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Abstract

Empirical assessments of the forecasting power pattiad panel data econometric
models are still scarcely available. Moreover, saveethodological contributions rely
on simulated data to showcase the potential of qggeg methods. While simulations
may be useful to evaluate the properties of a siegtimator, the empirical set-ups of
simulation studies are often based on strong assmmspregarding the shape and
regularity of the statistical distribution of thanables involved. It is then valuable to
have, next to simulation studies, empirical assesssnof competing econometric
models based on real data. In this paper, we eeabmmpeting spatial (dynamic) panel
methods, selecting a number of data sets charaeteby a range of different cross-
sectional and temporal dimensions, as well asréffficlevels of spatial autocorrelation.
We carry out our empirical exercise on regionalmpeyment data for France, Spain
and Switzerland. Additionally, we test differentrdoasting horizons, in order to
investigate the speed of deterioration of foreogstjuality. We compare two classes of
methods: spatial vector autoregressive (SVAR) ndeld dynamic panel models
making use of eigenvector spatial filtering (SF)e Wihd that, as it could be expected,
the unbalance between the temporal and cross-sattionensionT >> n) does play in
favour of the SVAR model. On the other hand, theaathge of the SVAR model over
the SF model appears to diminish as the forecastmgon widens, eventually leading
the SF model to being preferred for more distargdasts.

1. Introduction

Labour market figures represent key informationrfra macro- and micro-economic
point of view. In particular, being able to forecasich values — in the short- or long-
run, depending on the problem at hand — is a viduakset, when evaluating past and
potential labour market policies and more. Barcalet2012) recently stressed the need
for local (versusplace-neutral socio-economic policies, in the view of an impeoent

in their localized effectiveness and efficiencyeTdesign of such local policies, and in
particular active labour market policies, demandsueate social and economic
information about regional endowments and all ignesatic factors that may affect
their success. In order to allow policymakers tocate public expenditure efficiently
between regions, labour market forecasts at theomah level are a necessary
complement to forecasts at the national level. Tibisa reinforces the need for
econometric techniques allowing to obtain accurktteal predictions, where, in
particular, the information on each spatial unitamsidered together with the one on its



neighbouring units, which are most likely to infhoe a spatial unit’s socioeconomic
system with their own trends, shocks and policiesabse of spatial proximity (e.g.,
through interregional commuting).

The existence — and persistence — of regional ulsgmment differences (Blanchard and
Katz 1992; Partridge and Rickman 1995; Patacchmi Zenou 2007) has a double
dimension: temporal and spatial. Then, the andigsés the question of how this

phenomenon may be incorporated in the forecastimagegy. The final aim is to obtain

regional/local predictions taking into account,addition to national and international

trends, the fact that neighbouring regions maythecwrally different and that, at the

same time, it is necessary to incorporate in thdetsothe existence of spatial economic
linkages between regions (Longhi and Nijkamp 2007).

Empirical assessments of the forecasting powepafia econometric models are still
scarcely available. Moreover, several methodoldgioatributions rely on simulated
data to showcase the potential of proposed metiwtde these are useful to evaluate
the properties of the estimators, the empiricalupst of simulation studies are often
based on strong assumptions regarding the shaperegnudarity of the statistical
distribution of the variables involved. It is thenorth having, next to simulation studies,
an assessment of the forecasting models on the blsal data.

In this paper, we evaluate two competing spatiathow@s on a number of data sets
characterized by a range of different cross-seatioand temporal dimensions.

Additionally, the different levels of spatial autoelation of the data are explicitly

considered. We carry out our empirical exerciseragional unemployment data for
France, Spain and Switzerland. Additionally, we tifferent forecasting horizons, in

order to investigate the speed of deteriorationthef forecasting quality. We compare
two classes of methods: spatial vector-autoregres§&$VAR) models and dynamic

panel models augmented by eigenvector spatiatifile(SF). The two models chosen
belong to two separate traditions: VAR models repn¢ the mainstream (time-series)
forecasting tradition, while SF-enhanced dynamiogbanodels attempt to merge the
panel data modelling tradition to the spatial stats one, within a semi-parametric
framework. Both allow to inspect the spatial hegemeity in the persistence of the
regional unemployment rates (and therefore in kloels absorption speed), and to avoid
imposing a unique coefficient for all regions (L&imgnd Nijkamp 2007).

In (anonymized 2012), we analysed the short-rune{meriod-ahead) forecasting
performance of the above competing spatial modélee SVAR models showed
somehow superior performance when the time dimandaminated, consistently with
the time-series framework of VAR models. Movingteed to moderate cross-sectional
and temporal dimensions, no clear difference cd@ddrawn between the SVAR and
SF estimation frameworks. We now focus on invesiigahow the performance of the
two methods evolves over longer forecasting hoszddur results point, consistently
with previous findings, to median and average elewels that are tied to the data
structure (cross-sectional and temporal dimensioBg)n tests comparing the two
methods’ forecasting errors appear to prefer théABVbut for longer forecasting
horizons, the SF approach becomes competitive.obtened forecasting errors of the
SF models show stronger residual spatial autoadioel (though still limited), while
SVAR forecasting errors often exhibit negative gdautocorrelation, suggesting that
further fine-tuning is necessary in order to obtdia best possible performance from
the two methods.



The paper is structured as follows. In Section 2, provide a brief methodological
description of the SVAR and SF, their benefits dimitations. In Section 3, we

illustrate the data sets used and their charatitsrisin Section 4, we present and
discuss our empirical results. Finally, in Sectbmve draw some concluding remarks
and outline future expansions of our empirical epser.

2. Methodology: Spatial Vector-Autoregressive Models ad Spatial Filtering-
Aumented Dynamic Panel Data Models

The importance of the inclusion of spatial depecdesmd heterogeneity for forecasting
purposes has been analysed in several papers.n@rm@nd Granger (2004, p. 7) state
that ‘ignoring spatial autocorrelation, even whemsiweak, leads to highly inaccurate
forecasts’. Similarly, Hernandez-Murillo and Owyar{g006) find that obtaining
forecasts for disaggregated data using a spacedutwregressive model may lead to
reductions in the out-of-sample mean squared €M&E). Different methodological
approaches have been proposed in the literatufeagd@and Li (2004, 2006), Longhi
and Nijkamp (2007), Fingleton (2009) and Baltagakt(2012) use static spatial panel
data models. Kholodilin et al. (2008) and Kholadiand Mense (2012), instead, use
dynamic spatial panel data models, and find thedaating for spatial effects improves
forecasting performance, in particular when theedasting horizon is longer. Schanne
et al. (2010) reach a similar conclusion, comparngpatial global VAR (GVAR)
model with time series methods. Angulo and Triv&D1Q) find a substantial
equivalence between a fixed effects panel spa@inhodel and a series of non-spatial
ARIMA models. On the other hand, Ohtsuka and Kakg@@13) find that a VAR
model outperforms a spatial autoregressive ARMARSARMA) model.

In this paper, we aim to exploit the strong heteragty, across countries, in the size
(e.g., in terms of population or area) of regiontha same official level of aggregation
to investigate the forecasting performance of cdingespatial econometric methods.
We focus on two particular ones: an SVAR model pemal by Beenstock and

Felsenstein (2007), and a dynamic heterogeneoueierts panel data model based
on eigenvector SF (Griffith 2000; 2003, anonymi2€d 2). We deliberately select two

models belonging to two separate traditions: VARdele come from the time-series
forecasting tradition, and are widely used, in mnaconomics, to study adjustment
processes; the SF-augmented dynamic panel datal ncodeects the panel data
modelling tradition [e.g., least squares dummyalalgs (LSDV) models] to the spatial

statistics one, within a semi-parametric framework.

VAR models (Sims 1980) can be written as a seyofrsetric equations in which each
(dependent) variable is described by a set ofvits lags and the lags of other variables
in the system. VAR models are vastly employed tml\t within a flexible estimation
framework, the linkages between several variabRestrictions are not imposed by
theory but rather by statistical tools, as in VARdals the number of parameters to be
estimated grows more than proportionally with tlebtem dimensionality. However,
the flexibility of VAR models is only certain in ¢htemporal dimensiohA standard
VAR model does not incorporate spatial spillovdos:example, a shock in one region
only influences the economic behaviour of the regiself.

! Structural VAR models are introduced to incorpertae necessary restrictions.
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There are several proposals on how to account patiad dependence (or, more
generally, cross-sectional dependence) betweemmnggn a VAR model. The most
relevant obstacle in this regard is given by the that the number of parameters to be
collected to model such relationships increasesimtiaally with the number of spatial
units. In this regard, information on spatial proky is used to limit the number of
estimated parameters. Pan and LeSage (1995) praposese spatial contiguity
information as an alternative prior in a BayesiaAR/model. Similarly, Di Giacinto
(2003) sets up parameter constraints in a strdci®d& model on the basis of the
neighbours structure, allowing to identify and mstie an SVAR model. Schanne et al.
(2010) start from the GVAR model of Pesaran et(2004) and use geographical
information to model spatial connections betweegioms. In particular, the GVAR
model allows to include a temporal dimension witthia spatial dependence process. In
this regard, some authors consider only contempgoi@spatial processes (Longhi and
Nijkamp 2007; Kholodilin et al. 2008), while othespecify only temporally lagged
spatial dependence (Hernandez-Murillo and Owyar@$ 20

All the methodological approaches mentioned abose spatial weights matrices,
which are positive, (usually) non-stochastic masievhose elements show the intensity
of interdependence between pairs of spatial umtsur specification, we follow the
SVAR approach proposed by Beenstock and Felsen&6i7), who bring together
mainstream VAR methods and spatial panel data igebs. Beenstock and Felsenstein
allow for both contemporaneous and serially lagspeatially correlated variables. Since
their SVAR model is highly nonlinear, because afiteonporaneous spatial dependence,
they restrict the coefficient of the contemporarsespatial lags to zero, linearizing the
model.

Let us considen regions or municipalitiesi€1,...,n) where the values of a set of
random variables are observed over titmel,....T . In general terms, if we consider

temporal lags and cross-regressive spatial lags, we must managguations (one for
each region) like the following:

P S n S P n
yi,t = q +ZB|,p y,t—p +26I,SZ V\é,i,j yj,t +Zzyi,s,pz V\é,i,j yj,t— p+E it (1)
p=1 =1 E1

s=1 s1 =1

wherews;; is the cell {, j) of spatial weight matrixVs for the sth spatial lag. The
novelty of this model is the inclusion of the sphttross-regressive lags, which are
obtained by premultiplying each serially laggediafale by the spatial weight matrix. In
the estimation stage, for each spatial unit a wnigalue of the spatial lag variable is

estimated, and each observation has its own setighbouring units. Sinc{‘wsyi’jyj’t

j=1
and g, are not independent, Equation (1) is estimatethbsins of seemingly unrelated
regressions (SUR), where the coefficients of th@emporary spatial lags are estimated
using, as instruments, the (spatially weighted)diopted values of the dependent
variable. This is the common solution to the endegy issue caused by the spatial lag
of the dependent variable in a simple spatial |agleh

If p = 1, each equation includes a constant, the Beriafjged variable, and the
contemporaneous and serially lagged spatial lags:
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In Equation (2),> w,
j=1
the serially lagged spatial lags.

In this paper, we compare the above method with dhe recently proposed by
(anonymized 2012), based on a heterogeneous-aeatBcdynamic panel data model
augmented by means of SF. This latter approachwsllto account for spatial

heterogeneity and/or autocorrelation both in tivelkeand in the regression coefficients,
including the serial autoregressive term. Eigerare&F (Griffith 2000, 2003) is a

nonparametric solution to the problem of spatiagbearrelation in regression models. It
relies on the computational formula of Morah’éMi, Moran 1948), the most common
indicator of spatial autocorrelation. After pre-dapost-multiplying a spatial weights

matrix W by a projection matrix, we obtain:

C=(I,-11"/nyW( ,-117 /n), (3)

wherel is ann x 1 vector containing 1's. MatriC can be used to obtain, given a
variable X, the numerator of MI, and its extreme eigenvalaes approximately the
extreme values of MI (Griffith 2000). Because o ttmathematical relation betweén
and MI, the eigenvectors extracted fr@mrepresent all mutually exclusive (orthogonal

and independent) spatial patterns implied\Wy The eigenvectorE,...E, of C are

extracted in decreasing order of spatial autocatigl (according to MI). Therefor&;
has the largest MI achievablEH,)], given W. All subsequent eigenvectors maximize
MI while being orthogonal to the eigenvectors poesly extracted.

When employed in a regression model as additionplaeatory variables, the above
eigenvectors may account, among other things, fiobserved heterogeneity, redundant
information, and spatial spillover effects, rendgriregression residuals spatially
uncorrelated (at least in a cross-sectional framkw@\ stepwise regression approach
may be used to select which eigenvectors are &sighificant in a specific modelling

exercise. Because the number of eigenvectors seseavith the cross-sectional

dimension, it is customary to start the stepwisa@hselection from a subset of so-
called ‘candidate’ (or ‘dominant’) eigenvectors.igbubset is usually defined according

to a minimum threshold of 0.25 for the ratlgE;)/I(E,) (for details, see Griffith

2003). The linear combination of thkesigenvectors selected in the stepwise procedure
and their estimated coefficients is called a ‘spafilter’. Because of its basis in
eigenvector decomposition, SF is close to princig@hponents analysis, and when
applied in a panel data modelling framework, thevested spatial filter may be seen as
a substitute for the individual fixed effects (agoomzed 2012). In this regard, SF may
be thought to be similar to the method recentlyught forward by Bai (2013), who
proposes a factor-analytical approach to the esomaf individual fixed effects.

Additionally, SF may be employed to inspect thetigpdneterogeneity of regression
coefficients (other than the intercept) as wellmikrly to what is done in



geographically weighted regression (GWR, Fothemmghet al. 20023. (anonymized
2012) show that, in dynamic panel data modellingeterogeneous-coefficients model
can be effectively and efficiently approximateddmnstructing an SF representation of
the vector of serial autoregressive coefficienthisTis done by interacting each
candidate eigenvector (pilefl times to allow for the temporal dimension) witheth
serially lagged dependent variable, constructisgtaof new variables that represent its
decomposition in orthogonal spatial components. rEgeession coefficients estimated
for the new variables will indicate the relevandesach spatial pattern in determining
the spatial heterogeneity in the adjustment pro(&ssck absorption) speed. The same
process can be applied to any other explanatoriahlar as in GWR. Additionally,
simulations (anonymized 2013) show that the resglestimator provides, for most
combinations oh andT, smaller bias in the estimation of the autoregvessoefficient
than the two standard methods in dynamic panel deddelling, the bias-corrected
LSDV estimator (Bun and Carree 2005) and, for tiedgeneous coefficients case, the
system GMM estimator (Blundell and Bond 1998).

When spatial filters are simultaneously appliethatserial correlation and the intercept
level, the following model is obtained:

yi,t = C+By,t—l+z_[3m E,m y,t—1+ ZBm E,m'+£i,t (4)

wherek andk' are the number of eigenvectors selected at tigethterm and intercept
level, respectively. A (standard) intercepiand an average serial correlation coefficient
B can still be estimated, and the two spatial &itehow the regional deviations from
these aggregate measures due to spatial relagsshi

A further advantage of the SF approach is thaikerthe SVAR, it can be used for any
combination of cross-sectionat)(and temporalT) dimensions, including the smail-
small-T and bign small-T cases (see, e.g., Giacomini and Granger 2004)thEdatter
in particular (e.g., the case for German NUTS-3nypleyment data), the SVAR model
cannot be estimated. Therefore, these cases aréhgdomoment, excluded from our
comparative analysis.

3. Data Description and Forecasting Strategy

The aim of this paper is to evaluate the forecggperformance of the spatial panel data
methods described above using real-world data Safs. use data on official
unemployment rates in France, Spain and Switzerlandhe NUTS-3 level of
geographical aggregation, and analyse in comparatinms the speed of deterioration
of forecasting quality as the forecast horizon éases.

Previous studies have analysed ‘[h]ow far aheaaltim® future ... forecasts have value,
and how the information content of forecasts charmeer forecast horizons’ (Isiklar

and Lahiri 2007, p. 167), but focusing only on time domain. Using GDP forecasts,
Isiklar and Lahiri find that forecasting error \aility increases as the forecast horizon

2 In this regard, Griffith (2008) shows that the-S&ed approach to GWR provides superior statistica
properties (e.g., with regard to multicollinearitifan the actual GWR.



increases, while forecast variability decreases.aA®nsequence, uncertainty (over a
wide forecasting horizon) is associated with a gwaaiability in the forecasting errors
but less variability in the forecasting values. sTts a further dimension along which it
Is worth comparing the SVAR and SF methods.

3.1.Data Description

In our empirical exercise, we initially considewuforeal-world data sets, characterized
by a range of different cross-sectional and tempdiraensions, for France, Germany,
Spain and Switzerland. The data for France, SpainSavitzerland have satisfactory but
different temporal T) and spatial dimension®)( whereas German data have a big
(439) but a smalll (36), so that the SVAR approach becomes unfeasgibke total
number of parameters to be estimated in the madgély exceeds the total number of
observations available Consequently, we decide to focus our empiriggliaation on
the three aforementioned countries.

Besides differences in the temporal and spatiakdsions, a further interesting aspect
is that the size of the NUTS-3 spatial units for ceference countries differs widely.
Then, it may be interesting to examine whetherdh#iferences affect the forecasting
performance and in which direction. NUTS-3 spatiaits correspond, for Spain, France
and Switzerland, to provinces, departments andooantespectively. All of them are
official delimitations, although with different p@ss and levels of autonomy. French
departments have elected councils and administaunaber of social welfare duties.
Spanish provinces, instead, are mostly used forgrgebical reference and for
delineating electoral districts. On the other hafdyiss cantons are much more
independent, each having its own constitution aodeghment (as they used to be
independent microstates). The average area of lFréepartments is 7,030 Krfo =
8,156.01 km), the one of Spanish provinces is 10,499 k= 4,699.77 krf), while
the same for Swiss cantons is 1,587 ken= 1,822.35 krf). Therefore, the average size
of the Swiss cantons is clearly the lowest, andhifbest level of variability is seen for
French departments. Table 1 provides summary irdbom on the spatial and temporal
dimensions of our data sets.

Table 1. Data sets analysed in terms of their teat@md spatial dimensions

Country nvsT Average size (std. deviation)
dimension

Spain (0 = 47,T = 132) T>>n 10,499 km (o = 4,699.77 krf)

France i = 96,T = 120) T>n 7,030 knf (o = 8,156.01 krf)

Switzerland (1 = 25, T = 384) T>>n 1,582 knf (o = 1,822.35 krf)

Unemployment data for Spain are collected throughS3panish Labour Force Survey
(EPA). The data consist of quarterly unemploymeés and cover the period 1976—
2008. Most studies about Spanish labour marketstabst one of their main features is

® Canova and Ciccarelli (2013) analyse the techriptions to confront the curse of dimensionality
issue in the case of large panel VAR models.



the unemployment persistence from an aggregatepaiesy but it should be noted that
the persistence in the inequality of unemploymetes across provinces has been
highlighted as well (Blanchard and Jimeno 1995;edim and Bentolila 1998). For
example, in 2006 some provinces experienced ung/mgaot rates above 14 per cent
(Cadiz, Badajoz, Huelva and Cordoba), whereas stlieeruel, Soria, Navarra and
Guipuzcua) had rates lower than 6 per cent. Thelsgant differences are quite stable
over the entire period studied.

Unemployment data for France are provided by thioNal Institute of Statistics and
Economic Studies (INSEE) and consist of quarterigrmaployment rates covering the
period 1982-2011. The average unemployment ratthiemperiod is 8.86 per cent and
its temporal evolution is quite stable, showinghighest rate of 10.8 per cent in 1997
and its lowest (6.8 per cent) at the beginningheffieriod considered.

Switzerland is a non-EU country, and its labour ketican be considered to be quite
different from the EU average, although some cands have been relaxed with
regards to employment and migration regulationsit@niand has recently abolished
immigration quotas, and initiated participation ithe Schengen agreement).
Nonetheless, the Swiss labour market is still #yricegulated, and migration is

controlled through working permits. Unemploymentadéor Switzerland are given

through the Unemployment Statistics of the SwisdeFa Statistical Office. Our data

set consists of monthly unemployment rates betwl€atb and 2008, collected for the
26 cantons of Switzerland. Unemployment figureSwitzerland are much lower than
in Spain and France. From 1995 to 2010, Switzeidandemployment rate averaged
3.38 per cent, reaching an historical high of 50 cent in 1997, and recording its
lowest value (1.60 per cent) in 2000.

The difference between Switzerland’s historicalhhégnd unemployment rates in Spain
is striking. The temporal evolution of unemploymeates is also quite different, and
Spanish data show a higher level of volatility. Hrench data represent an intermediate
case between Spain and Switzerland, both in tefragserage unemployment rates and
in terms of cross-sectional and temporal dimensiassshown in Figure 1. The plots
composing thdigure cover mostly overlapping periods, and employ, facheregion
(i.e., each row in a graph), a specific quantiledashcolour scale. The bottom time series
plot in each graph shows the evolution of the medégional unemployment rate. As it
can be seen, most Spanish and French regions exped two highs in unemployment,
around 1985 and 1995, followed by a marked impraam@nand, ultimately, by the first
signs of unemployment increase led by the 200 Gizé crisis. Swiss regions, instead,
experienced a marked unemployment increase betd@8® and 1995, which lasted
until about 2000. It is worth noting that, while 8@ regions all follow the aggregate
trend closely (the lighter and darker parts ofpleg are homogeneous), the patterns for
Spain and France are more irregular, suggestingildesheterogeneity in cyclical
sensitivity, which, if not random, could be refledtin spatial clustering of serial
correlation coefficients.

All three countries show spatially autocorrelatatemployment rates, as shown in
Figure 2 in terms of MI. In Spain, the 1980s reeard more homogeneous scenario,
while recent trends appear to lead — as in the begynning of our observation period —
to much stronger clustering of unemployment ratndsch identifies the highest values
of MI over the three data sets. A similar pattesnshown for France, although the
overall range of variation of Ml is limited. In Stwerland, it appears that spatial



inequalities have gradually built up over time,almag a moderate level of spatial
autocorrelation.
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Figure 1. Panel plots of regional unemployments&be Spain (a), France (b) and
Switzerland (c)

3.2.Forecasting Strategy

Once the data peculiarities have been analysedoweoutline our forecasting strategy
aiming to comparatively evaluate the desirabilityhe reviewed methods over different
forecasting horizons using multi-step forecastse Tdeterioration process of the
forecasts is compared against differences in th@a@nd temporal dimensions of the
data sets and the geographical size of the spetits.

We devise a forecasting strategy based on a roNumgdow and an extendable
forecasting horizon. For each method and datsesemates are obtained using a fixed-
size window of observations (with the temporal xtéeing comprised between 1g+



andT —h + g), whereg =0,...,h— 1, andh is the number of time periods covered by the
one-year rolling window [i.e.h = 4 (quarters) for Spain and France, dnd 12
(months) for Switzerland[Ex postforecasts of regional unemployment rates from one
period (one-step-ahead) to a maximum of two yeaashen carried out. As a result, the
number of forecasts obtained for each length of fdrecasting horizon, and given
cross-sectional dimensions, is (4 * 47) = 188 fpai§, (4 * 96) = 384 for France, and
(12 * 26) = 312 for Switzerland.
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Figure 2. Dynamics of spatial autocorrelation, niead by M, for Spain, France and
Switzerland

3.3.Evaluation of Forecasts

The forecasting performance of our SVAR and SF rsodecompared by means of

common statistical indicators: the mean squareor MSE), the mean absolute error
(MAE) and the mean absolute percentage error (MAPR¢ MSE and MAE measure

absolute deviations (i.e. regardless of directiomn the true values, and are computed
as follows:

IS (00
MSE==3(0-U): (5)
MAE :%i\oi -U ‘ (6)

Because it is important to take into account sda¢erogeneity in the levels of
unemployment, we also consider the MAPE, whichdiamns the forecasting errors on
a percentage scale, and is given by the following:

13 Lji _Ui‘
MAPE:—ZTXNO. (7)

i=1 i

Each model is tested on out-of-sample data forydaas 2007—-08 for Switzerland and
Spain, and 2010-11 in the case of France. Withnftamework, the discussion on the
advantages and disadvantageswfanteand ex postpredictions seems unnecessary,
since contemporaneous spatial lags are obtainetthenfirst stage, as described in
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Section 2. Angulo and Trivez (2010) avoid this atebas well when employing a
dynamic panel data model in forecasting employrnearls in Spanish provinces.

Starting from the MAPE (but the same could be dondVISE and MAE), we generate

inferential results on the relative forecastingf@enance of our two competing models.
We follow [anonymized] (2008) and [anonymized] (2Dland make use of the sign
test (ST, Lehmann 1998). The ST is a nonparamtdst for model comparison and
aims to assess whether two models are equally aecut does not rely on the usual
assumptions necessary for most alternative tests (as the Diebold-Mariano test or
the Wilcoxon test), since it does not require anmairdistribution of the forecasting

errors, or symmetry between the two vectors ofrerocompared. More simply, the ST
compares the forecasting errors pairwise. If twadet® present a similar forecasting
performance, the number of forecasts of Model 1ctvishow a greater error than the
ones of Model 2 may be expected to be about 5G@er of the total. Consequently,
Model 1 is considered superior to Model 2 if Mo@ehas higher forecasting errors in
more than 50 per cent of the cases. In practicaidea null hypothesis of equality in

the median forecasting error is tested. The tasis§t Sis computed as:

(e g)/E

whereC is the number of times that Model 2 shows a higiesr than Model 1's, ana
is the total number of forecasts. Tsetatistic follows a normal distributidd(0,1).

Alternatively, further parametric and nonparametdsts could be applied for model
comparison. Among others, [anonymized] (2008) empla addition to the ST, a
parametric test, that is, the Morgan-Granger-Nedhest, while [anonymized] (2007)
use a further nonparametric test, namely the Fraadstatistic.

4. Results
4.1.Spain

Table 2 reports summary statistics for the MSE, Mekiel MAPE obtained for Spanish
provinces over eight different forecasting horizofnem one quarter to eight quarters
(two years). As mentioned in Section 3.2, the dasting errors analysed for each
forecasting horizon are the results of repeatennatibns of the models using a one-
year rolling window.

From the analysis of Table 2, the SVAR model appdarshow better forecasting
performance than the SF model, although the diffeebetween the two models
reduces slightty when MAPE is considered. Then ®¥AR model shows a
comparatively better performance when the focumigrror minimization on the scale
of the dependent variable. This is explained byrtigher level of variability of the SF
model in comparison to the SVAR, as shown in Figdirevhere box plots provide a
visualization of the error distribution. With redatio the main question of the paper, we
observe — as expected — a deterioration of fornecpstccuracy for longer forecast
horizons, especially wheh= 5 and more (i.e., beyond one year). The samelusion

is reached regardless of the error measure coesidafthough the SF model error
appears to stabilize and actually decrease on gedi@nd at the median) for longer

11



forecasts. Noteworthy is also the generalized ss®an outlying forecasting errors, in
particular when the forecasting horizon approadhesyears and moves into the 2008
financial crisis, which had a strong impact on 8panish labour market.

Table 2, Summary statistics of MSE, MAE and MAPEexpanding forecasting
horizons (Spain)

Indicator Model 1 2 3 4
MSE SVAR 1.694 3.737 2.721 4,189
SF 1.892 3.708 5.376 7.295
MAE SVAR 0.999 1.404 1.275 1.567
SF 1.081 1.539 1.907 2.248
MAPE SVAR 0.122 0.163 0.154 0.181
SF 0.136 0.204 0.263 0.323
ST (MAPE) Winner - - SVAR SVAR
5 6 7 8
MSE SVAR 4,481 5.179 5.658 10.007
SF 9.077 9.882 9.643 9.031
MAE SVAR 1.649 1.760 1.718 2.308
SF 2.257 2.690 2.624 2.479
MAPE SVAR 0.203 0.292 0.342 0.384
SF 0.373 0.389 0.363 0.316
ST (MAPE) Winner SVAR SVAR - -

We compute the ST (on the basis of the MAPE indaio assess whether our two
models can be considered as equally accurate éagplanish data set. We calculate the
test by pooling the forecasting errors by forecashorizon. The test is not significant
for the first two (shorter) horizons, then becorsgpmificant, in favour of the SVAR,
and finally, as observed in Figure 3, the SF mdmwlomes competitive again at the
two-year forecasting horizon.

If the existence of spatial patterns in the data ianthe speed of response to shocks is
well identified by both models, forecasting erroshiould not present spatial
autocorrelation (unless, e.g., asymmetric shockdared). To test this hypothesis, Mi
is computed on the prediction errors of both meshimd each iteration and forecasting
horizon. It can be observed, in Figure 4, that fidrecasting errors of the SF model
show, in about 50 per cent of the cases, a sigmficand moderate spatial
autocorrelation, while in most cases, SVAR erroesspatially uncorrelated.

4.2.France

In

Table 3 we report summary statistics for the efgrécasting horizons tested (i.e., as for
Spain, up to two years) in the case of France.irat $ight, the SF model appears to
have gained in competitiveness from the differaatadtructure (the unbalance between
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nandT is now of a lesser extent). In particular, the i86del wins over the SVAR

model for all forecasting horizons when MSE is ¢dered (i.e., when the focus in on

guadratic error). Additionally, the values for MSfe sensibly smaller than in the
Spanish case (especially for the SF model), dubedimited variability of the French

data (as suggested also for spatial autocorrelatiéigure 2).

SF MAPE

SF MAE

SF MSE

SVAR MAPE

2 3 4 5 6 7 8

i

2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 12 3 4 5 6 7 8

1

Figure 3. MSE, MAE and MAPE box plots over expangdiorecasting horizons (Spain)

The SVAR model shows a better average performamdg for relatively short

forecasting horizonsI(

2-4), with regard to MAE and MAPE, pointing taldferent
13

forecast deterioration process of the models foedasting horizons longer than one



year. The error indicators for the SF model do inotease over forecasting horizons
(they actually decrease in some cases), while WWaRSmodel shows a monotonic
forecast deterioration process. Additionally, Fegérshows that, while the SF model’s
outlying errors remain in the same range over naistant forecasts, the ones for the
SVAR model increase greatly, leading also to alkqtiging of the average error levels.

< SF Moran's | < SVAR Moran'’s |
< OO o Significant < o Significant
© | % © Not significant |, © Not significant
o o

© O
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o o

oo

o | C'OOO: o | %
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Figure 4. Ml of SF and SVAR forecasting errorstaadiin decreasing order (Spain).
Red dots identify significant values

Table 3. Summary statistics of MSE, MAE and MAPEexpanding forecasting
horizons (France)

Indicator Model 1 2 3 4
MSE SVAR 0.785 0.840 1.022 1.339
SF 0.330 0.654 0.697 0.904
MAE SVAR 0.502 0.511 0.564 0.641
SF 0.471 0.625 0.656 0.772
MAPE SVAR 0.054 0.056 0.062 0.070
SF 0.053 0.068 0.072 0.076
ST (MAPE) Winner SVAR SVAR SVAR SVAR
5 6 7 8
MSE SVAR 1.892 2.754 3.739 5.265
SF 0.809 0.688 0.683 0.652
MAE SVAR 0.775 0.947 1.098 1.299
SF 0.670 0.643 0.649 0.635
MAPE SVAR 0.086 0.109 0.135 0.188
SF 0.073 0.071 0.072 0.070
ST (MAPE) Winner SVAR - SF SF
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Figure 5. MSE

(France)

1

MAE and MAPE box plots over expagdiorecasting horizons

These findings, which are obtained for the averéwmecasting errors, are partly

confirmed when the ST, which is carried out for thedian error, is computed. The
model becomes competitive as the length of foreaadtorizon increases, eventually

emerging as significantly superior for forecastgeseor eight quarters ahead.
to the one of the Spanish case. The two modelsaapgpebehave in opposite ways in

SVAR model appears to be significantly superiordbort-term forecasts, while the SF
Finally, Figure 6 graphically summarizes our finglirpertaining to the spatial
autocorrelation of the SF and SVAR forecasting rstrieading to a conclusion similar
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this regard, as the SF model once again producesdsts with (moderately) spatially
correlated errors, while the SVAR, though showingmaller number of spatially

autocorrelated errors, records a high number ofsas which forecasting errors are
negatively and significantly autocorrelated. Thésue, which could be related to the
high error outliers discussed above or to coregbeny trends that the SVAR model
cannot catch, deserves more specific attentioarthér work.
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o o _—
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Figure 6. Ml of SF and SVAR forecasting errorsteoin decreasing order (France).
Red dots identify significant values

4.3.Switzerland

Our final empirical exercise regards the 26 SwissitGns. The Swiss data set is, in
theory, the one most in favour of the SVAR modahce the temporal dimension
greatly exceeds the cross-sectional dneX n). The average forecasting errors reported
in Table 4 confirm our expectation, as the SVAR sloabpears to produce smaller
forecasting errors, on average, for all three iattics. The box plots appearing in Figure
7 visually confirm the average results, showing fbaany forecasting horizon, median
and average errors for the SVAR model, however etdeth are smaller than the ones
of the SF model.

The ST, computed on MAPE, comes as a further aoafion of what could be seen
numerically and graphically, since the SVAR modekeges as producing significantly
more accurate forecasts than the SF model. An ércefo this finding are the two

shortest forecasting horizons, where no signifiaistinction could be made between
the two models.
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Table 4. Summary statistics of MSE, MAE and MAPEexpanding forecasting horizons (Switzerland)

1 2 3 4 5 6 7 8 9 10 11 12
MSE SVAR 0.016 0.034 0.044 0.053 0.060 0.063 0.065 4.070.081 0.082 0.082 0.086
SF 0.020 0.054  0.090 0.124  0.151 0.178 0.204 0.220.250  0.271 0.291 0.319
MAE SVAR 0.092 0.138 0.162 0.179  0.192 0.202 0.208 3.220.232 0.232 0.231 0.234
SF 0.102 0.170 0.221 0.267 0.301 0.340 0.380 0.410.449 0.474  0.498 0.525
MAPE SVAR 0.040 0.060 0.070 0.078 0.085 0.090 0.093 (.100.106 0.107 0.108 0.110
SF 0.043 0.071 0.092 0.112 0.127 0.145 0.167 0.186.205 0.220 0.234  0.247

ST (MAPE) Winner  — — SVAR SVAR SVAR SVAR SVAR SVAR SVAR SVAR SVAR &R
13 14 15 16 17 18 19 20 21 22 23 24
MSE SVAR 0.097 0.112 0.114 0.119 0.123 0.112 0.109 1.110.110 0.110 0.111 0.118
SF 0.375 0.444  0.511 0.568 0.612 0.648 0.672 0.692.706 0.705  0.696 0.689
MAE SVAR 0.247 0.262 0.268 0.271 0.273 0.263 0.258 2.260.261 0.259 0.257 0.265
SF 0.566 0.613 0.653 0.687 0.712 0.732 0.748 0.760.768 0.767 0.761 0.753
MAPE SVAR 0.116 0.124 0.128 0.132 0.133 0.129 0.126 0.120.126 0.126 0.125 0.128
SF 0.269 0.294  0.318 0.338 0.353 0.365 0.376 0.380.392 0.392 0.389 0.384

ST (MAPE) Winner SVAR SVAR SVAR SVAR SVAR SVAR SVAR SVAR SVAR SVAR SVAR SVAR
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limited (i.e., there are less statistically sigraint cases) for the SVAR. This recurring

finding may be due to the imposition of a time-inaat spatial structure (the spatial
filter) at the level of the intercept (i.e., a dianiresult could be expected if using

conventional individual fixed effects), which mayrpally constrain regional trends
within a defined spatial pattern. This issue ctdlsfurther evaluation, for example for
the case of asymmetric shocks that may affect amgrtain group of regions or specific

method implies some positive (moderate) spatiad@rtelation which is instead more
sectors in which only some areas are specialized.

Finally, Figure 8 reports, in descending order, thkies of Ml for the level of spatial
autocorrelation of forecasting errors. As seen abfor Spain and France, the SF

Figure 7. MSE, MAE and MAPE box plots over expandiorecasting horizons

(Switzerland)
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Figure 8. Ml of SF and SVAR forecasting errorstadin decreasing order
(Switzerland). Red dots identify significant values

5. Conclusions

In this paper we evaluated two competing spatighédhic) methods for panel data
forecasting: a spatial vector-autoregressive m¢8®IAR) and a dynamic panel data
model employing spatial filtering (SF). For thisrpase, we selected different real-
world data sets (for Spain, France and Switzerlaradl) dealing with regional
unemployment rates and characterized by differenoissesectional and temporal
dimensions. Our main objective was to analyse thecgss of deterioration of
forecasting precision as the forecasting horizaneiases. In this view, we carried out a
sensitivity analysis testing how different crosstemal and temporal dimensions (i.e.,
the number of spatial units and of observationsil@va per unit, respectively)
influence the models’ relative forecasting perfonce

After empirical evaluation, the aforementioned eliféinces in data structure indeed
appear to be a discriminating factor in terms @éfasting accuracy. The SVAR model
seems to be preferred to the SF model — in termsotif average and median error —
when the temporal dimension is much greater tharsgiatial dimension and the spatial
units have smaller size and a greater degree ahitty (i.e., the Swiss data). Once the
balance betweem and T becomes fairer (partly in the data for Spain andrem
prominently in those for France, whefeis only 1.25 timesn), our results tend to
become less uniform. In this regard, the lengthhef forecasting horizon becomes a
diriment factor: while the SVAR model is generatiytperforming the SF model for
short-run forecasts, the SF model gains competiéige — eventually emerging as the
preferable model — for more distant forecasts.

Finally, we investigated whether the forecastingpmer of the SVAR and SF models
exhibited any spatial pattern, testing for spatiatocorrelation. The SVAR model
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showed a smaller number of cases of spatially autelated errors than the SF model,
for both the Swiss and the Spanish data sets.dtemghtforward results were found for
the French data set, for which both positive angatiee spatial autocorrelation was
found.

Ultimately, our findings suggest that both meth¢(8¥AR and SF) may deserve their
own niche in regional forecasting. On the one hdinge-series-based spatial methods
such as SVAR models emerge, as expected, if sopta dethe temporal dimension is
present, so to exploit the region-specific inforimaton adjustment speed. On the other
hand, spatial methods focusing more on the relevahthe cross-sectional dimension,
like SF-augmented dynamic panel data models, gaicompetitiveness in empirical
cases when there is a fair balance between the-sexsional and temporal dimensions.

While our results are not qualitatively surprisirigey call for more questions to be
answered. In particular with regard to our findingse may wonder to what extent are
the cross-sectional and temporal dimensions agtuafluencing our results, and to
what extent are instead the geographical charatiteriof the regions (e.g. their area) or
macro-attributes (institutional differences at thational level influencing labour
mobility) that drive our indicators. It may be wanthile, to investigate this issue, to
numerically evaluate, within a regression framewdrdw per-region forecasting error
depends on all of the above factors.

Additionally, it would be desirable to expand owrdcasting exercise to a greater
number of data sets, comprising the cases of smsdhall-T (e.g., Italian data would
provide such a setting, though at the NUTS-2 lefeyjeographical aggregation) and
big-n small-T (as mentioned in Section 3, German data woulthf# format), though
the latter would imply imposing restrictions in erdo estimate the SVAR model. The
addition of further estimation approaches woultnigly complement our analysis.

A further issue of potential interest is the onetaiaing to the level of spatial
autocorrelation of forecasting errors. Our findirsgggest that the SVAR model does a
better job in this regard, although we did not ddlo a detailed analysis of how such
spatial autocorrelation distributes over differémecasting horizons. If the SF model,
as it appears, improves its comparative performdacdonger horizons, the spatial
autocorrelation of the related forecasting erroightnwell follow the same pattern. We
leave this and the above questions to further resea
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