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1 Introduction

The scale-free nature of a wide range of socio-economic networks has been ex-
tensively documented in the recent literature [see e.g Barabási et al., 2009,
Gabaix, 2009, Schweitzer et al., 2009]. An example of central concern for macro-
economics are production networks whose scale-free nature has recently been
put forward by Acemoglu et al. [2012] as a potentially major driver of macro-
economic fluctuations [see also Battiston et al., 2007]. Relatedly, the scale-free
distribution of firms’ size [see Axtell, 2001] has also been identified as a key
micro-economic source of aggregate volatility [see Gabaix, 2011].

It therefore seems problematic that the central tenet of economic theory with
respect to the formation of structures, namely general equilibrium theory, has
essentially nothing to say about the scale-free nature, or the nature in general,
of the distribution of firms’ size or this of production networks. Indeed, in a
general equilibrium framework firms’ size are either indeterminate (when there
are constant returns to scale) or completely determinate by the primitives of
the model (when there are decreasing returns to scale, the equilibrium size of
the firm is completely determinate by its production technique.) In particular
when firms have the same production technique, they have the same size at
equilibrium.

The present paper addresses this wide gap in the theory through a dynamic
extension of the general equilibrium model that accounts for three key stylized
facts about the structure of the productive sector: firms’ growth rates follow
a Laplace distribution [see e.g Bottazzi and Secchi, 2006], firms’ sizes are Zipf
distributed and the degree distribution of production networks are scale-free.

The backbone of our approach is a model of monopolistic competition on
the markets for intermediate goods, akin to the one introduced by Ethier [1982]
(on the basis of Dixit and Stiglitz [1977]) and popularized by the endogenous
growth literature [see e.g Romer, 1990]. In this framework, we represent supply
relationships *** here supply relationship might be confusing (?) with respect
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to Acemoglu, JP etc. framework *** as the weighted edges of a network and
consider out-of-equilibrium dynamics in which (i) demands are made in nominal
terms and sellers adjust instantaneously their prices to balance real supply and
nominal demand (ii) firms need time to adjust their production technologies (i.e
the network weights) to prevailing market prices. When the set of relationships
is fixed (i.e only the weights of the network can evolve), the identification with
the underlying general equilibrium model is perfect in the sense that (i) the
adjacency matrix of the network is in a one to one correspondence with the
underlying ge economy (ii) the model does converge to the underlying general
equilibrium. However, the context of interest for us is this where the techno-
logical structure is not fixed a priori and where, the different production goods
being assumed substitutable, firms can, in the long-run, adjust their produc-
tion technologies/ supply relationships (i.e the adjacency matrix) as a function
of market prices. Then, we show that the model does not in general admit a
steady-state but rather displays self-organized criticality [see Bak et al., 1987]
(double-check) and settles in a regime where the distribution of firms ’size and
the structure of the production network are scale-free.

Similarly to those of the existing literature 1 [see e.g Barabási and Albert,
1999, Gabaix, 1999], our results are mainly driven by a form of preferential
attachement/proportional growth process: in a nutshell, the larger a firm is the
easier it can accommodate, given its current capacity, a new consumer without
substantially modifying its price and hence its competitive position.

However, our approach offers a much more systemic and comprehensive per-
spective that this existing in the literature. Indeed, from Kalecki [1945] and
Simon et al. [1977] to more recent contributions such as Bottazzi and Secchi
[2006], the problem of the distribution of firms’ size has been approached al-
most solely through “island-models” in which the growth of each firm is studied
in isolation and driven by exogenous shocks. On the contrary, in our model,
growth opportunities are endogenous and we account for general equilibrium
linkages.

More broadly, our paper contributes to the literature on the formation
of socio-economic networks [see e.g Jackson et al., 2008] by providing micro-
foundations for the emergence of scale-free networks which have been largely
lacking in this literature, but for the notable exception of Jackson and Rogers
[2007]. The paper also has close relationships with the infra marginal analy-
sis pioneered by Xiaokai Yang [see Yang and Borland, 1991, Cheng and Yang,
2004] and Bak and co-authors’s approach to the importance of self-organized
criticality in economic networks [see Bak et al., 1993, Scheinkman and Wood-
ford, 1994].

The remaining of the paper is organized as follows. In section 2, we propose
a model of production networks as monopolistically competitive markets for
intermediate goods. In section 3, we propose a numerical exploration of the
dynamics of the model. Section 4 gives an analytical proof of the main results

1[see also Bottazzi and Secchi, 2006] we model this idea using a process whereby the
probability for a given firm to obtain new opportunities depends on the number of opportunities
already caught.
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and section 5 concludes.

2 The Model

2.1 A general equilibrium primer

We consider an economy consisting of a finite set of (monopolistically compet-
itive) firms producing differentiated goods and of a representative household.
We denote the set of firms by M = {1, · · · ,m}, the representative household by
the index 0 and the set of agents by N = {0, · · · ,m}.

Our central concern is the endogenous formation of supply relationships
between firms. Therefore, to assume away any exogenous determinism in this
respect, we place ourselves in a setting where there is no a priori distinction
between potential intermediary goods. More precisely, we consider that the
production possibilities of firm i are given by a C.E.S production function of
the form (todo mention the possibility of weights):

fi(x0, (xj)j=1,··· ,ni) = xα0 (

ni∑
j=1

xσj )
(1−α)/σ (1)

where x0 is the quantity of labor used in the production process, ni the number
of intermediary goods/components combined and xj the quantity of input j
used in the production process.

This representation assumes that each good can be used interchangeably
in the production process . It is standard in models of monopolistic competi-
tion on the intermediate goods markets [see Ethier, 1982, Romer, 1990]. One
of its key implications is that productivity grows with the number of compo-
nents/suppliers2.

As for the representative household, we consider that he supplies a con-
stant quantity of labor (normalized to 1) and has preferences represented by a
Cobb-Douglas utility function of the form u(x1, · · · , xm) =

∏m
i=1 x

α0,i

i . He hence
spends his income on each good i ∈ M proportionally to α0,i (we assume that
∀i ∈ M,α0,i > 0, so that the household consumes a positive quantity of each
and every good).

As such, this model is incomplete. The micro-economic choices of the agents
in terms of production or consumption can not be determined without further
assumptions on the structure of interactions. In our firm-focused setting, these
interactions are mainly characterized by the production network, which specifies
the flows of goods between firms. The formation of these production networks
is the key focus of the reminder of this paper.

A general equilibrium approach to the issue would consist, in our setting, in
defining the production network through an adjacency matrix A = (ai,j)i,j∈M

2This feature is also at the core of the infra-marginal approach to economic growth [see
Yang and Borland, 1991] and of Adam Smith’s original description of the effects of the division
of labor.
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such that ai,j = 1 if j is a supplier of i and ai,j = 0 otherwise. Consistency
with equation (1) would then require that for all i ∈ M,

∑m
j=1 ai,j = ni and,

denoting by Si(A) := {j ∈ M | ai,j = 1} the set of suppliers of firm i, the
production function of firm i would be further specialized into:

fi(x0, (xj)j∈Si) = xα0 (
∑

j∈Si(A)

xσj )
(1−α)/σ (2)

One could then define a general equilibrium of the economy E(A) associated
to the production network A as follows.

Definition 1 A general equilibrium of the economy E(A) is a collection of prices
(p∗1, · · · , p∗m) ∈ RN+ , production levels (q∗1 , · · · , q∗m) ∈ RM+ and commodity flows

(x∗i,j)i,j=0···n ∈ RM×M+ such that:

1. Markets clear. That is one has for all j ∈ N, q∗j =
∑n
i=0 x

∗
i,j (with q∗0 = 1

by normalization).

2. The representative consumer maximizes his utility. That is (q∗0 , (x
∗
0,j)j=1,··· ,n)

is a solution to 
max ui((x0,j)j=1,··· ,n)

s.t
∑n
j=1 p

∗
jx
∗
0,j ≤ 1

(with the price of labor normalized to 1)

3. Firms maximize profits. That is for all i ∈ M, (q∗i , (x
∗
i,j)j∈Si(A)) is a

solution to 
max p∗i qi −

∑
j∈Si(A) p

∗
jxi,j

s.t fi((xi,j)j∈Si(A)) ≥ qi

Hence, in a general equilibrium setting, the adjacency structure of the pro-
duction network is fixed and the magnitude of the physical flows between firms
is determined at equilibrium. A particular case that has received widespread
attention in the literature [see Acemoglu et al., 2012, Long and Plosser, 1983]
is the Cobb-Douglas case (i.e when σ →) in which the value of flows between
firms at equilibrium is given by the corresponding exponents in the production
function (uniformly equal to one in our framework).

Our aim in the following is to subsume this general equilibrium approach
within an endogenous model of the formation of production networks.

2.2 An endogenous model of network formation

We consider a coupled model of network formation and out of equilibrium dy-
namics in which firms adaptively search for profit maximizing/cost minimizing
input combinations. More precisely, we consider that time is discrete and in-
dexed by t ∈ N. Each agent i ∈ N is initially endowed with a wealth w0

i ∈ R+
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and a quantity of output q0
i ∈ R+ (normalized to 1 throughout in the case of

the representative household). As for the production network, we assume its
initial structure is given by the matrix of weights A0 = (α0

i,j)i,j∈N , where αi,j
represents the share of agent i’s expenses directed towards agent j.

We are concerned with the time evolution of the wealths (wti)
t∈N
i∈N , the quan-

tities produced (qti)
t∈N
i∈N , the production network At = (α0

i,j)
t∈N
i,j∈N , as well as this

of prices (pti)
t∈N
i∈N . This evolution is driven by the interplay between the workings

of the market out of equilibrium and the evolution of the production network.
More precisely, during each period t ∈ N, the following sequence of events takes
place:

1. Each agent i receives the nominal demand
∑
j∈N αi,jw

t
j .

2. Given the nominal demand
∑
j∈N αi,jw

t
j and the output stock qti , the

market clearing price for firm i would be

pti =

∑
j∈N αi,jw

t
j

qti
. (3)

Now, we shall assume that prices adjust frictionally to their market-
clearing values and hence consider that firm actually set their prices ac-
cording to

pti = τpp
t
i + (1− τp)pt−1

i (4)

where τp ∈ [0, 1] is a parameter measuring the speed of price adjustment
(the case τp = 1 corresponding to instantaneous price adjustment).

3. Whenever τp < 1 markets do not clear (except if the system is at a sta-
tionary equilibrium). In case of excess demand, we assume that clients
are rationed proportionally to their demand. In case of excess supply, we
assume that the amount qti :=

∑
j∈N αi,jw

t
j/pti is actually sold and that the

rest of the output is stored as inventory. Together with production occur-
ring on the basis of purchased inputs, this yields the following evolution
of the product stock:

qt+1
i = qti − qti + fi(

α0,iw
t
i

pt0
, (
αj,iw

t
i

ptj
)j∈Si(A)) (5)

N.B: in the case where τp = 1, one necessarily has qti = qti and equation
(5) reduces to

qt+1
i = fi(

α0,iw
t
i

pt0
, (
αj,iw

t
i

ptj
)j∈Si(A[t)) (6)

4. As for the evolution of agents’ wealth, it is determined on the one hand by
their purchases of inputs and their sales of output. On the other hand, we
assume that the firm sets its expenses for next period at (1− λ) times its
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current revenues and distributes the rest as dividends to the representative
household. That is one has:

∀i ∈M, wt+1
i = (1− λ)qtip

t
i (7)

wt+1
0 = qt0p

t
0 + λ

∑
i∈M

qtip
t
i (8)

Note that equation (8) can be interpreted as assuming that firms have my-
opic expectations about their nominal demand (i.e they assume they will
face the same nominal demand next period) and target a fixed profit/dividend
share λ ∈ (0, 1).

This first sequence of operations defines out of equilibrium dynamics for a given
production network. As for the evolution of the network, it takes place at the
end of the period according to two process: one governs the evolution of weights,
the other this of the adjacency structure.

5. As for the evolution of weights, given prevailing prices the optimal input
weights for a firm i are those that minimize production costs. Those are
defined as the solution to the following optimization problem: max fi(

α0, i

pt0
, (
αj , i

ptj
)j∈Si(A))

s.t
∑
j∈Si(A) αj,i = 1

(9)

Now, as in the case of prices, we shall consider that the process of techno-
logical adjustment can be subject to frictions and that input weights are
actually updated according to the following rule:

αt+1
i = τwα

t
i + (1− τw)αti (10)

where αti ∈ RM denotes the solution of 9 and τw ∈ [0, 1] measures the
speed of technological adjustment of the production network.

6. As for the evolution of the adjacency structure, each firm independently
receives the opportunity to change one of its suppliers with probability
ρchg ∈ [0, 1]. If the opportunity actually arises for firm i in period t, it
selects randomly one of its most expensive supplier ji and another random
firm j among those to which it is not already connected. It then shifts its
connection from firm ji to firm j if and only if the price of j is cheaper
than this of ji. In other words, the adjacency matrix At evolves according
to:

at+1

i,ji
=

{
1 if pi,ji ≤ pi,j
0 otherwise

at+1
i,j = 1− at+1

i,ji

(11)

The actual weight of the new connection is then determined according to
STAN ?

6



7. Finally, the possibility for a firm to lose connections implies that it can
eventually be driven out of the market. Indeed, we consider that a firm
that has lost all its connections toward other firms exits the market. To
sustain competition in the economy, we assume that those exits are com-
pensated by entries of new firms according to the following process. Every
period, each (potential) firm that is out of the market independently en-
ters with probability pnew. When entering, the firm is endowed with the
following characteristics:

• The number of suppliers is drawn from a binomial distributionB(p,NF ).
The success probability p is artificially adjusted in order to preserve
on average the initial number of links L0.

• The price is initially set equal to the average price in the economy.

• Each firm in the economy rewires to the newly created firm indepen-
dently with probability k̄/n, where k̄ is the average number of clients
at time 0.

• The wealth of the firm is set equal to the average wealth of other
firms3 and its initial output stock is empty.

2.3 The linear case

In order to gain an understanding of the basic dynamics of the model, let us
first consider the case where the network is fixed, both in terms of weights and
adjacency structure. Note that this fixed weights assumption is equivalent to
the assumption used in Acemoglu et al. [2012] that production functions are
Cobb-Douglas (with the corresponding weights). In this respect, this simplified
version of our model can be seen as an out of equilibrium extension of Acemoglu
et al. [2012] (maybe better to make the connection with Cobb-Douglas)

The dynamic properties of this model are relatively straightforward. First,
it is clear that the evolution of wealths follows a linear dynamic, which can be
written matricially as:

wt+1 = R(λ)Awt (12)

where

R(λ) :=


λ · · · · · · λ
0
... (1− λ)I
0


accounts for the redistribution of firms’ revenues. The matrix of weights A being
moreover row-stochastic, it is straightforward to check using Perron-Froebenius
theorem that the linear system in 12 is globally asymptotically stable. Accord-
ingly, as illustrated in Fig. 1, we observe convergence in our simulations towards

3To ensure conservation of money in the long term, this initial wealth of the firm is in
practice considered as a loan that the firm has to reimburse before it can pay any dividend
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a stationary equilibrium determined by w ∈ RN such that:

w = R(λ)Aw (13)
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Figure 1: One time-step inflation rate and total production as a function of time
for the basic model (ρchg = 0) and different values of τp, τw. Other parameters
are: σ = 0.5, λ = 0.05, M = 1000.

2.4 Frictions and general equilibrium

Proceeding stepwise, we now consider the case where the adjacency structure
of the network is fixed but the weights evolve according to equation (10). This
setting is akin to the general equilibrium one introduced in section 2.1 but for the
fact that firms aim at enforcing a mark-up proportional to λ on their production
costs rather than at maximizing profits. More precisely, steady states of the
dynamical system defined by equations (4) to (10) are mark-up equilibria in the
following sense:

Definition 2 A mark-up equilibrium of the economy E(A) is a collection of
prices (p∗0, · · · , p∗n) ∈ RM+ , production levels (q∗0 , · · · , q∗n) ∈ RM+ and commodity

flows (x∗i,j)i,j=0···n ∈ RM×M+ such that:

• Markets clear. That is for all i ∈M, one has

q∗i =

M∑
j=1

x∗i,j .
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• The representative consumer maximizes his utility. That is (q∗0 , (x
∗
0,j)j=1,··· ,n)

is a solution to 
max ui((x0,j)j=1,··· ,n)

s.t
∑n
j=1 p

∗
jx
∗
0,j ≤ 1

(with the price of labor normalized to 1)

• Production costs are minimized. That is for all i ∈ M, (x∗i,j)j=0···n is the
solution to {

min
∑
j∈Si(A) p

∗
jxj

s.t fi(xj) ≥ q∗i

• Prices are set as a mark-up over production costs at rate
λ

1− λ
. That is

one has for all i ∈ N :

p∗i = (1 +
λ

1− λ
)

∑
j∈Si(A) p

∗
jx
∗
i,j

q∗i

Note that for λ = 0, mark-up equilibria coincide with general equilibria in
the sense of Definition 1. Indeed in a setting with constant returns to scale,
profits are zero at a general equilibrium4.

In this sense our model can be seen as a (dynamic) extension of the conven-
tional general equilibrium approach. Yet, this identification between economic
equilibria and steady states of our dynamical system only makes sense if these
steady states are stable. We (first) investigate the issue numerically by per-
forming, for different values of the elasticity of substitution σ, Monte-Carlo
simulations in which we let vary the speeds of price and technology adjustment,
i.e τp and τw.

The results of these simulations are reported in Figure 2 as phase diagrams
in the (τp, τw) plane. As long as σ is in a neighborhood of 1, the system exhibits
two distinct phases: a stable and an unstable one. In the stable phase, the
system converges to equilibrium: excess demand vanishes and prices converge
to their equilibrium values (see figure XX). In the unstable phase, there is a
persistent mismatch between supply and demand as well as sustained volatility
in the network (see Figure 3 ?): the system remains in disequilibrium.

The key determinant of stability is the relative speed of price (τp) and tech-
nological (τw) adjustment. The faster the relative speed of price adjustment, the
more stable the system is. Yet, the stability range increases as the absolute speed
of price adjustment decreases. Also, the size of the stable region increases as the
elasticity of substitution decreases. There exists a critical value σ∗ (σ∗ ∼ 5/9
for the parameter setting used in figure 2) such that for σ ≤ σ∗, the unstable
region disappears and the system converges to equilibrium independently of the
speeds of price and technological adjustment.

4Yet in a dynamic setting like ours assuming λ > 0 seems necessary to prevent firms from
remaining permanently at the brink of bankruptcy.
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Figure 2: Color map of the stationary average mismatch between demand and
supply in the (τp, τw) plane for M = 2000, λ = 0.05, σ = 4/5 (left) and σ = 2/3
(right). *** is probably better to have a diagram instead of a color map ***
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Figure 3: One time-step inflation rate, total production and average mismatch
between supply and demand as a function of time for the basic model (ρchg = 0)
and two different values of τp, τw corresponding to the stable / unstable region
of Fig. 2. Other parameters are: σ = 4/5, λ = 0.05, M = 1000.

These results are reminiscent of those obtained in Bonart et al. [2014]: the
larger the intrinsic volatility of the system (in our setting, the higher the elastic-
ity of substitution), the slower the adjustment processes shall be for the system
to be stable. As for the formation of networks, these results confirm that in
absence of changes in the adjacency structure, the characteristics of the produc-
tion networks are completely determined by exogenous technological constraints
(represented by the production functions in our setting).
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3 The endogenous formation of production net-
works

3.1 Steady-state analysis

In this section, we account for the increased flexibility in production technologies
implied by models of monopolistic competition on the market for intermediary
goods à la Ethier [1982] and Romer [1990]. In other words, we consider that the
adjacency structure evolves according to Equation (11).

A steady state of the system would consist in vectors of wealths w̃, prices p̃,
productions q̃ and in an adjacency matrix Ã satisfying the following properties.

• First, according to equation 11, each firm i buys only from the cheapest
suppliers (otherwise it would rewire). That is, one has for all i ∈ N :

max
j∈Si

p̃j ≤ min
k 6∈Si

p̃k (14)

• Second, firms only differ in terms of their number of suppliers ni and, at a
steady state, the larger the number of suppliers of a firm, the more produc-
tive and the cheaper it is (otherwise it could adopt the same production
technique than any firm with a smaller number of suppliers and improve
upon it by diversifying marginally). That is one has for all i, j ∈M :

ni > nj ⇒ p̃i > p̃j (15)

• Therefrom, one can deduce that at a steady-state only the firms with the
maximal number of suppliers (the more productive according to equation
15) actually have consumers (according to equation 14). More precisely,
let us denote by V the set of active firms in the steady state (i.e these
actually having consumers), by Mµ := {i ∈ M | ni = µ} the set of
firms with exactly µ suppliers, by mµ the number of such firms, by µ1 ≥
µ2 ≥ · · · ≥ µk̄ the decreasing sequence of µs for which Mν 6= ∅ and let

νi =
∑i
j=1mµj . One then has:

Mµi ⊂ V ⇒ card{` ∈M | n` ≥ νi−1} ≥ mµi (16)

That is to say, for a firm with µi suppliers to have at least one consumer,
there must be a firm that requires more than νi−1 suppliers because its
first νi−1 suppliers are these that are more productive and hence cheaper
than the µi suppliers firm.

A corollary of equation 16 is that there exists a steady state only if there
are at least mµk̄ firms that have more than νk̄−1 suppliers as otherwise there
would always be a firm (in Mk̄) without consumers. Such a firm would exit the
market and be replaced by by an entering firm, hence contradicting the fact
that the system is at a steady state. To clarify this condition, let us consider
the case where all the firms have a distinct number of suppliers (that is k̄ = m
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and ∀i mµi = 1). Then, there can be a steady state only if there exists a firm
with exactly m suppliers, i.e a firm connected to every other firm. It is also
worth noting that in this case the production network is a nested-split graph
[see König et al., 2012, 2014] because every consumer of a firm in Mi also is a
consumer of each of the cheaper firms (in Mj such that j < i).

This necessary condition for the existence of a steady-state is clearly ex-
tremely restrictive. It is not observed in simulations unless the system is initial-
ized in a very peculiar state (e.g by letting all the firms exactly have the same
number of suppliers). On the contrary, we generically observe sustained growth
and decline of firms, entry and exit and changes in the micro-structure of the
network. However, the system exhibits very robust distributional stylized facts
that we investigate in the remaining of this paper.

3.1.1 Firms’ demographics

A first major stylized fact of firms’ demographics is that the growth rates of
firms are distributed according to a “tent-shaped” double-exponential distribu-
tion [see Bottazzi and Secchi, 2006]. As illustrated in Fig. 4, our model generates
exactly this type of Laplace distributions (Statistical test ???). For relatively
short time intervals growth rates are indeed distributed∼ exp a|g − g0|) as found
in empirical data. For longer time intervals there are fatter tails as one can ex-
pect given the final distribution of firms sizes. Following Arthur [1994], Bottazzi
and Secchi put forward the fact that a Laplace type of distribution emerges be-
cause market success is cumulative or self-reinforcing. In their “island-based”
model, this self-reinforcing process is hard-wired into the model: “we model this
idea using a process whereby the probability for a given firm to obtain new oppor-
tunities depends on the number of opportunities already caught.” In our setting,
“self-reinforcing success” is also at play but it emerges endogenously. Indeed, the
price-setting process (see equation 4) is such that whenever a firm gains a new
consumer, its price increases (directly but also indirectly through the increase
demand that it adresses to his own suppliers) and hence its competitiveness
decreases. However, the larger the firm is the weaker the effect of an additional
consumer is on its price and hence the more competitive it remains. Therefore,
larger firms are more competitive and can seize more frequently new business
opportunities. Hence, our model generates endogenously the self-reinforcing
feedbacks introduced exogenously in Bottazzi and Secchi [2006] to generate a
Laplacian distribution.

On a more structural level, key stylized facts about firms are the Zipf distri-
bution of their size [see Axtell, 2001] and the presence of fat-tails in the degree
distribution of production networks [see Atalay et al., 2011, Acemoglu et al.,
2012]. As illustrated in Fig. 5 both features are clearly matched in the long-run
by our model. Both the distribution of firms’ sizes and the distribution of in-
coming links (i.e. the number of clients) are characterized by a power-law tail
with exponent close to 2.1 (emphasize this is independent of the initial shape of
the network)

Yet, as noted by Bottazzi and Secchi [2006], these long-run properties can not
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Figure 4: Distribution of firms’ growth rates after 2 106 time steps for the model
with ρchg = ρnew = 0.05 and σ = 1/2. Different symbols / colors correspond
to different time intervals to compute growth rates (for each firm we histogram
only the last 30 rates). Other parameters are: τp = τw = 0.8 and M = 10000.
*** change again this figure... ***

be explained by an exponential distribution of firms growth-rate. Accordingly,
in our setting, “self-reinforcing success” in price competition is at-play in the
short-run but in the long-run competition materializes mainly throughout the
entry-exit process and the evolution of the network structure.

3.1.2 A master-equation approach to the formation of production
networks

N.B The key driver of the fat-tail degree distribution is the fact that (i) the
number of opportunities are fixed (ii) the probability to seize a new opportunity
is independent of the size, (iii) the probability to lose an opportunity increases
proportionally to the size. Hence to maintain a stable distribution, one must
have very large firms that can lose large number of links.

In order to understand how these dynamics processes influence the formation
on the network structure (and incidentally the distribution of firms’ size), we
adopt a meso-scale approach and study the evolution of the degree distribution
of the network through a master equation. That is we investigate, the dynamics
of the relative frequency of firms of degree k in the network, in other words we
study the variation of P (k, t) the probability to have a firm of degree k in the
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network at time t.
In our setting, the probability for a firm of losing or gaining a link depends

only on the price. More precisely, let us denote by ij(t) the id of the jth most
expensive firm at time t. One then denotes by π+

j (t) and π−j (t) respectively the
probability that firm ij(t) receives a new incoming link and loses an incoming
link. One has:

π+
j (t) =

1

n

n− j
n− 1

(17)

π−j (t) =
dj(t)

nd

j − 1

n− 1
(18)

where dj(t) denotes the (in)degree of firm j(t), and d the mean degree (so that nd
is the total number of links). Then, if one denotes by ρk(t) and µk(t) respectively
the probability that a firm of degree k respectively gains and loses a link at time
t, one has:

ρk(t) =
1

n(n− 1)

∑
{j|dj=k}

n− j (19)

µk(t) =
k

(n− 1)nd

∑
{j|dj=k}

j − 1 (20)

The degree distribution of the network then obeys the following master-
equation

∂P (k, t)

∂t
= P (k−1, t)ρk−1(t) +P (k+ 1, t)µk+1(t)−P (k, t)(ρk(t) +µk(t)) (21)

Therefrom, one can deduce that the stationary distribution of degrees satis-
fies the following equation:

Pk−1ρk−1 + Pk+1µk+1 − Pkρk − Pkµk = 0 (22)

Moreover, it is clear from equations 17 and 18 that at a stationary distribu-
tion, the position in the price ordering must decrease with the degree. Hence, if
one denotes by ηk the number of firms of degree k at the stationary state and by
νk =

∑k
i=1 νi, it must be that the νk firms of degree k have positions n− νk−1

to n − νk−1 − νk + 1 = n − νk + 1 in the price ordering. It is then standard
calculus to check that:∑

{j|dj=k−1}

n− j =
1

2
(2νk−2 + ηk−1 − 1)ηk−1 (23)

∑
{j|dj=k}

j − 1 =
1

2
(2n− 2νk−1 − ηk − 1)ηk (24)
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We then focus on the detailed balanced condition, which is the sufficient
condition for a distribution to be stationary given by

∀k ∈ N Pkµk = Pk−1ρk−1 (25)

or equivalently
Pk−1

Pk
=

µk
ρk−1

(26)

Using equations 23 and 24 and the fact that Pk/Pk−1 = ηk/ηk−1, one gets:

k

d

(2n− 2νk−1 − ηk − 1)ηk
(2νk−2 + ηk−1 − 1)ηk−1

=
ηk−1

ηk
(27)

or equivalently
1

d

(2n− 2νk−1 − ηk − 1)

(2νk−2 + ηk−1 − 1)
=

1

k
(
ηk−1

ηk
)2 (28)

which eventually yields after division by n :

1

d

(2− 2Πk−1 − Pk − 1/n)

(2Πk−2 + Pk−1 − 1/n)
=

1

k
(
pk−1

pk
)2 (29)

where Πk =
∑k
`=1 P`. It is then clear that limk→+∞Πk = 1 and that Pk is

negligible with respect to 1−Π− =
∑+∞
`=k+1 P` as k → +∞. Therefrom, one ca

deduce that as k →∞:

Πk ∼ 1− d

2k
(30)

Taking a continuous approximation and differentiating, it is clear that π asymp-
totically follows a power-law with exponent −2.

*** START ALTERNATIVE ***
Therefrom, one can deduce that the stationary distribution of degrees satis-

fies the following equation:

Pk−1ρk−1 + Pk+1µk+1 − Pkρk − Pkµk = 0 (31)

Moreover, it is clear from equations 17 and 18 that at a stationary distribu-
tion, the position in the price ordering must decrease with the degree. Hence,
if one denotes by Fk =

∑
i<k Pi the probability of having a firm with degree

strictly smaller than k, one has for the transition probabilties

ρk =
Fk
N

µk = (1− Fk+1)
k

Nd̄
. (32)

We then focus on the detailed balanced condition, which is the sufficient
condition for a distribution to be stationary and is given by

∀k ∈ N Pkµk = Pk−1ρk−1 (33)
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and therefore substituting Eq. 32 one easily finds

k

d̄

(1− Fk − Pk)

Fk − Pk−1
=
Pk−1

Pk
(34)

which in the limit of k � 1 yields Fk ∼ k−1.
***END ALTERNATIVE ***
This is in very strong agreement with the simulation results depicted in

figure 5 and sheds light on a possible endogenous mechanism for the origin of
scale-free production networks. We also confirm analytical results by simulating
numerically the evolution of Eq. 21 through Eq. 32. In order to do that we start
with P (k, t) binomially distributed as B(n, d/n) with d = 20 and let evolve
the distribution until it reaches a stationary state (approximately 106 steps).
Formally the power-law tail arises because of the factor k appearing in the
ratio between the probability of losing and gaining a link (see equations 20
and 19 respectively). Two processes are at play. On the one hand the most
competitive firms tend to attract links and hence there is a tendency towards
concentration on the most competitive firms. On the other hand, large firms
are the most affected by competition from a new entrant because their chance
to lose a customer is proportional to their size. This second process can be
seen as a from of inverted preferential attachment process [see Barabási and
Albert, 1999] where asymptotically large firms lose connections proportionally
to their degree whereas in Barabási and Albert [1999] finite-size firms gain links
proportionally to their degree.

4 Conclusion

We have a very simple dynamic model which suggests that a simple dynamic
extension of the monopolistic competitive framework (considered in endogenous
growth theory) is consistent with main stylized facts about firms’ demographics
and can give a systemic perspective on their origin. The key assumption about
the dynamics is that prices adjust, in general, faster than technology (recall
results about convergence to equilibrium)....
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Figure 5: Basic firms statistics after 3 106 time steps for the model with ρchg =
ρnew = 0.05. Top: Cumulative frequency for the number of incoming links
(clients) and total incoming weight (sum over all clients weights). Bottom:
Cumulative frequency for total sales and profits histogram. In both graphs red
lines are for σ = 0.25 while black solid lines are for σ = 0.5. Dashed black lines
are a guide for the eye and correspond to f(x) ∼ x−1.1. Other parameters are:
τp = τw = 0.8 and M = 10000.
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Figure 6: Other firms statistics after 3 106 time steps for the model with ρchg =
ρnew = 0.05 (as in Fig. 5). Frequency and cumulative frequency for firms
lifetime. For longer lifetimes the distribution has an exponential decay (see
inset) followed by a power law tail with exponent ∼ 2.5. Other parameters are:
τp = τw = 0.8 and N = 10000.
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Figure 7: Numerical results for the stationary cumulative distribution of Eq. 21
with n = 2000 (red line). The exponent of the dashed black line is 0.989.
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