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Abstract

We introduce a multivariate multidimensional mixed-effects regression model in a finite

mixture framework. We relax the usual unidimensionality assumption on the random effects

multivariate distribution. Thus, we introduce a multidimensional multivariate discrete

distribution for the random terms, with a possibly different number of support points in

each univariate profile, allowing for a full association structure. Our approach is motivated

by the analysis of economic growth. Accordingly, we define an extended version of the

augmented Solow model. Indeed, we allow all model parameters, and not only the mean,

to vary according to a regression model. Moreover, we argue that countries do not follow the

same growth process, and that a mixture-based approach can provide a natural framework

for the detection of similar growth patterns. Our empirical findings provide evidence of

heterogenous behaviors and suggest the need of a flexible approach to properly reflect the

heterogeneity in the data. We further test the behavior of the proposed approach via a

simulation study, considering several factors such as the number of observed units, times

and levels of heterogeneity in the data.
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1 Introduction

In modelling panel economic data, it is common to account for the unobserved heterogeneity

between sample units, that is, the heterogeneity that cannot be explained by means of ob-

servable covariates (see e.g. Wooldridge, 2002 ; Fitzmaurice et al., 2008). This is normally

accomplished by the introduction of latent variables or random effects. For instance, a typical

approach consists of associating a random intercept to every sample unit which affects the

distribution of each time-specific response in the same fashion. This allows us to account for

a form of unobserved heterogeneity which is due to unobservable covariates and related fac-

tors. The above considerations are obviously pertinent when we deal with economic growth

modelling, where sample units (i.e. countries) are characterized by heterogeneous income per-

formances. Addressing the heterogeneity of analyzed processes is of fundamental importance

to the study to the economic growth and has led to a substantial evidence for the existence

of variations in growth patterns across countries. Indeed, since Solow’s seminal paper (1956),

different econometric and statistical approaches are used to look at countries’ growth. Dy-

namic panel data with fixed effect (Caselli et al., 1996; Islam, 1995; Temple, 1999), as well as

extreme bound analysis (Levine and Renelt, 1992; Temple, 2000), Bayesian model averaging

(Doppelhofer et al., 2000; Fernandez et al., 2001) or model on varying coefficients are per-

formed to deal with the main empirical challenges in growth theory: unobserved heterogeneity

(Caselli et al., 1996; Pesaran and Smith, 1995; Lee et al., 1997; Durlauf and Johnson, 1995),

uncertainty (Temple, 2000) and omitted variable bias (Durlauf and Quah, 1999).

Recently, data-driven approaches to estimate multiple (heterogeneous) growth processes

have been employed within the wide class of mixture models (Alfó et al., 2008, Owen et al.,

2009; Kerekes, 2012; Baştürk et al., 2012; Bertarelli and Bernardini Papalia, 2013).

We propose an approach to panel growth data based on a flexible bivariate location-scale

finite mixture approach, which may be seen as an extension of the approach introduced by

Alfó et al. (2008). We introduce a bivariate bidimensional discrete random effects model to

account for dependence between outcomes (i.e. per capita income and growth) and hetero-

geneity between countries in the augmented Solow growth model. The proposed approach

may be cast in the literature about finite mixture models for panel data. It is worth not-

ing that other extensions of the finite mixture approach for panel data are available in the

literature. We mention, in particular, the extensions proposed by Pittau et al. (2010) and
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Mart́ınez-Zarzoso and Maruotti (2011), where countries are clustered into clubs depending on

unobserved characteristics. Moreover, our approach is more general than those of Durlauf and

Johnson (1995) and Ardıç (2006) in which clustering is performed beforehand (i.e. clustering

is exogenously specified). Indeed, we develop an endogenous clustering approach lying on a

bivariate bidimensional model recovering Bernanke and Gürkaynak (2002) intuition: country’s

rate of investment and of human capital and the population growth rate are correlated with

its long run growth of output per capita. Thus we contribute to this branch of literature by

providing an empirical formulation of the augmented Solow model based on a multivariate-

multidimensional specification, that allows to solve the unobserved heterogeneity issue. We

address the heterogeneity issues related to: varying parameters across countries, omitted vari-

ables and non-linearities in the production function. Indeed, the incorrect specification of the

country-specific effects leads to inconsistent parameter estimation, generating omitted variable

bias (Caselli et al., 1996).

As a by-product, we provide a posterior classification of countries sharing the same la-

tent structure, highlighting strong heterogeneous behaviours. With respect to the existing

approaches, we relax the assumption of the same posterior classification for the gross domestic

product (GDP) per capita level and the growth rate. This allows us to let free the posterior

classification given the observed variable and the latent effect, and to analyze the uncertainty

and the variation in the different economics performance. We are able to distinguish between

between group, and within group variations allowing for the human and physical capital and

the population growth rate to simultaneously affect the different country growth experience, in

terms of growth path and variability in the GDP per capita and growth rate. We further allow

for explicitly modelling the scale parameter as a function of covariates. Indeed, we introduce

two separates equations for the location and scale parameters of the dependent variables, such

that the explanatory variables are associated not only to high or low values of the dependent

variable, but also to the unpredictability of the variable itself.

Computational complexity is often the price we have to pay to flexibility. However, we show

that parameter estimates can be obtained by extending the Expectation-Maximization (EM)

algorithm (Dempster et al., 1977) for finite mixture to the multidimensional case. Furthermore,

we avoid any restriction on the covariance structure of the random effects as assumed e.g. by

the so-called one-factor model (Winkelmann, 2000), which is more parsimonious but could be

hard to justify in empirical applications. By allowing the number of mixture components to
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grow with the sample size, the proposed model can be also used as a semiparametric estimator

of multivariate mixed effects models, where the distribution of the random effects is estimated

by a discrete multivariate random variable with a finite number of support points. This can

be seen as a possible solution to computational issues arising with multivariate mixed models.

We illustrate the proposal by a simulation study in order to investigate the empirical

behaviour of the proposed approach with respect to several factors, such as the number of

observed units and times and the distribution of the random term (with varying number of

support points). Finally, we test the proposal by analysing a sample taken from the Summers-

Heston Penn World Tables (PWT) version 8.0 for years 1975-2005 for non-oil countries. We

identify a set of variables that affect the volatility of economic growth and remark the impor-

tance of including baseline GDP as a covariate in the model specification. Moreover, different

levels of heterogeneity are detected in GDP and GDP growth, respectively. More precisely, we

find that our sample is much more heterogeneous with respect to GDP levels than growth pat-

terns. Although this result sounds obvious, previous empirical results, based on unidimensional

specification of the latent structure, were not able to distinguish for different heterogeneity

levels (see e.g. Alfó et al., 2008). Instead, our approach can easily accommodate for differ-

ent heterogeneity levels in the univariate profiles and, simultaneously, accounts for association

between outcomes. About obtained results, we get two clusters representing high-growth and

low-growth countries, and six clusters are identified with respect to GDP levels.

The plan of the paper is as follows. In Section 2, we specify the proposed model in a

general form and in Section 3 we provide the computational aspects of the adopted maximum

likelihood algorithm. In Section 4, we give a comparison of the performance of several model

specifications under different data generation schemes by means of a simulation study. In

Section 5, we present an empirical application on real world data motivating this paper. In

Section 6, we point out some remarks, along with drawbacks that may arise by adopting the

proposed methodology.

2 Statistical framework

We start assuming that the analysed sample is composed of n statistical units (e.g. countries):

continuous responses yitj , corresponding to (j = 1, . . . , J) outcomes and two vectors of covari-

ates x′itj = (1, xitj1, . . . , xitjPj ) and z′itj = (1, zitj1, . . . , zitjQj ), which can vary over outcomes,
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are recorded for each unit i (i = 1, 2, . . . , n) at time t (t = 1, 2, . . . , T ). Following the usual

notation for longitudinal multivariate data, let yit = (yi11, . . . , yitJ)′ denote the vector of ob-

served responses for unit i at the t-th time. We assume that yitj are realizations of conditionally

independent random variables, with parameters θitj = (θitj1, θitj2, . . . , θitjM ). When we face

multivariate analysis, and the primary focus of the analysis is not only to build a regression

model, but even to describe association among responses, the univariate approach is no longer

sufficient and needs to be extended. In this context, we are likely to face complex phenomena

which can be characterized by having a non-trivial correlation structure. For instance, omitted

covariates may affect more than one response; hence, modelling the association among the out-

comes can be a fundamental aspect of research. Beyond that, the association structure could

be of interest by itself, as we may be interested in understanding the nature of the stochas-

tic dependence among the analysed phenomena. Furthermore, it is well known that, when

responses are correlated, the univariate approach is less efficient than the multivariate one,

since in estimating the parameters in the single equations, the multivariate approach takes

into account of zero restrictions on parameters occurring in other equations (for a detailed

discussion on this topic see e.g. Zellner, 1962; Davidson and MacKinnon, 1993).

A standard way to insert dependence among responses is to assume that they share some

common latent structure. Thus, the model specification is completed by connecting the J

univariate submodels through a common latent structure, represented by a set of random

effects ui = (ui1, . . . ,uiJ) which account for potential heterogeneity among statistical units

and correlation between outcomes. In a regression setting, the interest is usually focused upon

the mean which is modelled through a linear mixed model, providing a very broad framework for

modelling dependence in the data (Verbeke et al., 2014). Nevertheless, statistical models rarely

allow the modelling of parameters other than the mean of the response variable as functions of

the explanatory variables. For instance, the scale parameter is usually not modelled explicitly

in terms of the explanatory variables but implicitly through its dependence on the mean. In

the following, we relax such a constrain and define a location-scale multivariate regression

framework by specifying J conditionally independent (given the covariates and the random

effects) regression models. Let us decompose the design vector as xitj = {x(1)
itj ,x

(2)
itj }, where

the variables whose effects are assumed to be fixed are collected in x
(1)
itj , while those which

vary across units are in x
(2)
itj . The M -dimensional parameter vector θitj is related to covariates

and random effects. Let us specify θitj1 as the location parameter, θitj2 as the scale parameter
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and θitj3 as a shape parameter (whenever needed) and let gm(·) be a known monotonic link

function relating θitjm,m = 1, . . . , 3 to covariates and random effects, we define the following

regression models



g1(θitj1) = x
′(1)
itj λj + x

′(2)
itj uij

g2(θitj2) = z′itjγj

g3(θitj3) = γ̃j

(1)

where uij represents unit- and outcome-specific random effects, drawn from a multivariate

parametric density, λj , γj and γ̃j are outcome- and moment-specific fixed parameters. Of

course, covariates may be included in the shape-parameter model, but this may complicate

results interpretation in empirical applications.

Given the model assumptions, the likelihood function can be written as follows:

L(·) =
n∏
i=1


∫
U

J∏
j=1

T∏
t=1

f(yitj | uij ,xitj , zitj)b(ui)dui

 (2)

where f(·) is a generic probability density function, U represents the support for b(ui), the

distribution function of ui, with E(ui) = 0.

Although, at first glance, the approach proposed so far is appealing, it has several compu-

tational drawbacks and limitations. Indeed, the random effects distribution is unknown and

assuming a multivariate Gaussian distribution may be a too strong and unverifiable assumption

and, moreover, may affect parameters estimate. Indeed, in some situations, the distribution of

the random effects may depart from normality. This problem has been addressed, for example,

by specifying a different parametric distribution family for the random terms, such as multi-

variate skewed and/or heavy-tailed distributions (Ferreira and Steel, 2006; (Ferreira and Steel,

2004)). An alternative approach is to use nonparametric maximum likelihood based on finite

mixtures, which provide a more flexible framework to deal with departure from normality of

the random effects distribution (see e.g. Böhning, 1995; Aitkin, 1999). Nevertheless, even if

the latter is computationally efficient when compared to parametric random effect models, it is

intrinsically unidimensional, since it is based on a single categorical latent variable. This may

lead to problems when the task is testing for dependence between the random effects. Indeed,

the model under independence does not occur as a special case of the dependence model.
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In the following, we consider a J-variate J-dimensional latent structure such that the indepen-

dence model is nested in the multivariate one, and different levels of heteorgeneity in the J

univariate profiles can be identified. In order to specify a latent structure of this kind, we leave

the distribution of the random effect b(·) completely unspecified and invoke the non-parametric

maximum likelihood approach.

Formally, random effects distribution can be approximated through a discrete distribution

with Kj ≤ n support points at the marginal level. Mass joint probability πk1,k2,...,kJ are

attached to location (uk1 ,uk2 , . . . ,ukJ ) for kj = 1, . . . ,Kj . Focusing on the bivariate (J = 2)

case, without lacking of generality, we define the following location-scale multivariate regression

model



g1(θitj1) = x
′(1)
itj λj + x

′(2)
itj ukj

g2(θitj2) = z′itjγj

g3(θitj3) = γ̃j

(3)

According to model assumptions, the likelihood function in the bivariate case is given by

L(·) =

n∏
i=1


K1∑
k1=1

K2∑
k2=1

πk1k2

2∏
j=1

T∏
t=1

f(yitj |xitj , zitj ,ui1 = uk1 ,ui2 = uk2)

 (4)

where πk1k2 = Pr(ui1 = uk1 ,ui2 = uk2) is the joint probability associated to each couple

of locations (uk1 ,uk2). The following constraints hold
K1∑
k1=1

πk1 =
K2∑
k2

πk2 =
∑
k1k2

πk1k2 = 1

with

πk1 = Pr(ui1 = uk1) =

K2∑
k2=1

πk1k2

and

πk2 = Pr(ui2 = uk2) =

K1∑
k1=1

πk1k2 .

We would remark that the number of locations (i.e. mixture components) may vary between

outcomes. Thus, we control for heterogeneity in the univariate profiles and for the association

between latent effects in the two profiles. This approach results in a finite mixture with K1×K2

components, in which each of the K1 locations are coupled with each of the K2 locations of

the second outcome. If J = 1, our proposal reduces to a univariate finite mixture model.
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3 Computational details

Let θ̃ be a short-hand notation for all non-redundant models parameters corresponding to the

vectors (λ,γ, γ̃,π,u), inference for the proposed model is based on log-transformation of the

likelihood in (4).

To estimate θ̃, we maximized the log-transformation of (4) by using a version of the EM

algorithm (Dempster et al., 1977). The EM algorithm alternates the following steps until

convergence

E-step: compute the conditional expected value of the complete data log-likelihood given the

observed data and the current estimate of model parameters; and

M-step: maximize the preceding expected value with respect to θ̃.

Let wik1k2 denote a dummy variable equal to 1 if unit i is in component k1 and k2 in the

two univariate profiles, respectively, and zero otherwise. The complete data likelihood, which

we would compute if we knew these dummy variables, is

Lc(·) =

n∏
i=1

 K1∑
k1=1

K2∑
k2=1

πk1k2fik1k2

wik1k2 (5)

And its corresponding log-transformation is

`c(·) =
n∑
i=1

K1∑
k1

K2∑
k2

wk1k2 {log(πk1k2) + log fik1k2} (6)

where fik1k2 = fik1fik2 =
∏T
t=1 f(yit1|xit1, zit1, uk1)f(yit2 | xit2, zit2, uk2).

The conditional expected value of `c(·) at the E-step has then the same expression as given

previously in which we substitute the variable wik1k2 with its corresponding expected value

ŵk1k2 =
πk1k2fik1k2∑

k1k2

πk1k2fik1k2
. (7)

where ŵk1k2 is the posterior probability the the i-th unit belongs jointly to the k1 and k2

components of the mixture. We can easily get the marginal posterior probabilities

ŵik1 =
∑
k2

ŵik1k2 ŵik2 =
∑
k1

ŵik1k2 (8)
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At the M-step, the conditional expected value of (6) is maximized by separately maximizing

its components. Indeed, the score function is

n∑
i=1

K1∑
k1

K2∑
k2

wk1k2
∂

∂θ
{log(πk1k2) + log fik1 + log fik2} .

Let us partition the parameter vector θ̃ = (θ̃k1 , θ̃k2), where θ̃kj collects the parameters of

the j-th profile such that

∂`(·)
∂θ̃k1

=

n∑
i=1

ŵik1
∂

∂θ̃k1
log(fik1); (9)

∂`(·)
∂θ̃k2

=

n∑
i=1

ŵik2
∂

∂θ̃k2
log(fik2) (10)

and
∂`(·)
∂πk1k2

=
n∑
i=1

ŵik1k2
∂

∂πk1k2
log πk1k2 (11)

An explicit solution is available to maximize the last M-step equation, which consists of

π̂k1k2 =

∑n
i=1 ŵik1k2
n

.

To maximize the other two parts, we can use a standard iterative algorithm of Newton-Raphson

type for linear mixed models. We take the value of θ̃ at convergence of the EM algorithm as

the maximum likelihood estimate. As it is typical for finite mixture models the likelihood may

be multimodal and the point at convergence depends on the starting values for the parameters,

which then need to be carefully chosen. In this regard, we run the EM algorithm from multiple

random starting points for a number of steps, then pick the one with the highest likelihood,

and continue the EM from the picked point until convergence. However, other methods can

be used; for example, a gradient function based on directional derivatives can be used to get

optimality criteria (see e.g. Wang, 2010).

At last, we approach the model selection problem by looking at penalized likelihood criteria,

Akaike information criterion (AIC) and Bayesian information criterion (BIC). In this way we

select the number of mixture components and we can also compare the different models. BIC,

achieved in the Bayesian framework is found to be satisfactory in the model-based clustering

context (see among others Fraley and Raftery, 2002, for further details). Both criteria are

likelihood based and they differ for the different penalization used. In fact, denoting with d

the number of independent parameters to be estimated and with n the sample size, BIC is

obtained as BIC = −2`(.) + d ln(n), and AIC is given by AIC = −2`(.) + 2 ∗ d.
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4 Simulation study

To assess the properties of the maximum likelihood estimator described in Section 3, we carried

out a simulation study, which is described subsequently. The same study allows us to assess

the goodness of classification.

4.1 Simulation design

We considered two scenarios: the first with two response variables (both Gaussian-distributed)

with K1 = K2 = 2 mixture components each and the second with higher heterogeneity levels,

i.e. by defining a bivariate model with K1 = 2 and K2 = 3 mixture components for each

outcome respectively. Under each scenario, we considered two continuous covariates, one in

the linear predictor for the mean and one in the regression model for the scale parameter,

and generated 500 samples from the proposed model with T = 5; 10 (panel length) and n =

100; 1000 (sample size). Under this setting, θitj = (θitj1, θitj2) = (µitj , σitj)

Scenario 1. We assume that the outcomes are conditionally independent and proceeded to

generate 500 samples from

Yit1 | µit1, σit1 ∼ N(µit1, σit1)

Yit2 | µit2, σit2 ∼ N(µit2, σit2)

where the following bivariate regression model (with a single covariate) holds

µit1 = uk1 + λ11xit =

 −1 + 0.5xit, k1 = 1

1 + 0.5xit, k1 = 2

log(σit1) = γ01 + γ11zit = 0.5 + 0.75zit

and

µit2 = uk2 + λ12xit =

 2 + 0.5xit, k2 = 1

−2 + 0.5xit, k2 = 2

log(σit2) = γ02 + γ12zit = 1 + 0.25zit

with

π =

 π11 π12

π21 π22

 =

 0.4 0.1

0.2 0.3


Scenario 2. We assume that the outcomes are conditionally independent and proceeded to

generate 500 samples from

Yit1 | µit1, σit1 ∼ N(µit1, σit1)
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Yit2 | µit2, σit2 ∼ N(µit2, σit2)

where the following bivariate regression model (with a single covariate) holds

µit1 = uk1 + λ11xit =

 −1 + 0.5xit, k1 = 1

1 + 0.5xit, k1 = 2

log(σit1) = γ01 + γ11zit = 0.5 + 0.75zit

and

µit2 = uk2 + λ11xit =


2 + 0.5xit, k2 = 1

−2 + 0.5xit, k2 = 2

0 + 0.5xit, k2 = 3

log(σit2) = γ02 + γ12zit = 1 + 0.25zit

with

π =

 π11 π12 π13

π21 π22 π23

 =

 0.1 0.1 0.2

0.2 0.3 0.1

 .
4.2 Simulation results

For each sample, we computed the maximum likelihood estimate of the parameters and the

corresponding standard errors, under the assumed model. We also evaluate the performance of

the proposed in correctly clustering the statistical units into mixture components. The Rand

Index (Hubert and Arabie, 1985) is considered. The true matrix W = {wik1k2} of component

membership and the crispy estimated matrix W∗ = {w∗ik1k2}, where each element w∗uk1k2 is

defines as

w∗uk1k2 =

 1 ifk1, k2 = arg maxk1,k2 ŵik1k2

0 otherwise

are compared. Formally, let nk1k2 denote the number of all pairs of data points which are either

put into the same cluster by both partitions or put into different clusters by both partitions.

Conversely, let n∗k1k2 denote the number of all pairs of data points that are put into one cluster

in one partition, but into different clusters by the other partition. The partitions disagree for

all pairs n∗k1k2 and agree for all pairs nk1k2 . We can measure the agreement by the Rand index

nk1k2/(nk1k2 + n∗k1k2) which is invariant with respect to permutations of cluster labels.

For Scenario 1, the simulation results in terms of bias and standard deviation of the max-

imum likelihood estimator of each parameter of interest are shown in Table 1, together with
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the Rand Index. We can observe that, the bias of each estimator is always low and decreases

as T increase; moreover, its standard deviation decreases. Indeed, for n = 100 and T = 10 the

estimators are unbiased. By increasing the number of available times, the clustering perfor-

mance improves as well as shown by the Rand Index. For sake of brevity, we do not report the

results for n = 1000. They do not provide any further insight to the already discussed results.

By considering Scenario 2, in which a higher degree of heterogeneity is assumed in one of

the two outcomes, we can easily detect a different estimators behavior (see Table 2). Obviously,

for small sample size (n = 100) and T = 5, higher bias and standard deviations are estimated

with respect to those in Scenario 1. However, estimates variability decreases at the expected

rate of
√
n with respect to n and at a faster rate with respect to T . By increasing the sample

size to n = 1000, we get less biased estimates, as expected. Clustering performances are

sensitive to n and T as well. Indeed ,the larger is the sample size the better is the recovered

latent structure.

5 Empirical framework

5.1 Data

The sample is composed by an unbalanced panel of 101 countries over the period 1975-2010.

Data on the dependent variables and the investment share on physical capital (sk) are retrieved

from the Heston-Summers-Aten dataset (Penn World Table 8.0). Data on human capital (sk),

measured as the total enrollment in secondary education, is retrieved from the World Bank.

From the same database, we also collect: openness to trade (open), measured as the sum of

exports and imports as share of GDP, and the credit to the Private Sector as a fraction of GDP

(fin), used as a proxy for financial development. In order to understand the effect of financial

factor on the growth fluctuations through the household consumption channel, the private

sector on GDP is preferred as measure since it does not account for the credit provided from

the Central and development bank to the public sector. Government consumption (govcons)

is calculated as the general government final consumption expenditure (as share of GDP).

Unemployment rate(unempl) and the inflation level (infl) are obtained from the Penn World

Table 8.0 dataset.

In order to avoid the endogeneity problems related to growth model estimation, we consider

non-overlapping 5-year period with explanatory variable averaged over the corresponding time
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period; while the dependent variables are taken 5 periods ahead (Bond et al., 2001). Indeed,

endogeneity could be due to the fact that “country-specific heterogeneity cannot be captured

if one does not look at between-countries variation which cannot be explained by observed

covariates but remains persistent over the analysed time period.” (Alfó et al., 2008, pg. 495).

Thus, the dependent variables are the average of GDP per capita over the 5-years period (yit1),

and the average annual growth of real GDP over the same non overlapping period (yit2). Table

3 provides descriptive statistics, variables description, and data sources.

To analyze the marginal distribution of the response variables, graphical and statistical

analysis are provided. Figure 1 displays a clear multimodal distribution for the GDP level,

supporting the idea of different sub-populations in the outcome. The marginal distribution of

growth rates does not show any multimodality, although a small bump can be detected on the

left with respect to the distribution mode. However, we cast some doubts that growth rate

follows a Gaussian distribution. Thus, to complement the graphical analysis, Shapiro-Wilk

and Jarque-Bera tests and summary statistics are provided in Table 4 for the two outcomes.

Skewness and kurtosis of each response variable indicate a departure from the normal distribu-

tion. Whilst, it is expected that both Shapiro-Wilk and Jarque-Bera tests indicate departure

from marginal normality for the GDP level, we obtain a significant departure from normality

for the growth rate outcome as well. Thus, we opt for a (mixture of) heavy-tailed distribution

to properly model growth rates.

5.2 Economic growth

To understand the cross-country differences in income performances and to account for depen-

dence between per capita income and growth, we introduce a flexible bivariate multidimensional

finite mixture approach for the location and the scale parameters, and for the shape parameter

when it is required, as described in Section 2. To jointly determine the evolution of income per

capita and volatility of growth, instead of modelling the scale parameter through the depen-

dence on the mean, we explicit the variance of the growth rate as dependent on explanatory

variables. Thus, growth determinants are associated not only to high or low values of the

dependent variable but also to unpredictability of the variable itself.

Formally, for each country i at time t, let the GDP level (yit1) be a Gaussian random

variable, i.e. yit1 ∼ N(µit1, σit1), and the GDP growth rate (yit2) be t-distributed to account for

heavy tails in the growth distribution, i.e. yit2 ∼ t(µit2, σit2, νit2) . To explore the determinants
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of both growth level and growth volatility, we choose variables found to be robust in the

economic growth literature (see e.g. Levine and Renelt, 1992; Mankiw et al., 1992; Cecchetti

et al., 2006), and define the following mixed-effects regression model for yit1


µit1 = ui10 + λ11skit + λ21shit + λ31(nitgδ)

log(σit1) = γ01

(12)

where skit and shit are the share of output invested in physical and human capital, respectively,

δ is the depreciation rate, n is the population growth rate and g is the technological progress.

As it is common in the growth literature, the term g + δ is assumed to be common across

countries and equal to 0.5. Parameters in model (12) capture the effect of the human and

physical capital accumulation process, and the population growth on the income per capita.

They can be explicit as:

λ11 =
α

(1− α− β)
λ21 =

β

(1− α− β)
λ31 =

α+ β

(1− α− β)
(13)

where α and β are respectively the share of physical and human capital, such that (α+β) < 1. It

is worth noting that the λ11 and λ21 are expected to be positive, while λ31 to be negative, since

human and physical capital accumulation boost economic growth, while the population growth

rate is thought to discourage the evolution of the economy (see among others Solow, 1956;

Mankiw et al., 1992; Barro, 1991). The random intercept ui10 is let free to vary across countries

since it captures the unobserved heterogeneity due to the omission and/or the immeasurable

nature of some country-specif factors.

According to Bernanke and Gürkaynak (2002), the definition of the augmented Solow

model implies a bivariate growth model, in which the long run growth of output per capita

is correlated with the accumulation of human and physical capital and the population growth

rate. We adopt a reduced-form model for the location parameter of the growth rate (see Goetz

and Hu, 1996for further details) such that



µit2 = ui20 + ui21 ln(ycit)

log(σit2) = γ0 + γ12unemplit + γ22finit + γ32inflit + γ42openit + γ52govconsit

νit2 = γ̃02

(14)
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The random coefficient ui21 (attached to the initial level of income per capita) controls for the

transitional dynamics affecting the evolution of the growth rate. It is worth recalling that the

neoclassical approach predict a fixed and negative coefficient for the initial level of income per

capita lnycit accounting for country convergence.

In our approach, economic stability is directly modelled by including an equation for the vari-

ance of the growth rate, that regress the unpredicatability of the response variable on financial

development, international openness, government consumption, inflation and unemployment

rate (e.g., Cecchetti et al., 2006; Giovanni and Levchenko, 2009). We expect that cyclical vari-

ables (unemployment rate and inflation) have a destabilizing effect on growth, i.e. γ12 and γ32

are expected to be positive, while financial development and government consumption decrease

growth volatility. The effect of openness to trade on economic growth is still debated in the

literature.

Again, the random terms ui02 and ui21 in the location parameter’s equation are let free to vary

among countries and response variables, by allowing for a random slope as well. This allows us

to simultaneously understand the variation across country in the standard of living and in the

volatility of the outcome per capita, leaving the posterior classification of the mixture model

to be free to vary among outcomes.

5.3 Results

A major research question would concern the need of a complex model like the one we introduce

to properly model economic growth. Thus, to remark the crucial role of the bivariate approach

with respect to the univariate one, we start our empirical analysis by comparing univariate

and multivariate approaches. Firstly, we fit univariate mixed-effects models for each outcome

separately, with K1 = 2, . . . , 7 and K2 = 2, . . . , 4. Model selection results are provided in

Table 5, and models with K1 = 6 and K2 = 2, respectively, are selected. Similarly, we

perform model selection for the bivariate model specified in the previous section, with varying

K1 = 2, . . . , 7 and K2 = 2, . . . , 4. In the bivariate case the AIC is in favour of the K1 = 6

and K2 = 3, while the BIC select the model with K1 = 6 and K2 = 2 groups (see Table

6). By comparing penalized likelihood criteria, it is clear that linking the two univariate

profiles by a shared (correlated) random effects structure, i.e. adopting a bivariate approach,

leads to better results in terms of trade-off between model fit and model complexity. In the
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following we look at the results obtained with the bivariate selects according to the BIC.

This choice is motivated by looking at parsimony and for comparison purposes (with respect

to univariate model specifications). In Figure2 we provide evidence of the goodness of fit

of the proposed model, and of the relatively small increase in goodness of fit the K1 = 6

and K2 = 3 model selected according to the AIC. The Parameter estimates are provided in

Table 7. The main difference between the univariate and the multivariate approaches is on

the magnitude of covariates effects in the equation for the mean of GDP level. Indeed, the

bivariate approach parameter estimates confirm the augmented Solow model intuition, i.e. the

accumulation process of physical and human capital exhibits more reasonable value of the

coefficients with respect to univariate case. As discussed before, the intercept term captures

the omitted country-specific features, such as, above all, institutional characteristic. This is

related to the idea that accumulation driven growth equation is incomplete (see e.g. Alfó et al.,

2008), and, coherently with the literature, the highest value for the random effect is found for

the component clustering the richest and more industrialized countries, such as USA and UK.

However, we will investigate the obtained clustering in depth in Section 5.4.

As formalized before, the location parameter for the growth rate is estimated by applying

a reduced-form model where the independent variables is the 5-years backward value of GDP

per capita. This allows for avoiding biased estimation in the parameters due to the dependence

among physical and human capital on income per capita (Goetz and Hu, 1996). Furthermore,

to account for the difference in initial level of GDP per capita, we leave the initial level of

GDP to vary among countries. Results show the existence of two groups: the first group

characterized by a negative and significant effect of the initial level of GDP on the growth

pattern, confirming economics theory about convergence; the second group is characterized

by the possible existence of multipla equilibria and the lack of convergence. These results

suggest the presence of a convergence club, that is, a group of countries with different levels

of per capita real GDP within which countries converge to a group-specific growth path, i.e.

the neoclassical prediction of the convergences is proved for those countries. The second

component, clustering low income countries, shows lack of income convergence allowing for the

potential existence of multipla equilibria, as obtained by Owen et al. (2009). To summarize,

accounting for heterogeneity, we can conclude for the existence of two difference of groups in the

growth process: one in which countries converge and one in which the positive and significant

coefficient associated to the initial level of GDP per capita suggests the lack of convergence
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and the possible existence of multipla equilibria.

The volatility of growth rate is mainly due to the unemployment rate and to the financial

development. This implies that changing in the labor market and in the financial sector are the

main causes of the economics, respectively, instability and stability. The high level of financial

development is found to be negatively related to the growth variability. This could be due to

the direct connection between the financial development and the household consumption. As

Aghion et al. (1999), and Easterly et al. (2001) suggest, an increase in the private credit to

GDP generates more consumption smoothness, by reducing the household liquidity constraints;

in turn, the less consumption volatility (smoothed by the less liquidity constraints) leads to

less volatility in growth. Unemployment is found here to play a destabilizing role on output

fluctuation. This could be due to the fact that an increase in the unemployment level generates

a decrease in consumption. Inflation, openness to trade and government consumption are found

to be non significantly different from zero in the bivariate equation for the scale parameters

(see Table 7).

An high level of openness to trade is associated to an improvement in the financial and

commercial risk sharing with foreign countries (Cecchetti et al., 2006) and to a consequent

increase in the vulnerability to the demand and supply shock (Newbery and Stiglitz, 1984).

On the other hand, stabilizing effect of the openness to trade could be due to the financial

structure of country itself, i.e. the most exposed to capital flows, the most stabilizing effect on

growth openness to trade (Cavallo et al., 2008), or to the degree of diversification of exports

(Haddad et al., 2013). Furthermore, we obtain that cyclical fluctuations in the growth rate are

negatively related to the labour market participation (Okun, 1962) and to the inflation rate.

5.4 Clustering

An interesting by-product of our approach is the possibility to cluster countries on the basis of

their posterior probabilities wik1k2 . The i-th country can be classified in the k1 − k2-th group

if ŵik1k2 = maxk1k2(ŵi11, . . . , ŵiK1K2). It is worth nothing that each group is characterized by

homogeneous values of (estimated) random effects; thus, conditionally on observed covariates,

countries clustered in the same group share a similar behaviour with respect to the event of

interest (i.e. GDP level and growth). This represents a substantial difference with conclusion

derived by assuming any parametric approach for the random terms.

Table 8 displays the a posteriori classification. With respect to the GDP level groups, k1 = 1
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and k1 = 6 cluster well-developed countries (with any few exceptions), while the poorest

countries are clustered in k1 = 4. It is interesting to notice that high levels of GDP are of-

ten associate to higher propensity to grow. Indeed, all countries (but Costa Rica, Mexico,

Panama, Turkey and Venezuela) clustered in k1 = 1 or k1 = 6 are assigned to k2 = 1, i.e. the

growth group with the highest propensity to growth, somehow alleviated by the initial GDP

level. Similarly, the “poorest countries” share a lower propensity of economic growth with the

exception of China and Thailand (as expected).

The obtained classification is, in this case, not only a mathematical tool able to capture the

unobserved heterogeneity, but groups may have a “physical” meaning. Indeed, countries in

the same cluster often share similar technological, institutional and/or geographical character-

istics (e.g. OECD countries are clustered together), and in general a similar socio-economic

background.

A final remark concerns the impact of initial GDP level on growth because it it important to

check for convergence. Our results suggest two different process. The first one involves devel-

oped countries, whose growth is relatively high and in which higher values of GDP contributes

to the growth process, thus leading to “convergence”. On the other hand, for “poorest” coun-

tries differences will increase as the initial GDP positively affects economic growth leading to

divergence.

6 Conclusion

In this paper we introduce a flexible multivariate multidimensional random model allowing for

all model parameters to depend on covariates in a regression framework. We relax the common

unidimensionality assumption of the random effects distribution, allowing for a general and

flexible association structure among the outcomes. The proposed approach is motivated by

the analysis of economic growth in presence of heterogeneous behaviour. We jointly model

GDP level and growth by further including a regression model for the variance of growth,

to check for the effects of financial variables on the volatility of the growth process. Our

empirical findings provide evidence of heterogeneous behaviours in both GDP level and growth

rate, confirming the need of a flexible approach to properly reflect all data features. Such

heterogeneous behaviours could be due to differences in institutional and technological factors

and may contribute to reach (or not) economic convergence. At last, we would remark that
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estimated covariates effects are in line with the augmented Solow model theory, additionally

the growth rate volatility is mainly related to unemployment and financial development. Of

course, the model can be extended in several ways. Here, we account for heavy tails in the

growth rate distribution, but other distributions than the t one can be considered, as well as

approaches to deal with outliers (if any). More than two outcomes can be jointly modelled

of the price of a high computational burden involved in the estimation step. An interesting

extension would deal with time-varying heterogeneity. Indeed, a limitation of our proposal is

that we assume time-constant random effects.
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Figure 1: Histograms of response varialbes

Figure 2: Model fitting: GDP level (left box), GDP growth (right box)
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Table 1: Simulation results: Scenario 1.

True Estimate Bias Std. dev.

n=100, T=5

uk1=1 -1.00 -1.020 -0.020 0.265

uk1=2 1.00 1.012 0.012 0.265

λ11 0.50 0.505 0.005 0.111

uk2=1 2.00 2.012 0.012 0.306

uk2=2 -2.00 -2.005 -0.005 0.243

λ12 0.50 0.494 -0.006 0.149

γ01 0.50 0.489 -0.011 0.072

γ11 0.75 0.760 0.010 0.120

γ02 1.00 0.991 -0.009 0.068

γ12 0.25 0.253 0.003 0.122

π11 0.40 0.420 0.020 0.048

π12 0.10 0.090 -0.010 0.049

π21 0.20 0.196 -0.004 0.047

π22 0.30 0.294 -0.006 0.063

Average Rand Index= 0.800

n=100, T=10

uk1=1 -1.00 -1.006 -0.006 0.139

uk1=2 1.00 1.000 0.000 0.142

λ11 0.50 0.500 0.000 0.078

uk2=1 2.00 2.017 0.017 0.171

uk2=2 -2.00 -2.004 -0.004 0.134

λ12 0.50 0.495 -0.005 0.098

γ01 0.50 0.502 0.002 0.049

γ11 0.75 0.741 -0.009 0.086

γ02 1.00 0.993 -0.007 0.046

γ12 0.25 0.257 0.007 0.078

π11 0.40 0.407 0.007 0.052

π12 0.10 0.096 -0.004 0.034

π21 0.20 0.196 -0.004 0.045

π22 0.30 0.300 0.000 0.041

Average Rand Index= 0.905
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Table 2: Simulation study: Scenario 2

True Estimate Bias Std. dev. Estimate Bias Std. dev.

n=100, T=5 n=100, T=10

uk1=1 -1.00 -1.028 -0.028 0.337 -1.007 -0.007 0.160

uk1=2 1.00 1.035 0.035 0.252 1.016 0.016 0.123

λ11 0.50 0.498 -0.002 0.111 0.499 -0.001 0.074

uk1=1 2.00 2.200 0.200 0.715 2.071 0.071 0.403

uk2=2 -2.00 -2.271 -0.271 0.935 -2.090 -0.090 0.401

uk2=3 0.00 -0.136 -0.136 0.746 -0.066 -0.066 0.616

λ12 0.50 0.498 -0.002 0.150 0.504 0.004 0.097

γ01 0.50 0.490 -0.010 0.071 0.496 -0.004 0.049

γ11 0.75 0.755 0.005 0.123 0.751 0.001 0.084

γ02 1.00 0.989 -0.011 0.079 0.993 -0.007 0.050

γ12 0.25 0.252 0.002 0.014 0.255 0.005 0.084

π11 0.10 0.038 -0.062 0.048 0.038 -0.062 0.048

π12 0.10 0.129 0.029 0.061 0.129 0.029 0.061

π13 0.20 0.230 0.030 0.058 0.230 0.030 0.058

π21 0.20 0.191 -0.009 0.075 0.191 -0.009 0.075

π22 0.30 0.360 0.060 0.070 0.360 0.060 0.070

π23 0.10 0.051 -0.049 0.058 0.051 -0.049 0.058

Average Rand Index= 0.740 Average Rand Index= 0.841

True Estimate Bias Std. dev. Estimate Bias Std. dev.

n=1000, T=5 n=1000, T=10

uk1=1 -1.00 -0.999 0.001 0.097 -1.000 0.000 0.050

uk1=2 1.00 1.000 0.000 0.073 1.002 0.002 0.039

λ11 0.50 0.501 0.001 0.033 0.501 0.001 0.025

uk2=1 2.00 2.054 0.054 0.215 2.005 0.005 0.100

uk2=2 -2.00 -2.039 -0.039 0.358 -2.005 -0.005 0.084

uk2=3 0.00 -0.016 -0.016 0.542 -0.002 -0.002 0.185

λ12 0.50 0.500 0.000 0.047 0.499 -0.001 0.031

γ01 0.50 0.500 0.000 0.022 0.500 0.000 0.015

γ11 0.75 0.749 -0.001 0.037 0.751 0.001 0.026

γ02 1.00 1.000 0.000 0.021 0.999 -0.001 0.015

γ12 0.25 0.249 -0.001 0.038 0.250 0.000 0.026

π11 0.10 0.072 -0.028 0.038 0.086 -0.014 0.014

π12 0.10 0.129 0.029 0.032 0.111 0.011 0.015

π13 0.20 0.213 0.013 0.032 0.203 0.003 0.021

π21 0.20 0.198 -0.002 0.041 0.199 -0.001 0.021

π22 0.30 0.299 -0.001 0.054 0.299 -0.001 0.023

π23 0.10 0.090 -0.010 0.040 0.101 0.001 0.026

Average Rand Index= 0.774 Average Rand Index= 0.859
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Table 3: Summary statistics

Mean Std. Dev. Variable Description Sources

GDP level

sk 0.002 0.001 share of output invested in physical capital PWT 8.0

sh 0.632 0.34 share of output invested in human capital World Bank

ngδ 0.067 0.012 population growth rate + 0.05(∗) PWT 8.0

lnyc 8.509 1.268 log of income per capita PWT 8.0

Growth

unemp 0.612 0.077 unemployment rate PWT 8.0

infl 0.519 0.312 log of consumer price PWT 8.0

open 66.7 38.05 openness to trade World Bank

govcons 15.329 5.853 government consumption (as share of GDP) World Bank

fin 45.656 39.801 domestic credit on GDP World Bank

N 519

Notes: (*): 0.05 is the commonly used value for approximating the depreciation growth rate and the

technological rate.

Table 4: Respone Variables: Summary statistics

Mean Std. Dev. Skewness Kurtosis Min Max N

GDP level 8.6 1.3 -0.27 1.96 5.42 10.70 519

GDP growth 0.9 0.2 -0.37 10.47 -1.33 1.31 519
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Table 5: Penalized Likelihood Criteria: Univariate model

LLK AIC BIC

K1 = 2 -360.89 735.77 754.08

K1 = 3 -312.95 643.89 667.43

K1 = 4 -277.54 577.08 605.85

K1 = 5 -265.11 556.22 590.22

K1 = 6 -248.04 526.08 565.31

K1 = 7 -258.81 551.62 596.08

LLK AIC BIC

K2 = 2 172.22 -322.44 -293.67

K2 = 3 172.24 -316.47 -279.86

K2 = 4 173.19 -312.37 -267.91

K2 = 5 173.18 -306.36 -254.06
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Table 6: Penalized Likelihood Criteria: Bivariate model

K1 K2 llk AIC BIC

2 2 -187.32 414.64 466.94

2 3 -186.55 421.1 483.86

2 4 -185.51 427.02 500.24

2 5 -185.57 435.14 518.82

2 6 -184.91 441.82 535.96

3 2 -147.21 340.42 400.57

3 3 -136.14 328.28 401.50

3 4 -152.45 370.9 457.20

3 5 -141.97 359.94 459.31

3 6 -134.52 355.04 467.49

4 2 -97.18 246.36 314.35

4 3 -96.29 256.58 340.26

4 4 -93.43 262.86 362.23

4 5 -91.77 271.54 386.61

4 6 -85.44 270.88 401.64

5 2 -66.97 191.94 267.78

5 3 -57.64 187.28 281.42

5 4 -55.25 196.5 308.95

5 5 -54.27 208.54 339.30

5 6 -66.52 247.04 396.10

6 2 -50.42 164.84 248.52

6 3 -39.72 159.44 264.04

6 4 -36.47 168.94 294.47

6 5 -61.48 234.96 381.41

6 6 -35.29 198.58 365.95
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Table 7: Results
Univariate Bivariate

Coef. SE Coef SE

Income per capita:
µit1

sk 0.07 ** 0.03 0.14 *** 0.03

sh 0.72 *** 0.02 0.46 *** 0.03

ngδ -0.33 *** 0.10 -0.61 *** 0.1

u0k1=1 8.46 *** 0.32 9.64 *** 0.31

u0k1=2 9.02 *** 0.06 7.48 *** 0.31

u0k1=3 9.59 *** 0.06 8.07 *** 0.3

u0k1=4 10.19 *** 0.06 6.97 *** 0.31

u0k1=5 10.84 *** 0.06 8.59 *** 0.3

u0k1=6 11.29 *** 0.09 9.01 *** 0.3

log(σit1)

γ01 -1.23 *** 0.03 -1.28 *** 0.03

Observations 519 519

K1 6 6

`(∗) -248.81

` -50.42

Growth rate:
µit2

u0k2=1 -0.01 0.05 1.05 *** 0.12

u0k2=2 1.11 *** 0.15 -0.1 0.09

lnyck2=1 0.01 ** 0.01 -0.09 *** 0.12

lnyck2=2 -0.1 *** 0.02 0.02 ** 0.01

log(σit2)

γ02 -1.53 *** 0.52 -1.52 *** 0.51

unemp 1.17 ** 0.55 1.34 ** 0.53

infl 0.01 0.08 0.03 0.08

open 0.05 0.08 0.05 0.08

govcons -0.11 0.11 -0.15 0.11

fin -0.31 *** 0.05 -0.31 *** 0.05

νit2

γ̃ 1.72 *** 0.17 1.69 *** 2.23

Observations 519 519

k2 2 2

`(∗) 172.22

` -50.42

Significance level: ∗ ∗ ∗ : 0.1% ∗∗ : 1% ∗ : 5%

Notes: `(∗): log-likelihood for the univariate model, `: log-likelihood for the bivariate model. Dependent

variables: 5 years forward value of log of GDP per capita (top of the Table), and 5 years forward value of

growth rate.
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Table 8: Clustering results
K2

K1 1 2

1 Australia, Austria, Belgium,

Canada, Czech Rep., Denmark,

Finland, France, Germany,

Hong Kong, Ireland, Israel,

Italy, Japan, Netherlands,

New Zealand, Norway, Spain,

Sweden, Switzerland, Trinidad & Tobago, UK, USA

2 Bangladesh, Benin, Burkina Faso,

Burundi, Rep. Congo, India,

Kenya, Madagascar, Mali,

Moldova, Niger, Rwanda,

Sri Lanka, Syria, Tanzania, Uganda

3 China Bolivia, Cameroon, Chad,

Djibouti, Egypt, Honduras,

Indonesia, Jamaica, Jordan,

Mauritania, Morocco, Pakistan,

Paraguay, Peru, Phillippines,

Senegal, Sierra Leone

4 Rep. Central African, Rep. Dem. Congo,

El Salvador, Malawi, Mozambique,

Nepal, Nigeria, Togo

5 Thailand Bulgaria, Colombia, Dominican Rep.,

Ecuador, Guatemala, Serbia,

South Africa, Tunisia, Uruguay,Zimbabwe

6 Angola, Argentina, Botswana, Costa Rica, Mexico, Panama, Turkey, Venezuela

Chile, Croatia, Estonia, Greece,

Hungary, Rep. of Korea, Latvia,

Malaysia, Maldives, Mauritius,

Poland, Poland, Portugal,

Romania, Russia, Slovakia
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