

𝛾7𝑇𝑜𝑡𝑎𝑙	𝑎𝑠𝑠𝑒𝑡𝑠"# ∗ 𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛"# + 𝑧"̅𝜌& + 𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛"#𝑧"̅𝜌$ + 𝜉&ℎT"# + 𝜉$𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛"#ℎT"# +

𝛿$𝑡𝑟𝑒𝑛𝑑 + 𝛿7𝐷_𝑟𝑒𝑔𝑖𝑜𝑛 + 𝑎"#        with  𝐸(𝑎"#|𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛"#, 𝑧"#) = 0∀	𝑖 = 1,… ,𝑁  and 𝑡 = 1,… , 𝑇

 (11) 

 

where the main inputs of a production function such as Material costs, Employment costs, and Total 

assets and their interactions with the selection variable Innovation are included for each year t at 

agricultural firm level i. Since Total assets variable is a proxy of firm size, it might be endogenously 

determined (Gugler and Weigand, 2003; Coles et al., 2012). As a consequence, in our analysis Total 

assets variable is assumed first as an exogenous regressor and then the endogeneity issue is addressed. 

While in the former model, exogenous Total assets variable involves a pooled OLS estimation, in the 

latter, tangible and intangible assets as inputs of a firm’s production function are instrumented by 

Shareholders’ funds variable in the pooled instrumental variable (IV) estimation2.  

As described above, the Mundlak devices (𝑧"̅) and the generalized residuals LℎT"#O of the probit 

correlated random effect model and their interactions with the Innovation variable are also included. 

The presence of a time trend (𝑘#9)  and the regional dummies is often comprised in panel data 

estimations. 

Assuming that innovation decision may be represented as a dichotomous choice which is observable, 

agricultural firms choose to adopt an innovation behavior only if the difference between operating 

revenues of innovating and not innovating is positive. As a consequence, the panel probit model for 

innovation behavior should be written as: 

 

𝑃𝑟(𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛"# = 1|𝑧"#) = 𝛼& + 𝛼$𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙	𝑐𝑜𝑠𝑡𝑠"# + 𝛼7𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡	𝑐𝑜𝑠𝑡𝑠"# +

𝛼9𝑇𝑜𝑡𝑎𝑙	𝑎𝑠𝑠𝑒𝑡𝑠"# + 𝛼j𝑅𝑎𝑖𝑛_𝑠𝑝𝑟𝑖𝑛𝑔"# + 𝛼l𝑀𝑎𝑥_𝑡𝑒𝑚𝑝_𝑠𝑢𝑚𝑚𝑒𝑟"# + 𝛼m𝑀𝑖𝑛_𝑡𝑒𝑚𝑝_𝑠𝑝𝑟𝑖𝑛𝑔"# + 𝑧"̅𝜌& +

𝑘#9 + 𝛿7𝐷_𝑟𝑒𝑔𝑖𝑜𝑛 + 𝑣"#∀	𝑖 = 1,… ,𝑁 and 𝑡 = 1,… , 𝑇 (12) 

 

where (𝑧"#) are the exogenous explanatory variables coming from the outcome equation such as 

Material costs, Employment costs, and Total assets and the exclusion restrictions of the selection 

 
2 As underlined by Murtazashvili and Wooldridge (2016), accounting for time-invariant unobservables makes 
plausible to hypotheses that Shareholders’ funds may satisfy the strict exogeneity requirement and may be 
considered as a valid instrument for Total assets. 
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equation such as the climatic variables. These variables are measured by the rolling mean window over 

the 5 years in precipitation during spring season (Rain_spring), the rolling mean window over the 5 

years in maximum temperature during summer season (Max_temp_summer), and finally, the rolling 

mean window over 5 years in minimum temperature during spring season (Min_temp_spring). It is 

worth to note that when Total assets variable is assumed endogenous, it is replaced by its instrument 

(Shareholders’ funds) in equation (8). As usual, a time trend (𝑘#9), regional dummies and Mundlak 

devices are introduced. 

To study the effect of innovation decision on agricultural firms’ operating revenues, we compare 

several panel data methods to the control function technique. Specifically, we estimate the panel data 

using the fixed-effects (FE) estimator when Total assets is considered as exogenous and the 

instrumental variable fixed effects (IV-FE) estimator if Total assets is endogenously determined. 

 

3. Results and Discussion 

 

The estimates of the determinants of innovation and the impact of innovation on operating revenues are 

estimated in a selection and an output equation jointly. In fact, the firms that innovate typically present 

a different level of operating revenues with respect to those firms that do not innovate. An endogenous 

switching regression model is advocated as better way of modeling the joint determination of firm’s 

innovation and operating revenue. The endogeneity of switching from innovating to non-innovating 

comes from the fact that the decision to innovate and the level of operating revenues are not 

independent.  

Moreover, as highlighted in Section 2.2, one of the main determinants of the operating revenues, the 

total asset, might be affected by potential endogeneity. W with c2 (1)=3.364 and p-value= 0.066. Since 

there are two endogenous components in our estimated model, at least two instrumental variables are 

needed. First, as exclusion restrictions we exclude from the outcome equations climatic variables in 

order to exploit them as instrument for the decision to innovate. We basically argue that climatic 

variables have no direct effects on firms’ operating revenues once we control for the firm’s innovation 

decision. Second, shareholder funds are used as an instrument for total asset variable in the outcome 

equation. Since time-invariant unobservable heterogeneity is taken into account, it is assumed that 

shareholder funds variable satisfies the strict exogeneity requirement and can be considered as a valid 

instrument for total asset. 
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Table 3 and 4 show results of the first and second stage coefficient estimates that are used to estimate 

the operating revenue equation. More specifically, Table 3 reports the estimation coefficients of the 

first stage.  Column (1) reports the first stage results of the FE-IVREG where total asset is an 

endogenous regressor and the decision of innovating is an exogenous explanatory variable (see column 

(2) of Table 4 for the second stage). Columns (2) and (3) show the estimation coefficients of the first 

step (pooled) probit for the choice of innovating that is then used in the second step of the CF approach 

where the total asset is exogenous and endogenous, respectively. Regression (1), (2) and (3) in Table 3 

include regional and trend variables. In addition, regression (2) and (3) include time averages of the 

corresponding set of explanatory variables (Mundlak devices) except for time-invariant variables such 

as regional and trend variables, as they are perfectly collinear with their time averages. 

Results in the first regression of Table 3 suggest that shareholder funds are statistically significant at 

the 1% level where it is used as instrument. As shown, the included exogenous variables are all positive 

and significant with the exception of the interaction terms of material and employment costs. It is worth 

to note that, as expected, innovation has a positive and significant effect on firms’ operating revenue. 

As results in columns (2) and (3) show, climatic variables are statistically significant in both 

regressions. Additionally, an increase in the rolling mean of precipitation during spring season reduces 

the probability of innovating. In this case the positive effect of rainfall decreases the need of pushing 

innovation both for farmers and for firms in agricultural sector. On the other hand, with the increase of 

the maximum temperature average during the summer season the firms are more likely to innovate, as 

reaction to the adverse climatic conditions. Moreover, the negative and significant relationship between 

the minimum temperature during spring season and the innovation effort can be explained by the fact 

that a more moderate weather during the growing season might have a positive effect on the yield and 

consequently on the entire agricultural sector. 
 

Table 3. First stage coefficient estimation 
 (1) (2) (3) 
 First stage FE-IVREG Pooled Probit Pooled Probit with 

total asset 
endogenous 

Dependent variable Total asset Innovation Innovation 
    
Material costs 0.235*** -0.164 -0.091 
 (0.062) (0.891) (0.852) 
Employment costs 0.263*** -3.240** -3.147** 
 (0.080) (1.309) (1.292) 
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Total assets  -0.013  
  (0.940)  
Innovation (yes=1) 0.253**   
 (0.119)   
Material costs * Innovation -0.082**   
 (0.038)   
Employment costs* 
Innovation 

-0.006   

 (0.043)   
Total assets *Innovation 0.060**   
 (0.027)   
Shareholder funds 0.384***  -0.267 
 (0.051)  (0.621) 
Rolling mean window over 5 
years in precipitation during 
spring season 

 -0.007* -0.007* 

  (0.004) (0.004) 
Rolling mean window over 5 
years in maximum 
temperature during summer 
season 

 0.066** 0.068** 

  (0.027) (0.027) 
Rolling mean window over 5 
years in minimum 
temperature during spring 
season 

 -0.073* -0.076** 

  (0.039) (0.039) 
Constant  -11.715*** -11.918*** 
  (1.590) (1.711) 
N 1014 833 833 
Log-likelihood 1860.109 -443.613 -443.916 
Trend variable and regional effectsare included. Columns (2) and (3) include Mundlak correction. 
Fully robust standard errors are shown in parentheses. 
*p< 0.1, **p< 0.05, ***p< 0.01 
 
Table 4 provides the coefficient estimates of the operating revenues equation using four different 

estimation methods under different assumptions. First, in columns (1) and (2) we report the FE and FE-

IV coefficient estimates of the operating revenues, respectively, where all the outcome equation 

determinants are treated as exogenous and when total asset is considered as an endogenous regressor. 

Then, we move to more plausible operating revenue equations. Particularly, in columns (3) and (4) of 

Table 4 we allow for endogeneity of the innovation by using a CF approach and total asset is 

considered as an exogenous and endogenous regressor, respectively. Note that regressions (3) and (4) 

of Table 4 are the second step estimations of regressions (2) and (3) of Table 3. All regressions 

reported in Table 4 include full sets of regional and trend variables as well as interactions with the 
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dummy for whether the firm produced patents or not. Moreover, regressions (3) and (4) contain 

specific additional regressors such as generalized residuals, time averaging covariates and their 

interactions with innovation dummy3 . 

We observe substantial homogeneity in the parameter estimates across different methods and 

specifications, except for the interaction terms. In the CF approach compared to the estimation methods 

used in columns (1) and (2), interaction terms change their signs, even if they are mostly no significant.  

In line with the accounting literature, we find that material and employment costs and total assets 

positively affect the operating revenues. Firms that hire more employees or increase their wages and 

companies which increase their investments are predicted to reach a better performance. This effect is 

statistically significant at 1% level in all the regressions considered but one, the parameter of total 

assets in regression (3). 

Furthermore, estimation results suggest that the decision of innovating does not affect positively the 

operating revenues, regardless of the estimation method used. However, the coefficients are in all the 

cases not significant, but in one case (regression 3). Apparently, this finding seems to contradict the 

standard wisdom in the field of innovation. This contradiction is actually not that puzzling; it might be 

related to the fact that the lagged effects of the patent variable on the performance was not directly 

considered in the analysis. Producing patents at time t might have a positive effect in t + n. Findings 

drawn from the literature suggest that a plausible period of time for lagged effect can be assumed to 

vary from 2 up to 4-year lag (Griliches et al., 1991; Ernst, 2001; and Huang et al., 2016). Although this 

lagged effect is not directly addressed in our model, introducing generalized residuals in the outcome 

equation allow us to capture the lagged effect of innovation related to weather variability. In fact, 

generalized residuals estimated in the first stage include the influence of backward-looking rolling 

climatic variables and thus show positive and significant coefficients. 

We observe substantial variability in the parameter estimates of the interaction terms across different 

methods and specifications. When assuming exogeneity of innovating, parameters are statistically 

significant at least at some conventional level in both regressions (1) and (2). Material costs interact 

positively with innovation increasing operating revenues, on the other hand, employment costs and 

total assets interacted with innovation dummy are predicted to result in a decrease in outcome variable.  

 
3 To save space, we do not report in Table 4 the last two set of variables. Results are available under request. 
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The generalized residuals from the pooled probit for the indicator of innovation are statistically 

significant at 5% level. Given this evidence, the endogeneity of the innovation decision in the operating 

revenue equation is confirmed. The endogeneity of switching from innovating to non-innovating is also 

tested and verified by the result of the Wald test reported in the last row of Table 4. When assuming 

endogeneity of the total assets regressor, an under-identification test is provided (in the last panel of 

Table 4). A rejection of the null hypothesis indicates that the matrix is full column rank, thus the model 

is identified. 

Overall, we can conclude that the CF approach allows us to obtain the most plausible regression results 

under the assumption of endogeneity in the innovation decision and in the total assets regressor.   

 

Table 4. Second stage coefficient estimation 
 (1) (2) (3) (4) 
 FE FE-IV CF CF with total 

asset 
endogenous 

Material costs 0.499*** 0.477*** 0.558*** 0.537*** 
 (0.070) (0.037) (0.073) (0.075) 
Employment costs 0.338*** 0.312*** 0.328*** 0.312*** 
 (0.051) (0.047) (0.106) (0.106) 
Total assets 0.129*** 0.197*** 0.115 0.170*** 
 (0.035) (0.046) (0.092) (0.028) 
Innovation (yes=1) -0.051 -0.067 -0.367* -0.355 
 (0.071) (0.061) (0.212) (0.220) 
Material 
costs*Innovation 

0.056*** 0.062*** -0.110 -0.091 

 (0.021) (0.021) (0.143) (0.146) 
Employment 
costs*Innovation 

-0.039** -0.038* 0.004 0.022 

 (0.019) (0.020) (0.167) (0.144) 
Total assets*Innovation -0.015* -0.020 0.020 -0.032 
 (0.009) (0.014) (0.129) (0.038) 
Generalized residuals   0.050** 0.046** 
   (0.024) (0.022) 
Generalized 
residuals*Innovation 

  -0.001 0.001 

   (0.012) (0.012) 
Constant 1.565**  1.800*** 1.799*** 
 (0.620)  (0.239) (0.243) 
N 1027 1014 833 833 
Log-likelihood 2749.401 2689.698 1578.556 1574.979 
Kleibergen-Paaprk LM 
statisticc2(1) 

 17.142  46.949 
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P-value  0.000  0.000 
Wald test c2(2)   11.84 11.55 
P-value   0.003 0.003 
Note. Fully robust standard errors for FE and FE-IV approaches and bootstrapped standard errors for the CF approaches are 
reported in parentheses. Trend variable and regional effects are included. Columns (3) and (4) include Mundlak correction. 
The entire results for the reported regressions are available upon request.  
*p< 0.1, **p< 0.05, ***p< 0.01 
 

Starting from the specifications (3) and (4), we computed Average Treatment Effects on Treated to 

assess the effect of innovation on firms’ performance. Table 5 presents the actual (column A) and 

counterfactual (column B) operating revenues on treated (enterprises that are effectively innovators). 

The column A reports the actual expected outcomes that are observed in the data for those firms that 

innovate, while column B provides the counterfactual expected value, i.e. the operating revenues of 

those firms that innovate if they decided to not innovate. Results are split in three panels. First, ATET 

are computed distinguishing between the northern and the southern part of Europe. Second, the impact 

on the operating revenues of firms that innovate is reported according to agricultural and no-

agricultural patents. Finally, in the last panel the overall impact of innovation is described. 

As shown in the last line of Table 5, results confirm that there are significant differences in terms of 

firms’ performance between operating revenues whether a firm innovates or not. The impact is positive 

in both model specifications. The operating revenues are 18.8 percentage points higher with innovation, 

though this percentage substantially decreases at 8.6 after controlling for endogeneity of total assets. 

Our results also suggest that the innovation impact is higher in the Northern European countries 

compared to the Southern ones (0.26 versus 0.06 percentage points higher when total assets is treated 

as exogenous and 0.14 versus -0.01 percentage points higher when total assets is considered as 

endogenous). It is worth to point out that for Southern countries benefits from innovation are 

statistically and significantly close to zero or even less than zero. Based on this finding, firms in 

agricultural sector and located in the South of Europe should be supported in following a more 

innovative behavior through tax allowances and incentives in R&D investments as well as improving 

local infrastructures. This is mainly true given that increasing in average temperature due to CC will 

intensify problems of droughts, especially in the Mediterranean region (Goubanova and Li, 2006; 

Rodriguez Diaz et al., 2007; IPCC 2014). 

Finally, comparing the results between the two specifications also emerges that investing in the 

production of agricultural patents compared to the other typologies slightly increase the firms’ 

performance in agricultural sector. 
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Table5. Impact of innovation on operating revenues 
 OLS - Pooled with total assets exogenous IVREG - Pooled with total assets endogenous 

 
Actual outcome 

(Operating 
revenue if firm 

innovates) 

Counterfactual 
outcome 

(Operating 
revenue if firm 

does not 
innovate) 

ATET P-values 

Actual 
outcome 

(Operating 
revenue if 

firm 
innovates) 

Counterfactual 
outcome 

(Operating 
revenue if firm 

does not 
innovate) 

ATET P-values 

 A B C=A-B  A B C=A-B  

Northern EU countries 1,035,696 818,915.6 216,780.5 (0.000)*** 1,035,416 909,579 125,836.6 (0.001)*** 

Southern EU countries 124,048.5 117,506.6 6,541.89 (0.000)*** 124,043.1 125,110.3 -1,067.17 (0.000)*** 
         

Agricultural patents 298,177.8 256,551.5 41,626.26 (0.048)** 299,256.2 279,049.2 20,206.92 (0.079)* 

No agricultural patents 193,475.9 169,039.8 24,436.09 (0.037)** 194,267.3 182,979 11,288.33 (0.111) 
         

Overall 306,378 257,788.4 48,589.62 (0.000)*** 306,317.6 282,004 24,313.58 (0.001)*** 

Note: All values are expressed in constant 2010 Euros. The standard errors are corrected using bootstrapping to account for 
first-stage estimation.  P-values in parenthesis; *p< 0.1, **p< 0.05, ***p< 0.01 
 

 

 

4. Concluding remarks 

 

The increasing frequency of extreme weather events due to CC will likely raise the incidence of 

environmental disasters and the depletion of agricultural resources with negative consequences on 

global food supply. As the agriculture sector is expected to suffer the most from the negative effects of 

CC, we focused on firms operating in this sector and on how they will react to these new climatic 

challenges. Specifically, we investigate the role of technological innovation in the handling of climate 

and weather risks and the interaction between the effects of climate and weather variability and 

innovation capabilities, as firms’ adaptation strategy. To capture differences across the EU regions and 

the trend during the selected period, the analysis is based on an unbalanced panel at the firms’ level. 

Evaluating the impacts of innovation and its effect on the firms’ outcome requires controlling for 

potential selection bias and unobserved heterogeneity. When the selection process might be generated 

by time-varying unobserved heterogeneity that affects firms’ performance, a panel estimator alone 

might not be sufficient. To overcome this issue, we apply the control function approach which allows 

us to address self-selection issue and the endogenous explanatory variable problem. 
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Controlling for the time-varying selection bias affecting innovation choice our results find that climatic 

variables have a statistically significant impact on firms’ probability of innovating. This enhances the 

empirical evidence on whether and how climate-induced innovations have responded to weather 

variability. Taking into consideration the generalized residuals of the probit estimation and the 

endogeneity issue of one production input as total assets, we may affirm that bigger firms in terms of 

higher employees’ costs or investments are predicted to reach a better performance. The same positive 

effect is obtained by the generalized residuals which including the influence of backward-looking 

rolling climatic variables may raise the operating revenues of firms belonging to the agricultural sector. 

Finally, the average treatment effect (ATT) results confirm that innovative firms are substantially 

different from those who do not innovate. More specifically, if a firm chooses of innovating, this has a 

positive effect on its performance which rises. The greater is this effect the more likely the firm is 

innovative and resides in the northern European countries. Moreover, whenever a firm issues patents 

which belong to the agricultural code classification of the European Patent Office, the higher is the 

benefit that gains in terms of operating revenues. 
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