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Abstract

In this paper we introduce a new decomposition method for aggregate produc-
tivity growth. Our methodology does not require to impose a production function
but uses only the empirical input output data of production. Moreover it computes
productivity in the very same way both at the individual establishment level and
at the aggregate level, while standard methods compute the latter as a weighted
average of the former, were the choice of weights is arbitrary and the loss of in-
formation implied by aggregation is substantial. We show that our methodology
is particularly appropriate when production units are more heterogeneous and we
test out methodology both with artificial and with empirical data.

JEL codes: D24; C67; C81; O30
Keywords: Productivity measure; Decomposition of aggregate productivity growth;

Firm heterogeneity

1 Introduction

In recent years an extremely robust evidence regarding firm- and plant- level longitudinal
microdata has highlighted striking and persistent heterogeneity across firms operating in
the same industry. A large body of research from different sectors in different countries
(Baily et al., 1992; Baldwin and Rafiquzzaman, 1995; Bartelsman and Doms, 2000; Dis-
ney et al., 2003a; Dosi, 2007; Syverson, 2011) documents the emergence of the following
“stylized facts”: first, wide asymmetries in productivity across firms; second, significant
heterogeneity in relative input intensities even in presence of the same relative input
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prices; third, high intertemporal persistence in the above properties. Fourth, such het-
erogeneity is maintained also when increasing the level of disaggregation, thus plausibly
reducing the diversity across firms’ output.

The latter property has been vividly summarized by Grilliches and Mairesse (1999) “
We [...] thought that one could reduce heterogeneity by going down from general mixtures
as “total manufacturing” to something more coherent, such as “petroleum refining” or
“the manufacture of cement”. But something like Mandelbrot’s fractal phenomenon seems
to be at work here also: the observed variability-heterogeneity does not really decline as
we cut our data finer and finer. There is a sense in which different bakeries are just as
much different from each others as the steel industry is from the machinery industry.”

The bottom line is that firms operating in the same industry display a large and
persistent degree of technological heterogeneity while there does not seem to be any clear
sign that either the diffusion of information on different technologies, or the working of
the competitive mechanism bring about any substantial reduction of such a heterogeneity,
even when involving massive differences in efficiencies, as most incumbent theories would
predict.

This evidence poses serious challenges not only to theory of competition and market
selection, but also to any theoretical or empirical analysis which relies upon some notion
of industry or sector defined as a set of production units producing under rather similar
input prices with equally similar technologies, and the related notion of “the technology”
of an industry represented by means of a sectoral production function. Indeed, the
aggregation conditions needed to yield the canonic production functions building from the
technologies of micro entities are extremely demanding, basically involving the identity
of the latter up to a constant multiplier (Fisher, 1965; Hulten, 2001).

Note that these problems do not only concern the neoclassical production function,
whose well known properties may either not fit empirical data or fit only spuriously,
but also non neoclassical representations of production at the industry level. If input-
output coefficients à la Leontief (1986) are averages over distributions with high standard
deviations and high skewness, average input coefficients may not provide a meaningful
representation of the technology of that industry. Moreover, one cannot take for granted
that changes of such coefficients can be interpreted as indicators of productivity change
as they may be just caused by some changes in the distribution of production among
heterogeneous units, characterized by unchanged technologies.

How does one then account for the actual technology - or, better, the different tech-
niques - in such industry? Hildenbrand (1981) suggests a direct and agnostic approach
which instead of estimating some aggregate production function, offers a representation
of the empirical production possibility set of an industry in the short run based on actual
microdata. Each production unit is represented as a point in the input-output space
whose coordinates are input requirements and output levels at full capacity. Under the
sole assumptions of divisibility and additivity of production processes, the production
possibility set is represented geometrically by the space formed by the finite sum of all
the line segments linking the origin and the points representing each production unit,
called a zonotope (see below). Hildenbrand then derives the actual “production func-
tion” (one should more accurately say “feasible” production function) and shows that “
short-run efficient production functions do not enjoy the well-known properties which are
frequently assumed in production theory. For example, constant returns to scale never
prevail, the production functions are never homothetic, and the elasticities of substitution
are never constant. On the other hand, the competitive factor demand and product sup-
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ply functions [...] will always have definite comparative static properties which cannot be
derived from the standard theory of production” (Hildenbrand, 1981, p. 1095).

Dosi et al. (2016) move a step forward and show that by further exploiting the proper-
ties of zonotopes it is possible to obtain rigorous measures of heterogeneity and productiv-
ity change without imposing on data a model like that implied by standard production
functions. In particular, they develop a measure of industry productivity change that
takes into consideration the entire observed production possibility set derived from ob-
served heterogeneous production units, instead of considering only an efficient frontier.

The contribution of this work is twofold. First, we extend the industry-level produc-
tivity measure derived from the main diagonal of the (industry) zonotope (Dosi et al.,
2016) to the firm level. Our firm-level measure of productivity maintains the high degree
of flexibility (both in terms of number of inputs and outputs) as the industry-level mea-
sure and does not require to impose most of the assumptions generally imposed in the
standard production function framework. Second, within the vectorial framework, i.e.
zonotope, where multiple inputs are taken into account, we point out that, besides the
classic “within” and “between” effects (Foster et al., 2001), the change of heterogeneity of
the industry also contributes to the aggregate (industry) productivity growth. Based on
the consistent measure of productivity in industry- and firm- levels abovementioned, we
develop a new method to decompose the APG into three parts: two items, as counterparts
of “within” and “between” effects, and one item measuring contribution from heterogene-
ity change. Some toy examples are provided to help understand our new method and
empirical evidence to support change of heterogeneity as one non-trivial component of
the decomposition of APG.

The rest of the paper is organized as follows. Section ?? summarizes the main methods
for decomposing APG which have been used in previous studies and investigates the
potential problems of these methods. Section 3 points out the change of heterogeneity in
firm-level contributes to APG and proposes one decomposition method, based on vectorial
setting up, to measure this contribution. Section 4 applies our proposed decomposition
method on empirical data and shows that the contribution of the change of heterogeneity
is not trivial based on empirical evidence. Finally, section 5 concludes.

2 Decomposition of APG in Previous Literature

Many empirical studies1 highlight the effect of reallocation and heterogeneous produc-
tivity on aggregate productivity growth (APG). To do so, virtually they consider the
decomposition of APG. In section 2.1, we summarize two main decomposition methods
popular in previous studies according to Foster et al. (2001). In section 2.2 we discuss
the potential issues with these methods.

2.1 A brief review of the existing decomposition methods

Foster et al. (2001) compare the two major decomposition methods of an industry ag-
gregate productivity. The aggregate productivity P t at time t is defined as the weighted

1Among the many, Baily et al. (1992); Olley and Pakes (1996); Bartelsman and Dhrymes (1998);
Dwyer (1998); Haltiwanger (1997) use data from US, Aw et al. (1997) from Taiwan, Liu and Tybout
(1996) from Chile and Colombia, Grilliches and Regev (1995) from Israel, and Dosi et al. (2015) from
France, Germany, and the UK.
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average of the productivities of individual firms:

P t :=
∑
i∈It

wtip
t
i (1)

where I t is the set of all firms in the industry at time t, wti is the weight/share (e.g.
output share) of firm i in this industry, and pti is the productivity of firm i. Aggregate
productivity growth is defined as the difference of the aggregate productivities between
two (consecutive) time periods.

A decomposition method for aggregate productivity growth was introduced by Baily
et al. (1992):∑
i∈It

wtip
t
i −

∑
i∈It−1

wt−1i pt−1i =
∑
i∈C

wt−1i ∆pti +
∑
i∈C

pti∆w
t
i +
∑
i∈N

wtip
t
i −
∑
i∈X

wt−1i pt−1i (2)

where C denotes continuing firms, i.e. those active in both periods, N denotes the set of
firm are new entries in the industry, X denotes firms that have exited the industry and
the operator ∆ represents change from time t − 1 to time t, i.e. ∆pti = pti − pt−1i and
∆wti = wti − wt−1i . The first term, originally called “fixed shares”, represents a within-
firm component given by each firm’s productivity change, weighted by the initial shares
in the industry. The second term, originally called “share effect”, represents a between-
firm component that reflects changing shares, weighted by the productivities of the final
period. The last two terms represent the contribution of the firms that, respectively,
entered and exited the industry.

A second decomposition method was introduced by Grilliches and Regev (1995). It
only differs from the previous one in the weights used to compute the “within” and the
“between” effects. Rather than using either the initial or the final weights, this method
employs their averages:∑

i∈It
wtip

t
i −

∑
i∈It−1

wt−1i pt−1i =
∑
i∈C

w̄i∆p
t
i +
∑
i∈C

p̄i∆w
t
i +
∑
i∈N

wtip
t
i −
∑
i∈X

wt−1i pt−1i (3)

where the bar over a variable indicates the average w̄i =
wt

i+w
t−1
i

2
and p̄i =

pti+p
t−1
i

2
. In this

decomposition, the first term can be interpreted as a within effect which is measured by
the sum of productivities weighted by the average (across time) shares. The second term
represents a between effect where the changes in the shares are indexed by the average
firm-level productivities. The last two terms represent the contribution of the firm which
entered and exited the industry.2

Finally, Haltiwanger (1997) refines this decomposition by weighting the between effect
with the deviations of initial firm productivities from the initial industry index. Because
of this deviation term a continuing firm whose output increases and a new entry will con-
tribute positively to the index only if their productivities are higher than the aggregate,
while an exiting firm will contribute positively only if its productivity was lower than the
aggregate. Without such a deviation the between effect may be non zero even when all
individual productivities remain constant if the share of entering and exiting firms are
different. Below we will discuss how our methodology deals with this kind of problem.

2To be more precise, Grilliches and Regev (1995) treat all entering and exiting firms as one firm.
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2.2 Some problems with the current decomposition methods

Defining aggregate productivity as a weighted average of the productivities of individual
firms leaves open the question of which weights should be used. Different weights will, in
general, deliver different aggregate values and therefore also different decompositions.

As an illustration, consider the extreme case of a hypothetical industry composed of
the two highly heterogeneous firms described in Table 1.

Table 1: An Hypothetical Industry with Two Firms

Firm Labour Output Labour Productivity

A 1 100 100

B 100 1 0.01

Aggregate (Industry) 101 101 1

To compute the aggregate productivity (AP henceforth) of this industry we can use
either input or output shares as weights. With the former we obtain an AP of 1, while
with the latter we obtain a value very close to 100, i.e. the productivity of firm A.

Alternatively, instead of computing AP as a weighted average, we could compute it
directly, by considering the industry as one large firm producing the industry total output
with the industry total input. This measure is 1 in our example, and it is equal to the
value obtained with inputs as weights because we are considering a case with only one
input. With multiple inputs this equality does not hold in general.

When we have multiple inputs we normally aggregate them into a synthetic measure
called total factor productivity (TFP). But the calculation of TFP requires the assump-
tion of a specific production function and the empirical estimation of its parameters.

This “direct” aggregate measure presents some important advantages over measures
obtained as weighted averages. The first and most important feature is that AP is
computed exactly in the same way for the individual and for the aggregate. Suppose
for instance that some production units merge into a single entity (for instance two
firms merge legally, if our unit of analysis are firms) keeping exactly the same input-
output structure. Weighted average measures would change3 although the input-output
structure of the industry has remained exactly the same. The productivity computed
directly on the aggregate would instead remain unchanged.

More in general, no matter the method adopted, when we try to summarize multiple
pieces of information, i.e. quantities of each input and quantity of output, into one
number, i.e. the productivity level, we inevitably lose information. One number is not
enough to represent the complete production activity and it is possible to have firms
with very different production activities but same productivity level. Thus, since every
time we compute a productivity value we lose information, in principle it is preferable
to minimize the number of such computation. Now, if we compute AP as a weighted
average of the productivities of n firms we will lose information n+1 times, whereas if we
compute productivity directly on the aggregate level, we only do it once. There is more
information extracted from firm-level to industry level, by aggregating firms’ production
activities than firms’ productivities. Moving now to average productivity growth (APG

3To be more precise, AP will be different if computed using outputs as weights and using TFP with
multiple inputs. It would not change in the case of a single input.
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henceforth), one can choose the weights of either the initial period or of the final one or
some average value. Also in this case the choice will matter and different weights may
produce significantly different decompositions. For example, Haltiwanger (1997) argues
that, since Baily et al. (1992) use the productivities of the final period in computing the
“share effect”, this effect does actually capture both the between effect and the covariance
term.

Finally, when we have
As a result, it seems more reasonable to define AP in the aggregate level instead of

following definition (1). Then the next question is whether without defining the weighted-
average form for AP, we can still perform a decomposition of its variations into a within
and a between component? Contrary to what is usually believed, in the next session we
show that the answer to this question is yes.

3 Productivity growth in firms and industries: a uni-

fied framework

In this section we propose our decomposition method of AP and APG. We start with an
empirical representation of an industry as a set of heterogeneous firms first introduced by
Hildenbrand (1981) and later developed by Dosi et al. (2016). Such a representation does
not assume the existence of a production function, but nevertheless allows to compute
rigorous aggregate measures of productivity and, as we show below, decompositions of
their variation which preserve coherence when passing from individual firms to industry
aggregates. We first introduce some notation and definitions in subsection 3.1. Then, in
subsection 3.2, we propose our measure of productivity both for individual firms and for
an industry and show how the latter can be decomposed into a “within” and a “between”
effect. In section 3.3, we further discuss the role of heterogeneity among firms in APG. In
section 3.4, we extend our proposed decomposition method by taking into account firm
entry and exit and, finally, in section 3.5 we illustrate our methodology with some toy
examples, before presenting, in section 4, an empirical application to real data.

3.1 Notation and definitions

Following Koopmans (1977) and Hildenbrand (1981) we represent the actual technique
of a production unit i by means of the vector of its production activity :

ati =
(
αti,1, · · · , αti,(l−1), αti,l

)
∈ Rl

+, (4)

where αti,l is the output in period t and
(
αti,1, · · · , αti,(l−1)

)
is the vector of inputs. In this

section we will analyze the case of single-output activities. The extension to multiple
outputs will be briefly discussed in appendix B. If I t denotes the set of all production
units within one industry at time t, the aggregate (industry) production activity can be
defined as:

dt =
(
βt1, · · · , βl−1, βtl

)
=

(∑
i∈It

αti,1, · · · ,
∑
i∈It

αti,(l−1),
∑
i∈It

αti,l

)
∈ Rl

+ , (5)

i.e. the sum of all individual firm production activities in the industry.
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The productivity pti of the production unit i at time t can be measured as the tangent
of the angle θ(ati) that the vector ati forms with the space of inputs (Dosi et al., 2016).
To give the intuition behind this measure of productivity, let us consider the case of only
one input. Clearly, the larger the angle that the vector representing a production activity
forms with the input axis, and therefore the smaller the angle it forms with the output
axis, the more productive is the activity. By extension to the case of multiple inputs we
obtain the following productivity indicator:

pti := tg
(
θ(ati)

)
=

αti,l
||pr (ati) ||

(6)

where the map

pr : Rl → Rl−1

(x1, · · · , xl) 7→ (x1, · · · , xl−1)

is the projection map on the space of inputs4.
Similarly, we define the aggregate productivity AP of the industry at time t, denoted

by P t, as

P t := tg
(
θ(dt)

)
=

βt

||pr (dt) ||
. (7)

Notice that while βt =
∑

i∈It α
t
i,l is the total output of the industry, in general

||pr (dt) || 6=
∑

i∈It ||pr (ati) ||, the equality holding only either in the case of a unique
input or, in the case of multiple inputs, only when all the vectors pr(ati) lie on the same
line and therefore production activities are perfectly homogeneous and differ only in their
scale. If instead techniques are heterogeneous and firms use different combinations of in-
puts, the inequality ||pr (dt) || 6=

∑
i∈It ||pr (ati) || holds. This heterogeneity component is

an important feature of our model and we will further discuss it later in the paper.

3.2 Decomposing APG into within and between Effects

AP, defined in equation (7), can be further written as a weighted average of individual
productivities pti, since

P t =
βt

||pr (dt) ||
=

∑
i∈It α

t
i,l

||pr (dt) ||
=
∑
i∈It

||pr (ati) ||
||pr (dt) ||

αti,l
||pr (ati) ||

from which, by (6), we get the decomposition

P t =
∑
i∈It

wtip
t
i (8)

where the weights

wti :=
||pr (ati) ||
||pr (dt) ||

(9)

represent the input-based weights defined as the relative length of individual input vectors
||pr (ati) || over industry input vector ||pr (dt) ||. As already mentioned, the length of the

4This can be easily generalised to multi-output case simply considering a different projection map
(see Dosi et al. (2016)).
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industry input vector ||pr (dt) || is not necessarily equal to the sum of the lengths of the
individual input vectors ||pr (ati) ||, thus

∑
i∈It w

t
i is not necessarily equal to 1 except for

the one input case or for perfectly homogeneous firms.
Equality (8) indicates that AP can be written as a weighted average of individual

productivities pti. However, it is important to stress a fundamental methodological differ-
ence between how we obtain this weighted average and the standard approaches that we
briefly surveyed in section ?? above. In the latter, AP is defined and hence computed
as the weighted average of individual productivities, no matter how such individual pro-
ductivities are measured. In our framework instead it is defined and computed in exactly
the same way as we compute individual productivities. Moreover, the measure of AP we
propose is also straightforward generalization of the one-input-one-output case. When
there is only one input, the industry input vector degenerates to one number and the
tangent of the angle we use to measure AP, according to (7), becomes the quotient of
the sum of all outputs divided by the sum of all inputs. Input based weights in (9),

wti =
αt
i,1∑

i∈It α
t
i,1

are nothing else than input shares with sum equal to 1.

Now we show that our measure of AP can indeed be decomposed and the standard
effects outlined by the traditional literature can indeed be easily computed also in our
framework. For the sake of simplicity we first introduce our decomposition method only
for the set C of continuing firms, i.e. all those that are active both in period t− 1 and in
period t. Entry and exit will be introduced later in section 3.4.

Such continuing firms are described at time t − 1 by the vector set {at−1i }i∈C ∈ Rl
+

and at time t by the vector set {ati}i∈C ∈ Rl
+. Let dt−1 and dt, computed according to

(5), represent the corresponding aggregates at time t−1 and t respectively. Given all the
production activity vectors, aggregate and individual productivity at t− 1 and t can be
easily computed according to (7) and (6) respectively.

We can now decompose APG, defined as the difference of AP between two consecutive
years, into within-firm and between-firm components5:

∆P t =
∑
i∈C

w̄i∆p
t
i︸ ︷︷ ︸

Within

+
∑
i∈C

p̄i∆w
t
i︸ ︷︷ ︸

Between

, (10)

where ∆ represents the variation from year t−1 to year t and w̄i, p̄i are average of weights
and productivities respectively.

In the above decomposition, the within term represents the contribution given to
APG by the variations of the individual productivities and it is therefore similar to the
“within” effect in the current literature. The between term present instead an important
difference when compared with the “between” effect in the standard literature. In the
latter, the weights wti are defined either as input or output shares and, in both cases,∑

i∈C w
t
i = 1. This is not the case in our decomposition (10) where, since the sum of the

lengths of individual input vectors is not necessarily equal to the length of the sum of
individual input vectors, i.e. the length of the industry input vector, we have, in general,∑

i∈C w
t
i 6= 1. We will discuss this point in details in the next subsection and show that,

actually, our between effect can be further decomposed.

5All the mathematical details which lead to this decomposition can be found in appendix A.
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3.3 Further Decomposing the Between Effect

In this section, we show that we can further decompose our Between term into two parts,
an input weights component and a heterogeneity component.

Given the aggregate dt and the individual ati production activities, consider their
projections on the input space and call them pr (dt) and pr (ati). Figure 1 provides a
graphical representation for the special case with two inputs, capital K and labour L, and
one output. Notice that if all individual production activities used the same proportion
of inputs and differed only in scale and/or productivity, all the projection vectors pr (dt)
and pr (ati) would overlap. On the other hand, the further away pr (ati) is from pr (dt),
the more the combination of inputs used by firm i differs from the industry average
combination. To measure this difference, we introduce ϕti which is the angle formed by
the individual input vectors pr (ati) and the industry input vector pr (dt). Notice that
given vectors dt and ati, and thus pr (dt) and pr (ati), it is easy to compute cosϕti for each
firm i at time t.

Figure 1: A graphical explanation for the decomposition of the between effect

K

L

V A

dt

pr(dt)

ati

pr(ati)

bti

ϕt
i

In the input space we denote by bti the projection of pr (ati) onto the industry projection
vector pr (dt) (see Figure 1 for a graphical example). Notice that the length ||bti|| of the
vector bti can be regarded as the contribution of pr (ati) to the length of the industry input
vector pr (dt). Hence, from now on, we will refer to the length ||pr (ati) || of the firm input
vector pr (ati) as the actual input size of firm i and to the length ||bti|| of the vector bti
as the contributing input size of firm i. It is easy to see that ||pr (dt) || =

∑
i∈It ||bti||.
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Since

||pr
(
ati
)
|| = ||bti||

cosϕti
,

we can decompose wti as

wti =
||pr (ati) ||
||pr (dt) ||

=
||bti||

cosϕti

1

||pr (dt) ||
=

||bti||
||pr (dt) ||

1

cosϕti

that is as the product:
wti = sti · hti (11)

of what we could call the “input weights”:

sti =
||bti||

||pr (dt) ||
(12)

and a “heterogeneity coefficient”:

hti =
1

cosϕti
. (13)

Equation (11) shows that the input based weights wti in (9) mix together two different
effects. The first one, sti, represents the contribution of individual firms to the length of
the industry input vector, i.e. our equivalent to the input weights in an multiple input
case. Notice that in this case we have

∑
i∈C s

t
i = 1 and that, in the case of only one input

sti is the standard input share weight. The second one, that we named “heterogeneity
coefficient” hti, measures to which degree the individual input combinations are different
from the industry average combination. The larger this difference, the bigger the angle
ϕti and therefore the coefficient hti. Thus, the sum

∑
i∈C h

t
i can be regarded as an index of

the heterogeneity of input combinations among productive units, and
∑

i∈C ∆hti measures
the variations of such heterogeneity.

Given these two effects, we can further decompose the Between term in (10) into two
parts and thus refine our decomposition of APG as follows:6

∆P t =
∑
i∈C

w̄i∆p
t
i︸ ︷︷ ︸

Within

+
∑
i∈C

p̄ih̄i∆s
t
i︸ ︷︷ ︸

Betweenis

+
∑
i∈C

p̄is̄i∆h
t
i︸ ︷︷ ︸

Heterogneity

(14)

where the Within term is as the same as the one in (10) and the sum of Betweenis, i.e.
the changes of the contributions given by individual firms to the industry total inputs,
plus Heterogeneity, i.e. the changes in the heterogeneity among input combinations, is
equal to the Between term in (10). It is easy to see that when there is only 1 input, hti
is always equal to 1 thus Heterogeneity goes to 0 and the two decompositions (14) and
(10) coincide.

3.4 Decomposing APG with Entering and Exiting Firms

In this section we expand our decomposition of APG by accounting for the contributions
given by production units which may enter or exit the industry during the period under

6Appendix A contains the mathematical details of the derivation of equation 14.
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consideration. Let C be the set of all continuing firms, i.e. those that are active both
in t − 1 and in t, N the set of entering firms which are active in t but not in t − 1,
and X the set of exiting firms which are active in t − 1 but not in t. Let vector sets
{at−1i }i∈{C∪X} ∈ Rl

+ and {ati}i∈{C∪N} ∈ Rl
+ represent all firms active in the industry in

t− 1 and t respectively. According to equation (8) we have

∆P t =
∑

i∈{C∪N}

wtip
t
i −

∑
i∈{C∪X}

wt−1i pt−1i

=
∑
i∈C

(wtip
t
i − wt−1i pt−1i ) + (

∑
i∈N

wtip
t
i −
∑
i∈X

wt−1i pt−1i )

where for all the continuing firms, the term
∑

i∈C(wtip
t
i−wt−1i pt−1i ) can be further decom-

posed as in equation (14) and finally we have

∆P t =
∑
i∈C

w̄i∆p
t
i︸ ︷︷ ︸

Within

+
∑
i∈C

p̄ih̄i∆s
t
i︸ ︷︷ ︸

Betweenis

+
∑
i∈C

p̄is̄i∆h
t
i︸ ︷︷ ︸

Heterogeneity

+
∑
i∈N

wtip
t
i −
∑
i∈X

wt−1i pt−1i︸ ︷︷ ︸
NetEntry

.
(15)

3.5 Toy Example

Table 2 provide an illustrative toy example of an industry composed of 5 production units
(firms) producing a unique output with two inputs, K and L. The first three columns
report the input-output data in year 1. The fourth and fifth columns report the length
||pr (a1i ) || of the input vectors and the length ||a1i || of the production activity vectors
respectively. In the sixth column, we compute the productivities according to equation(6).
Columns 7th to 12th report the same data referred to year 2. The only change taking place
between the two years is an increase of the heterogeneity of the input combinations among
firms, as visualized in Figure 2. The industry becomes more productive, as productivity
increases from 0.5001 to 0.5294. Applying decomposition method in equation (14) this
0.0293 increase of productivity can be decomposed in the following way:

0.0293︸ ︷︷ ︸
APG

= 0︸︷︷︸
Within

−0.0006︸ ︷︷ ︸
Betweenis

+ 0.0299︸ ︷︷ ︸
Heterogeneity

.

which confirms that the within effect is null and the between effect is basically due to
the increase of heterogeneity among firm, which is indeed the only phenomenon taking
place between the two years. The percentages of Betweenis and Heterogeneity over
APG are −2.05% and 102.05% respectively and clearly the APG in this case is mostly
driven by increasing in the inputs heterogeneity7. This contribution given by change in
heterogeneity of inputs can be measured by our proposed decomposition method.

Let us now continue our toy example assuming that in year 3 everything remains
unchanged from year 2 except that firm 3 doubles its output with the same inputs. The
first six columns of Table 3 report these hypothetical data for year 3. Because of the

7Consistently, the heterogeneity measure introduced by Dosi et al. (2016) increases from 2.09025e-06
to 0.00728504.
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Table 2: Toy Example with Five Firms and Increasing Heterogeneity

Year 1 Year 2

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

L K Output
length of

input vector
length of

vector
tg(·) L K Output

length of
input vector

length of
vector

tg(·)

Firm 1 1.414 1.414 1.000 2.000 2.236 0.500 1.414 1.414 1.000 2.000 2.236 0.500

Firm 2 1.464 1.362 1.000 2.000 2.236 0.500 1.764 0.942 1.000 2.000 2.236 0.500

Firm 3 1.424 1.404 1.000 2.000 2.236 0.500 1.864 0.724 1.000 2.000 2.236 0.500

Firm 4 1.374 1.453 1.000 2.000 2.236 0.500 1.044 1.706 1.000 2.000 2.236 0.500

Firm 5 1.394 1.434 1.000 2.000 2.236 0.500 0.564 1.919 1.000 2.000 2.236 0.500

Industry 7.071 7.068 5.000 9.998 11.178 0.5001 6.651 6.705 5.000 9.444 10.686 0.529

Figure 2: Toy Example with Five Firms and Increasing Heterogeneity
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increase of firm 3’s productivity, AP increases from 0.5294 to 0.6353 and this increase
can be decomposed as:

0.1059︸ ︷︷ ︸
APG

= 0.1059︸ ︷︷ ︸
Within

+ 0︸︷︷︸
Betweenis

+ 0︸︷︷︸
Heterogeneity

which indicates that APG is completely driven by the technical change operated by Firm
3, and therefore only the Within term is different from zero. Finally, let us suppose that
between year 3 and year 4 all firms hold their productivities and heterogeneity coefficients
hti constant and only the input shares weights sti change (the last six columns in Table
3). APG is now totally imputed to variations of the input weights, i.e. to the Betweenis

effect:
−0.0060︸ ︷︷ ︸

APG

= 0︸︷︷︸
Within

−0.0060︸ ︷︷ ︸
Betweenis

+ 0︸︷︷︸
Heterogeneity

.

These toy examples show that our measure correctly captures the phenomena driving
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APG. The next section provides an empirical application to real data.

Table 3: Toy Example with Five Firms - Dynamic from Year 3 to Year 4

Year 3 Year 4

L K Output ||pr(·)|| tg(·) sti hti L K Output ||pr(·)|| tg(·) sti hti

Firm 1 1.414 1.414 1.000 2.000 0.500 0.212 1.000 1.494 1.494 1.057 2.113 0.500 0.224 1.000

Firm 2 1.764 0.942 1.000 2.000 0.500 0.202 1.046 1.766 0.943 1.001 2.002 0.500 0.203 1.046

Firm 3 1.864 0.724 2.000 2.000 1.000 0.193 1.095 1.777 0.690 1.906 1.906 1.000 0.184 1.095

Firm 4 1.044 1.706 1.000 2.000 0.500 0.206 1.028 1.081 1.766 1.035 2.071 0.500 0.213 1.028

Firm 5 0.564 1.919 1.000 2.000 0.500 0.186 1.137 0.533 1.811 0.944 1.888 0.500 0.176 1.137

Industry 6.651 6.705 6.000 9.444 0.635 1.000 1.000 6.651 6.705 5.943 9.444 0.629 1.000 1.000
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4 An Empirical Application

4.1 Data and methodology

In order to show that our methodology is also empirically relevant, in this section we
apply our APG decomposition to real firm-level data from AMADEUS, a commercial
database provided by Bureau van Dijk. The edition at our access (October 2015) contains
balance sheets and income statements for over 21 million European firms over the period
2004-2013. We focus on firms from several industries at the 4-digit NACE classification
for three European countries, namely France, UK and Italy. These industries have been
randomly selected from those with at least 20 firms (including continuous, exiting, and
entering firms) during the time period under investigation for all the three countries. For
reasons of space we report here only the results for seven selected industries, listed in
Table 4. Results for other industries are available upon request. Number of employees
and fixed assets are chosen as proxies for the two inputs labour and capital and turnover
as a proxy for output. In some cases we add a third input, proxied by material costs. All
of these values, except for the number of employees, are measured in thousands Euros
and expressed in 2010 prices using the appropriate deflator for the 4-digit industry and
the country under consideration8.

Table 4: List of Selected Industries

NACE Name of Industry

2014 Manufacture of other organic basic chemicals

2120 Manufacture of pharmaceutical preparations

2593 Manufacture of wire products, chain and springs

2630 Manufacture of communication equipment

2712 Manufacture of electricity distribution and control apparatus

2813 Manufacture of other pumps and compressors

2920 Manufacture of bodies (coachwork) for motor vehicles; manufacture of trailers and semi-trailers

We compute APG and its decomposition for two time period: between 2004 and
2007 and between 2010 and 2013. We compute four-years rather than yearly variations
because the latter would mostly be very small. Moreover, we omit from consideration
2008 and 2009, the two years when the economic crisis hit more harshly the countries
under consideration. Indeed an analysis of APG in these years is worthwhile, but since
our exercise here is mainly for illustration purposes, we prefer not to include two years in
which very abrupt variations of productivity are mainly driven by plunging output and
high exit rates.

Table 5 shows APG and its decomposition for the period 2004-07 in the left panel and
2010-13 in the right panel. In the left panel, column 1 shows the value of APG, columns
2-4 the contributions to APG given by, respectively, Entering, Exiting and Continuing
firms. The latter is further decomposed in a Within and Between effect in column 5. The
Between effect of column 5 is further decomposed in a Betweenis and a Heterogenenity
effects computed as in (14) and reported in column 6. Finally, in column 7 we report an

8Deflators for 4-digit industries are provided by Eurostat (https://ec.europa.eu/eurostat/data/
database). When the 4-digit deflators for a specific country are not available, more aggregate deflators,
e.g. 3-digit or 2-digit deflators for that country, are adopted.
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heterogeneity coefficient coherent with our methodology and introduced by Dosi et al.
(2016).9

Columns 8 to 14 report the same results for the time span 2010-13.
The table contains some interesting results. For instance, for what concerns industry

“2014 ” from 2004 to 2007, we observe positive Within and negative Between effects
in all three countries. The former indicates that relatively big firms increased their
productivity, while the latter signals that their contribution to the size of the industry
(measured in input) has decreased. An opposite behaviour can be instead found, for
instance, in industry “2120 ” in UK and Italy, where firms became less productive but
increased their contribution to the total size of the industry.

4.2 Comparing Decomposition Results from Several Decompo-
sition Methods

In this section, we compare our methodology with the standard one on empirical data.
For the standard benchmark we adopt the method proposed by Grilliches and Regev
(1995) and summarized in equation (3) above which is the one more directly comparable
to ours. In order to compute AP defined as the weighted average (1), we need measures of
individual productivities, which are usually proxied by TFP. To estimate TFP, according
to Levinsohn and Petrin (2003)10 , we need one more variable to serve as the proxy variable
necessary in their method. We add in material cost and assume 3-input-1-output activity.
Notice that by doing this, we lose all the firms from UK since in our original dataset,
there is no observation for the material cost for the firms from UK. Also we have to drop
the firms, from France and Italy, with observations for number of employees and fixed
assets but not material cost. Using number of employees as the proxy for the weight
sti, we compute APGs from 2004 to 2007 for each country/industry cell and report them
in column (1) of Table ??. Decomposition results, by following (3), can be found in
column 2. Similar APGs and their decomposition but using output as the proxy for the
weight sti can be found in column 3 and 4 respectively in the same table. In column
5, we report the APG, where AP follows (7), from 2004 to 2007 and the contribution
from continuing firms, i.e. Within and Between are reported vertically in column 6.
The decomposition of Between can be found vertically in column 7. Similar to Table 5,
industry heterogeneity change proxied by the percentage change of Gini coefficient is
reported in column 8. From column 9 to 16, we report similar decomposition results of
different methods based on the dynamics from 2010 to 2013.

9The coefficient is a Gini volume coefficient which is the ration between the volume of the zonotope
formed by the actual production activities and the volume of the zonotope of an industry with the same
size but maximum heterogeneity. For more details see Dosi et al. (2016) p. 885.

10We use Stata command levpet (Petrin et al., 2004) to estimate TFP with number of employees as
free variable, fixed assets as capital variable, and material cost as proxy variable respectively. Dependent
value is proxied by revenue not value added. “grid” search is set. Other options for the command follow
the default value.
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Table 5: APG Decompositions for Selected Industries in France, Italy and UK, 2004-07 and 2010-13

From 2004 to 2007 From 2010 to 2013

NACE Ctry. APG Enter -Exit Continue
Within

Btw.
Btw.is

Heterogeneity

Gini
Growth

(%)
APG Enter -Exit Continue

Within

Btw.
Btw.is

Heterogeneity

Gini
Growth

(%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

2014 FR 1.60 0.31 -0.34 1.63
2.57

-0.94
-3.27
2.34

42.24 -0.61 0.67 -0.20 -1.08
-0.26

-0.81
-0.81

0

-40.92

2014 UK 0.31 0.36 -0.00 -0.05
5.46

-5.51
-10.58
5.07

37.99 0.30 0.32 -0.17 0.15
1.28

-1.12
-1.13
0.01

-10.47

2014 IT -0.00 0.40 -0.01 -0.40
0.49

-0.89
-0.89

0

98.76 1.97 0.49 -0.14 1.63
-0.46

2.09
2.09

0

-3.70

2120 FR 0.89 0.25 -0.47 1.11
0.01

1.1
1.25
-0.14

-7.88 -0.32 0.41 -0.47 -0.25
-0.04

-0.21
-0.09
-0.12

-7.69

2120 UK 0.47 0.36 -0.01 0.12
-0.23

0.35
0.36
-0.01

2.98 -1.15 0.90 -0.19 -1.86
0.19

-2.05
-2.1
0.05

75.09

2120 IT -0.12 0.17 -0.24 -0.04
-0.49

0.44
0.44

0

3.37 -0.27 0.81 -0.37 -0.72
-0.48

-0.24
-0.2
-0.04

-10.22

2593 FR 1.25 0.71 -1.11 1.65
0.54

1.11
1.09
0.02

-8.46 4.54 4.89 -2.74 2.39
0.17

2.22
2.23
-0.01

-6.48

2593 UK 0.45 1.13 -0.44 -0.24
0.69

-0.93
-0.96
0.02

36.36 -0.51 0.52 -0.15 -0.87
2.15

-3.02
-4.64
1.62

-17.64

2593 IT 0.41 0.86 -0.07 -0.38
0.14

-0.52
-0.52

0

21.33 -0.00 0.57 -0.18 -0.39
-0.04

-0.36
-0.36

0

10.44

2630 FR 1.96 2.64 -3.30 2.62
-1.93

4.56
4.64
-0.08

165.30 -8.18 2.90 -6.47 -4.61
-0.49

-4.12
-4.13
0.01

-56.58

2630 UK -1.07 1.40 -0.25 -2.21
0.66

-2.87
-7.54
4.67

-15.48 -0.47 0.21 -0.26 -0.42
-0.61

0.18
0.11
0.07

-30.54

2630 IT -2.26 0.88 -0.47 -2.67
-2.03

-0.64
1.31
-1.94

53.77 -1.71 0.17 -0.76 -1.12
-33.76

32.65
38.31
-5.66

-29.79

2712 FR 0.10 3.00 -1.09 -1.81
-0.01

-1.79
-1.78
-0.01

-23.71 -1.87 1.74 -1.70 -1.91
-0.03

-1.88
-1.88

0

102.80

2712 UK 6.44 5.63 -0.19 1.00
-3.63

4.63
5.84
-1.21

279.46 -5.40 0.20 -5.16 -0.44
-1.54

1.1
1.09
0.01

-76.85

2712 IT 0.58 0.17 -0.01 0.42
0.42

0
0
0

-11.67 -0.09 0.41 -0.04 -0.45
-1.52

1.07
1.08
-0.01

-25.45

2813 FR -0.70 0.37 -2.00 0.93
-0.01

0.95
0.95

0

34.75 0.59 1.81 -2.28 1.05
-0.44

1.49
1.49
-0.01

-28.72

2813 UK -2.67 0.47 -0.03 -3.12
0.09

-3.21
-3.26
0.05

109.51 0.20 0.06 -0.03 0.17
-0.15

0.31
0.32

0

-24.87

2813 IT 0.57 1.35 -0.14 -0.63
0.52

-1.16
-1.16

0

56.87 -0.45 0.76 -0.55 -0.66
-1.17

0.51
1.32
-0.8

1.08

2920 FR 1.00 2.12 -2.56 1.44
1.04

0.4
0.87
-0.46

6.02 -0.17 2.30 -4.67 2.20
-0.04

2.23
2.24
-0.01

-6.80

2920 UK 0.16 0.95 -0.26 -0.52
0.47

-0.99
-0.99

0

14.39 1.42 0.40 -0.27 1.29
1.26

0.02
0.03
-0.01

-2.67

2920 IT 1.00 1.29 -1.02 0.72
1.49

-0.77
-1

0.23

7.49 0.11 0.85 -0.10 -0.64
0.46

-1.09
-1.08
-0.01

-44.96
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Table 6: The APG Decomposition Results of Different Decomposition Methods (An Alternative Structure)

From 2004 to 2007 From 2010 to 2013

Decomposition Method Decomposition (3) Proposed Method (15) Decomposition (3) Proposed Method (15)

NACE Ctry. APG
Enter

-Exit

Within

Btw
APG

Enter

-Exit

Within

Btw
APG

Enter

-Exit

Within

Btw.
Btw.is

Heterogeneity

Gini
Growth

(%)
APG

Enter

-Exit

Within

Btw
APG

Enter

-Exit

Within

Btw
APG

Enter

-Exit

Within

Btw.
Btw.is

Heterogeneity

Gini
Growth

(%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

2014 FR 1.77
1.05

-2.13

1.8

1.05
2.39

1.05

-2.73

4.59

-0.53
0.04

0.13

-0.27

0.43

-0.26
-0.4
0.14

-9.82 -3.35
4.37

-1.5

-1.37

-4.85
-12.05

2.56

-0.69

-5.07

-8.84
-0.18

0.36

-0.1

-0.1

-0.34
-0.32
-0.02

-58.54

2014 IT 0.67
1.1

-0.03

0.43

-0.84
0.60

1.04

-0.03

0.34

-0.76
0.05

0.32

-0.01

0.17

-0.44
-0.5
0.06

291.02 -0.25
1.75

-1.22

-0.49

-0.28
0.02

0.91

-0.7

-0.02

-0.15
0.39

0.22

-0.11

0.02

0.27
0.44
-0.17

-25.29

2120 FR 0.59
3.08

-3.38

0.61

0.27
3.25

1.41

-3.29

0.87

4.27
0.27

0.17

-0.35

-0.16

0.61
0.63
-0.02

-10.34 2.01
3.9

-3.13

0.53

0.7
-3.42

3.55

-8.53

1.05

0.52
-0.07

0.22

-0.27

-0.02

-0.01
-0.03
0.03

-22.48

2120 IT 0.52
1.34

-2.84

0.47

1.54
1.12

1.02

-2.16

0.96

1.3
0.02

0.1

-0.21

0.07

0.08
0.1

-0.03

15.61 -0.24
7.74

-0.87

-0.05

-7.06
0.17

6.59

-2.8

0.31

-3.92
0.05

0.58

-0.21

-0.08

-0.24
-0.26
0.01

-10.96

2593 FR -0.23
2.53

-3.99

-0.13

1.36
-0.09

1.89

-4.05

0.22

1.86
-0.07

0.21

-0.4

0.02

0.11
0.17
-0.06

-26.31 -1.21
8.75

-12.06

-0.26

2.36
-0.73

9.46

-12.19

-0.1

2.1
-0.15

0.97

-1.28

-0.02

0.19
0.2

-0.01

-35.31

2593 IT 0.05
0.36

-0.03

-0.05

-0.23
0.06

0.32

-0.03

-0.04

-0.19
-0.01

0.45

-0.04

-0.08

-0.33
-0.34

0

10.30 0.25
0.54

-0.07

-0.04

-0.18
0.16

0.38

-0.06

-0.03

-0.12
0.06

0.4

-0.12

-0.02

-0.2
-0.21
0.01

47.68

2630 FR 1.65
3.81

-8.2

0.06

5.98
3.51

4.59

-7.79

1.02

5.69
-0.36

0.53

-1.26

-0.25

0.61
0.7

-0.09

519.39 5.33
16.92

-11.04

-0.12

-0.44
5.68

21.54

-10.19

-0.54

-5.14
-0.23

1.9

-1.53

-0.04

-0.57
-0.67
0.11

-73.20

2630 IT -1.25
9.62

-5.66

-0.17

-5.05
5.84

15.99

-5.95

1.58

-5.78
-0.00

0.5

-0.3

0.04

-0.25
-0.24
-0.01

104.81 3.11
3.96

-9.13

-44.3

52.57
1.05

5.09

-14.08

-39.54

49.57
-0.38

0.17

-0.42

-28.14

28.02
33.91
-5.89

-14.13

2712 FR 0.40
5.99

-3.02

0.18

-2.76
0.49

7.13

-2.68

0.26

-4.22
-0.07

1.04

-0.4

-0.06

-0.66
-0.67
0.02

-45.69 0.25
5.15

-3.68

0.11

-1.33
0.07

4.13

-3.15

0.12

-1.03
0.10

0.62

-0.44

0.01

-0.09
-0.09

0

22.45

2712 IT 0.48
2.41

-0.18

0.43

-2.19
0.53

1.36

-0.14

0.37

-1.06
0.35

0.14

-0.01

0.2

0.02
0.05
-0.03

24.67 -1.08
3.93

-0.62

-1.59

-2.8
-3.92

3.25

-0.34

-2.43

-4.4
-0.09

0.32

-0.03

-0.14

-0.24
-0.18
-0.07

-55.92

2813 FR 1.52
0.05

-0.24

1.34

0.37
1.60

0.03

-0.23

1.97

-0.17
-0.19

0.13

-0.69

-0.14

0.52
0.51
0.01

39.92 0.66
0.15

-0.48

0.65

0.34
1.88

0.14

-0.3

1.17

0.87
0.13

0.88

-1.21

-0.04

0.49
0.47
0.02

-46.77

2813 IT 1.38
7.68

-0.74

0.3

-5.86
2.17

9.13

-0.89

0.68

-6.76
0.02

0.51

-0.06

-0.01

-0.42
-0.41
-0.01

92.80 0.08
7.79

-3.18

-0.86

-3.67
-1.89

7.97

-5.81

-1.54

-2.5
0.00

0.42

-0.27

-0.12

-0.03
-0.06
0.03

11.53

2920 FR 10.90
11.93

-12.61

7.29

4.29
14.08

11.2

-14.68

9.64

7.91
0.02

0.34

-0.44

0

0.13
0.14
-0.02

24.57 3.73
12.52

-24.6

1.53

14.28
-2.04

14.53

-34.12

1.5

16.04
0.02

0.46

-0.92

0.01

0.46
0.47

0

-2.34

2920 IT -4.83
14.62

-11.4

-2.03

-6.02
-25.87

14.82

-22.53

-14.98

-3.17
0.04

0.36

-0.33

-0.05

0.07
0.07

0

19.42 6.20
14.95

-10.94

1.16

1.03
-3.02

13.28

-1.27

-0.64

-14.39
0.08

0.41

-0.05

0.04

-0.32
-0.32

0

-45.42
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5 Conclusions

Thanks to the increasing availability of longitudinal establishment- and firm- level data, a
rapidly growing body of empirical literature has analyzed the relative importance between
firm-level increase in productivity and the reallocation of market share to the aggregate
productivity growth, i.e. so-called “within” and “between” effects, across individual pro-
ducers within narrowly defined sectors. At the same time, the empirical evidence shows a
highly significant and persistent degree of heterogeneity among firms and establishments
in the input combinations and in their productivities even in the presence of the same
relative input prices and in narrowly defined industries, thus with relatively homogeneous
types of output.

Such heterogeneity poses serious challenges to the use of standard aggregate pro-
duction functions and aggregate productivity one can derive from them. In this paper,
building upon a geometric representation of the empirical production possibility set first
suggest by Hildenbrand (1981) and developed by Dosi et al. (2016), we have introduced
a new decomposition method for APG which 1) computes individual and aggregate pro-
ductivity in the same way, instead of computing the latter as some arbitrary weighted
average of the individual indicators; 2) reduces the loss of information implied by stan-
dard decomposition methods; 3) allows for a precise measure of the contribution given
by variations in heterogeneity.

Our methodology can be applied to empirical data and the preliminary application
we present in this paper, on some selected industries in France, Italy and the UK, show
that indeed the contributions to APG that can be attributes to changes of firm-level
heterogeneity are far from negligible.
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A Decomposition of aggregate productivity growth

In this Appendix we go through the mathematical details behind the decompositions in
equations (10) and (14).

Decomposition in equation (10) By the decomposition of productivity as P t =∑
i∈C w

t
ip
t
i described in equation (8) we get that

∆P t = P t − P t−1 =
∑
i∈C

wtip
t
i −
∑
i∈C

wt−1i pt−1i .

The above equality holds if we add and subtract the same quantity from its right side,
that is

∆P t =
∑
i∈C

wtip
t
i −
∑
i∈C

wt−1i pt−1i +
∑
i∈C

wtip
t−1
i −

∑
i∈C

wtip
t−1
i +

∑
i∈C

wt−1i pti −
∑
i∈C

wt−1i pti

which we can re-write as

∆P t =
∑
i∈C

wt−1i + wti
2

(pti − pt−1i ) +
∑
i∈C

pt−1i + pti
2

(wti − wt−1i )

which becomes equation (10)

∆P t =
∑
i∈C

w̄i∆p
t
i︸ ︷︷ ︸

Within

+
∑
i∈C

p̄i∆w
t
i︸ ︷︷ ︸

Between

with the notation w̄i =
wt−1

i +wt
i

2
, p̄i =

pt−1
i +pti

2
and ∆pti = pti − pt−1i ,∆wti = wti − wt−1i .

Decomposition in equation (14) Following the decomposition:

∆P t =
∑
i∈C

w̄i∆p
t
i +
∑
i∈C

p̄i∆w
t
i

in equation (10), we can further decompose the coefficient ∆wti = wti − wt−1i as follows.
Since wti = stih

t
i (see equation (11)), we get equality

∆wti = stih
t
i − st−1i ht−1i

which can be modified by adding and subtracting the same quantity as follows

∆wti = stih
t
i − st−1i ht−1i + (stih

t−1
i − stiht−1i ) + (st−1i hti − st−1i hti) .

We can then re-write the right side of the equality as follows

∆wti =
ht−1i + hti

2
(sti − st−1i ) +

st−1i + sti
2

(hti − ht−1i ) .

If we denote by h̄i =
ht−1
i +hti

2
and s̄i =

st−1
i +sti

2
the average sums and by ∆sti = sti − st−1i

and ∆hti = hti − ht−1i the variations then ∆wti becomes

∆wti = h̄i∆s
t
i + s̄i∆h

t
i

which, substituted in equation (10), gives

∆P t =
∑
i∈C

w̄i∆p
t
i︸ ︷︷ ︸

Within

+
∑
i∈C

p̄ih̄i∆s
t
i︸ ︷︷ ︸

Betweenis

+
∑
i∈C

p̄is̄i∆h
t
i︸ ︷︷ ︸

Heterogeneity

that is equation (14).
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B Decomposition of aggregate productivity with mul-

tiple outputs

In this appendix we give a quick description of the aggregate productivity and its decom-
position in the case of more than one output.

Notation and definitions During the period t the production unit i, which is de-
scribed by the vector

ati =
(
αti,1, · · · , αti,m, αti,m+1, · · ·αti,m+n

)
∈ Rm+n

+ , (16)

produces ati,out =
(
αti,m+1, · · ·αti,m+n

)
units of n outputs by means of ati,in =

(
αti,1, · · · , αti,m

)
units of m inputs. Denote by I t the set of all firms within the industry at time t. Then
the set of vectors {ati}i∈It ∈ Rm+n

+ represents the production activities of all in the indus-
try at time t. Thus the aggregate (industry) production activity dt can be written as the
sum of individual firm production activity:

dt =
(
βt1, · · · , βtm, βtm+1, · · · , βtm+n

)
=

(∑
i∈It

αti,1, · · · ,
∑
i∈It

αti,m,
∑
i∈It

αti,m+1 · · · ,
∑
i∈It

αti,m+n

)
∈ Rm+n

+ . (17)

If we denote by

prout : Rm+n → Rn

ati 7→ ati,out

and by

prin : Rm+n → Rn

ati 7→ ati,in

the projections of the production activities ati (and similarly of the industry vector dt) on
the spaces of outputs and inputs respectively, then the formula to compute the industry
and firms productivities become

P t := tg
(
θ(dt)

)
=
||prout (dt) ||
||prin (dt) ||

(18)

and

pti := tg
(
θ(ati)

)
=
||prout (ati) ||
||prin (ati) ||

(19)

respectively, where θ(.) denotes the angle of vectors dt and ati with the space of inputs.
Notice that, since in this case output ati,out is a multidimensional vector then, in general,
||prout (dt) || 6=

∑
i∈It ||prout (ati) ||, unless all output vectors are proportional or there is

only one output. If we denote by ϕti the angle formed by the vectors prin (ati) and prin (dt)
and by σti the angle formed by the vectors prout (ati) and prout (dt), we get that

||prout
(
dt
)
|| =

∑
i∈It

(
||prout

(
ati
)
|| cosσti

)
(20)
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which, substituted in equation (18), gives

P t =

∑
i∈It (||prout (ati) || cosσti)

||prin (dt) ||
=
∑
i∈It

(
cosσti

||prin (ati) ||
||prin (dt) ||

||prout (ati) ||
||prin (ati) ||

)
,

that is
P t =

∑
i∈It

utip
t
i

where the “weight” coefficient
uti := kti · wti

is defined as the product of an “output homogeneity” measure

kti := cosσti

and the input-based-weight

wti :=
||prin (ati) ||
||prin (dt) ||

.

Notice that kti is a decreasing function of σti when σti ∈
[
0, π

2

]
. That is smaller σti ’s

correspond to larger kti ’s and indicate that the vector prout(a
t
i) is closer to the vector

prout(d
t), i.e. less “output heterogeneity”. The fact that more output-based-homogeneity

coincides with bigger kti explains why we name kti as output homogeneity measure.

Decomposing the aggregate industry growth Let us denote by C, N , and X the
sets of continuing, entering, and exiting firms respectively. The aggregate productivity
growth from time t− 1 to time t is given by

∆P t =
∑
i∈C

ūi∆p
t
i +
∑
i∈C

p̄i∆u
t
i +
∑
i∈N

utip
t
i −
∑
i∈X

ut−1i pt−1i . (21)

where for any variable xt ∈ R at time t, operator ∆ represents its change from t − 1 to
t, i.e. ∆xt ≡ xt − xt−1, and x̄ ≡ xt+xt−1

2
. We can further decompose ∆uti as

∆uti =
kt−1i + kti

2
(wti − wt−1i ) +

wt−1i + wti
2

(kti − kt−1i )

= k̄i∆w
t
i + w̄i∆k

t
i

= k̄i
(
h̄i∆s

t
i + s̄i∆h

t
i

)
+ w̄i∆k

t
i (22)

Finally, by substituting (22) into (21) we have

∆P t =
∑
i∈C

ūi∆p
t
i︸ ︷︷ ︸

Within

+
∑
i∈C

p̄ik̄ih̄i∆s
t
i︸ ︷︷ ︸

Betweenis

+
∑
i∈C

p̄ik̄is̄i∆h
t
i︸ ︷︷ ︸

Heterogeneity

+
∑
i∈C

p̄iw̄i∆k
t
i︸ ︷︷ ︸

Homoout

+
∑
i∈N

utip
t
i −
∑
i∈X

ut−1i pt−1i︸ ︷︷ ︸
NetEntry

.

(23)
Notice that when n = 1, i.e. there is only one output, the angle σti between the individual
output vector and the aggregate output vector degenerates to 0. Thus for all firm i over
all time t, we have

kti = cosσti = 1

and thus k̄i = 1, ∆kti = 0 and uti = wti . As a result, the decomposition (23) degenerates
to (15).
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