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Abstract This paper analyses the mathematical properties of an overlapping generations 
growth model with endogenous labour supply and multiplicative external habits. The dynamics of 
the economy is characterised by a two-dimensional map describing the time evolution of capital and 
labour supply. We show that if the relative importance of external habits in the utility function is 
sufficiently high, multiple (determinate or indeterminate) fixed points and poverty traps can exist. 
In addition, cyclical or quasi-cyclical behaviour and/or coexistence of attractors may occur. 
 
Endogenous preferences represent a topic of greater importance in economic theory. In particular, they 
influence individual choices about consumption and saving paths over time, and can be responsible of 
endogenous fluctuations and nonlinear dynamics in macroeconomic variables (e.g., per capita output). This 
study examines an economic growth model with overlapping generations where habit formation is a source of 
local and global bifurcations. 
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I. INTRODUCTION 
 
The study of economic models with habit formation has received in depth attention in the economic 
literature. Several works have dealt with this topic in recent years. Among them are the papers by 
Abel (1990), Boldrin et al. (1997) and Lahiri and Puhakka (1998) that are concerned with the study 
of habit formation and its relationship with the equity premium puzzle. Boldrin et al. (2001) 
introduces habit preferences in the standard real business cycle model to better explain the joint 
behaviour of asset prices and consumption. Chen and Hsu (2007) analyse a continuous time one-
sector neoclassical growth model with inelastic labour supply, and show that consumption 
externalities can be a source of local indeterminacy when the degree of impatience is large enough, 
while Alonso-Carrera et al. (2008) generalises the model by introducing endogenous labour supply. 
From an empirical point of view, there exists evidence of the role of habit formation on 
macroeconomic variables (Ferson and Constantinides, 1991; de la Croix and Urbain, 1998; 
Carrasco et al., 2005). 
    It is useful to recall that in the economic literature different concepts of habit formation have 
been introduced. In particular: 
 

                                                 
 L. Gori (corresponding author) 
Department of Law, University of Genoa, Via Balbi, 30/19, I–16126 Genoa (GE), Italy 
e-mail: luca.gori@unige.it or dr.luca.gori@gmail.com 
tel.: +39 010 209 95 03; fax: +39 010 209 55 36 
 
 M. Sodini 
Department of Economics and Management, University of Pisa, Via Cosimo Ridolfi, 10, I–56124 Pisa (PI), Italy 
e-mail: m.sodini@ec.unipi.it 
tel.: +39 050 22 16 234; fax: +39 050 22 10 603 



L. Gori, M. Sodini 

 2 

• (internal) habits refer to the case in which preferences of an individual depend on his/her 
own consumption as well as on a benchmark level that weights the consumer’s own past 
consumption experience; 

 
• aspirations (or external habits) refer to the case in which preferences of an individual depend 

on his/her own consumption as well as on a benchmark level that weights the consumption 
experience of others. 

 
Amongst others, de la Croix (1996) and de la Croix and Michel (1999) study how external habits 
affect the dynamics of an economy with overlapping generations (OLG), while Carroll et al. (1997, 
2000), Alonso-Carrera et al. (2004, 2005, 2007) analyse the role of internal and external habits on 
individual consumption decisions, savings and economic growth; de la Croix and Michel (2001) 
analyses a macroeconomic model with external habits and altruistic parents à la Barro (1974). 
    The present study aims at analysing the role of multiplicative external habits on the dynamics of a 
two-dimensional OLG economy where an individual works when he/she is young and consumes 
only when he/she is old (Woodford, 1984, Reichlin, 1986). The study of growth models that 
generate endogenous deterministic fluctuations dates back to Grandmont (1985), Farmer (1986), 
Reichlin (1986) and Azariadis (1993). Subsequently, several other authors have dealt with this topic 
in OLG models either with exogenous labour supply (Yokoo, 2000) or endogenous labour supply 
(Nourry, 2001; Nourry and Venditti, 2006).1 The OLG literature related to the present paper is 
essentially represented by the works of de la Croix (1996) and de la Croix and Michel (1999). Both 
papers deal, however, with an economy where the labour supply is inelastic and individuals 
consume in both the first period and second period of life (Diamond, 1965). In particular, de la 
Croix (1996) shows that when the intensity of aspirations in utility is large, individuals want to 
increase consumption because the standard of living of their parents is high and then savings 
becomes low. This can generate a Neimark-Sacker bifurcation when savings experience too high a 
contraction because of the importance of past consumption levels. De la Croix and Michel (1999), 
instead, concentrates on the optimality issue in a growth model and show that the negative 
externality can be corrected through investment subsidies and lump-sum transfers. They also show 
that the taste externality may cause endogenous fluctuations. 
    The novelty of this study is the introduction of external habits in an OLG growth model with 
endogenous labour supply à la Reichlin (1986), i.e. individuals work when they are young and 
consume when they are old. First, we show that the relative importance of aspirations in utility is 
responsible for the existence of either one (normalised) fixed point (which can be determinate or 
indeterminate) or two interior fixed points. Second, some interesting local and global dynamic 
properties of the two-dimensional decentralised economy emerge: indeed, when the relative 
importance of aspirations in utility is strong enough cyclical or quasi-cyclical behaviour and/or 
coexistence of attractors may occur. In particular, this last phenomenon as well as the existence of 
some global bifurcations may cause global indeterminacy to the model while the stationary 
equilibria are locally determinate. 
    It is now useful to clarify the differences between local and global indeterminacy. A fixed point 
is locally indeterminate if for every arbitrarily small neighbourhood of it and for a given value of 
the state variable (the stock of capital) close enough to its coordinate at the stationary state, there 
exists a continuum of values of the control variable (the labour supply) for which equilibrium 
trajectories converge towards the fixed point. Differently, the system is globally indeterminate when 
there exist values of the state variable such that different choices on the control variable lead to 
different invariant sets. In this case, the initial condition of the stock of capital is not sufficient to 
define the long-term dynamics of the system. 

                                                 
1 Some applications of nonlinear dynamics and chaos in macroeconomic models can be found in Zhang (1999), Antoci 
et al. (2004), Chen and Li (2011, 2013) and Fanti et al. (2013). 
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    The rest of the paper is organised as follows. Sec. II outlines the model. Sec. III studies the 
conditions for the existence of fixed points of the map and analyses local bifurcations and stability. 
Sec. IV describes the global properties of the two-dimensional map describing the dynamics of 
capital and labour supply. Conclusions are drawn in Sec. V. 
 
II. THE MODEL 
 
We consider an OLG closed economy populated by a continuum of perfectly rational and identical 
two-period lived individuals of measure one per generation (Diamond, 1965). Time is discrete and 
indexed by ,...2,1,0=t . A new generation is born in every period. Each generation overlaps for one 
period with the previous generation and then overlaps for one period with the next generation. In 
the first period of life (youth), the individual of generation t  is endowed with two units of labour 
and supplies the share )2,0(∈tl  to firms, while receiving the wage tw  per unit of labour. The 

remaining share tl−2  is used for leisure activities. Individuals consume only in the second period 

of life (Woodford, 1984; Reichlin, 1986; Galor and Weil, 1996; Grandmont et al., 1998; Antoci and 
Sodini, 2009; Gardini et al., 2009; Gori and Sodini, 2011, 2013). 
    The budget constraint of a young individual of generation t  is ttt ws l= , implying that labour 

income is entirely saved (ts ) to consume when old ( 1+tC ). Old individuals retire and consumption is 

constrained by the amount of resources saved when young plus expected interest accrued from time 
t  to time 1+t , so that t

e
tt sRC 11 ++ =  where e

tR 1+  is the expected interest factor, which will become 

the realised interest factor at time 1+t . 
    Therefore, the lifetime budget constraint of an individual of generation t  can be written as 
follows: 
 tt

e
tt wRC l11 ++ = . (1) 

    Individuals have preferences towards leisure when young and consumption when old. In addition, 
we assume the existence of a reference level against which consumption of the current generation is 
compared with. This implies that effective consumption of individuals of generation t  is negatively 
affected by the consumption experience of their parents ( ta ), which gives rise to a form of external 

habits in our model with a representative agent (de la Croix, 1996; Carroll et al., 1997, 2000; de la 
Croix and Michel, 1999; Gori and Sodini, 2013). It is important to specify that we are considering 
external habit under the flow concept of it. 
    We assume that the lifetime utility index of generation t  is described by a twice continuously 
differentiable function )(•tU . Since individuals consume only when they are old, consumption of 

generation 1−t  ( tC ) affects consumption of generation t , so that tt Ca =  for every t . By assuming 

that external habits take the multiplicative form ρ
tt aC /1+  (Abel, 1990; Galí, 1994; Carroll, 2000; 

Bunzel, 2006; Hiraguchi, 2011), we specify the lifetime utility function of individuals of generation 
t  by using the following Constant Inter-temporal Elasticity of Substitution (CIES) formulation (see 
Christiano et al., 2010): 
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where B  is a scale parameter that allows us to define the normalised fixed point )1,1(  when the 
parameters of the model are continuously changed, 0>σ  ( 1≠σ ) and 0>γ  ( 1≠γ ) represent a 
measure of the constant elasticity of utility with respect to consumption and leisure, respectively, 
and 0≥ρ  is the aspiration intensity: if 0=ρ , external habits are irrelevant; if 1=ρ  current and 
past consumptions are equally weighted in the utility function; if 1>ρ  external habits strongly 
matter. 
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    By taking factor prices and external habits as given, the individual representative of generation t  
chooses tl  to maximise utility function (2) subject to the lifetime budget constraint (1) and 

)2,0(∈tl . Therefore, the first order conditions for an interior solution are given by: 

 0)/()2( 1
1 =+−− −

+
− σργ

ttt
e
t

t
t awR

B
l

l
l . (3) 

    Different from Grandmont et al. (1998) and Cazzavillan (2001), we do not consider externality in 
the production sector and assume that at time t  identical and competitive firms produce a 
homogeneous good, tY , by combining capital and labour, tK  and tL , respectively, through the 

constant returns to scale Cobb-Douglas technology αα −=⋅= 1),( ttttt LAKLKFAY , where 0>A  and 

10 << α  are a scale parameter and the capital share in production, respectively. The equilibrium 
supply of labour at time t  is given by ttL l= . Then, by assuming that capital fully depreciates at 

the end of every period and output is sold at the unit price, profit maximisation implies that the 
marginal productivity of capital (resp. labour) equals the interest factor (resp. the wage rate), that is: 
 ααα −−= 11

ttt AKR l , (4) 

 ααα −−= ttt AKw l)1( . (5) 

    The market-clearing condition in the capital market can be expressed as follows: 
 tttt wsK l==+1 . (6) 

    By using (3)-(6) and knowing that: (i) individuals have perfect foresight, and (ii) the consumption 
reference for generation t  can be expressed as ααα −== 1

tttt AKCa l , equilibrium implies: 
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 ααα −
+ −= 1
1 )1( ttt KAK l . (8) 

The dynamic system described by (7) and (8) defines the variables 1+tK  and 1+tl  as functions of tK  

and tl . 

 
III. EXISTENCE OF FIXED POINTS AND LOCAL INDETERMINACY 
 
The aim of this section is to study the existence and stability properties of the fixed point of the 
system given by (7) and (8). To this purpose, we use the geometrical-graphical method developed 
by Grandmont et al. (1998). 
 
A. Existence of fixed points 
 
It is well known that in economic models with overlapping generations the existence of fixed points 
is not generally guaranteed. Thus, we now impose some restrictions on parameters such that the 
(normalised) fixed point 
 )1,1(),( =lK  (9) 
always exists. This allows us to analyse the effects on stability due to changes in some parameter 
values by avoiding that the fixed point vanishes (Grandmont et al., 1998; Cazzavillan, 2001). 
Therefore, by using (7)-(9) we get: 
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By substituting out (10) and (11) into (7) and (8), the two-dimensional system that characterises the 
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dynamics of the economy is the following: 
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We note that given the couple ),( ttK l , it is possible to compute its subsequent iterate if and only if 

we start by a point in the set }20 ,0:),{(: 2 <<>∈= tttt KRKD ll . However, feasible trajectories 

lie in a set smaller than D  since by starting from an initial condition in D  it is possible to have an 
iterate from which the existence of the subsequent one is not guaranteed. Then, the set of feasible 
trajectories is }0,20,0:),{(: 2

00 >∀<<>∈= tKRKG tt ll . In addition, by the first equation of 

(12) and 2<tl , it follows that diverging trajectories cannot exist. 

    Since l=K  always holds as a coordinate of a stationary state of map M , then stationary-state 
coordinate values of l  are determined as solutions of ),( lll Z=  or they are equivalently obtained 
by solving the following equation: 
 1)2(:)( )1( =−= −−+ γρσρ

lllg . (13) 
Of course, 1=l  is a solution of (13) for every constellation of parameters. Then, the following 
proposition holds. 
 

Proposition 1. [Existence of fixed points]. If either 1<σ  or 1>σ  and 
1−

<
σ

σρ , then )1,1(  is the 

unique fixed point of map M . If 1>σ  and 
11 −

+<<
− σ

γσρ
σ

σ
 (resp. 1>σ  and 

1−
+>

σ
γσρ ), then 

another fixed point exists with 1<l  (resp. 1>l ). 
 
Proof. From (13) we have that +∞=

→
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if (a) 1<σ  or (b) 1>σ  and 
1−

<
σ

σρ  (resp. 1>σ  and 
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σρ ). In addition, with direct 

computation we have that 
 ]})1([)]1([2sgn{)}(sgn{ γσρσσρσ −−−−−−=′ llg ,  
and 
 })1(sgn{)}1(sgn{ −−+=′ σργσg .  
It follows that )(lg  is a monotone function or unimodal function. In the former case, no solution 
other than 1=l  of (13) does exist. In the latter case, there exists another solution of (13) on the left 

(resp. on the right) of 1=l  if 
1−

+<
σ

γσρ  (resp. 
1−

+>
σ

γσρ ). Q.E.D. 

 
Proposition 1 shows the crucial role played by both the reciprocal of the elasticity of marginal 
utility of effective consumption and intensity of aspirations in utility (i.e., the relative importance of 
the taste externality), in determining the existence of either one or two interior fixed points. In 
particular, when σ  is low (i.e., the elasticity of substitution of effective consumption) and/or the 
importance of the taste externality ρ  is low, a unique (normalised) fixed point does exist. When σ  
raises together with the relative degree of aspirations, a second fixed point appears with leisure 
being either lower or higher than the level corresponding to the normalised equilibrium. In 
particular, when the relative degree of aspirations is sufficiently high, the supply of labour becomes 
higher than 1 because individuals want to increase the amount of time spent at work when they are 
young in order to increase consumption possibilities when they are old, since the relative 
importance of past consumption is high in that case. 
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B. Local bifurcations and stability 
 
This section starts by analysing the local dynamics around the normalised fixed point. In the present 
model, the stock of capital tK  is a state variable, so its initial value 0K  is given, while the supply of 

labour tl  is a control variable. It follows that individuals of the first generation ( 0=t ) choose the 

initial value 0l  . If the normalised fixed point is a saddle and the initial condition of the stock 

variable K  is close enough to 1, then, given the expectations on the interest rate, there exists a 
unique initial value of tl  ( 0l ) such that the orbit that passes through ),( 00 lK  approaches the fixed 

point. In contrast, when the fixed point is a sink, given the initial value 0K  and expectations on the 

interest factor, there exists a continuum of initial values 0l  such that the orbit that passes through 

),( 00 lK  approaches the fixed point. As a consequence, the orbit that the economy will follow is 

“locally indeterminate” because it depends on the choice of 0l . 

    The Jacobian matrix of map M  evaluated at )1,1(  is: 
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The trace and determinant of (14) are the following: 
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    Ceteris paribus, when ρ  varies the point 
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drawn in the ))(),(( JDetJTr  plane, describes a horizontal half-line 1T  that starts from 
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when 0=ρ . When α  varies, the point ),( 21 PP  in Eq. (18), drawn in ))(),(( JDetJTr  plane, 

describes a half-line 2T  (with slope equal to α ) that starts from 
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 when 0=α . If 

)1,0(∈σ  (resp. 1>σ ), then ),(),( 21 +∞+∞→PP  (resp. ),(),( 21 −∞−∞→PP ) for 1→α . 

Moreover, regardless of the value of σ , 
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    From the above geometrical findings and Proposition 1, we can state the following proposition 
with regard to local bifurcations. 
 

Proposition 2. [Local bifurcation]. Let 
)1)(1(

)1()1(2
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++−+=

σα
αγασρ fl  and 

1
:

−
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σ
γσρtc  hold. Then, 

(1) if )1,0(∈σ , the normalised (unique) fixed point is determinate; (2) if γσ +> 2  and 

γσ
γσα

+
−−< 2

 the normalised fixed point is indeterminate for ),0( tcρρ ∈ , it undergoes a 

transcritical bifurcation for tcρρ = , and it is a saddle for tcρρ > ; (3) if γσ +> 2  and 
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γσ
γσα

+
−−> 2

 or γσ +<< 21 , the normalised fixed point is determinate for flρρ < , it undergoes 

a supercritical flip bifurcation for flρρ = , it is indeterminate for ),( tcfl ρρρ ∈ , it undergoes a 

transcritical bifurcation for tcρρ = , and it is a saddle for tcρρ > . 

 
Proof. In order to find the bifurcation values of ρ , we impose the condition that ),( 21 PP  belongs 

to: (i) the straight line 0)()(1 =+− JDetJTr , to obtain the transcritical bifurcation value tcρ , and 

(ii) the straight line 0)()(1 =++ JDetJTr , to obtain the flip bifurcation value flρ . Then, we 

identify Cases 1-3 by considering the position of the starting points ),( 21 PP  and ),( 21 PP  with 
respect to the stability triangle delimited by 0)()(1 =+± JDetJTr  and 1)( =JDet  (see Grandmont 
et al., 1998 for details). Q.E.D. 
 
Proposition 2 is represented in Fig. 1. In particular, the first quadrant of it is referred to Point (1) of 
the proposition, the second and third quadrants to Points (2) and (3). 
 

 
FIG. 1. Stability triangle and local indeterminacy. If )1,0(∈σ  a unique fixed point (saddle) exists. If 1>σ  multiple fixed points 

and local indeterminacy may occur. 

 
It is important to note that map M  can be not defined at the point )0,0( . In particular, this happens 

if and only if either αρ <  or 1>σ  and 
)1)(1(

)1)(1(1

ασ
αασρ

−−
−−+< . In the remaining cases, however, 

the map results to be not differentiable in such a point. Then, it is not possible to apply the 
linearization method with the purpose of studying the stability of the map at )0,0( . However, we 
can classify the local properties of the map at the point )0,0(  by considering the sign of 

tt KKK −≡∆ +1  and tt lll −≡∆ +1  in the phase plane. By this study, we can deduce that )0,0(  is an 

attracting fixed point when two interior stationary equilibria exist. In this case the fixed point )0,0(  
can be interpreted as a poverty trap (e.g., Azariadis, 1996; Chakraborty, 2004). 
 
IV. GLOBAL ANALYSIS 
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    The importance of the global analysis for economic models is recognised by the fact that 
studying just the local behaviour of a map does not give information with regard to the structure of 
the basins of attraction and their qualitative changes when parameters vary. Since in economics it is 
also important to understand the long-term behaviour of variables given initial conditions, a 
characterisation of the basins of attraction is indeed necessary if one wants to explain phenomena 
that occur by starting from initial conditions far away from the fixed point or an attracting set. 
    In this section we show how the study of (i) the dynamics around the non-normalised fixed point, 
and (ii) the global structure of map M  permit us to explain some interesting events that cannot be 
investigated with the local analysis (Pintus et al., 2000). We start the global analysis by showing 
that map M  is invertible. The invertibility of a map is an important result when the global 
properties of a dynamic system are studied. For instance, it implies that the basins of attraction of 
any attracting set of a map are connected sets. In addition, by making use of the inverse map, we 
can obtain the boundary of the attracting sets and, more generally, the stable manifolds of saddle 
points. 
    With regard to map M , the following lemma holds. 
 
Lemma 1. Map M  is invertible on the set D . 
 
Proof. Notice that it is impossible to have a closed-form expression of the inverse map of M , i.e. 

1−M . However, after some algebraic manipulations it is possible to find that 1−M  is solution of the 
following system: 
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The right-hand side of the first equation in (19) defines a bijective function on +R . It follows that 

the first equation of system (19) admits a unique solution of tl . The second equation of the system 

implies the result. Q.E.D. 
 
    Before performing the global analysis of map M , we recall the definitions of both the stable 
manifold 
 }  )(:{)( +∞→→= naspxMxpW zns , (20) 
and unstable manifold 
 }  )(:{)( −∞→→= naspxMxpW znu , (21) 

of a periodic point p  of period z . If the periodic point 
2Rp ∈  is a saddle, then the stable (resp. 

unstable) manifold is a smooth curve through p , tangent at p  to the eigenvector of the Jacobian 

matrix evaluated at p  corresponding to the eigenvalue λ  with 1<λ  (resp. 1>λ ), see, e.g., 

Guckenheimer and Holmes (1983). Outside the neighbourhood of p , the stable and unstable 
manifolds may even intersect each other with dramatic consequences on the global dynamics of the 
model (see Guckenheimer and Holmes, 1983, p. 22). 
    Non-trivial intersection points of stable and unstable manifolds of a unique saddle cycle are 
known as homoclinic points. However, when multiple saddle cycles exist, heteroclinic bifurcations 
may also occur. We remember that given two saddle cycles 1h  and 2h , a heteroclinic bifurcation is 

defined as the birth of a non trivial point E  of intersection between the stable manifold of one cycle 
and the unstable manifold of the other cycle. Starting from this new configuration, it is possible to 
find a path on the two manifolds that connects the cycles. This phenomenon is interesting from an 
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economic point of view because it is related to global indeterminacy. We recall that global 
indeterminacy occurs when, starting from the same initial condition 0K  of the state variable tK , 

different fixed points or other ω -limit sets can be reached according to the initial value 0l  of the 

jumping variable tl  chosen by individuals of the first generation (Agliari and Vachadze, 2011; Gori 

and Sodini, 2011). 
    In addition, when saddle cycles exist heteroclinic connections can be another source (alongside 
Neimark-Sacker bifurcations) of the existence of repelling or attracting closed invariant curves 
(Agliari et al., 2005). Let us remind that the dynamics of the restriction of a map to a closed 
invariant curve is either quasiperiodic or periodic often of very high period (so that) numerically 
indistinguishable from a quasiperiodic one. 
    In the analysis we are going to perform we fix these parameter values: 35.0=α  (Gollin, 2002), 

2.1=γ , 3=σ  and let ρ  vary. We start the analysis with 2.2=ρ , corresponding to which the 
normalised fixed point )1,1(  is a saddle (in economics this is referred to be saddle stable), i.e. it is 

locally determinate (see Sec. 3.2) with )ˆ,ˆ( lK  and )0,0(  being indeterminate, and their basins of 
attraction are separated by the stable manifold of the normalised fixed point. Even if )1,1(  is locally 

determinate, a heteroclinic connection exists between )1,1(  and )ˆ,ˆ( lK , and )1,1(  and )0,0( , each of 
which is given by one of the branches of the unstable manifold of the saddle (see Fig. 2.a). This 
implies that by considering a small neighbourhood of )1,1( , there exist feasible trajectories that 
converge either to the interior equilibrium or to )0,0( . While this result is not surprising and 
generically occurs when the saddle point belongs to the border of the basin of attraction of an 
attracting fixed point, the economic literature on local (in)determinacy has not stressed the 
importance of the existence of a continuum of equilibria around the determined fixed point (an 
exception is Agliari and Vachadze, 2011), even though this can be of interest especially from a 
policy perspective. This implies that given an initial condition 0K  close enough to 1, there exist 

several feasible trajectories converging to other attractors of the system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       (a)                  (b) 
FIG. 2. (a) ( 2.2=ρ ). The fixed point )ˆ,ˆ( lK  ( 1532.1ˆˆ ≅= lK ) is the unique attractor of the system (indeterminate 

equilibrium). The normalised fixed point )1,1(  belongs to the boundary of the attractor. The basin of the attraction of )ˆ,ˆ( lK  is 

dark-grey-coloured. The region of unfeasible trajectories is light-grey-coloured. The curve that connects )ˆ,ˆ( lK  and )1,1(  is the 

simulated unstable manifold of )1,1(  (i.e., the heteroclinic connection), obtained by iterating a small segment in the direction of the 

unstable eigenvector. If we consider an economy that starts on the stable manifold that converges to )1,1( , a small change (shock) in 

expectations about the interest factor 
e
tR 1+  may cause the convergence to )ˆ,ˆ( lK , where the capital stock is the same and the 
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labour supply higher than the normalised fixed point. (b) ( 4.2=ρ ). Map M  has an attracting two-period cycle of points 1V  and 

2V . The stable manifold of )1,1(  defines the boundary of the basin of attraction of the two-period cycle (dark-grey region). 

Trajectories that start in the light-grey region converge to )0,0( . The white region describes the set of initial conditions that 

generate unfeasible trajectories. 

 
    If we let ρ  increase, a flip bifurcation occurs at 3078.2≅ρ  for )ˆ,ˆ( lK , and a two-period cycle 
captures almost all feasible trajectories beyond the stable manifold of )1,1( . At this stage, the point 

)1,1(  is globally indeterminate in a more general form: in fact, even if we restrict the model to a 
small neighbourhood there exist (i) an infinite number of trajectories that converge to the attractors 
of the system, and (ii) a unique trajectory, i.e. one of the branches of the unstable manifold of )1,1( , 

that converges to the interior saddle )ˆ,ˆ( lK . 
    Trajectories, as those drawn in Fig. 2.b, starting in the dark-grey region just out the left or the 
right of the stable manifold of )ˆ,ˆ( lK , follow the curve almost until the saddle )ˆ,ˆ( lK  but converge 

to a two-period cycle of points 1V  and 2V . This implies that, after the transient, the economy 
oscillates between the two points. With regard to economic implications, by considering a 
historically given value of the capital stock 0K  close to 1, individuals may either coordinate 

themselves on one of the (stable or unstable) manifolds of the system or choose another feasible 
value of labour supply tl  with very different long-term behaviours. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)           (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

tl

tK

1V

2V
)1.1(

)ˆ,ˆ( lK

tl

)1,1(

tK

)ˆ,ˆ( lK



Local and global bifurcations in an economic growth model 

 11 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

      (c) 
FIG. 3. (a) The stable and unstable manifolds of )1,1(  when 58.2=ρ . (b) Basin of attraction of 

2M  when 58.2=ρ . (c) 

Evolution of the basin of attraction of 
2M  when 628.2=ρ . 

 
    If we let ρ  increase, it can be seen through numerical simulations that more and more 

convolutions of the boundary of the unstable manifold of )ˆ,ˆ( lK  evolve. This is a sign that a 

heteroclinic bifurcation is close to occur. In particular, for 5.2≅ρ  the unstable manifold of )ˆ,ˆ( lK  
has a tangential contact with the stable manifold of )1,1( . Starting from this value of ρ  new 

heteroclinic orbits exist from a neighbourhood of )ˆ,ˆ( lK  towards )1,1( . This implies that even if the 

economy lies on the path that converges to )ˆ,ˆ( lK , a small change in the expectations on the interest 
factor may lead the economy lie on a path that converges to )1,1( . From the numerical study, it 
seems that heteroclinic orbits tend to survive at least until the attractors exist. If we let ρ  increase 
further (see Figs. 3.a and 3.b), a new phenomenon can be observed: the stable manifold of )1,1(  
begins to show more and more convolutions, and the stable and unstable manifolds of )1,1(  seem to 
get arbitrarily close each other (Brock and Hommes, 1997). This causes important changes in the 
boundary of the basin of attraction of the cycle of period two. It can also have interesting economic 
consequences because even if the 2-period cycle is stable for map M  starting from values of the 
capital stock around K̂ , only a few values of 0l  (Fig. 3.c) can generate trajectories converging to 

the attractor or interior fixed points, while the remaining values of 0l  generate trajectories 

approaching to )0,0( . From an economic point of view this result suggests the importance of 
coordination of individuals on the choice of the labour supply for the long-term economic 
consequences. 
    The last part of this section is devoted to the study of periodic and/or quasi-periodic orbits 
generated by the system by considering higher values of ρ . In order to better illustrate the dynamic 
properties of the map, we study through numerical simulations the second (forward) iterate of map 
M , namely 2M . We now recall that fixed points of M  hold as fixed points of 2M , while the two-
period cycles of M  become fixed points of 2M . In other words, the flip bifurcation found in the 
study of M  is a pitchfork bifurcation of 2M  and two attracting fixed points 1V  and 2V  exist. In 
what follows we concentrate on the evolution of the dynamics on the upper part of the domain D  
around 1V  (the dynamics on the lower part around 2V  being symmetric). 

    The bifurcation diagram depicted in Fig. 4, which is obtained by using )6.1,12.1(),( 00 =lK  as 

the initial condition, shows some apparent discontinuities starting from 6295.2≅ρ . They are 

1V

2V

tl

)1,1(

)ˆ,ˆ( lK

tK



L. Gori, M. Sodini 

 12 

caused by a 5-period cycle born through a saddle node bifurcation that captures the given initial 
condition for some ranges of the parameter ρ . At this stage, the dynamics may converge to the 
interior fixed point, )0,0(  or to the 5-period cycle. The basin of attraction of the 5-period cycle is 
defined by the stable manifold of the saddles (see Fig. 5.a). 
    Following now the evolution of the fixed point 1V  of 2M , we can see that it undergoes a 
supercritical Neimark-Sacker bifurcation at 629732.2≅ρ  (see Fig. 4) and an attracting invariant 

curve (Γ ) may be observed around the interior equilibrium of 2M  (see Fig. 5.b, where the 
coexistence of the attractors is illustrated when 6302.2=ρ  and two trajectories are drawn), 
corresponding to which the dynamics may be cyclical or quasi-cyclical. 
 

 
FIG. 4. Bifurcation diagram for ρ . We follow the long-term evolution of the starting point )6.1,12.1(),( 00 =lK  when ρ  

increases. The discontinuities in the picture are due to the birth of another attractor. The apparent superposition of the curves just 

beyond 63.2=ρ  is due to the projection of the dynamics on the l  axis. 
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       (c) 
FIG. 5. (a) ( 6297.2=ρ ). A 5-period cycle coexists with an attracting fixed point. Two converging trajectories are drawn (black-

coloured and blue-coloured). iF  ( iS ) indicates the i th point of the attracting (saddle) 5-period cycle. (b) ( 6302.2=ρ ). 

Coexistence of both an attracting 5-period cycle and closed invariant curve (Γ ). (c) ( 63044.2=ρ ). A basin boundary 

bifurcation has destroyed the closed invariant curve and a unique attracting 5-period cycle survives. 

 
    When the dynamics is characterised by three coexisting interior attractors (see Figs. 5.a and 5.b), 
some exogenous changes in the parameters as well as in the expectations of individuals about the 
future interest rate, may cause the switch to another attractor of the system: for instance, if a 
trajectory is converging to the interior equilibrium (as in Fig. 5.a), the coordination on a large value 
of l  causes the switch to an attractor with larger oscillations. The enlargement of the invariant 
curve causes a collision between the stable manifold of the 5-period cycles and the curve itself at 

63044.2≅ρ  (see Fig. 5.c). This causes the death of the invariant curve and a unique attracting 5-
period cycle of the system does exist. 
    Now, to understand the sudden explosion in the bifurcation diagram at 63052.2≅ρ  (see Fig. 4), 
we refer to the theoretical results on invariant curves proposed by Agliari et al. (2005). Essentially, 
a global bifurcation involving both the stable and unstable manifolds of the 5-period cycle (see Fig. 
6.a) has occurred at 63056.2=ρ  (saddle node connection): a larger invariant curve (∆ ) surrounds 
an attracting 5-period cycle. For higher values of ρ , another basin boundary bifurcation causes the 

death of the 5-period cycle of 2M  and the invariant curve remains the unique attractor of the 
system (see Fig. 6.b plotted for 6312.2=ρ ). 
 
 
 
 
 
 
 
 
 
 
 
 
 

1F

2F

3F

4F

5F

tK

tl 1V
. 



L. Gori, M. Sodini 

 14 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 
FIG. 6. (a) A large invariant curve (∆ ) surrounds a 5-period cycle ( 63056.2=ρ ). (b) When ρ  increases ( 633.2=ρ ), the 

invariant closed curve (∆ ) becomes larger and remains the unique interior attractor of the system. Note that: (i) in Fig. 6.a the basin 
of attraction of the attractors is not reported because of the long transient, and (ii) in Fig. 6.b both the attractor and its basin of 
attraction are depicted. 

 
V. CONCLUDING REMARKS 
 
This paper has concerned with the study of the dynamic properties of a two-dimensional 
overlapping generations growth model with endogenous labour supply (Reichlin, 1986) and 
multiplicative external habits (aspirations). By following de la Croix (1996) and de la Croix and 
Michel (1999), we have assumed that preferences of an individual that belong to the current 
generation are affected by the consumption experience of an individual that belong to the past 
generation. In these works, the authors assume that an individual supplies labour inelastically and 
aspirations are considered as a stock variable. The dynamics of the economy is characterised by a 
two-dimensional system because of the accumulation of capital and the stock of aspirations. 
Different from them, we assume that the allocation of labour over time is chosen by an individual 
through the maximisation of his/her utility function and aspirations are considered to be a flow 
variable. Our model generates a two-dimensional system because of the accumulation of capital and 
the evolution of the supply of labour of individuals. We have shown that the intensity of aspirations 
in utility matters for the existence either of one (normalised) fixed point (when the intensity of 
aspirations is sufficiently low) or three attractors (when the intensity of aspirations is sufficiently 
high). In addition, some interesting local and global stability properties arise when the taste 
externality gradually increases. In particular, coexistence of attractors may cause global 
indeterminacy even if the stationary equilibria are locally determinate. 
 
ACKNOWLEDGEMENTS 
 
The authors gratefully acknowledge that this work has been performed within the activity of the 
PRIN-2009 project “Local interactions and global dynamics in economics and finance: models and 
tools”, MIUR (Ministry of Education), Italy, and PRIN-2009 project “Structural change and 
growth”, MIUR, Italy. Numerical simulations have benefited from algorithms that can be found in 
http://dysess.wikispaces.com/. The usual disclaimer applies. 
 
REFERENCES 
 

∆

tl

tK

1F ∆

tl

tK

3F

2F

4F

5F



Local and global bifurcations in an economic growth model 

 15 

    A.B. Abel, “Asset prices under habit foundation and catching up with the Joneses,” Am. Econ. Rev. 40, 38–42 
(1990). 
    A. Agliari, G. Vachadze, “Homoclinic and heteroclinic bifurcations in an overlapping generations model with credit 
market imperfection,” Comput. Econ. 38, 241–260 (2011). 
    A. Agliari, G.I. Bischi, R. Dieci, L. Gardini, “Global bifurcations of closed invariant curves in two-dimensional 
maps: a computer assisted study,” Int. J. Bifurcat. Chaos 15, 1285–1328 (2005). 
    J. Alonso-Carrera, J. Caballé, X. Raurich, “Consumption externalities, habit formation and equilibrium efficiency,” 
Scand. J. Econ. 106, 231–251 (2004). 
    J. Alonso-Carrera, J. Caballé, X. Raurich, “Growth, habit formation, and catching-up with the Joneses,” Eur. Econ. 
Rev. 49, 1665–1691 (2005). 
    J. Alonso-Carrera, J. Caballé, X. Raurich, “Aspirations, habit formation, and bequest motive,” Econ. J. 117, 813–836 
(2007). 
    J. Alonso-Carrera, J. Caballé, X. Raurich, “Can consumption spillovers be a source of equilibrium indeterminacy?” J. 
Econ. Dyn. Control 32, 2883–2902 (2008). 
    A. Antoci, M. Sodini, “Indeterminacy, bifurcations and chaos in an overlapping generations model with negative 
environmental externalities,” Chaos Soliton. Fract. 42, 1439–1450 (2009). 
    A. Antoci, L. Brugnano, M. Galeotti, “Sustainability, indeterminacy and oscillations in a growth model with 
environmental assets,” Nonlinear Anal.: Real World Appl. 5, 571–587 (2004). 
    C. Azariadis, “Intertemporal Macroeconomics,” Blackwell, Oxford (1993). 
    C. Azariadis, “The economics of poverty traps,” J. Econ. Growth 1, 449–486 (1996). 
    R.J. Barro, “Are government bonds net wealth?” J. Polit. Econ. 82, 1095–1117 (1974). 
    M. Boldrin, L.J. Christiano, J.D.M. Fisher, “Habit persistence and asset returns in an exchange economy,” 
Macroecon. Dyn. 1, 312–332 (1997). 
    M. Boldrin, L.J. Christiano, J.D.M. Fisher, “Habit persistence, asset returns, and the business cycle,” Am. Econ. Rev. 
91, 149–166 (2001). 
    W.A. Brock, C.H. Hommes, “A rational route to randomness,” Econometrica 65, 1059–1095 (1997). 
    H. Bunzel, “Habit persistence, money, and overlapping generations,” J. Econ. Dyn. Control 30, 2425–2445 (2006). 
    R. Carrasco, J.M. Labeaga, J.D. López-Salido, “Consumption and habits: evidence from panel data,” Econ. J. 115, 
144–165 (2005). 
    C.D. Carroll, “Solving consumption models with multiplicative habits,” Econ. Lett. 6, 67–77 (2000). 
    C.D. Carroll, J.R. Overland, D.N. Weil, “Comparison utility in a growth model,” J. Econ. Growth 2, 339–367 (1997). 
    C.D. Carroll, J.R. Overland, D.N. Weil, “Saving and growth with habit formation,” Am. Econ. Rev. 90, 341–355 
(2000). 
    G. Cazzavillan, “Indeterminacy and endogenous fluctuations with arbitrarily small externalities,” J. Econ. Theory 
101, 133–157 (2001). 
    S. Chakraborty, “Endogenous lifetime and economic growth,” J. Econ. Theory 116, 119–137. 
    B.L. Chen, M. Hsu, “Admiration is a source of indeterminacy,” Econ. Lett. 95, 96–103 (2007). 
    H.J. Chen, M.C. Li, “Environmental tax policy, habit formation and nonlinear dynamics,” Nonlinear Anal.: Real 
World Appl. 12, 246–253 (2011). 
    H.J. Chen, M.C. Li, “Child allowances, fertility, and chaotic dynamics,” Chaos 23, 1–9 (2013). 
    L. Christiano, C.L. Ilut, R. Motto, M. Rostagno, “Monetary policy and stock market booms,” NBER Working Paper 
no. 16402 (2010). 
    D. de la Croix, “The dynamics of bequeathed tastes,” Econ. Lett. 53, 89–96 (1996). 
    D. de la Croix, P. Michel, “Optimal growth when tastes are inherited,” J. Econ. Dyn. Control 23, 519–537 (1999). 
    D. de la Croix, P. Michel, “Altruism and self-restraint,” Annales d’Economie et de Statistique 2001, 233–260 (2001). 
    D. de la Croix, J.P. Urbain, “Intertemporal substitution in import demand and habit formation,” J. Appl. 
Econometrics 13, 589–612 (1998). 
    P.A. Diamond, “National debt in a neoclassical growth model,” Am. Econ. Rev. 55, 1126–1150 (1965). 
    L. Fanti, L. Gori, M. Sodini, “Complex dynamics in an OLG model of neoclassical growth with endogenous 
retirement age and public pensions,” Nonlinear Anal.: Real World Appl. 14, 829–841 (2013). 
    R.E.A. Farmer, “Deficits and cycles,” J. Econ. Theory 40, 77–86 (1986). 
    W. Ferson, G. Constantinides, “Habit persistence and durability in aggregate consumption,” J. Finan. Econ. 29, 199–
240 (1991). 
    J. Galí, “Keeping up with the Joneses: consumption externalities, portfolio choice, and asset prices,” J. Money Credit 
Bank. 26, 1–8 (1994). 
    O. Galor, D.N. Weil, “The gender gap, fertility, and growth,” Am. Econ. Rev. 86, 374–387 (1996). 
    L. Gardini, C.H. Hommes, F. Tramontana, R. de Vilder, “Forward and backward dynamics in implicitly defined 
overlapping generations models,” J. Econ. Behav. Organ. 71, 110–129 (2009). 
    D. Gollin, “Getting income shares right,” J. Polit. Econ. 110, 458–474 (2002). 
    L. Gori, M., Sodini, “Nonlinear dynamics in an OLG growth model with young and old age labour supply: the role of 
public health expenditure,” Comput. Econ. 38, 261–275 (2011). 



L. Gori, M. Sodini 

 16 

    L. Gori, M., Sodini, “Indeterminacy and nonlinear dynamics in an OLG growth model with endogenous labour 
supply and inherited tastes,” Decisions Econ. Finan., forthcoming (2013). 
    J.M. Grandmont, “On endogenous competitive business cycles,” Econometrica 53, 995–1045 (1985). 
    J.M. Grandmont, P. Pintus, R. de Vilder, “Capital-labor substitution and competitive nonlinear endogenous business 
cycles,” J. Econ. Theory 80, 14–59 (1998). 
    J. Guckenheimer, P. Holmes, “Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,” 
Springer, Berlin (1983). 
    R. Hiraguchi, “A two sector endogenous growth model with habit formation,” J. Econ. Dyn. Control 35, 430–441 
(2011). 
    A. Lahiri, M. Puhakka, “Habit persistence in overlapping generations economies under pure exchange,” J. Econ. 
Theory 78, 176–186 (1998). 
    C. Nourry, “Stability of equilibria in the overlapping generations model with endogenous labor supply,” J. Econ. 
Dyn. Control 25, 1647–1663 (2001). 
    C. Nourry, A. Venditti, “Overlapping generations model with endogenous labor supply: general formulation,” J. 
Optimiz. Theory Appl. 128, 355–377 (2006). 
    P. Pintus, D. Sands, R., de Vilder, “On the transition from local regular to global irregular fluctuations,” J. Econ. 
Dyn. Control 24, 247–272 (2000). 
    P. Reichlin, “Equilibrium cycles in an overlapping generations economy with production,” J. Econ. Theory 40, 89–
102 (1986). 
    M. Woodford, “Indeterminacy of equilibrium in the overlapping generations model: a survey,” Columbia University 
Working Paper, New York (1984). 
    M. Yokoo, “Chaotic dynamics in a two-dimensional overlapping generations model,” J. Econ. Dyn. Control 24, 909–
934 (2000). 
    J. Zhang, “Environmental sustainability, nonlinear dynamics and chaos,” Econ. Theory 14, 489–500 (1999). 


