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Abstract

An estimation framework and a user-friendly software implementation are de-
scribed for maximum likelihood estimation of panel data models with random
effects, a spatially lagged dependent variable and spatially and serially corre-
lated errors. This specification extends static panel data models in the direction
of serial error correlation, allowing richer modelling possibilities and more thor-
ough diagnostic assessments. The estimation routines extend the functionalities
of the splm package for spatial panel econometrics in the open source R system
for statistical computing.
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1. Introduction

The econometric literature has recently considered panel regression models
with spatially autocorrelated outcomes or disturbances and random or fixed in-
dividual effects. After the pioneering works of Anselin (1988) and Case (1991),
the more recent methodological contributions by Elhorst (2003) and Baltagi
et al. (2003) and the first comprehensive treatments of the subject in Anselin
et al. (2008) and Elhorst (2009) have helped the diffusion of spatial panel meth-
ods in applied practice, although hindered by the lack of user-friendly software
(see Millo and Piras, 2012). Meanwhile, Baltagi et al. (2007b) have extended
the spatial panel framework to considering serial correlation in the remainder
errors.2 Lee and Yu (2012), in a recent comprehensive treatment, are the first
to analyze a very general specification including spatial lags, spatially and se-

1The material in this article originates from the computational part of the author’s PhD
dissertation at DEAMS, University of Trieste. The views expressed are solely his own and do
not necessarily reflect those of his employer. The software described is available in R package
splm since Version 1.1-00.

2Notable alternative approaches to space-time dependence are: the dynamic spatial panel
framework of Lee and Yu (2010a); and the space-time correlation model of Elhorst (2008),
where spatial and serial correlation are modeled jointly.
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rially correlated errors together with individual effects.3 As they observe, “[i]n
empirical applications with spatial panel data, it seems that investigators tend
to limit their focus on some spatial structures and ignore others, and in ad-
dition, no serial correlation is considered” (Lee and Yu, 2012, p. 1370). They
also document through Montecarlo simulation the biases due to neglecting serial
correlation or some part of the spatial structure, and recommend a general to
specific strategy.

This paper describes the implementation in the R system for statistical
computing (R Development Core Team, 2012) of maximum likelihood estima-
tion of panel models with spatial lags, spatial errors, individual random effects
that are/are not spatially autocorrelated and a temporally autocorrelated re-
mainder error term. In economic terms, this specification can accommodate
spatial spillovers from the outcome variable at neighbouring locations, spatial
diffusion of idiosyncratic shocks, individual heterogeneity and time-persistence
of idiosyncratic shocks. In terms of the previous literature, while building on
the general estimation theory in Anselin (1988), this framework extends Case
(1991) in adding serial error correlation, Baltagi et al. (2007b) in adding a spa-
tially lagged dependent variable. Moreover, unlike Baltagi et al. (2007b) whose
primary goal is to derive Lagrange Multiplier diagnostic tests under a restricted
specification, we take a general to specific approach aiming primarily at estima-
tion of the full model.4

The common specifications (spatial lag and/or spatial error with or without
random effects) have already been available for some time in the R package
splm described in Millo and Piras (2012), although implementation details were
still unpublished. Here we describe an extended framework allowing for serial
correlation of the autoregressive type, along with all the other features. The
corresponding software procedures extend the capabilities of the splm package
in this direction.

One main goal has been to produce a complete set of estimators able to cope
with all combinations of the dependence structures considered, while keeping
software as easy to read and maintain as possible. To this end, the theoretical
estimation framework has been geared towards modularity, so as to have soft-
ware counterparts to theoretical objects such as spatial filters or covariances,
combining them and ”plugging them” in the likelihood as prescribed by the
reference theory.

In the spirit of the R project, we have taken advantage of some peculiar
features of the language. In particular abstraction of tasks into functions for
easier readability and maintainance; functions as a data type to be passed on as
arguments to other functions, in the spirit of correspondence between concep-
tual and software tools; and lastly, object-orientation, for example, in applying

3Their paper appeared as this one was already under revision. We thank an anonymous
referee for pointing us at it.

4For a review and comparison of the general to specific and specific to general strategies
in applied spatial econometrics, see Florax et al. (2003) and Mur and Angulo (2009).
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specialized algebraic methods to matrices with a peculiar structure for reliability
and performance.

The main contribution of the paper is in combining existing results in the
literature – the general estimation framework of Anselin (1988) and analytical
derivations in Baltagi et al. (2007b) – into an operational framework for the
estimation of a number of models for which, to our knowledge, no algorithms
are currently available. Moreover, it describes a user-friendly, open-source im-
plementation in the R language which will hopefully open up new modelling
possibilities in the field of spatio-temporally correlated panels for a number of
applied researchers.

Given the large number of specifications considered, some preliminary words
on notation are in order. We consider either cross-sections of N data points
(only in Section 4.1) or balanced panels of N data points observed over T time
periods. Contrary to standard panel data practice, data are generally meant
to be stacked by time, then cross-section (so that the individual index is the
“fastest” one) in order to simplify formulas especially as regards spatial filtering
representations.5 In the following, we will denote the composite error term in
the standard linear regression model as u; ε will stand for the idiosyncratic
error term, as opposed to the random effect µ, so that u = µ + ε throughout.
Error covariance matrices will be denoted by Ω if unscaled, by Σ if scaled by
the innovation’s variance σ2

e , so that Ω = σ2
eΣ. Lastly, as we consider balanced

panel datasets with N spatial units observed over T time periods, the dimension
of spatial and covariance matrices involved will usually be NT ×NT . In some
cases, though, we will consider N × N (T × T ) submatrices pertaining to one
cross-section (time period), denoting them, e.g., as ΣN (ΣT ). The spatial weight
matrix WN = W is assumed time invariant, as customary in the literature,
and enters spatial panel models as IT ⊗WN where ⊗ is the Kronecker product,
dropping the index N when unambiguous. Software package names are in bold,
commands and arguments are in typewriter font.

Estimation of all models is based on maximum likelihood methods; an as-
sumption of normality is maintained throughout. An assessment of the appro-
priateness of the procedures presented here under non-normality of errors, in
the spirit of Lee and Yu (2012), is left for future work.

The paper is organized as follows: the next section discusses the specification;
then we review estimation theory, building on existing approaches to illustrate
ours. In the subsequent section we address the practical aspects of estimation,
from computational issues to the design of a user-friendly software package. A
practical illustration and the conclusions follow.

5While important for presentation clarity, this is nevertheless completely transparent for
software users, who need only supply suitably indexed data.frames or pdata.frames.
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2. Spatial panel models with error components

In this section we discuss the common specifications of random effects spatial
panel models most frequent in the literature. At the end we introduce the
general spatial autoregressive model with random effects and both spatially and
temporally autoregressive errors. This last is the most general specification we
consider here, and also the main subject of the paper.

Spatial panel data models capture spatial interactions across spatial units
observed over time. There is an extensive literature both on static as well as
dynamic models. Here we consider a general static panel model that includes a
spatial lag of the dependent variable and spatial autoregressive disturbances:

y = λ(IT ⊗WN )y +Xβ + u

where y is an NT × 1 vector of observations on the dependent variable, X is a
NT×k matrix of observations on the non-stochastic exogenous regressors, IT an
identity matrix of dimension T , WN is theN×N spatial weights matrix of known
constants whose diagonal elements are set to zero, and λ the corresponding
spatial parameter. The disturbance vector is the sum of two terms

u = (ιT ⊗ IN )µ+ ε

where ιT is a T × 1 vector of ones, IN an N ×N identity matrix, µ is a vector
of time-invariant individual specific effects (not spatially autocorrelated), and
ε a vector of spatially autocorrelated idiosyncratic errors that follow a spatial
autoregressive process of the form

ε = ρ(IT ⊗WN )ε+ e

with ρ as the spatial autoregressive parameter, WN the spatial weights matrix
and e ∼ IID(0, σ2

e).6

2.1. Spatial panels with (independent) random effects

As in the classical panel data literature, the individual effects can be treated
as fixed or random. In a random effects specification, the unobserved individual
effects are assumed uncorrelated with the other explanatory variables in the
model, and can therefore be safely treated as components of the error term:
see, e.g., Assumption RE.1.b in Wooldridge (2002, 10.4). In this case, µ ∼
IID(0, σ2

µ), and the error term can be rewritten as:

ε = (IT ⊗B−1
N )e

where BN = (IN −ρWN ). As a consequence, the composite error term becomes

u = (ιT ⊗ IN )µ+ (IT ⊗B−1
N )e

6The spatial weights matrices in the lag and the error term can differ (see the following).
IN − ρWN is assumed non-singular.
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and its variance-covariance matrix, if JT = ιT ι
>
T is a T × T matrix of ones, is

Ωu = σ2
µ(JT ⊗ IN ) + σ2

e [IT ⊗ (B>NBN )−1]. (1)

In deriving several lagrange multiplier (LM) tests, Baltagi et al. (2003) consider
a panel data regression model that is a special case of the model presented above
in that it does not include a spatial lag of the dependent variable. Elhorst (2003,
2009) defines a taxonomy for spatial panel data models both under the fixed and
the random effects assumptions. Following the typical distinction made in cross-
sectional models, Elhorst (2003, 2009) defines the fixed as well as the random
effects panel data versions of the spatial error and spatial lag models. However,
unlike Case (1991), he does not consider a model including both the spatial lag
of the dependent variable and a spatially autocorrelated error term. Therefore,
the models reviewed in Elhorst (2003, 2009) can also be seen as special cases of
this more general specification.

In the following we will use the acronyms SAR (as in Spatial AutoRegressive)
to indicate the presence of a spatial lag; SEM (Spatial Error Model) for a
spatially autoregressive process in the error7. The combined model will be
termed SAREM8. The suffix RE stands, as usual, for Random Effects.

2.2. Spatially correlated random effects

A different specification for the disturbances was considered in Kapoor et al.
(2007). They assume that spatial correlation applies to both the individual ef-
fects and the remainder error components. Although the two data generating
processes look similar, they do imply different spatial spillover mechanisms gov-
erned by a different structure of the implied variance covariance matrix. In this
case, commonly referred to as “KKP”, the composite disturbance term

u = (ιT ⊗ IN )µ+ ε

follows a first order spatial autoregressive process of the form:

u = ρ(IT ⊗WN )u+ e.

It follows that the variance-covariance matrix of u is:

Ωu = [IT ⊗B−1
N ]Ωε[IT ⊗ (BN

>)−1] (2)

where Ωε = [σ2
eIT+σ2

µJT ]⊗IN is the typical variance-covariance matrix of a one-
way error component model. The variance matrix in (2) is simpler than the one

7Although this is by far the most popular specification, the literature has also dealt with
different types of spatial diffusion processes in the errors other than the autoregressive one,
most notably the spatial moving average (SMA): ε = e + ρ(IT ⊗WN )e, see e.g. Fingleton
(2008). We do not consider them here.

8This is also often labelled as SARAR; we discard this terminology to avoid further con-
fusion with the serially autoregressive errors that will be introduced below.
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in (1), and therefore its inverse is easier to calculate, as will be discussed below.
As Baltagi et al. (2013) observe, the economic meaning of the two models is also
different: in the first model only the time-varying components diffuse spatially,
in the second spatial spillovers too have a permanent component.9 We label
this latter alternative specification SEM2RE, and its extension to including a
spatial lag (see Mutl and Pfaffermayr, 2011) SAREM2RE.

2.3. Serial correlation in idiosyncratic errors

It is possible to generalize the structure of the errors further by introducing
serial correlation in the remainder of the error term, together with spatial cor-
relation and random effects. Baltagi et al. (2007b) do so in the context of the
Anselin SEMRE, specifying the model errors as the sum of an individual, time-
invariant component and an idiosyncratic one which is spatially autocorrelated
and has serial correlation in the remainder:

ε = ρ(IT ⊗WN )ε+ ν
νt = ψνt−1 + et.

(3)

The combination of this more general error structure, which we term SEM(2)SRRE
because of the addition of Serially autoRegressive errors, with a spatially lagged
dependent variable and the estimation of the most general model (SAREM(2)SRRE)
will be our main purpose.

3. Alternative specifications and an encompassing one

Before discussing estimation of the specification detailed above, a short dis-
cussion of relevant alternative ones is in order. We focus on two different mod-
elling strategies from the ones discussed here. The first, fixed effects meth-
ods, although theoretically much different, turns out to be computationally
encompassed by the estimation framework discussed here, as discussed below.
The second, considering spatial and serial autocorrelation simultaneously in one
equation, is an alternative approach to space-time dependence in errors which
will not be pursued in this paper but only briefly hinted at for comparison.
Lastly, we set our model taxonomy in the context of the comprehensive model
of Lee and Yu (2012).

3.1. Random versus fixed effects

The subject of random versus fixed effects is too broad in scope to be sum-
marized here10. The modern approach to the issue, tracing back to Mundlak
(1978) and summarized, among others, in Wooldridge (2002, 10.2.1), centers
on the statistical properties of the individual effects, which despite traditional

9Lee and Yu (2012, 2.4) illustrate the difference between this latter specification and
SEMRE through the likelihood of the between model.

10A short introduction with the basic references can be found in Baltagi (2008, 2.3.1)
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terminology are always considered as random variates; the crucial distinction
becoming whether one can assume them to be uncorrelated with the regressors
or not. If uncorrelated, then individual effects can be considered as a component
of the error term, and treated in a generalized least squares fashion as will be
done in this paper. If not, then the latter strategy leads to inconsistency; the
individual effects will have to be estimated or, more frequently, eliminated by
first differencing or time-demeaning the data (see Wooldridge, 2002, 10.5). The
Hausman (1978) test is the standard device for assessing the hypothesis of no
correlation, and hence of using random effects methods. In a spatial setting,
Lee and Yu (2012) give an extensive treatment to which the reader is referred
here.11

From a computational viewpoint, nevertheless, according to the current stan-
dard framework of Elhorst (2003), fixed effects estimation of spatial panel mod-
els is accomplished as pooled estimation on time-demeaned data. Hence, it is
fully encompassed by the methods described in this paper, which can repro-
duce the results of Elhorst’s estimators provided the data are time-demeaned in
advance.12

While still the standard in applied practice and available software, Elhorst’s
procedure has been questioned by Anselin et al. (2008) because time-demeaning
alters the properties of the joint distribution of errors, introducing serial depen-
dence: see Lee and Yu (2010b, p.257) for a discussion of the issue, and Millo and
Piras (2012, p.33) for an evaluation if its practical significance through Mon-
tecarlo simulation. To solve the problem, Lee and Yu (2010a, 3.2) suggest a
different orthonormal transformation of the data. The possibility of combining
this latter transformation with the algorithms discussed in the next sections is
out of the scope of the present paper and is left for future work.

3.2. Joint modelling of spatial and serial correlation

In this paper, spatial and serial correlation in the error terms are modelled
sequentially, as in Equation 3 above, according to the most common approach
in the literature (Baltagi et al., 2007b; Lee and Yu, 2012). Elhorst (2008), in the
context of a panel model with neither spatial lags nor individual effects, consid-
ers spatial and serial error correlation simultaneously instead of sequentially.13

In his approach,
yt = Xtβ + ut
ut = ρWut + ψut−1 + et

so that each error depends not only on its current spatial lag and on its own past
values, but also on spatially lagged time lags (see Elhorst, 2008, Eq. 5). There-

11A spatial Hausman test for models without serial correlation is available in package splm,
Millo and Piras (see 2012, 7.2).

12Infrastructure in package plm, in particular model.matrix and pmodel.response methods
for plm objects, allow for efficient time-demeaning.

13Elhorst (2001) applies the same dependence structure to the regressand instead of the
error term.

7



fore, the combination of the two effects requires stricter stationarity conditions
implying a tradeoff between the spatial and the serial correlation coefficients.

This joint specification allows for a richer interaction structure, with more
complex time-space influence; in a sense, trading the relative simplicity of se-
quential “time, then space” dependence for the ability to account for the direct
influences of past, neighbouring errors, which are assumed out by the former.
By contrast, the sequential specification allows for clearer separation between
effects and lends itself more easily to the incorporation of time-invariant in-
dividual components, either spatially uncorrelated as in Anselin’s SEMRE, or
spatially dependent as in KKP’s SEM2RE model. Whether the joint specifica-
tion is more or less appropriate than the sequential one in a given setting is an
empirical question. However, the joint approach is not pursued here.

3.3. Comparison with Lee and Yu’s general model

The recent paper by Lee and Yu (2012) provides a comprehensive speci-
fication in the same line of research of Baltagi et al. (2007b), i.e. modelling
correlation in time and space sequentially. Lee and Yu (2012, Eq.1) consider a
spatial autoregressive lagged variable; a spatial process for both errors and ran-
dom effects, with possibly different parameters as in the general random effects
model of Baltagi et al. (2013); and moving average (MA) remainder errors in
both the idiosyncratic error and the random effect. Translating to our notation:

y = λ(IT ⊗W1)y +Xβ + u
u = (ıT ⊗ µ) + ε
µ = ρ1W2µ+ (IN + δ1M1)η
ε = ρ2(IT ⊗W3)ε+ (IT ⊗ (IN + δ2M2))ν
νt = ψνt−1 + et

where W1,W2,W3,M1,M2 are spatial weights matrices, and η, e are i.i.d.. This
model is more general than we consider in this paper in that it allows for
MA processes in the errors and for different spatial processes generating u
and µ. With reference to this model, we will impose δ1 = δ2 = 0 through-
out and, alternatively, either ρ1 = 0 (SAREMSRRE) or ρ1 = ρ2 and W2 = W3

(SAREM2SRRE), corresponding respectively to the approaches of Baltagi et al.
(2007b) (no spatial process in the individual effects) and Kapoor et al. (2007)
(same spatial process for both errors and individual effects). Further restrictions
will give rise to the various nested specifications, as detailed in the following.

4. Estimation: theoretical framework

In this section we review the theory of maximum likelihood estimation of
(static) spatial panel models with random effects.

We will start from models with a spatially lagged dependent variable, spatial
error correlation and a general covariance structure for the error, as described
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by Anselin (1988), without any panel structure.14 We will proceed introduc-
ing random effects and sketching the estimation framework of Elhorst (2003,
2009) for random effects panels with either a SAR or a SEM structure, which is
currently the standard in econometric applications. Lastly, we will set out our
approach. We will look at the random effects specification for panel models as
one particular type of error covariance structure, thus comprising spatial panels
in Anselin’s general framework.

This approach, with respect to the current solution based on partial time-
demeaning, has the advantage of both theoretical and software modularity, lead-
ing to a greater flexibility in the choice of the covariance structure: in particular,
as is the case of this paper, allowing for the coexistence of random effects and
serial correlation together with the spatial effects.15

4.1. Spatial models with a general error covariance

Maximum Likelihood estimation with a general error covariance matrix has
been outlined in Magnus (1978) (see also Anselin et al., 2008). If the error u is
distributed as N(0,Ω) then the log-likelihood is

logL = (C)− 1

2
ln|Ω| − 1

2
u>Ω−1u.

Particularizing this likelihood w.r.t. the case at hand and adding a spatial
filter if needed provides a general framework for ML estimation of the models
of interest. Anselin (1988), the classic reference on spatial econometric model
estimation by ML, outlines the general procedure for a model with spatial lag,
spatial errors and possibly nonspherical residuals as follows. Let us restrict, for
the moment, to one cross-section and let our model be

y = λW1y +Xβ + u
u = ρW2u+ η

(4)

with η ∼ N(0,Ω) and, in general, Ω 6= σ2I. Two special cases of this general
model are often found in applied literature: if ρ = 0 one has the spatial autore-
gressive (SAR) model , while if λ = 0 the spatial (autoregressive) error (SEM)
model. Both usually include the hypothesis of spherical errors: Ω = σ2I. Intro-
ducing the now-standard simplifying notation A = I − λW1, B = I − ρW2 the

14In his book Anselin (1988) already considered a SEM panel with random effects, deriving
the model likelihood, as a special case.

15It must be noted that the algorythm outlined in Elhorst (2003) and based on the com-
bination of partial demeaning with a spectral decomposition of the error covariance matrix
does in principle allow for any covariance structure. Yet our implementation turns out much
simpler to code and therefore easier to maintain, at the cost perhaps of a slight decrease in
efficiency; this last subject remains nevertheless to be investigated, as the different software
environments forbid a direct comparison between routines.
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model becomes 16

Ay = Xβ + u
Bu = η.

If there exists Ω such that e = Ω−
1
2 η and e ∼ N(0, σ2

eI), and B is invertible,

then u = B−1Ω
1
2 e and the model (4) can be written as

Ay = Xβ +B−1Ω
1
2 e

or, equivalently,
Ω−

1
2B(Ay −Xβ) = e

with e a ”well-behaved” error.
Still following Anselin, making the estimator operational requires the trans-

formation from the unobservable e to observables. Expressing the likelihood
function in terms of y requires calculating the Jacobian of the transformation
J = det( ∂e∂y ) = |Ω− 1

2BA| = |Ω− 1
2 ||B||A|. These determinants are to be added

to the log–likelihood, which becomes

logL = −N
2
lnπ − 1

2
ln|Ω|+ ln|B|+ ln|A| − 1

2
e′e

where the difference w.r.t. the usual likelihood of the classic linear model is
given by the terms of the Jacobian (which is J = 1 in that case, see Greene
(2003), B.41). The likelihood is thus a function of β, λ, ρ and parameters in Ω.

It will be convenient for our purposes, and without loss of generality, to scale
the overall errors’ covariance writing it as B′ΩB = σ2

eΣ.17 This likelihood can be

concentrated w.r.t. β and the error variance σ2
e substituting e = [σ̂2

eΣ]−
1
2 (Ay−

Xβ̂)

logL = −N
2
ln(πσ̂2

e)− 1

2
ln|Σ|+ ln|A| − 1

2σ̂2
e

(Ay −Xβ̂)′Σ−1(Ay −Xβ̂) (5)

and a closed-form GLS solution for β̂ and σ̂2
e is available for any given set of

spatial and other covariance parameters

β̂ = (X ′Σ−1X)−1X ′Σ−1Ay

σ̂2
e = (Ay−Xβ̂)′Σ−1(Ay−Xβ̂)

N

(6)

so that a two-step procedure is possible which alternates optimization of the
concentrated likelihood and GLS estimation.

16The following notation expressing a spatial lag model as Ay = Xβ + u or, equivalently
provided A is invertible, y = A−1(Xβ+u) is well known in the literature as ”spatal filtering”
representation.

17Notice that the latter expression is in fact more general, as it does not constrain the
heteroskedastic error term η to be spatially lagged, through premultiplication by B, in its
entirety. In our case, only the error covariance of the SEM2 specification can be separated
into a heteroskedastic error term and a spatial filter, and therefore straightforwardly written
as B′ΩB, while the more common SEM specification cannot.
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While an iterative solution is generally possible, Anselin (1988) provides a
closed-form solution for the spatial lag model and a simplified iterative one for
the spatial error model that are used in currently available software solutions,
notably in the R package spdep (Bivand et al., 2010). Practical implementa-
tions of the general solution outlined above incur a number of computational
difficulties, so that few computer programs are available that be able to cope
with estimation of models more complicated than standard SAR and SEM.
In the next paragraph we sketch the currently most popular solution for the
estimation of spatial panels; in the following one we will outline our approach.

From here on, we explicitly consider the (balanced) panel structure of the
data: N individuals observed over T time periods.

4.2. Spatial random effects panels: the demeaning solution

The standard algorythms for the estimation of SAR and SEM-type spatial
panels are due to Elhorst (2003), whose Matlab routines are perhaps the most
widely used piece of software for the econometric analysis of spatial panel data.
As will be clear from the following, his approach is based on a combination of
the partial time-demeaning technique familiar from standard panel data (see,
eg., Wooldridge, 2002, Ch. 10) with Anselin’s Maximum Likelihood framework:
data are quasi-time-demeaned in order to eliminate the random effects structure,
then standard SAR or SEM estimators are applied to the transformed data so
that the first-order conditions in (6) simplify to those of OLS, plus a spatial
filter on y in the SAR case. These estimation techniques are well described in
Elhorst (2009); we briefly review them here in order to highlight the differences
to our approach. We also sketch two straightforward extensions which, although
implicit in Elhorst’s work, have not been explicitly pursued.

Following Elhorst (2003), to estimate the SARRE model we just need to add
spatial filtering on y using IT ⊗ A = IT ⊗ (IN − λW ) and the determinant of
the spatial filter matrix, |IT ⊗A| = |A|T , to the likelihood of the random effects
model. As the considerations on transforming variables to get rid of Σ−1 and
reduce the GLS step to OLS from the standard (non-spatial) RE model still
apply18 19, an efficient two-step procedure can be based on concentrating the
likelihood with respect to β and σ2

e as

logL = −NT
2
ln(2πσ2

e) +
N

2
lnθ + T ln|A| − NT

2
ln(ẽ′ẽ),

where θ is the quasi-demeaning parameter and the residuals are those of the
demeaned model with a spatial filter on y

ẽ = (IT ⊗A)ỹ − X̃β,

18See the original paper for the definition of the quasi-demeaning parameter θ as a function
of σ2

ε and σ2
µ, with a one-to-one correspondence to the variance ratio φ used in this paper.

19The validity of Elhorst’s procedures rests on a property granting that Σ(IN ⊗ A)y =
(IN ⊗A)Σy, so that demeaning the spatially lagged data is equivalent to spatially lagging the
demeaned data: see Mutl and Pfaffermayr (2011) and Remark A1 in Kapoor et al. (2007).
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and maximizing it w.r.t. λ and θ; then iterating until convergence between this
maximization and the GLS step, whose first order conditions are

β̂ = (X̃ ′X̃)−1X̃(IT ⊗A)ỹ

σ̂2
e = ẽ′ẽ

NT .

The transformation procedure for the SEM model is more complicated, re-
quiring a spectral decomposition of the errors covariance, and is omitted here;
it is thoroughly explained, e.g., in Elhorst (2003), pages 19-21. Elhorst’s al-
gorithm is also easily adapted to the simpler SEM2 specification, where the
random effects are in turn spatially lagged together with the idiosyncratic error
term.20 Again, an efficient two-step procedure can be based on concentrating
the likelihood with respect to β and σ2

e as

logL = −NT
2
ln(2πσ2

e) +
N

2
lnθ + T ln|B| − NT

2
ln(ẽ′ẽ),

where the residuals from the demeaned model are spatially filtered

ẽ = (IT ⊗B)(ỹ − X̃β),

and maximizing it w.r.t. ρ and θ; then iterating between this maximization
and the GLS step, whose first order conditions are those of standard OLS on
transformed data

β̂ = (X̃ ′X̃)−1X̃ỹ

σ̂2
e = ẽ′ẽ

NT .

Although not explicitly stated by the author, Elhorst (2003)’s methodology
is also easily extended, by combination, to the SAREM(2) specification (for
an application see Millo and Pasini, 2010), but it does not lend itself as easily
to extensions in the direction of serially correlated errors. As anticipated, in
the next section we will abandon the popular demeaning framework, working
instead on untransformed data and approaching random effects together with,
and not differently from, any other feature of the error covariance.

4.3. General maximum likelihood framework

In this section we discuss our procedure for estimation of the general SAREM-
SRRE model with spatial lag and error, random effects and serial correlation
in the remainder error term. In economic terms, this specification can accom-
modate spatial spillovers from the outcome variable at neighbouring locations
(SAR), spatial diffusion of idiosyncratic shocks (SEM), individual heterogeneity
(RE) and time-persistence of idiosyncratic shocks (SR).

20We realized this reading an early working paper version of Elhorst (2003), although to our
knowledge the author later chose not to pursue the estimation of this alternative specification
in his research.
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As anticipated, we build on the framework from Anselin (1988) outlined
above, explicitly particularizing and operationalizing it with respect to a num-
ber of possible error covariance structures without resorting to variable trans-
formation. As noted above, we start from considering the spatial dependence
features together with all the other sources of heteroskedasticity and correla-
tion instead of separating it clearly as done in the original Anselin framework.
This has the advantage of keeping some components of the error term (most
notably, the random effects) out of the spatial dependence, which can remain a
feature of the idiosyncratic error only, in accordance with most applications in
the literature (see, e.g.,Anselin et al. (2008); Baltagi et al. (2007b, 2003, 2013);
Baltagi and Liu (2008); Baltagi et al. (2007a, 2009); Debarsy and Ertur (2010);
Elhorst (2003); Elhorst and Freret (2009); Elhorst (2008, 2009, 2010); Elhorst
et al. (2010); Lee and Yu (2010c,a,b, 2009); Mutl (2006); Mutl and Pfaffermayr
(2011)) but some clear computational disadvantages, as will be discussed be-
low. Moreover, we consider the alternative specification where the individual
effects are lagged together with the idiosyncratic errors, as in Kapoor et al.
(2007), which one can straightforwardly express in terms of Anselin’s original
expression E(uu>) = B>ΩB, also extending the structure of Ω to include serial
correlation. This latter will turn out to be much easier to compute, and the
only feasible solution on some large examples.

First we will discuss the combination of a spatial lag with any error co-
variance structure; then we will review the most significant among the latter;
lastly we will give an example of operationalization through the use of analytical
expressions for the inverse and determinant of the error covariance matrix Σ.

Optimization will generally be subject to box constraints according to the
following rules: the spatial lag and spatial errors coefficients λ and ρ will be
bounded between 1/ωmin and 1, where ωmin is the smallest characteristic root
of W (see the standard conditions in Elhorst, 2008, Footnote 1); the serial
correlation coefficient will be constrained to the usual stationarity condition
|ψ| < 1 and the variance ratio of the random effects φ to be non-negative.

4.3.1. Spatial lag

Although both the SAR and the SEM specifications are popular in the lit-
erature, estimation generally focuses on one effect only, and there are few ap-
plications allowing for both of them to be present in the estimated model, one
notable exception being the pioneering work of Case (1991). As far as software
is concerned, routines for estimating a general SAREM model are available for
cross-sectional data in the R package spdep but not, to our knowledge, in
any panel data package. It is nevertheless straightforward, at least as far as
expressing the likelihood is concerned, to combine a spatial lag with any error
structure, including spatial dependence ones.

The general likelihood for the spatial lag panel model combined with any
error covariance structure Σ is a panel version of (5):

logL = −NT2 ln(2πσ2
e)− 1

2 ln|Σ|+ T ln|A|
− 1

2σ2
e
[(IT ⊗A)y −Xβ]′Σ−1[(IT ⊗A)y −Xβ].

(7)
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The usual iterative procedure a la Oberhofer and Kmenta (1974) can be
employed to obtain the maximum likelihood estimates. Starting from an initial
value for the spatial lag parameter λ and the error covariance parameters, we
obtain estimates for β and σ2

e from the first order conditions:

β̂ = (X ′Σ−1X)−1X ′Σ−1(IT ⊗A)y

σ̂2
e = [(IT ⊗A)y −Xβ]>Σ−1[(IT ⊗A)y −Xβ]/NT.

(8)

The likelihood can be concentrated and maximized with respect to the param-
eters in A and Σ. The estimated values thereof are then used to update the
expression for Σ−1. These steps are then repeated until convergence. In other
words, for a specific Σ the estimation can be operationalized by a two steps iter-
ative procedure that alternates between GLS (for β and σ2

e) and concentrated
likelihood (for the remaining parameters) until convergence.

This general scheme can be applied to the random effects case, where it
provides a simple and effective equivalent to the usual partial time-demeaning
procedure, as well as to all the more complicated error covariance specifications
discussed in the following.

For example, the spatial autoregressive model with random effects (SAR-
RE) can be written as a combination of spatial filtering on the regressand and
a random effects structure in the errors:

(IT ⊗A)y = Xβ + u
u = (ıT ⊗ µ) + e

hence it can be estimated by “plugging into” the general likelihood (7) the
particular scaled error covariance ΣRE = φ(JT ⊗ IN ) + INT characterized by
one parameter: φ = σ2

µ/σ
2
e , the ratio of the variance of the individual effect over

that of the idiosyncratic error.

4.3.2. Error structures

In this section we describe the different error structures to be possibly com-
bined with a spatial lag in the way illustrated above.

The Random Effects SEM and SEM2 models. As already discussed, the spatial
error, random effects model gives rise to two possible specifications, depending
on the interaction between the spatial autoregressive effect and the individual
error components: the SEMRE specification first analyzed by Anselin (1988)
where only the idiosyncratic error is spatially correlated:

y = Xβ + u
u = (ıT ⊗ µ) + ε
ε = ρ(IT ⊗W )ε+ e

with the scaled errors’ covariance (denoting J̄T = JT /T and ET = IT − J̄T ):

ΣSEMRE = J̄T ⊗ (TφIN + (B>B)−1) + ET ⊗ (B>B)−1
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and that of Kapoor et al. (2007) where the same spatial process applies both to
the individual and the idiosyncratic error component:

y = Xβ + u
u = (ıT ⊗ µ) + ε
u = ρ(IT ⊗W )u+ e

where the scaled errors’ covariance is:

ΣSEM2RE = (φJT + IT )⊗ (B>B)−1.

Serial and spatial correlation in the Random Effects model. Generalizing the
structure of the errors further by introducing serial correlation in the remainder
of the error term, together with spatial correlation and random effects, we spec-
ify the model errors as the sum of an individual, time-invariant component and
an idiosyncratic one which is spatially autocorrelated and has serial correlation
in the remainder:21

y = Xβ + u
u = (ıT ⊗ µ) + ε
ε = ρ(IT ⊗W )ε+ ν
νt = ψνt−1 + et.

To derive the likelihood, Baltagi et al. (2007b) use a Prais-Winsten transfor-
mation of the model with random effects and spatial autocorrelation. Following
their simplifying notation, define

Vψ = 1
1−ψ2V1

V1 =


1 ψ ψ2 . . . ψT−1

ψ 1 ψ . . . ψT−2

...
...

...
. . .

...
ψT−1 ψT−2 ψT−3 . . . 1

 ;

then the expression for the scaled error covariance matrix Σ can be written as22

ΣSEMSRRE = φ(JT ⊗ IN ) + Vψ ⊗ (B>B)−1.

While in principle only an expression of the errors’ covariance is needed
and its inverse and determinant can be calculated by brute force inside the
optimization loop, in practice it is convenient, and even necessary, to rely on
simplified analytical expressions to reduce the computational burden and extend
the range of feasible sample sizes.

21Based on this comprehensive model, Baltagi et al. (2007b) derived a number of conditional
and marginal LM tests for the different effects, possibly allowing for the presence of the other
ones. In doing so, they also derived the log-likelihoods for all combinations of random effects,
spatial and serial correlation and a number of simplified expressions for the inverses and
determinants of the covariance matrices involved, which we extensively use in the procedures
described here.

22See Baltagi et al. (2007b) for details on the derivation of the covariance matrix.
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As an example, we report expressions for the inverse and determinant of the
error covariance matrix for the most complicated error specification, ΣSEMSRRE

taken from Baltagi et al. (2007b):

Σ−1
SEMSRRE = V −1

ψ ⊗ (B>B) + 1
d2(1−ψ)2 (V −1

ψ JTV
−1
ψ )

⊗ ([d2(1− ψ)2φIN + (B>B)−1]−1 −B>B)
|ΣSEMSRRE | = |d2(1− ψ)2φIN + (B>B)−1| · |(B>B)−1|T−1/(1− ψ2)N ,

where α =
√

1+ψ
1−ψ and d2 = α2 + (T − 1).23 They can be plugged in the general

likelihood (7) to estimate the most general SAREMSRRE model.

Serial and spatial correlation in the KKP model. As an alternative to the
SAREMSRRE specification, we consider an extension of the SEM2RE errors
a la Kapoor et al. (2007) to serial correlation in the remainder errors.24 As in
the SEM2RE case, the random effects are spatially lagged together with the
idiosyncratic ones, while the remainder errors ν in turn are serially correlated:

y = Xβ + u
u = (ıT ⊗ µ) + ε
u = ρ(IT ⊗W )u+ ν
νt = ψνt−1 + et.

This alternative specification, which to our knowledge is undocumented in the
literature but for being one possible restriction of the very general formula-
tion in Lee and Yu (2012), assumes that individual effects follow the same
spatial diffusion process as the idiosyncratic errors do. By analogy, we term it
SAREM2SRRE. Just as in the SEM2RE case, the error covariance is then again
of the B>ΩB form (see Footnote 17), which simplifies computations consider-
ably. In fact, the (scaled) error covariance for this model is

ΣSEM2SRRE = (φJT + Vψ)⊗ (B>B)−1

and, by the properties of Kronecker products, its inverse is

Σ−1
SEM2SRRE = (φJT + Vψ)−1 ⊗ (B>B)

23It must be noted that V −1
ψ

has a simple and self-similar closed-form solution irrespective

of dimension. As Baltagi et al. (2007b, App. A.2) note, from the well-known Prais-Winsten
transformation CVψC

′ = IT , hence one has V −1
ψ

= C′C. Therefore, it is easily shown that

for any T , V −1
ψ

is bisymmetric and its structure fully described by the T = 3 case:

V −1
ψ

=

[
1 −ψ 0

−ψ 1−ψ4

1−ψ2 −ψ
0 −ψ 1

]
to be extended along the main diagonal if T > 3 (see also Lee and Yu, 2012, A.2, p.1397). As
such, V −1

ψ
quickly becomes sparse as T grows. Although in practical applications the time

dimension is unlikely to be huge, relying on an analytical inverse for Vψ already gives sizeable
benefits in speed and numerical stability for moderate T .

24A remark from an anonymous reviewer indirectly motivated us to explore this alternative.
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so that there is no need for the numerically demanding and unstable inversion
of B>B.25

Simpler error structures and a general taxonomy. By restricting to zero the
parameters of the most general error covariance structure with spatial and serial
correlation plus random effects (SEMSRRE) one can get all simpler cases, e.g
serial correlation (SR, if λ = φ = 0), simple random effects (RE, if λ = ρ = 0)
or any combination thereof.

In the Table 1 below you can see a taxonomy of the available specifications
based on which of the spatial lag and error covariance parameters are non-zero;
considering the SEM2SRRE and SEM2RE alternatives, with or without SAR,
adds up to 20 different ones. Each of these can be estimated according to the
same general principles outlined in the previous sections, and in particular based
on the general likelihood in (7) where appropriate expressions for Σ−1 and |Σ|
have been plugged in.

par 6= 0 ψρ ρ ψ (none)
λ φ SAREM(2)SRRE SAREM(2)RE SARSRRE SARRE

(none) φ SEM(2)SRRE SEM(2)RE SRRE RE
λ (none) SAREMSR SAREM SARSR SAR

(none) (none) SEMSR SEM SR OLS

Table 1: Model taxonomy based on nonzero spatial lag (λ) and error covariance parameters.
φ is the ratio of the random effect’s to the idiosyncratic error’s variance, so that φ = 0 means
no random effect. Standard spatial models are in bold, non-spatial models in italics, standard
spatial panel models in bold italics.

5. Estimation in practice

In the preceding section we have seen how to translate the most general spec-
ification into a computationally manageable likelihood function. We now turn
to the practical task of optimizing the latter and obtaining parameter estimates.
While in principle it is enough to write the function and feed it to an optimiza-
tion routine, this becomes a very hard task for the computer if there are many
parameters involved. One crucial help is given by the Oberhofer and Kmenta
(1974) two-step procedure, which allows to concentrate the likelihood with re-
spect to β and σ2

e , drastically reducing the parameter space; then, optimization
over a maximum of four parameters is a task a modern computer can handle
over a fair share of the sample sizes encountered in applied spatial panel data
practice. Yet while most of the specifications we discuss can be estimated on a
cross-sectional dimension of some thousand data points, some are limited to a
few hundredths: in particular, the Anselin-Baltagi style combinations of random

25Moreover, Baltagi et al. (2007b) give a closed-form solution for (φJT +Vψ)−1 in terms of

V −1
ψ

, to which all the simplifying results from the previous footnote apply.
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effects and spatial or spatio-temporally correlated errors (SEMRE, SEMSRRE)
suffer of numerical problems in the inversion of the cross-product B>B. As a
general rule, space-time correlated errors (SEMRE, SEM2RE, SEMSR, SEM-
SRRE, SEM2SRRE) are more complicated to estimate, while combinations of
spatial lags with timewise correlated errors are relatively fast. Some reasons for
this will be explained in the following.

All methods described here allow for WN and its transformations, the spatial
filters A and B, as generic numeric matrices; specialized methods are neverthe-
less used that consider, and exploit, their sparseness characteristics to improve
speed and numerical stability. For the sake of clarity, we start describing the
main computational issues without considering the particular nature of A and
B. The implementation of these methods will be described at the end of the
section as an incremental improvement.

5.1. Computational issues

Combining spatial filtering with GLS, spatial panel models are affected by
the two typical computational bottlenecks of both techniques.

The first, which is typical of all spatial econometric literature and has in-
spired a great deal of research, is the calculation of the determinant of the
spatial filters A and B: here, of A and Σ (see Bivand, 2010). The second is the
inversion of the Σ matrix and the calculation of the GLS step.

5.1.1. Computing the log determinant

For all the attention reserved to date to efficient computation of the deter-
minant, in this setting it is the GLS step that turns out as the limiting factor,
despite there being analytical expressions of the inverse available for each one of
the specifications considered here. Performance problems, mainly RAM-related,
kick in at sample sizes where, by contrast, brute-force calculation of the determi-
nant is still relatively inexpensive. In fact, all SAR estimators relative to simple
structures in Σ would be very fast even if one used a relatively unsophisticated
approach to the calculation of log|A| through the standard R function based
on the LU decomposition (see R Development Core Team, 2012), which does
not assume any particular structure for A. The use of sparse matrix methods
(see below, Section 5.1.3) begins to give important advantages in this respect
when N > 1000. From comparisons done on a 3075 × 3075 real-world prox-
imity matrix of US counties, sophisticated sparse matrix methods dramatically
outperform naive, brute-force calculation of the determinant: the naive method
does still accomplish its task in a few seconds (to be multiplied by a practical
average of about 10 to 30 optimization loops), but sparse matrix methods make
estimation of a SAR model faster by an order of magnitude.

Anyway, as we detail in the following, the true challenge lies with the effi-
ciency of the GLS step. For this, together with the sparseness of B, it is crucial
to exploit some kind of structure in the (inverse) Σ matrix.
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5.1.2. GLS computational strategies

In the two-step optimization procedure outlined above, likelihood parame-
ters enter both A and Σ, implying that all inverses and determinants have to
be recomputed at every loop; the optimizer can also be expected to need more
loops to converge, the more parameters there are in the concentrated likelihood.
Therefore, especially for the richer specifications, it is crucial to have fast and
efficient code modules calculating the GLS step inside the likelihood function.
To this end, one can either concentrate on minimizing the dimensions of the ma-
trices to invert or on taking advantage of their peculiarities in using specialized
software methods.

We therefore classify the various error structures according to the shape of
the relevant covariance:

• scalar (OLS)

• block-diagonal by cross-sections (SEM)

• block-diagonal by time periods (SRRE, RE, SR)

• dense (SEMRE, SEM2RE, SEMSR, SEMSRRE, SEM2SRRE)

Basically, any combination of spatial dependence with time persistence, be it
AR-type serial correlation or random effects, gives rise to a dense matrix: in
these cases we cannot but calculate the GLS step as one; importantly, making
use of the analytical expression of the inverse avoids numerical inversion of the
full NT ×NT Σ matrix.

In the other cases, excluding the scalar one which is trivial, Σ is block-
diagonal either by region or by time; we follow two different routes for the two
cases, considering that in the former the block dimension is bound to be bigger
in practical applications, as in the typical spatial panel N >> T .

By-block GLS. In the by-region block-diagonal case, where Σ = IT ⊗ ΣN , we
exploit the analytical expression of the inverse and the fact that

β̂ = (

T∑
t=1

X>t Σ−1
N Xt)

−1(

T∑
t=1

X>t Σ−1
N Ayt) = (X>Σ−1X)−1X>Σ−1(IT ⊗A)y

in order to reduce the maximum dimension of the objects involved from NT
to N . The GLS step becomes a sequence of T matrix products between elements
of dimension N ×K and N × N . No numerical inversion is needed any more,
and there is no need to store all the zeros in the off-diagonal blocks, with an
obvious benefit to RAM usage.

Object-oriented GLS. In the by-time block-diagonal case (Σ = IN ⊗ ΣT ), usu-
ally made up of many smaller blocks, we opt instead for an object-oriented
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solution.26 After reordering the data internally, we define Σ as a bdsmatrix ob-
ject and use specialized methods available in the R package by the same name
(Therneau, 2009) to compute X>Σ−1X and X>Σ−1(IT ⊗ A)y. It may seem
inefficient to numerically invert a matrix when we have an analytical expres-
sion for the inverse, but the software methods involved are so fast as to beat
the by-block solution by far on the sample sizes one is likely to encounter in
practice.

Spatial filtering for SAR. Spatial filtering of the data is also done by applying
WN to stacked data by cross-section, precalculating wy = (IT ⊗WN )y once and
for all at the beginning; thus, no matrix operations are left in this area and
updating the spatial filter inside the optimization loop as (IT ⊗A)y = y − λwy
only involves NT × 1 vectors.

The combinations of time-block-diagonal error covariances with spatial lags
therefore require multiple reordering of the data to alternatively exploit both
structures. Fortunately, simple data reordering is computationally very cheap.27

5.1.3. Sparse matrix methods: a transparent object-oriented approach

Sparse matrix methods have always been prominent in spatial econometrics
(see LeSage, 1999). In cross-sectional models, calculating the determinant of
relatively large spatial filtering matrices has traditionally been the limiting fac-
tor. As observed above, in the context of a more complicated panel specification
and on a modern computer this is not the primary bottleneck any more: yet
numerical efficiency and stability, particularly in the computation and inversion
of B>B inside the GLS step, already improves in very moderate sized datasets.
Computing times, slightly worse for small datasets because of the overhead in-
troduced by data transformation and flow control structures, start to benefit
with N in the hundredths and become huge thereafter. Spatial error specifica-
tions that are infeasible or borderline if using standard matrix methods become
reasonably fast through sparse matrix methods.28

The R package spam (Furrer and Sain, 2010) provides functionality for
sparse matrix algebra aimed at end-user transparent interoperability with stan-
dard matrix objects. This means that once a matrix has been defined as sparse,
it can still be treated in a formally identical way as dense ones: specialized meth-

26For a more thorough explanation of the object-oriented approach to GLS, see Croissant
and Millo (2008, Section 3.3).

27Sophisticated methods for spatially lagging a vector instead of simply premultiplying it
by W are available in the R package spdep. Due to the other limiting factors, though, the
feasible sample sizes here are such as to make their benefits practically irrelevant.

28Testing non-sparse versions of the estimators on the same machine described in Table 2 on
artificial data drawn on a 3075× 3075 proximity matrix (US counties, see below) and 4 time
periods, the SAREM2RE completed the task in about 70 minutes (against 4’12” using sparse
methods), the SEM2RE in 39’ (2’24”); all other spatial random effects models hit memory
limits, while using sparse algebra RAM usage was below 1.3 Gb; by contrast, the SARSRRE
converged in 1’40” (against 8”), the SARSR in 49” (2”) and the SARRE in 58” (5’): much
slower than sparse counterparts, but not limiting in applied settings.
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ods will be automatically employed when appropriate, triggered by a matrix’s
class attribute.

Specifically, suitable objects are defined as spam. The result of operations
on them will in turn be either a matrix or a spam object which will be treated
accordingly by further matrix operations downstream, without any need for
code duplication and if conditions, retaining the spam class as long as sparse,
while seamlessly changing into a regular matrix as soon as “becoming dense”.
As an example, with reference to Section 4.3.2, B is defined as sparse; the results
of (B>B) and [V −1

ψ ⊗ (B>B)] are still sparse matrices, and are treated as such

in the GLS step, while by contrast, (B>B)−1 is dense, which is the reason
behind the huge difference in performance between KKP-style estimators with
SEM2SRRE or SEM2RE errors and their Anselin-style counterparts.

As a side note, the |B| and B>B operators are coded in an object-oriented
fashion on the input side as well, according to the class attribute of the object
containing the spatial weights: if it is a matrix then standard methods are
used; if it is a listw, the appropriate counterparts are employed. Thus, the
estimating functions can indifferently accept a spatial weights matrix W of each
type. Spatial lagging for wy (see Section 5.1.2) is written in a flexible fashion
too, accepting both matrices and listw objects, more for reasons of consistency
and ease of maintenance than in order to reap a speed advantage from using
the fast lag.listw method over this single, and simple, operation.

5.1.4. Computing times

Below we report the timings for all specifications over artificial data in seven
different typical sample sizes: the first is a small panel of 49 observations (using
the Columbus proximity matrix from package spdep) over 7 time periods; the
second extends the timespan of the former to 50 time periods; the following
ones are artificial “circular” proximity matrices a la Pesaran (see Pesaran and
Tosetti, 2011) with 100, 200, 400 elements and 7 or 15 time periods. The last one
is the proximity matrix of all 3075 adjacent counties of the USA (from example
data in package spam). The data are generated according to the SAREMSRRE
specification with two regressors and an intercept.

Despite the computational burden, estimation is reasonably fast even on the
bigger examples, very fast for any error structure with only time dependence,
even if coupled with a SAR term. By contrast, spatial error dependence spec-
ifications prove to be harder to estimate, the SEM2 predictably less so than
the SEM. The fails are all due to singular matrix errors in the calculation of
(B>B)−1, while total RAM usage remains in the region of 1 Gb (gross of about
300 Mb for the operating system).

5.1.5. Reliability

Multi-parameter optimization of a relatively complex likelihood can have
reliability issues, like all numerical procedures. The main issues here concentrate
on the SEMSRRE and SEMRE error cases, with or without spatial lag, with
occasional fails due to the B>B matrix becoming computationally singular. The
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49x7 49x50 100x7 200x7 200x15 400x15 3075x4
sar+semsrre 13.07 92.67 27.86 59.07 124.36 - -

sar+sem2srre 8.41 65.55 8.70 18.59 22.32 135.42 252.21
sar+semre 7.95 82.14 15.07 41.00 - - -

sar+sem2re 5.27 49.71 5.17 11.23 23.64 81.18 254.91
sar+semsr 4.34 57.03 5.05 10.62 23.30 65.80 243.64

sar+srre 1.32 5.16 1.65 2.54 1.94 2.91 8.17
sar+sem 1.70 19.29 2.08 4.77 8.60 38.34 114.51

sar+re 0.94 3.01 0.90 1.04 3.01 2.25 5.14
sar+sr 0.76 3.60 0.86 1.61 1.26 3.47 2.04

sar+ols 0.27 0.41 0.28 0.28 0.27 1.43 0.72
semsrre 8.82 92.78 14.94 36.68 103.85 - -

sem2srre 4.94 49.64 4.37 8.39 20.62 75.55 253.09
semre 5.26 67.44 11.35 31.56 - - -

sem2re 3.06 36.54 2.68 5.88 13.36 50.78 144.18
semsr 2.06 25.51 2.88 4.44 10.55 46.44 168.19

srre 0.14 0.95 0.13 0.28 0.31 0.95 0.57
sem 0.92 8.59 1.00 2.22 5.01 15.56 53.71

re 0.09 0.57 0.08 0.18 0.34 0.52 0.38
sr 0.08 0.61 0.09 0.17 0.36 0.46 0.39

ols 0.01 0.03 0.02 0.03 0.05 0.07 0.08

Table 2: Computing times (seconds) for seven different sample sizes (NxT): 49x7, 49x50,
100x7, 200x7, 200x15, 400x15, 3075x4. R 2.15 on Linux Mint 9, Intel Core i7 720QM with 4
Gb RAM. Missing values are fails due to singular matrix errors.

frequency of such problems increases with bigger examples, where the degree of
sparseness of W typically grows. For the reasons given above, the alternative
SEM2SRRE, SEM2RE specifications are free from this problem and no failures
have been recorded during extensive trials.

Statistical inference is based on standard errors obtained from the GLS
step for β, from the numerical Hessian evaluated at the ML parameter values
using finite differences as far as the error components are concerned. As such,
given the optimal values of the error components and spatial lag parameter,
GLS-based standard errors are based on a closed-form solution. By contrast,
while the standard error estimates based on the numerical Hessian are generally
accurate29, negative estimates of parameter variances may happen, especially
when estimation ends up in corner solutions or when the estimated model is
overspecified with respect to the true data generating process (DGP), i.e., when
one or more of φ, ψ, ρ and λ are zero. The by far most frequent case happens
with σ̂φ when the ’true’ value is zero. This behaviour, although undesirable,
is generally confined to unambiguous cases where the parameter in question is

29For an evaluation of the accuracy of this method, see Section 8 in Millo and Piras (2012).
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ostensibly not significant.
As is always the case with numerical optimization of complex problems, it

can be useful to try different settings for the optimizer, which one can easily do
(see Section 5.2.1), or even different optimization routines (see Section 5.2.2): in
particular, although marginally slower, the ‘‘BFGS’’ method has proven more
resilient than ‘‘nlminb’’ to the problem of negative covariances.

5.2. Software design

The software mentioned in this paper extends the splm add-on package for
spatial panel econometrics (see Millo and Piras, 2012) inside the R project for
statistical computing (R Development Core Team, 2012). In the following para-
graphs we shortly discuss the user interface and then single out the main guiding
principles behind the organization of the underlying computing functions.

5.2.1. User interface

Estimators in splm are organized according to estimation method into two
main functions, spgm for generalized moments and spml for maximum likelihood.
Each combination of individual effects (fixed, random, none), spatial error and
spatial lag can be estimated by either method (see, again, Millo and Piras,
2012).

The estimators assuming no serial correlation are therefore already available
at user level through the general wrapper function spml, specifying the model

argument as ‘‘random’’ or ‘‘none’’, the spatial.error argument as ‘‘b’’
for (Anselin/) Baltagi type (SEM) spatial dependence, ‘‘kkp’’ for Kapoor,
Kelejian and Prucha-type dependence (SEM2), or ‘‘none’’ for no spatial error;
and lag as TRUE or FALSE for adding a spatial lag or not (see Millo and Piras,
2012, Section 5.1).

The new estimators allowing for serial correlation, not being documented
yet in the literature and excluding fixed effects, are for the time being not
available through spml. In fact, when estimating random effects or pooling
models, the spml function in turn calls a second-level wrapper, spreml, now
also available at user level30, whose syntax is illustrated below in Section 6 and
which provides a more flexible yet still user-friendly way of calling the different
estimator functions, specifying the error argument (covariance structure) as in
Table 3.

par 6= 0 ψρ ρ ψ (none)
φ semsrre semre srre re

(none) semsr sem sr ols

Table 3: Admissible values for the errors argument to spreml() and corresponding nonzero
parameters in the errors covariance. sem2re, sem2srre can be used in place of semre, semsrre
to obtain the specifications a la KKP instead of those a la Anselin/Baltagi.

30Since version 1.0-03.
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The other specification-related argument to spreml is boolean: lag as TRUE
or FALSE, meaning whether to combine the chosen error structure with a spatial
lag or not. Moreover, two different spatial matrices can be supplied for lag and
error, defaulting to being the same if just one is supplied.

Concerning the optimization step, initial values for the covariance and spa-
tial lag parameters can be set through the initval argument and chosen from
‘‘zeros’’ (setting all to zero) and ‘‘estimate’’; when initval is set to
estimate the initial values are retrieved from the estimation of nested speci-
fications. As an example, when estimating semsrre, the initial value for the
serial correlation parameter is taken to be the estimated ψ from a panel regres-
sion with serially correlated errors. Analogously, the initial value of ρ is the
estimated spatial autocorrelation coefficient from the sem model; and, finally,
an initial value for φ is obtained estimating a random effect model. Another
possibility is to feed initval an arbitrary numeric vector of initial values.

Any admissible parameter can be passed on to the optimizer function by
means of the special “...” (dots) argument31; moreover, the boolean quiet

argument allows tracing each optimization loop, both as a status indicator and
as a diagnostic tool.

At the output end, estimation produces a regular splm object. splm objects
loosely inherit from plm objects (Croissant and Millo, 2008) and therefore behave
like most model objects in R, exposing, inter alia, coef and vcov elements to be
used in diagnostics and model summary methods. splm objects, though, extend
the plm class adding special equivalents of “coef” and “vcov” elements for the
SAR and the error parameters (respectively arcoef, vcov.arcoef, errcomp

and vcov.errcomp) which the specialized summary.splm method uses to dis-
play estimates and diagnostics. These elements are NULL if not present in the
specification, thus preserving compatibility.32

Consistently with the rest of the R system, all model objects have a logLik

element, recording the value of the log-likelihood at the optimum, complying
with the generic logLik() extractor function in base R and allowing for likeli-
hood ratio tests on covariance parameters.

As customary in the R environment, the summary method prints a short de-
scription of the model, the most recent call, a summary of the residuals and the
table of estimated coefficients. The splm specific part of the output (between
the summary of the residuals and the table of the estimated coefficients) reports
on the estimated spatial lag and error components along with standard errors
from the numerical hessian.

31The special “. . .” argument is used in R as a placekeeper to allow passing on an arbitrary
number of optional parameters to a lower-level function (see R Development Core Team,
2012).

32See Millo and Piras (2012, Par. 7.3) for an illustration of interoperability between splm

objects and generic testing functions from other R packages, and Zeileis (2006) for a general
discussion of object-orientation in econometric software.
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5.2.2. Computing engine

The estimator functions are separate but constructed modularly, with a com-
mon main structure and separate code modules for the likelihoods, the GLS
steps and the SAR spatial filters. This helps keeping maintenance costs at a
minimum despite the proliferation of different estimators. Another guiding prin-
ciple, in the spirit of Open-Source software, has been readability of the code.
To this end, we have as far as possible constructed software counterparts to
theoretical objects such as spatial filters or covariances, combining them and
”plugging them in” as prescribed by the reference theory.

In the spirit of the R project, we have employed some peculiar features
of the language. In particular abstraction of tasks (like, e.g., computing the
determinants of spatial filters) into functions makes code easier to produce and
maintain and future enhancements easier. As functions are a data type in R, and
can therefore be passed on as arguments to other functions, the choice of which
method (and corresponding software module) to use can be made at runtime;
moreover, new methods can be passed on to the existing structure without any
need to reprogram it.

The optimizer function can be chosen specifying a method argument in the
call to spreml. The method defaults to ‘‘nlminb’’, based on the PORT rou-
tines (Gay, 1990) and available in package nlme (Pinheiro et al., 2012), but the
user is also allowed to choose between all the constrained optimizers supported
by package maxLik (Toomet et al., 2012). While the latter are still deemed
experimental in the package documentation, method=’’BFGS’’ has proven only
marginally slower than ‘‘nlminb’’ and well-behaved as regarding the issues of
corner solutions and negative variance estimates discussed above.

6. Examples

In this section we illustrate estimation by means of examples. As Lee and
Yu (2012, p.1394) recommend, in each case we run various specifications, and
especially the comprehensive ones, on the data in order to assess the properties
of more specific ones in a general-to-specific fashion.

We reconsider three examples from the applied literature, with particular
focus on the innovative features of the estimators described in the paper: serial
correlation and the coexistence of spatial lags and errors. In the first case, the
extended estimators discussed in this paper basically validate previous results,
the additional features identifying effects which either prove redundant (the
spatial lag) or significant but of limited magnitude (random effects and serial
correlation). The second starts from a model with time persistence in errors
(both individual effects and serial correlation) and no evidence of spatial effects
when testing for either spatial lag or error, where by contrast spatial dependence
features appear only when tested jointly inside an encompassing SAREM model.
In the last example, a classic from the panel data literature, serial correlation,
once included in the model, shows up with alarming magnitude, questioning the
stationarity of the data; at the same time, the estimate of φ becomes unstable.
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The illustrations therefore demonstrate the importance of the general model
both for estimation and as a diagnostic tool.

6.1. Indonesian rice farming

Due both to the substantial relevance of the research question and to the
availability of detailed data collected through governmental programs, the anal-
ysis of production efficiency in Indonesian rice farming has been a recurring
subject of applied papers since Erwidodo (1990) and later work by Lee and
Schmidt (1993); Trewin et al. (1995); Horrace and Schmidt (1996); Druska and
Horrace (2004); Feng and Horrace (2012). Moreover, the related subject of
market demand for rice in Indonesia provided the empirical application for the
original paper on SAREM panel models, Case (1991).

The rice farming example, focusing on many small farms which can rea-
sonably be seen as randomly drawn from a bigger population, provides a good
example of the usefulness of random effects methods in the econometric analy-
sis of spatial panels. 171 rice farms in Indonesia are observed over six growing
seasons, three wet and three dry, between 1975 and 1983. The farms are located
in six different villages of the Chimanuk River basin in West Java. The pro-
duction frontier equation relates rice output to the following inputs: seed, urea,
phosphate (tsp), labour hours (lab) and land (size), all but phosphate in logs.
Dummy variables account for the use of high yield varieties of seed (high), or for
a mix of seed varieties (mixed) and for the use of pesticides. Dummy variables
are also added for the six villages and for the season being a wet one. Following
Druska and Horrace (2004), the proximity matrix is constructed considering all
the farms of the same village as neighbours.33 34

As Druska and Horrace (2004) summarize, “[o]f the six villages included in
the sample, two are on the north coast of the island in an area with average
altitudes of 10-15 meters above sea level. Another three villages are in an area
(600-1100 meters above sea level) in the central part of West Java. The last
village is in the center of the island with an average altitude of 375 meters.
The infrastructure in the Cimanuk River Basin is fairly heterogeneous. Some
of the villages (in both high and lowland areas) lack reliable transportation sys-
tems, and local roads are almost impassable in the wet (rainy) season. Other
villages, located in close proximity to province capital cities, are highly accessi-
ble along paved, all-weather roads.” As such, one can expect both village-level
heterogeneity and spatial correlation between farms belonging to the same vil-
lage. Spatial dependence is easier to justify for the error terms, due to spillovers
across neighbouring farms in idiosyncratic factors and climate conditions; more

33Data and weights matrix are available in the splm package as, respectively, RiceFarms
and riceww.

34The full model formula statement is ricefm ← log(goutput) ∼ log(seed) + log(urea)

+ phosphate + log(totlabor) + log(size) + I(pesticide>0) + I(varieties=="high")

+ I(varieties=="mixed") + as.factor(region) + I(as.numeric(time) %in% c(1,3,5));
hence the syntax for estimating, e.g., the SAREMSRRE model is mod ← spreml(ricefm,

data=RiceFarms, w=riceww, errors=’’semsrre’’, lag=T).
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difficult to find reasons for the inclusion of a spatial lag of the dependent vari-
able, as it seems unrealistic for the outcome in one farm to influence those of
neighbours.

The estimation results of all specifications are reported in Table 6.135 36.
When considering spatial error dependence, the effect of phosphate (tsp) roughly
halves; the coefficient on pesticide use in turn becomes negative and non sig-
nificant; the magnitude of the influence from using high yield or mixed seeds is
reduced and the positive effect for the Ciwangi region disappears, showing its
nature as an artefact of neglected spatial correlation.

As for error covariance parameters, there is some evidence of individual
effects, but their variance is less than one fifth of that of the idiosyncratic
errors; the serial correlation coefficient ψ̂ is also significant and positive, but
rather small. While the spatial lag coefficient λ̂ is not significant, provided
spatial error correlation has been controlled for, the latter, at ρ̂ = 0.65−0.74, is
consistent with the results of Druska and Horrace (2004) (based on a generalized
moments estimator) and supports their choice of specification. It is noteworthy
how a spatial lag specification, which as observed has a weaker theoretical basis,
nevertheless yields a highly significant coefficient of about 0.4 if the SEM term
is omitted.

6.2. Italian non-life insurance

Millo and Carmeci (2011) analyze the determinants of per-capita equilibrium
consumption of non-life insurance in all 103 Italian provinces over five years,
1998 to 2002, based on socioeconomic characteristics of territory: per-capita
income (rgdp) and wealth as proxied by bank deposits (bank), real lending rates
(rirs), territorial density of population (den) and of the distribution network
(agen); demographic characteristics as average family size (fam) and schooling
(school) and the prevailing level of trust; lastly, on the share of agriculture on
value added and on the level of inefficiency of civil justice (inef).37

As some of the regressors are time-invariant while others have little vari-
ability over time, fixed effects are not an option; hence they make the case for
controlling heterogeneity through five macroregional variables (NW, NE, Cen-
tre, South and Islands, meaning Sicily and Sardinia) plus provincial random

35The estimates of the βs are not directly comparable between SAR (upper half of the table)
and non-SAR specifications (lower half) since the marginal effects of the models extended to
include a spatially lagged dependent variable are not equal to the coefficient estimates of those
variables (on this issue, see LeSage and Pace, 2009, p. 74)

36A function allmodels.R replicating the estimates in the table on user-supplied data has
been added to the supplementary materials for convenience of the reader. The arguments
are, as customary, model formula, data and spatial weights matrix; the output is a ma-
trix of estimated parameters. E.g., Table 6.1 is reproduced as print(allmodels(ricefm,

data=RiceFarms, w=riceww)). We thank an anonymous referee for the suggestion.
37Data and weights matrix are available in the splm package as, respectively, Insurance

and itaww. The model formula is log(ppcd) ∼ log(rgdp) + log(bank) + log(den) + rirs

+ log(agen) + school + vaagr + log(fam) + log(inef) + log(trust) + d99 + d00 +

d01 + d02 + NorthWest + NorthEast + South + Islands.
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effects, in the same spirit as the previous example. Unlike the other examples,
serial correlation, which is a known feature of insurance data, is included from
the beginning, while spatial effects are checked for both by means of the Baltagi
et al. (2007b) LM test (C.1) and through the Pesaran (2004) CD test, and ulti-
mately excluded. One would therefore expect the extension of their specification
to the full SAREMSRRE model to be redundant.

The results in Table 6.2 confirm time persistence as the most important fea-
ture to be accounted for. With respect to a purely spatial model, the estimated
effect of GDP halves when considering any type of time persistence. For bank
deposits this positive bias is even higher, and it is highest for interest rates. The
coefficient of trust on the contrary is seriously underestimated if omitting time
persistence.

The estimates of the random effects’ variance φ̂ and the serial correlation
coefficient ψ̂ are very stable across all specifications. If considered jointly, φ̂ =
10.2 − 10.9 and ψ̂ = 0.52 − 0.53; else, if taken in isolation, one predictably
picks up the effect of the other. Moreover, the precision of estimates (not shown
in the table) is good and the algorithm successfully distinguishes between the
contribution of the time-invariant component µ and that of serial correlation in
ε to error persistence38.

Interestingly, from the point of view of spatial effects, while neither a SAR
nor a SEM effect prove significant if taken in isolation, estimating a SAREM
specification identifies a positive SAR and a negative SEM term, both of moder-
ate magnitude, a behaviour consistent with the ex-ante considerations in Millo
and Carmeci (2011, 5.1). These two effects ostensibly compensate each other
in reduced specifications39; taking them into consideration does not change the
qualitative conclusions of the study exception made for the loss of significance
of one variable (the density of the distribution network), but suggests further
insights into the spatial dimension of the phenomenon.

6.3. The productivity puzzle

Munnell (1990) investigated the productivity of public capital (roads, water
facilities, other infrastructure) in 48 US States observed over 17 years40. Her
model is a Cobb-Douglas production function relating the gross social product
(gsp) of a given state to the input of public capital (pcap), private capital
(pc) and labour (emp); state unemployment rate (unemp) is meant to capture
business cycle effects. For further details, see also Example 3 in Baltagi (2008).

In Table 6.3 we present parameter estimates for all possible specifications.41

38See the discussion of this issue in the next example.
39The Baltagi et al. (2007b) LM (C.1) test employed in the original paper, asymptotically

equivalent to the Wald test on the SEM term in a spatial model, unsurprisingly accepted the
null of no spatial effect.

40Data are available in the Ecdat package (Croissant, 2010). The spatial weights matrix
based on binary contiguity for the US states is included in splm as usaww.

41Table 6.3 is reproduced as print(allmodels(log(gsp) ∼ log(pcap) + log(pc) +

log(emp) + I(unemp/100), data=Produc, w=usaww)).
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Estimating the full model with two possible sources of spatial correlation gives
us an implicit Wald test for SAR vs. SEM, which in this case favours the latter.
From the results we gather also that errors persistence in time is so high as
to cast a doubt on the appropriateness of a static specification on levels, or at
least warrant some unit root testing. The very high dispersion of the estimate
of the random effects variance is also a consequence of the high persistence of
the remainder error: for a discussion of related computational problems see
Calzolari and Magazzini (2012).42

Munnell’s model is well known for yielding spurious significance to public
capital if not accounting for individual effects (Baltagi and Pinnoi, 1995); from
the results it is apparent that controlling for serial error correlation also reduces
the relative parameter’s estimate. Notice also, by contrast, the relative stabil-
ity of the SEM parameter ρ; how the SAR parameter λ picks up the spatial
correlation when ρ is left out of the specification (exception made for the case
of spherical errors); and especially the dramatic reduction in the parameter of
private capital (pc) in any specification accounting for serial correlation in the
remainder errors. Lastly, φ = 0 in the SRRE model is an example of optimiza-
tion ending up in a corner solution, as discussed in Calzolari and Magazzini
(2012); interestingly, the problem is avoided when also controlling for spatial
correlation.

Summing up: the example higlights the usefulness of our new estimation
procedure in different ways. One of the main economic results of estimation, the
magnitude of private capital productivity, is drastically changed by extending
the specification to serially correlated errors. From the point of view of spatial
correlation, the evidence in favour of SEM versus SAR indicates that it seems to
be due to a diffusion process in the idiosyncratic shocks affecting the economy,
rather than to the outcomes of each state influencing each other. Lastly, from a
diagnostic viewpoint: the estimate for ψ being so close to one casts the shadow
of nonstationarity on the specification as a whole and warrants unit root testing.
These features would hardly have emerged without considering serial correlation
in a comprehensive model.

7. Conclusions

This paper describes the theoretical approach and the practical implemen-
tation in the R software of maximum likelihood estimation of panel models
incorporating: random effects and spatial dependence in the error terms; a spa-
tially lagged dependent variable; and possibly also a serial dependence structure
in the remainder of the error term.

42This is a structural aspect of the problem, unrelated to the precision of the numerical
Hessian-based t-test appearing in the summary. In fact, as regards this last aspect, retrieving
the likelihoods from the SAREMSRRE and SAREMSR models and performing an asymptoti-
cally equivalent likelihood ratio test we get the test statistic LR = 2(2023.046−2022.924) ∼ χ2

1
which corresponds to a p-value of 0.6217, very similar to the 0.6216 we get from the t-test.
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model 1 pcap pc emp unm λ φ ψ ρ
sar+semsrre 2.96 0.04 0.07 0.91 -0.25 0.01 8.20 0.989 0.62

sar+semre 2.37 0.04 0.24 0.74 -0.35 0.00 7.53 0.54
sar+sem2re 2.29 0.05 0.24 0.74 -0.37 0.00 6.68 0.52
sar+semsr 2.91 0.04 0.07 0.91 -0.25 0.01 0.991 0.61

sar+srre 1.24 0.08 0.02 0.74 -0.27 0.30 0.92 0.997
sar+sem 1.33 0.14 0.37 0.56 -0.90 0.01 0.52

sar+re 1.66 0.01 0.23 0.67 -0.58 0.16 21.32
sar+sr 1.24 0.08 0.02 0.74 -0.27 0.30 0.997

sar+ols 1.67 0.15 0.31 0.60 -0.66 -0.00
semsrre 3.05 0.04 0.07 0.91 -0.25 9.08 0.988 0.63

semre 2.39 0.04 0.24 0.74 -0.34 7.50 0.54
sem2re 2.32 0.04 0.25 0.74 -0.36 6.62 0.53
semsr 3.04 0.04 0.07 0.91 -0.25 0.991 0.62

srre 2.74 0.10 0.07 0.88 -0.53 0.00 0.987
sem 1.41 0.14 0.37 0.56 -0.86 0.52

re 2.14 0.00 0.31 0.73 -0.61 5.00
sr 2.74 0.10 0.07 0.88 -0.53 0.987

ols 1.64 0.16 0.31 0.59 -0.67

Table 6: Parameter estimates for all specifications on the Munnell model. Regressors are
logged, except for unemp. The latter is divided by 100 for readability. The SRRE estimator
hit a corner solution at 0 for φ.

We have started by sketching a taxonomy of spatial panel models, beginning
with the two basic random effects (RE) specifications used in the literature: the
spatial autoregressive (SAR) RE model containing a spatially lagged dependent
variable and a group-specific, time-invariant component in the error term, and
the spatial error (SEM) RE model, with both a group-specific component and
a spatial dependence structure in the error term. We have discussed the com-
bination of SAR and SEM features as in Case (1991) and the extension of the
SEM specification by Baltagi et al. (2007b) to an encompassing model allowing
for random effects, serial and spatial correlation in the error term.

Building on the combination of Anselin (1988)’s general estimation frame-
work with the likelihood functions for the full model and the models restricted
at the different levels derived by Baltagi et al. (2007b) leads to an estimation
procedure for the full model and any zero-restriction of it, giving rise to a to-
tal of 20 different specifications. We have described our implementation of the
extended procedure in the R language and discussed it critically, with particu-
lar attention to the issues of performance and reliability, also providing applied
examples taken from the empirical panel literature.

The techniques described in this paper extend the functionalities of the splm
package inside the R project for statistical computing, thus opening up the
possibility of analyzing spatio-temporal (static) panels with a rich structure,
estimating the coefficients and conducting specification searches from general
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to specific through Wald or likelihood ratio tests as an alternative to Lagrange
multiplier testing.

Thanks to the efficiency of R, especially as regards the availability of user-
friendly infrastructure for sparse matrices, and the power of modern computers,
these estimators can be employed on problems of relatively high dimension,
spanning many fields of the applied literature. Yet for the richest specifica-
tions in the Anselin-Baltagi variant there are limits, starting from N in the
hundredths, which exclude many interesting case studies. Therefore, future
developments concern mostly the aspects of performance and stability, concen-
trating on the numerical optimization step. The occasional problem of negative
estimates for the parameters’ variance, although confined to borderline cases,
would find a solution through analytical derivation of the parameters’ covari-
ance matrix for the full SAREM(2)SRRE models, which is another interesting
task for future work. Further directions for development also concern the in-
teroperability of the present framework with the orthonormal transformation of
Lee and Yu (2012) in order to provide functionality for their Hausman test for
serially correlated models. Lastly, it would be interesting to assess the behaviour
of the proposed estimators under nonnormality.
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