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Abstract

In this paper we develop an heterogenous agents model of asset price and inven-
tory with a market maker who considers the excess demand of two groups of agents
that employ the same trading rule (i.e. fundamentalists) with di�erent beliefs on the
fundamental value. The dynamics of our model is driven by a bi-dimensional discrete
non-linear map. We show that the market maker has a destabilizing role when she
actively manages the inventory. Moreover, inventory share and the distance between
agents' beliefs strongly in�uence the results: market instability and periodic, or even,
chaotic price �uctuations can be generated. Finally, we show through simulations that
endogenous �uctuations of the fractions of agents may trigger to instability for a larger
set of the parameters.
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1 Introduction

The market price determination has been historically a crucial issue in the economic liter-
ature. Views about the di�erent roles of the so called "specialists" have intensely changed
through time since they have been performing increasingly complex functions. On the one
hand, the market maker is originally described as 'the broker's broker' and inserted in the
"Walrasian auctioneer" framework to describe the price formation process. On the other
hand, a "market maker mechanism" has been extensively used to describe the �nancial mar-
kets, when out of the equilibrium exchanges are possible.

Beja and Goldman (1980) are among the �rst authors that introduced a stylized represen-
tation of the market maker1. Day and Huang (1990) give also an important contribution on
this literature, developing a non-linear behavioral model which achieves chaotic �uctuations
around a benchmark fundamental price that may be seen as the bull and bear �uctuations.
The market maker reacts to the excess demand by setting the price. She behaves in two
di�erent ways: she accumulates (decumulates) stocks in (out) of her inventory in presence
of excess supply (demand), like the so-called dealers or liquidity providers, or rather behaves
as an active investor maximizing her pro�ts by actively controlling her inventory. These
two behaviors may be consistent with each other if a target level of inventory is introduced
(Brad�eld, 1979).

Madhavan and Smidt (1993) shed new light on the role of specialists' inventory: their
basic idea is that when the specialists act as dealers, their quotes induce mean reversion
towards a target inventory level, while when they behave as active investors they choose a
long-term desired inventory based on portfolio considerations, and may periodically revise
this target. Also, they extend the market maker inventory control models incorporating the
"asymmetric information e�ects" combined with level shifts in the target inventory. The
existence of a target level rede�nes the market maker �gure as an agent who has a degree of
decision on its future market positions.

Since the seminal contribution of Day and Huang (1990), the market maker has been
extensively analysed in the framework of the heterogeneous agent models (HAMs). This
theoretical approach shows that the behavior of heterogeneous agents may generate complex
price dynamics (Kirman, 1991, Lux, 1995, Brock and Hommes, 1997, 1998; Chiarella and
He, 2001 or Farmer and Joshi, 2002; Westerho� and Dieci, 2006) that may replicate stylized
facts such as bubbles and crashes, fat tails for the distribution of the returns and volatility
clustering.

However, in the HAM's framework, some contributions focus on the impact of the market
maker inventory on the price (Gu, 1995; Sethi, 1996; Day, 1997; Franke and Asada, 2008),
but none of these seeks to model the market maker as an active investor. To the best of our
knowledge, Westerho� (2003a) is the �rst that analyses how inventory management of foreign
exchange dealers may a�ect exchange-rate dynamics. Later on, Zhu et al. (2009) develop
a model consisting in a market with two di�erent groups of agents (fundamentalists and
chartists) plus a market maker acting both as a dealer and an active investor, showing that
'the market maker does not necessarily stabilize the market when actively manages his/her
inventory to maximize the pro�t' (Zhu et al., 2009 p.3165). Modelling market makers may
make the dynamics much easier because a parameter, the market maker reaction coe�cient,
is added. However we believe it makes models much closer to the real markets (Farmer and
Joshi, 2002) and may simplify the analysis (i.e. Hommes et al., 2005).

Most of the HAMs models are characterized by a framework with two assets (a risky
and a risk-free asset), di�erent types of traders (i.e. fundamentalists, chartists, noise traders
and so on) and sometimes a market maker (for a survey see Hommes, 2006; LeBaron, 2006).

1hereafter we use indi�erently either specialists or market makers.
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By de�nition, fundamentalists are convinced that prices will return toward their long-run
equilibrium values. Hence, if the price is below (above) its fundamental value, they will buy
(sell) the asset. Such a trading strategy tends to stabilize the market since prices are pushed
toward their equilibrium values. The market impact of fundamental traders is constant
over time. Recently, in contrast with the canonical HAM's models, Naimzada and Ricchiuti
(2008, 2009, 2012) developed a framework in which the source of instability resides in the
interaction of two di�erent groups of agents that use the same trading strategy (all traders are
fundamentalists) but have heterogeneous beliefs about the fundamental asset value. We may
think about the two di�erent agents' beliefs also within a system that lies outside the �nancial
markets, for example at macro level, which is the case reported for in�ation expectations by
Mankiw et al. (2003). For instance, the beliefs about the future have a subjective dimension:
hardly agents reach the true fundamental value and it is really unlikely that agents have the
same beliefs (Naimzada and Ricchiuti (2014).

The goal of the present paper is twofold. Firstly, starting from the framework developed
by Naimzada and Ricchiuti (2009) and in line with the market maker inventory introduced
by Zhu et al. (2009), we develop a simple model in which two groups of fundamentalists trade
in a �nancial market with a market maker who actively manages her inventory. Secondly,
we study in such a framework the role of heterogeneity and whether the market maker is a
stabilizer or not, analysing through simulations both the cases with �xed and endogenously
determined fractions.

The remainder of this paper is organized as follows. In section 2 we discuss the asset
pricing model with two fundamentalists and the market maker inventory. Section 3 brie�y
presents the necessary conditions for the existence and local stability of �xed points. In
section 4 we use simulations to study the role of heterogeneity also in the case with endogenous
fractions of agents. The last section contains the �nal remarks and suggestions for further
investigations.

2 The model

Naimzada and Ricchiuti model (2009) includes a market maker and two archetypal groups
of fundamentalists 'who may use one of a number of predictor which they might obtain from
�nancial gurus' (experts) as in Föllmer et al. (2005). There are two di�erent assets: agents
can either invest in a risky asset or in a risk-free asset. The risky asset (e.g stock or stock
market index) has a price per share ex-dividend at time t equal to Xt and a (stochastic)
dividend process yt. The risk-free asset is perfectly elastically supplied at the gross return
(R = (1 + r/k) > 1), where r is equal to the constant risk free rate per annual and k is the
frequency of the trading period per year. We de�ne i = 1, 2 the two groups of agents, and
we assume that all the investors choose their own portfolio in a way such that they maximize
their expected utility. We denote as zs the total �xed risky asset supply. The portfolio wealth
at (t+ 1) is given by:

Wi,t+1 = RWi,t +Rt+1qi,t = RWi,t + (Xt+1 + yt+1 −RXt) qi,t (1)

where Rt+1 = (Xt+1 + yt+1 −RXt) corresponds to the excess return (capital gain/loss)
of the risky asset over the trading period t+ 12, while qi,t represents the number of shares of
the risky asset held in the trading period t by the investor i.

Now, let Ei,t(Xt+1) and Vi,t(Xt+1) be the beliefs or forecasts about the future dividends
and the conditional variance of the quantity Xt+1 respectively. It follows from (1) that:

2which is conditionally normally distributed
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Ei,t(Wt+1) = RWi,t + Ei,t (Xt+1 + yt+1 −RXt) qi,t, (2)

Vi,t(Wt+1) = q2i,tVi,t(Rt+1). (3)

Let's assume for agents of group i a constant absolute risk aversion utility function equal
to Ui(W ) = −e−aiW , where ai represents the - strictly positive and constant - risk aversion
coe�cient equal for both groups of agents, we assume that ai = 1 ∀ i ∈ [0,∞]. By maximizing
the expected utility of wealth in trading period t+ 1

Maxqi,t

[
Ei,t(Wi,t+1)− a

2
Vi,t(Wi,t+1)

]
, (4)

we obtain the optimal demand function for each group

q∗i,t =
Ei,t(Rt+1)

aVi,t(Rt+1)
=
Ei,t(Xt+1 + yt+1 −RXt)

aVi,t(Rt+1)
. (5)

We assume that agents have common expectations on dividends (Ei,t(yt+1) = Et(yt+1) =
ȳ) but di�erent expectations on future prices Ei,t(Xt+1) = Ei(X

∗
t+1) = Fi with i = 1, 2,

where Fi is the belief about the fundamental value.
Therefore, to model the excess demand we rewrite the equation (5) adopting the formu-

lation of Day and Huang (1990):

qi,t = δ(F ∗
i − Pt), (6)

where Pt = RXt − ȳ and δ = 1
aσ2 is the positive coe�cient of the reaction of investors,

a measure of both risk aversion and reaction to mis-pricing of the fundamentalists which we
assume, without loss of generality, being equal to 1.

2.1 Inventory

In Naimzada and Ricchiuti (2009), the market maker intervenes clearing the price but she
does not manage both her own portfolio and the inventory. In this paper, we consider the two
market maker functions - dealer and active investor - as completely segmented. Following
Madhavan and Smidt (1993), the market maker - active investor - aims to maintain a long-
term desired target inventory position Id by demanding in each period the desired inventory
plus a share of the previous value of inventory. Let It be the specialist's inventory position
at time t, then the desired position (Idt+1) in each period is anything but a share κ of It plus
the �xed long term target inventory position:

Idt+1 = κIt + Id, with κ ∈ [0, 1) (7)

Eq. (7) represents the market maker demand function.
On the other hand, acting as dealer, the market maker provides a required amount of

liquidity to the security's market. The market maker inventory at t+1 is the desired inventory
position in the next trading period plus the total supply of the risky asset minus the investors
aggregate optimal demand of the assets at time t:

It+1 = Idt+1 + (zs − z∗t ). (8)

Substituting (7) in (8), the equality becomes

It+1 = κIt + Id + (zs − z∗t ) (9)
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with the traders aggregate demand z∗t at time t being equal to

z∗t = n1,t+1q1 + (1− n1,t+1)q2 + εt, with n1 + n2 = 1, (10)

where εt is the demand error term3, and ni,t+1 is the fraction of agents that follow the
expert i. Fractions can be �xed or they can vary according to an adaptive system such
as Brock and Hommes (BH, henceforth)(1998). For the analytical results, as in Zhu et al.
(2009), we will assume �xed fractions. This assumption will be relaxed in the simulations
where we will employ the BH switching mechanism.

Given our assumptions, the market excess demand EDt for the risky asset in trading
period t+ 1 is as follows:

EDt = z∗t + Idt+1 − zs (11)

where zt represents the market demand, Idt+1 the market maker demand and zs the supply
of the market maker to the outside investors. The other investors adjust their holdings to
their optimal demand in trading period t+1 by submitting market orders at price Pt+1. The
market maker adjusts the price so that the return is an increasing function of the market
excess demand. If the excess demand EDt is positive (negative), she increases (decreases)
the price:

Pt+1 = Pt + PtγEDt = Pt + Ptγ[z∗t + Idt+1 − zs] (12)

where Pt is the asset price at time t and γ >0 is the sensitivity of market maker to the
excess demand. Finally, the relation that determines the dynamics of the model is obtained
by substituting (7) and (10) into (12) and adding the market maker demand:

Pt+1 = Pt + Ptγ[n1,t+1q1 + n2,t+1q2 + κIt + Id − zs] + εt (13)

where εt is a white noise term, i.i.d. normally distributed with mean 0 and variance
σ2
ε . The asset price and the inventory dynamics are determined by the following stochastic

discrete non-linear dynamical system of equations:{
Pt+1 = Pt[1 + γ[n1(F1 − Pt) + n2(F2 − Pt) + κIt + Id − zs]] + εt

It+1 = κIt + Id + [zs − [n1(F1 − Pt) + n2(F2 − Pt)]] + εt
(14)

3 The Deterministic Model: Dynamic Analysis

Let us assume that the system is deterministic. We �rst calculate the steady states and
afterwards we qualitatively work out some properties including the �xed points stability
conditions.

3.1 Fixed Points

Proposition 1. The map (14) has two steady states:

(P ∗
1 , I

∗
1 ) =

(
0,
zs + Id −G

1− κ

)
(15)

3i.i.d. random variable normally distributed with mean 0 and variance σ2
µ
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and

(P ∗
2 , I

∗
2 ) =

(
G− zs +

Id

1− 2κ
,

2Id

1− 2κ

)
(16)

with G = n1F1 + n2F2

Proof. The proof is in the Appendix.

3.2 Local Stability Analysis

The study of the local stability of the equilibria starts with the determination of the Jacobian
matrix of the two-dimensional map. The Jacobian matrix of system (14) has the form:

J =

[
1 + γ(G− 2Pt + κIt + Id − zs) γκPt

1 κ

]
(17)

Thus, using straightforward algebra the Jacobian matrix of the system (14) at the equi-
librium point E1(P

∗
1 , I

∗
1 ) is:

J(P ∗
1 , I

∗
1 ) =

[
1 + γ

(
G+Id−2κId−zs

1−κ

)
0

1 κ

]
(18)

and from the resulting matrix (18) we work out the following trace and determinant:

Tr(J1) = 1 + γ

(
G+ Id − 2κId − zs

1− κ

)
+ κ (19)

Det(J1) = κ+ γ
κ

1− κ
(
G+ Id − 2κId − zs

)
(20)

Finally, by using Jury's conditions (21) (Jury, 1974) we have conditions for local stability:
1− TrJ∗ +DetJ∗ > 0

1 + TrJ∗ +DetJ∗ > 0

DetJ∗ < 1

(21)

By substituting trace (19) and determinant (20) in (21) and rearranging the system
inequalities we obtain the following stability conditions (22):

γ(G+ Id − 2Gκ+ (2κ− 1)zs) < 0

(κ2 − 1)(2 ∗ (κ− 1)− γ(G+ Id − 2Gκ+ (2κ− 1)zs)) > 0

(κ− 1)(1 + κ(κ− 2− γ(G+ Id − 2Gκ+ (2κ− 1)zs))) < 0

(22)

Moreover, the Jacobian evaluated at the second �xed point (P ∗
2 , I

∗
2 ) is given by:

J(P ∗
2 , I

∗
2 ) =

[
1 + γ

(
zs −G− Id

1−2κ

) (
G− zs + Id

1−2κ

)
κγ

1 κ

]
, (23)

trace and determinant are thus:

Tr(J2) = 1 + γ

(
zs −G−

Id

1− 2κ

)
+ κ (24)

Det(J2) = κ+ 2κγ

(
zs −G−

Id

1− 2κ

)
. (25)
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The stability conditions for the second �xed point are reported in (26)


γ(G+ Id − 2Gκ+ (2κ− 1)zs) > 0

(2κ− 1)(2− 2κ− 4κ2 +Gγ(4κ2 − 1)− γ(1 + 2κ)(Id + (2κ− 1)zs)) < 0
κ(2κ−1+2γ(G+Id−2Gκ+(2κ−1)zs))

2κ−1 < 1

(26)

We do not have a clear analytical outcome for the stability of the two steady states.
Therefore we proceed in the following section through simulations.

4 Numerical analysis

The main purpose of this section is to show the complicated dynamic features of the model
through simulations. We calibrate the model according to the characteristics highlighted in
our framework and replicate the parameters reported by Zhu et al. (2009). Table 4 shows
our initial parameter settings for the simulations. Moreover, we focus our analysis on the
steady state with a positive price as shown in eq. 16.

γ zs κ n1 n2 F1 F2 Id

0.18 1 0.1 0.5 0.5 2 3 10

Table 1: Parameter settings for the simulations

We describe how the stability changes as both (i) the sensitivity of the market maker γ
and (ii) the distance between the two beliefs F1 and F2 (i.e. the degree of heterogeneity)
increase.

4.1 Fixed Fractions

Figures 1 and 2 show respectively the phase plots in price and inventory space and the bi-
furcation diagram for an increasing γ. The steady state of equation (16) is stable for small
values of γ (γ ≤ 0.127), while for increasing values of γ there is a cascade of period-doubling
bifurcations that leads to chaos.

To better evaluate the di�erence between the two beliefs, it is worth highlighting the evo-
lution of the system from the situation in which there is complete homogeneity (F1 = F2 = F )
with a low γ (0.1) showing the e�ects of an increasing heterogeneity (an increasing F2). In
Fig. 3 we show the bifurcation diagram of Pt: an increase in the degree of heterogeneity
generates instability. When beliefs are homogeneous F1 = F2 = 2 the system is stable. A �ip
bifurcation arises for F2 ≈ 12 and two stable steady states arise. From this points onwards,
a cascade of period doubling bifurcations leads the system to chaos. Fig. 4 supports this
evidence showing how the inventory fraction held by the market maker plays a key rule for
the stability of the system. The parameter space shows that there is an inverse relationship
between k and the degree of heterogeneity (an increasing F2): a larger (smaller) distance
between the two beliefs leads to instability for a smaller (larger) κ.
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Figure 1: Phase plots of (Pt, It) for di�erent values of γ

Figure 2: Bifurcation diagram of Pt with 0 < γ < 0.196

Figure 3: Bifurcation diagram of the degree of heterogeneity variation, for γ = 0.1
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Figure 4: Qualitative parameter space of κ and F2. Local stability region (a), Period-2 cycle (b),
further period-doubling cycles (c), (d), (e)

We try to better understand both the activity of the market maker and the incidence of
an increasing degree of heterogeneity on the system stability, by analysing time series plots
obtained through the simulations (Fig. 5) and summarizing the main descriptive statistics
(Tab. 2). In these graphs we add an i.i.d positive stochastic error. In �g 5, we consider the
following combinations of parameters (γ, σε) = (0.127, 0), (0.127, 0.1), (0.196, 0), (0.196, 0.1)
holding F1 = 2 and F2 = 3, plotting time series of the price when the system is stable/unstable
both in the deterministic (σε=0) and stochastic (σε=0.1)case. In the top panel (5 (a)) there is
a period 2-cycle, when the noise is added (5 (c)) the two fundamentalist beliefs about the price
become more complex, generating larger and irregular �uctuations around the fundamental
price. When the activity of the market maker becomes increasingly stronger (5 (b), 5 (d)),
the market displays much more complicated dynamics characterized by irregular time series
and showing a higher volatility.

Figure 5: Time series of fundamental price for the speci�ed parameters with noise:(a) and (b); (time
series of fundamental price for the speci�ed parameters and without noise: (c) and (d).

Increasingly complex dynamics are shown also in Fig. 6 where 100 consecutive values of
the price are plotted for three di�erent sets of values of (F1, F2, γ, σε). In panel (a) F1, F2 are
equal and time series quasi periodically �uctuate around the mean value of the price. The
variability of the time series re�ects the increase the degree of heterogeneity, this is observable
in panel 6 (c-d) and (e-f) for a much higher degree of heterogeneity. This is the most
interesting scenario, because the dynamics shown in Figure 6 are perfectly comparable with
those obtained by employing more sophisticated stochastic model. Our simple model is able
to generate simulations of some of the most crucial issues happening in the �nancial markets,
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in particular the excess volatility. Table 2 summarizes some of the descriptive statistics
related to the simulations run over t = 10, 000 periods. As expected an increasing degree
of heterogeneity leads to an increase in the mean and median of the time series as the two
fundamental values act as focal points. Compared to the variance of (F1;F2) = (2, 2), (2, 3)
the variance of (F1;F2) = (2, 8) is almost double, this clearly re�ects strong excess volatility.
Since the kurtosis is always lower than 3 (i.e. the theoretical value of a Normal distribution),
the computed time series do not possess fat tails.

Figure 6: Price charts for di�erent degrees of heterogeneity (F1, F2), γ values, and in presence
(absence) of noise (σε=0.1;0)

(F1;F2)

(2; 2) (2; 3) (2; 8)

Mean σε = 0.1 10.91 10.97 12.79
σε = 0 10.58 10.73 12.69

Median σε = 0.1 10.38 10.11 13.49
σε = 0 10.58 10.73 12.69

Variance σε = 0.1 24.08 28.27 41.1
σε = 0 26.07 29.56 41.59

Kurtosis σε = 0.1 1.85 1.74 1.82
σε = 0 1.73 1.63 1.78

Skewness σε = 0.1 -0.29 -0.19 -0.31
σε = 0 -0.13 -0.06 -0.26

Table 2: Descriptive statistics of the simulated time series

As suggested by Westerho� and Franke (2009), in order to determine the ability of the
model to replicate empirical long memory e�ects, we perform the autocorrelation function
plots for all the combination of prices, inventory and fundamental values introduced before.
Figure (9) and (10) in Appendix B depict the autocorrelation functions of prices and inven-
tories. In eight out of ten plots it is revealed the presence of signi�cant correlation. However,
for higher degree of heterogeneity (F1 = 2, F2 = 8) the model successfully reproduces the
stylized facts of uncorrelated prices and inventory.
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4.2 Endogenous Fractions with BH

In this section we analyse "through" simulation a generalized version of the above model
when fractions of agents are endogenous. We assume that agents can switch from guru to the
other following an adaptive belief system a la Brock and Hommes (1997, 1998). Speci�cally,
the fractions of agents ni is:

ni,t+1 =
exp[−β(F1 − Pt)2]

exp[−β(F1 − Pt)2] + exp[−β(F2 − Pt)2]
. (27)

where β is the so-called intensity of choice, a parameter which assesses how quickly agents
switch between the two predictions. Substituting (27) in (13) we obtain the following general
map:

{
Pt+1 = Pt[1 + γ[n1,t+1(F1 − Pt) + n2,t+1(F2 − Pt) + κIt + Id − zs]] + µt

It+1 = κIt + Id + [zs − [n1,t+1(F1 − Pt) + n2,t+1(F2 − Pt)]] + µt
(28)

In Fig. 7 we replicate the parameter space of the �g. 4 with a small β = 0.1. It is worth
noting that di�erently from Fig. 4, for a very low κ stability occurs also when fractions are
homogeneous. A further increase in the parameters value leads to instability. As we expect,
if β increases, the set of parameters for which there is instability is less restrictive (Fig. 8).
Table 3 could be comparable with table 2. However, from the statistical point of view the
conclusions are the same: the greater the heterogeneity among the agents, the greater the
mean / median / variance of the series.

Figure 7: Qualitative parameter space for κ and F2 with BH. Local stability region (a), Period-2
cycle (b), further period-doubling cycles (c), (d), (e)
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Figure 8: Pt Bifurcations plots of degrees of heterogeneity (∆F ) variation for β = (0.1, 0.2, 0.3),
with ni endogenous. Time series charts are computed for (F1, F2) = (2, 3)

Descriptive Statistic Noise (F1;F2)

β = 0.1 β = 0.2 β = 0.3

(2;2) (2;3) (2;8) (2;2) (2;3) (2;8) (2;2) (2;3) (2;8)

Mean σ = 0.1 11.64 11.85 15.7 10.32 11.51 15.65 10.18 11.26 15.48
σ = 0 11.65 11.39 15.06 10.21 11.13 14.35 10.39 11.32 15.13

Median σ = 0.1 12.36 11.72 16.47 8.04 11.02 16.43 8.75 11.7 16.24
σ = 0 12.39 10.06 16.29 10.12 9.38 12.72 10.86 11.63 16.79

Variance σ = 0.1 18.15 25.45 49.02 27.59 28.83 49.56 28.59 31.14 51.7
σ = 0 18.04 28.77 50.03 29.06 31.29 60.18 27.8 30.61 55.86

Skewness σ = 0.1 -0.53 -0.33 -0.24 -0.05 -0.23 -0.23 -0.04 -0.28 -0.24
σ = 0 -0.53 -0.15 -0.21 -0.24 -0.07 0.06 -0.27 -0.27 -0.32

Kurtosis σ = 0.1 2.16 1.9 1.69 1.62 1.77 1.65 1.62 1.8 1.66
σ = 0 2.15 1.75 1.65 1.77 1.65 1.55 1.79 1.79 1.77

Table 3: Descriptive statistics of the simulated time series with ni a la Brock and Hommes for di�erent values
of β and di�erent agents beliefs
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5 Conclusions

This paper contributes to the development of �nancial market modelling and asset price
dynamics with heterogeneous agents. We develop a model of asset price and inventory in a
scenario where a market maker sets the price to clear the market. In doing so, the market
maker considers the excess demand of two groups of agents that employ the same trading rule
(i.e. two fundamentalists) but with di�erent beliefs about the fundamental prices. Moreover,
the market maker has a double role: she provides liquidity and acts as an active investor.
When κ is null, the model is equal to Naimzada and Ricchiuti (2014). In contrast with the
canonical literature and similarly to Naimzada and Ricchiuti (2008, 2009, 2014) we show that
interactions between agents with homogeous trading rules can lead to market instability. The
active role of the market maker can be one of the causes of instability in the �nancial markets:
a higher inventory share leads to instability. Finally, bu�eted with dynamic noise, this model
may also replicate some important stylized facts of �nancial markets such as excess volatility
and volatility clustering.

Further improvements to our behavioural �nancial model may consist in analysing a case
when more actors with a long memory are introduced in the model. This can be pursued
by introducing in the model a trend follower. In such a case it will be possible to analyse
the interactions between many views within the economic system and their survival in an
evolutionary environment based on historical data. In order to control for market distortions
and price volatility at the same time it would be interesting to introduce price limiters as
attempted by Westerho� (2003b). Moreover, the model can be improved by comparing this
model with other where the market mechanism is di�erent (Walrasian auctioneer for example)
as in Anufriev and Panchenko (2009) and observing how the simulated time series behaviour
varies across the di�erent speci�cations.
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6 Appendix A

In this appendix, we explain for easy reference the mathematical procedures used in our
analysis, in particular we develop a step by step procedure for the �xed points computation.

Step 1) The system of prices and inventory is:{
Pt+1 = Pt[1 + γ[n1(F1 − Pt) + n2(F2 − Pt) + κIt + Id − zs]] + µt

It+1 = κIt + Id + [zs − [n1(F1 − Pt) + n2(F2 − Pt)]] + µt
(29)

Step 2) Setting P ∗ and I∗ as follows:

Pt = Pt+1 = P ∗

It = It+1 = I∗

with G = n1F1 + n2F2

we obtain the following system of equations:{
P ∗ = P ∗ + P ∗γ[n1(F1 − Pt) + n2(F2 − Pt) + κIt + Id − zs]] + µt

I∗ = zs−(n1F1−n1Pt+n2F2−n2Pt)+I
d

1−κ
(30)

Step 3) �xed points are obtained by setting P ∗ = 0 and G = n1F1 + n2F2{
P ∗
1 = 0

I∗1 = zs+I
d−G

1−κ
(31)

Step 4) the second solution of the system is computed by solving the system for P ∗ and
I∗. {

G− P ∗ + κI∗ + Id − zs = 0

I∗ = 1
1−κ

[
Id + zs −G+ P ∗] (32)

Step 5) We substitute I∗ in the �rst equation:{
P ∗ = G+ κ

1−κ
[
Id + zs −G+ P ∗]+ Id − zs

I∗ = 1
1−κ

[
Id + zs −G+ P ∗] (33)

Step 6) With further rearrangements we obtain:
(1−2κ)G−(1−2κ)zs+I

d

1−κ =
(

1−2κ
2−κ

)
P ∗

I∗
(

1− κ
1−κ

)
=
(

1
1−κ

)
2Id

(34)

Step 7) which leads to the second set of �xed points:{
P ∗
2 = G− zs + Id

1−2κ

I∗2 = 2Id

1−2κ

(35)
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7 Appendix B

Figure 9: ACF of Pt values, for di�erent (F1, F2)
combinations and in presence (absence) of noise

Figure 10: ACF of It values, for di�erent (F1, F2)
combinations and in presence (absence) of noise
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