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Abstract 

We study how technological leadership affects persistence in product innovation. Relying upon a 

database of 1818 products marketed between 1990 and 1999 by 265 firms active in a high-tech 

industry we first construct a measure of technological leadership in terms of firm positioning with 

respect to the frontier and then relate this measure to persistence in innovation. We find that 

leaders are systematically more persistent innovators than laggards. We also find that leaders in 

one market can also systematically innovate in a related and adjacent market. Finally, we find 

evidence that the number of lagged patents increase persistence in product innovation. 

Keywords: innovation, persistence, technological leadership 

JEL codes: O31, O33, L63 
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1. Introduction 

What determines persistence in innovative behaviour? Do technological leaders differ from 

laggards in terms of persistence? When are technological leaders in one market able to become 

persistent innovators in a related market? These issues have been on the agenda of researchers on 

economics, innovation and strategy for quite some time. Early works in the innovation studies 

tradition have highlighted that prior innovative activity alone is a good predictor for the length of 

the innovative spell and that it tends to explain spell length better than other firms’ characteristics 

such as size (Geroski et al., 1997). ‘Bimodality’ exists in the pattern of persistence suggesting that 

persistence is stronger for firms that are either non innovators or great innovators (Cefis and 

Orsenigo, 2001). Persistence in innovation is higher in sectors characterised by technological 

cumulativeness, R&D complementarities and learning-by-doing processes (Cefis, 2003). A 

common feature of these early studies is that they measure innovation persistence in terms of 

patenting activity. 

  

Alongside patents, new product introduction is another important indicator of innovation and 

several studies have analysed instances of product introduction. Khanna (1995) looks at new 

product introduction in mainframe computing. Greenstein and Wade (1998) and Stavins (1995) 

look at the probability of product entry and exit for computer mainframes and PCs respectively. 

De Figuereido and Kyle (2006) analyse the determinants of product turnover in the laser print 

market industry. Lerner (1997) and Thomas (1999) study new product introduction in the context 

of a ‘technological race’ in the Hard Disk Drive industry. Though these studies analyse the 

determinants of the incidence of new product introduction, they do not look explicitly at the issue 

of persistence in product innovation (i.e. whether innovators at period t more likely to innovate at the 

next time period). In addition, these papers do not look at the relationship between technological 

leadership and persistence in product innovation.  
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There are several reasons why it is relevant to study the relationship between technological 

leadership and persistence in product innovation. In markets characterised by rapid technical 

change and shortening of product life cycle, new products incorporate novel characteristics 

making existing products only an imperfect substitute for the new good. Within this context, 

persistence in product innovation may originate from incumbents’ strategies aimed at maintaining 

their transitory market power. These strategies may entail an expansion of the technological 

frontier, changes in product portfolio through product proliferation, and extension of product 

portfolios through innovation in related markets. Differences between technological leaders and 

laggards in terms of available resources, capabilities and complementary assets will translate into 

differences in persistence in product innovation.  

 

We examine the relationship between technological leadership and persistence in product 

innovation in the context of the Local Area Networking (LAN) industry. Our source of information 

is a comprehensive database of 1818 new products marketed between 1990 and 1999 in three LAN 

markets: hubs (536 products), routers (747 Products), and switches (535 products). For each 

product in our dataset we have information on: year of market introduction, technical 

characteristics, market price, and name of the manufacturer. Our dataset includes 265 firms which 

have been active in the industry. For each firm in the dataset we have collected information about 

date of entry into the industry, size in terms of employees, and sales when available. In addition to 

these data we also collected information on the patenting activity of the firms included in our 

sample. In particular, by looking at the (8 digits) International Patent Classification (IPC) class of 

the patents we have been able to link patents to innovative activity in a specific market. 

 

Using these data we carry out the following analyses. First, we employ data on product 

characteristics and price to calculate an indicator of technological leadership in each market. Here 

we proceed in two steps. For each market, hedonic price regressions are estimated and predicted 
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prices are calculated. Predicted prices are then used to compute a measure of technological frontier 

and calculate the relative distance of each firm from the frontier. Second, we use this indicator to 

distinguish between technological leaders and laggards and produce Transition Probability 

Matrices (TPMs) to study persistence in product innovation for both types of firms. Third, we 

perform Conditional Risk Set Duration analysis to study the determinants of the probability to 

innovate in each period conditional on firms’ initial innovative status and technological leadership 

in the prior period. Our covariates include an indicator of technological leadership, as well a series 

of firm level controls such as firm size, sales, and possession of intangible capital in terms of patent 

stock. Particular attention is devoted to estimating cross market effects (i.e. to study the impact of 

technological leadership in one market on persistence in another market) for multi product firms. 

 

Our main result is that technological leaders are relatively more persistent innovators than 

laggards. The closer a firm is to the technological frontier at t the higher the probability to 

commercialise a new product in the next time period, though the marginal effect of changes in 

distance from the frontier varies across markets reflecting different levels of technological 

opportunities. We also find that in the case of multiproduct firms, technological leaders in one 

market can also systematically innovate in a related and adjacent market. Additional results highlight 

a direct relationship between persistence in product innovation and (lagged) patenting and 

between the number of (lagged) patents and persistence in product innovation. 

 

Our findings provide the following contributions. First, they provide novel evidence on the 

determinants of innovation persistence. Prior empirical research on innovation persistence has 

mainly relied on patents as an indicator of innovative activity. We provide empirical evidence on 

persistence in product innovation. Second, we directly relate persistence to an indicator of 

technological leadership at the firm level. Prior empirical studies have instead focussed on other 
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firm characteristics such as size, age, and/or R&D intensity. Third, we consider the case of firms 

active in related markets. 

 

Some of our findings are consistent the existing empirical literature on the role played by 

technological leaders in stretching the technological frontier in ‘technological races’. Other findings 

are consistent with prior research on persistence based on patents such as those confirming the 

presence of bimodality in innovation persistence with great innovators more likely to persist than 

small innovators. Additional findings, that relate persistence in product innovation to the stock of 

patents, qualify the prior evidence highlighting that is the stock of intangible assets rather than 

lagged patenting what matters for innovation persistence. Finally, our findings for the case of 

related markets allow us to draw some indirect inference about persistence and firms’ strategies 

for changes and expansion of their product portfolios. While both technological leaders and 

laggards could in principle extend their product portfolio to include related products, only 

technological leaders can effectively do it in the case of complex products. Laggards instead have 

to innovate at the lower end of the product spectrum.  

 

The paper is structured as follows. In Section 2 we review the literature on persistence in 

innovation and propose our framework for analysis. Section 3 introduces some necessary 

background information on the LAN industry. Section 4 presents our data and method. Section 5 

introduces our empirical strategy. Results are presented in Section 6. Section 7 concludes. 

 

2. Conceptual framework and hypotheses 

One of the earliest discussions in the literature on economics and technological change has 

revolved around the relationship between innovation and market structure. While there is a 

general agreement that innovation is a source of monopolistic rents and therefore market power, 

less consensus exists on the relationship between market power and persistence in innovation. Two 
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opposite views exist depending on the assumptions made on the incentives for incumbents to 

engage in the innovation race. 

 

On the one hand, there is the view that incumbents with high market power have low incentive to 

continuously engage in innovation (Arrow, 1962) both because of the nature of the knowledge, 

which is assumed to be equally accessible to all firms, and because they are afraid of cannibalising 

their current source of revenues (Reinganum, 1983; 1985). Because of this ‘displacement effect’ their 

market power is temporary as their dominant position is quickly challenged and eroded by 

competitors. New innovators, which are typically small, and newly established firms, 

systematically substitute for incumbents. This view revolves around a conceptualisation of 

technical change as a random process driven by a population of homogeneous actors who have a 

probability of realizing technological opportunities. 

 

On the other hand, there is the view that considers persistence in innovation as crucial for 

maintaining market power. In this case incumbents have an incentive to continuously engage in 

innovation to maintain their dominant position (‘efficiency effect’) either because there are 

increasing returns to R&D or because they spend more in innovation (Scherer, 1965), or because 

they learn how to innovate efficiently (Gilbert and Newbery, 1982). Alternatively, persistence can 

be explained by the characteristics of technology. If technology has a strong tacit component and is 

highly specific to individual firms (Penrose, 1959; Nelson and Winter, 1982) then innovation 

results from the accumulation of technological competencies by heterogeneous actors. Over time 

the firm specific, tacit and cumulative nature of the knowledge-base builds high barriers to entry. 

As a result, a few and large firms eventually continue to dominate the market in a stable oligopoly. 

 

Prior empirical studies on innovation persistence have produced a series of ‘stylized facts’. First, 

production of innovations is subject to dynamic economies of scale (the ‘success-breeds-success’ 
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paradigm) but the effect becomes apparent only after a ‘minimum innovation threshold’ is reached 

(Geroski et al., 1997). The threshold level of patents likely to induce a patenting spell of 3 or more 

years is around 5 patents. A firm that produces 5 or more patents has roughly twice the probability 

of enjoying a patenting spell of any length greater than 3 years than a firm that produces only 4 

patents.1 Second, there is bimodality in the pattern of innovation persistence (Cefis and Orsenigo, 

2001). In particular, persistence is stronger for firms that are either non innovators or great 

innovators (i.e. having 6 or more patents in a year). This means that most firms innovate only 

occasionally or do not innovate at all. Yet innovative activities are to a significant extent generated 

by few firms that innovate persistently over time. Institutions and history do influence the patterns 

of innovation, as suggested by the fact that persistence systematically and consistently differ across 

countries. Third, persistence in innovation is related to the characteristics of the technology (Cefis, 

2003) as it is higher in sectors characterised by technological cumulativeness, R&D 

complementarities and learning-by-doing processes. 

 

A common feature of these studies is that they measure persistence in terms of patenting activity.2 

In contrast with this focus on patents as an indicator of innovation we consider the case of product 

innovation. In differentiated, fast changing technology markets, such as the LAN industry studied 

in this paper, product innovation is a paramount source of market power for incumbents who 

compete by incorporating in products novel features which make existing products only an 

imperfect substitute for the new good (Bresnahan et al., 1997).3 This paper moves the focus beyond 

the perfect/ imperfect substitutability distinction. In our setting, incentives to persist in product 

innovation depend on the extent of technological leadership measured in terms of proximity to the 

technological frontier. We expect to observe differences in persistence between technological 

leaders and laggards for several reasons.  
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First, technological leaders operate very close to the technological frontier. Though for them the 

marginal benefits from commercialising ‘yet another product’ may be decreasing, leaders are 

better placed to grasp new technological opportunities by extending the frontier, provided they 

have the resources and the convenience to do that.4 Greenstein and Wade (1998) look at the 

product life cycle in the commercial mainframe market. They find that ‘stretching’ the 

technological frontier leads to shorter product cycles and more frequent (i.e. persistence in) 

product introduction. In a study of new production introduction in high-end mainframe 

computing Khanna (1995) provides evidence that designers engage in ‘racing behaviours’ when 

they compete at the frontier. On the contrary technological laggards are not able to extend the 

frontier and they have fewer incentives to participate in the technological race. Product innovation 

in this case would largely consist in imitation of existing products (Lee et al., 2011) or be restricted 

to innovation in low-end niches of a market (Lerner, 1997).5 Thus:  

 

Hypothesis 1: The closer a firm is to the technological frontier, the more likely is to persist in 

product innovation, ceteris paribus. 

 

Besides emerging from a ‘technological race’, persistence in product innovation may also be the 

consequence of changes or expansion of product portfolio linked to strategies of product 

differentiation. On the one hand there are product proliferation strategies when incumbents enter 

into unexplored areas of the same market mainly to cater for existing needs and/or to pre-empt 

competitive entry from potential competitors (Schmalensee, 1978). On the other hand, new 

products are rarely introduced alone in the market as firms choose instead to compete on the basis 

of product families (Draganska and Jain, 2005). Introducing product families allows incumbents to 

offer different variants of the same product in order to cater for different customer preferences. In 

her study of PC industry, Stavins (1995) relates pre-emption to incumbent’s experience as she 

shows that incumbents disperse more their products in the quality spectrum by exploiting 
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advantages in terms of both reputation and economies of scope. Looking at product turnover in 

the desktop laser printer industry de Figuereido and Kyle (2006) find a positive correlation 

between the frequency of new product introduction and the level of firms’ innovative capability 

(as measured by the number of patents). Incidence of entry is even higher for firms that are both 

innovative and have a strong brand. Sanderson and Usumeri (1995) show how leaders can rely 

upon their superior design capabilities and division of labour to change product characteristics 

and tailor them to specific needs. Thus: 

 

Hypothesis 2: For multiproduct firms, the closer a firm is to the technological frontier in a 

specific market, the more likely is to persist in product innovation in the same market, 

ceteris paribus. 

 

Persistence can also be the consequence of an expansion of product portfolios to include related 

products (Raubitschek, 1987; Bayus and Putsis, 1999).6 In this case, persistence may be beneficial 

for technological leaders that possess the resources to spread the risk of innovating over several 

markets (Bonanno, 1987; Bhatt, 1987). However, important limitations to portfolio expansion exist. 

Dowell (2006) finds that wide product portfolios can be detrimental to firms’ performance when 

they include products with very different designs. Similarly, Wezel and van Witteloostuijn (2006) 

show that benefits from product portfolio expansion is inversely related to the technological 

distance between the existing and the new products inside the portfolio. These findings highlight 

that firms’ benefits from portfolio expansion may depend on whether changes in new products 

entails incremental or improvements or radical departures from their existing designs. Within this 

context, radical departures from an existing design will be less likely pursued because of lack of 

organizational capabilities (Henderson, 1993), excessive myopia (Tripsas and Gavetti, 2000), strong 

commitment to an existing customer base (Christensen, 1997) and/or high level of product 

complexity (Levinthal, 1997).7 While technological leaders possess the required capabilities to 
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persist in product innovation in their own focal market, they can be expected to enjoy a relative 

advantage over competitors as long as innovating in the related market does not entail a radical 

departure from the product design in their focal market. 

  

We thus formulate the following hypothesis: 

 

Hypothesis 3: For multiproduct firms, the closer a firm is to the technological frontier in a 

specific market, the more likely is to persist in product innovation in an adjacent market, 

ceteris paribus. 

 

3. Background on the industry  

In this paper we study persistence in product innovation for a sample of manufacturers active in 

the LAN industry between 1990 and 1999. LANs are the infrastructure that enables data 

communication to occur within localised areas (i.e. a company and/or a university campus). LANs 

are systems made of technologically related components which play different functions within the 

network and embody technologies of different level of complexity.8 Hubs were relatively 

unsophisticated products whose function was mainly to link computers together. Routers were the 

most complex from the technological viewpoint as they were able to determine the best path for 

sending the data. Switches were more complex than hubs but (at least initially) less than routers. 

During the 1990s additional features (i.e. Layer 3 functionality, and Virtual LAN support), as well 

as a combination of hardware and software based changes (i.e. the adoption of ASICs based 

architecture and the implementation of new algorithms for forwarding data packets), enabled 

switches to directly compete with routers. Thus if we had to ‘rank’ LAN equipment available 

during the 1990s in terms of technological complexity we would have hubs at the bottom, switches 

somewhat in the middle, and routers at the top. 
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Early LANs were adopted in organizations such as firms and universities during the 1970s. At that 

time they were closed systems based on proprietary communication standards (i.e. DECnet, SNA) 

and using computer mainframe and/or minicomputers. Their diffusion took off during the 1980s 

thanks to the definition of common transmission standards (i.e. Ethernet and Token Ring), the 

advent of Personal Computers, and innovation in hubs and routers (von Burg, 2001). They 

diffused widely during the 1990s thanks to new high speed standards (i.e. Fast Ethernet, FDDI, 

Gigabit Ethernet), the wide adoption of the internet protocol (i.e. TCP/IP) and the introduction of 

LAN switches (Fontana, 2008).  

 

While the overall structure of the LAN industry would eventually consolidate and evolve toward a 

tight oligopoly in the 2000s, between 1990 and 1999 it was much more heterogeneous. The router 

market was already highly concentrated with few firms dominating. Entry was virtually 

blockaded at the high-end (i.e. the so called multi-protocol router segment) and occurred mainly at 

the low-end (i.e. the access router segment). The structure of the hub market instead was less 

concentrated but similarly polarised with few leader firms dominating the high-end of the market 

and responsible for innovations along the established trajectory and several firms at the ‘fringe’ 

producing only relatively unsophisticated products (i.e. ‘scaled down’ versions) for low-end 

customers. During the 1990s, the LAN switch market was in its infancy and characterised instead 

by lower entry barriers and an intense entrepreneurial activity with new solutions marketed by 

young start-ups as well as by established firms already active in the other two markets.  

 

There are at least two reasons why this industry between 1990 and 1999 represents an interesting 

case to study persistence in product innovation. First, there is the very fast rate of technical change 

and the shortening of the product life cycle. New equipment embodied new characteristics, both in 

the form of new communication standards, new hardware, and/or software. Persistence 
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ultimately depended on the capability of incumbents to extend the technological frontier and/or 

change their product portfolio. 

Second, manufacturers had a strong incentive to entry into related markets. Being part of a 

technical system, hubs, switches and routers might or not be produced by the same manufacturer. 

From the customer viewpoint, combining products from the same producer increased utility as 

benefits from interoperability and standardisation could be reaped. From the viewpoint of the 

manufacturers, expansion into related markets could enlarge the installed base and strengthen 

their market position (Chen and Forman, 2006). In this case, persistence was a consequence of the 

capabilities of incumbents to extend their product portfolio to related markets. 

 

4. Data and method 

Our source of information is a comprehensive database of new products marketed between 1990 

and 1999 in the LAN industry. The dataset contains 1818 products commercialised in three 

markets: hubs (536 products), routers (747 Products), and switches (535 products). For each 

product in our dataset we have information on: year of market introduction, technical 

characteristics, market price, and name of the manufacturer. This dataset was constructed using 

information from specialized trade journals (Network World and Data Communications), which 

periodically published Buyers’ Guides and details on new product introductions. Our dataset 

includes 265 firms which have been active in the industry. These firms represent the population of 

the firms that introduced at least one new product in the LAN industry between 1990 and 1999. 

Most of the firms in the dataset were located in US and, though they operated globally, most of 

their sales were generated in the US in the period considered in this paper. For each firm in the 

dataset we have collected information about their entry date in the industry, size in terms of 

employees, and sales when available. This information was gathered from a variety of sources, 

such as COMPUSTAT, the D&B Million Dollar Database and firms’ annual reports. 174(65% of the 

total) firms in our sample were active in just one market. 67(25%) in two markets. 25(9%) in three 
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markets. 15 firms were active in both hubs and routers. 24 were active in both routers and 

switches. 28 were active in both hubs and switches. 121 have introduced at least one hub, 136 at 

least one router, 126 at least one switch. In addition to these data we also collected information on 

the patenting activity of the firms included in our sample. This information was retrieved from the 

latest version of the NBER patent database (Hall et al., 2001). Table 1 reports overall summary 

statistics and broken down by market. 

 

[Insert Table 1 about here] 

 

5. Empirical strategy 

5.1. Empirical model  

Econometric studies of innovation persistence falls within two groups. One group of studies relies 

upon the estimation of hazard models for innovation spells (Geroski et al., 1997). Another group of 

studies (Peters, 2009; Clausen et al., 2010) has instead employed random effect probit models 

(Wooldridge, 2005) to estimate the effect of previous innovative efforts on the probability to 

further innovate at a specific point in time. In this paper we follow the former approach.  

 

In particular, we model product innovation by the firms in our sample as a repeated event and 

assume that after the first product introduction event is observed, the second and the following 

introductions are different from the first event. The implicit hypothesis that we are making is that,  

all the rest equal, the more innovative events we observe for a firm the more likely is for that firm 

to experiment again the event in the future. Within this context, not taking event dependency into 

account would lead to incorrect estimates of the likelihood to innovate over time. Since we are 

considering a sample of firms that introduced at least one new product between 1990 and 1999, our 

sample is both right and left censored. It is right censored because we observe new products’ 

introduction only up to the end of 1999. It is left censored because firms enter the study at different 
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points in time corresponding to the year in which we observe their second product innovation 

event.9  

 

Our analysis of time to product introduction event employs variance-corrected semi-parametric 

Cox’s Proportional Hazard (CPH) model. A variance corrected CPH model allows to control for 

the effects of repeated and interdependent events on the variance-covariance matrix in order to 

produce robust coefficients and standard errors. The approach we follow here is the conditional 

risk-set model proposed by Prentice et al. (1981).10 According to this model, at each time t we can 

define a risk set for observing a product innovation event k by considering all the firms that, at 

time t, have experienced a product innovation event k – 1 but not yet k. In other words a firm 

cannot be at risk of innovating for the fourth time without having already innovated three times 

before. This approach takes into account the order of the events and estimates are stratified by the 

rank of the event (i.e. the second product, the third product etc.). 

 

Let’s define with Tik the ‘true’ total time taken for firm ith to experience the kth product introduction 

event. Cik is the censoring time for the kth product introduction event and Xik is the observed 

duration (with Xik = min(Tik , Cik)). Finally, we define ik = I(Tik   Cik), where I(.) indicates whether 

censoring occurs or not and we define inter-event times as: Gik =  Xik - Xi,k-1. Xi0 = 0 is the time when 

the firm enters the study (i.e. the time of first product introduction). 

 

The hazard function for the kth product introduction for firm ith at time t is given by: 

 

hik t;Zik  h0k t  tk1 exp 'Zik t          (1), 
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where Zik is the vector of explanatory variables for firm ith with respect to the kth product 

introduction. h0k(t) is the event specific baseline hazard for the kth product introduction. ’ is the 

vector of parameters to be estimated.  

 

Let tj be the jth ordered event time and R(ti) the set of firms at risk at time ti , the partial likelihood L 

can be defined as: 
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and the partial likelihood function in inter-event time as: 
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where Yjk(t) = I(Gik > t). 

 

5.2. The model specification 

The equation introduced above is specified with several covariates. The first, and most important 

covariate, is a measure of technological leadership. Three types of indicators of leadership can be 

found in the literature. Indicators based on labour (Amable et al., 2007) or multifactor productivity 

(Nicoletti and Scarpetta, 2003; Bos et al., 2013); indicators based on financial assets such as Tobin’s q 

(Coad, 2011); indicators based on product characteristics and quality (Stavins, 1995). According to 

this approach product quality may be used to ‘rank’ firms in terms of distance to the technological 
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frontier. Technological leaders can be distinguished from laggards and their behaviour in terms of 

persistence analysed. 

 

To construct our measure we follow Fontana and Nesta (2009) and proceed in two steps. First, for 

each market, hedonic price regressions are estimated and predicted prices are calculated. Second, 

predicted prices are used to compute a measure of technological frontier and calculate the relative 

distance of each firm from the frontier. In the first step, we estimate the following hedonic 

equation (one separate regression for each market): 

 

 
t j

mittttjmtjmit zp          (4), 

 

where pmit is the price of model m introduced by firm i at time t, ztjm is a vector of product 

technological characteristics j contained in model m,  is a vector of coefficients to be estimated, t 

is a time fixed effect, and i is a firm fixed effect capturing the impact on the price of firms’ pricing 

practices unrelated to product characteristics such as reputation, market power and/or other 

unobserved characteristics.11 

  

In the second step we take the quality adjusted predicted price as an indicator of overall product 

quality and use it to rank products on ‘vertical’ product space: 

 

'' ˆmitmit pq              (5), 

 

we then compute for each product a distance from the technological frontier: 

 

  'max mitt
f

mit qqd            (6). 
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The higher is this distance the farther is the product from the frontier. Since firms may introduce in 

several products in each market in a given year, we calculate for each firm the minimum distance 

to technological frontier as follows: 

 

 itf
mit

f
it dd min           (7). 

 

This indicator is our main measure of technological leadership (DISTANCE TO FRONTIER). 

Technological leaders (laggards) in a specific market would display relatively lower (higher) 

values for this indicator. As the indicator is normalised by dividing it by its standard deviation, the 

distance varies between zero and one. This standardization allows us to perform meaningful cross- 

market comparisons. 

 

Beside distance to frontier, we consider other control variables that are likely to affect persistence 

in product innovation. All these variables capture firms’ characteristics and are, all but two, time-

varying. The variable SIZE is constructed on the basis of the number of full time employees. The 

existing literature has generally highlighted the presence of a positive relationship between firms’ 

size and persistence in innovation (Cohen and Levin, 1989; Kamien and Schwartz, 1982).12 

However, in some case a non linear trend has been found. To take this into account we include also 

the square of size (SIZE SQ). We then include total sales (SALES) as a measure of the size of the 

market for each firm (Henderson, 1993). Sales are measured in million of US dollars. The size of the 

market can be considered a proxy for the status of the innovator (i.e. market leader or laggard).13 It 

may be thought to affect persistence in innovation differently depending on the status of the 

innovator. Market leaders may value more new products since they want to maintain their market 

position (Gilbert and Newbery, 1982). In this case a positive correlation is expected between sales 

and persistence. On the other hand, they may prefer to exploit existing products rather than 
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introducing new ones (Reinganum, 1985). In this case, a negative coefficient for this variable is 

expected.  

 

We then control for the impact of knowledge and intangible assets on persistence in innovation by 

relying upon some indicators of firms’ patenting activity. PATENT STOCK/EMPLOYEES is the sum of 

the past patents granted to the firm in each year. It is an indicator of the stock of technological 

experience available to firms.14 Generally, past technological experience should impact positively 

on innovative activity through economies of scale in R&D (Cohen and Levin, 1989), learning by 

doing and/or by using (Rosenberg, 1982; Cohen and Klepper, 1996). However, we may expect this 

impact to vary also depending on the level of technological opportunity available to the firms. 

Firms maybe expected to make the most(least) out of technological experience when technological 

opportunities are the highest(lowest). As the accumulated measure of patents tends to be 

correlated to the size of the firm, we divide patent stock by the number of employees to make sure 

that our measure can be interpreted as an indicator of the pool of technology assets available to the 

firm.  

 

Alongside this variable we introduce two variables aimed at accounting for recent patenting 

activity. PATENTS (T-1) is a dummy which is equal to one is the firm has filed for a patent in the 

previous year. This variable is supposed to capture the relationship between patenting activity and 

the commercialisation of a specific innovation. We further control for this relationship by 

accounting for the number of patents filed by the firm in the previous year (NUMBER OF PATENTS 

(T-1)). Though a one to one relationship between a single patent and a product is impossible to 

establish, we expect persistence in product innovation to be positively associated to patenting.15 

Finally, we control for the ‘initial condition’ by including a variable measuring the number of new 

product at entry (NUMBER OF PRODUCT AT ENTRY).  
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A correlation table for our covariates is reported in the Appendix (Table A4).  

 

[Insert Table A4 about here] 

 

It should be noted the presence of a positive correlation among all our patent based indicators The 

level of the coefficient is sometimes high but within an acceptable range.16  

 

6. Results 

6.1. Univariate analysis  

We provide preliminary evidence on technological leadership and persistence in product 

innovation by estimating two states TPMs for several sub-samples of our sample of innovative 

firms. Cefis (2003) defines persistence in terms of the probability for a firm to remain in the same 

state it was in period t at the subsequent period t+1. We are particularly interested in ‘persistent 

innovators’ (i.e. firms that persistently remain in the innovator state).  

 

Table 2 reports our preliminary results for each of the three markets.  

 

[Insert Table 2 about here] 

 

In the case of hubs, the probability of being a persistent product innovator is around 44%, it 

gradually increases for switches (47%) and reaches 57% in the case of routers thus suggesting that 

‘systematic’ innovators are more likely to be found in the case of more complex products. New 

entry in innovative behaviour is the highest in switches (around 37%) followed by routers (24%) 

and it is the lowest in hubs (22%). I the light of what we said in Section 3, this latter pattern clearly 

reflects changes in market opportunities in the LAN industry during the 1990s with the opening 
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up of the switch market and the decline of hubs. In Table 3 we distinguish between technological 

leaders and laggards.17 

 

[Insert Table 3 about here] 

 

A first look at the results suggests that leaders are always more likely to be ‘systematic’ innovators 

than laggards. Again probabilities seem to reflect the level of product complexity with leaders 

displaying the highest persistence in innovation in the case of routers (63%), followed by switches 

(52%), and hubs (49%). It is interesting to note that laggards in complex products seem to be more 

persistent than laggards in less complex products. However, the difference between persistent 

leaders and laggards is slightly higher for complex products (10% in the case of routers vs. 9% in 

the case of switches and hubs). Laggards are also less likely than leaders to go from a non 

innovative to an innovative status. The difference is particularly large in the case of switches (44% 

vs. 33%) suggesting that there might have been new opportunities to innovate in this growing 

market, however only technological leaders seemed able to capture them.  

 

Another aspect to consider is the issue of bimodality in persistence. The literature has highlighted 

that great innovators generally are more persistent than smaller ones. We first check whether this 

applies also to our case. Table 4 below reports distinct TPMs for ‘great innovators’ and ‘small 

innovators’.18 

 

[Insert Table 4 about here] 

 

The main result in this case is that the probability to innovate systematically is always higher for 

great innovators than for small innovators. Among great innovators, the probability to innovate 

systematically is the highest for switch manufacturers (74%) followed by routers (70%) and hubs 
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(62%). Among small innovators, the probability is the highest for routers (42%), followed by hubs 

(25%) and switches (23%). Concerning the probability of going from a non innovator to an 

innovator state, it is always higher for great innovators than for small innovators and it is the 

highest in the switch case. 

 

All in all these findings point to the following. In the case of switches, product innovation is a 

consequence of new opportunities linked to the opening up of the new market. Both great 

innovators and small innovators take these opportunities though great innovators appear to 

innovate systematically more than small innovators. In more established markets such as hubs or 

routers technological opportunities are lower. As a consequence, the probabilities of going from a 

non innovator to an innovator status are relatively lower than in the switch case for both great 

innovators and small innovators. This suggests that innovation in these markets should mainly 

come from older firms: both great innovators wishing to consolidate their market position and 

smaller innovators wishing to ‘defend’ their space in the market. In this context, great innovators 

always tend to be more persistent than small innovators. However, small innovators innovate 

more systematically than in the case of the switch market.  

 

Finally, we analyse how technological leadership and innovator status interact to affect innovation 

persistence. Results for great innovators are reported in Table 5. Those for small innovators are 

reported in Table 6. 

 

[Insert Tables 5 and 6 about here] 

 

In the case of great innovators, technologically leadership generally increases persistence in 

innovation. This is particularly evident in the case of complex products such as routers (62% for 

laggards vs. 81% for leaders) and switches (70% for laggards vs. 79% for leaders). It is less evident 
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in the case of hubs (60% for laggards vs. 64% for leaders). In the case of small innovators, an 

opposite pattern is found. Persistence is lower for leaders in the case of established markets such as 

routers (43% for laggards vs. 41% for leaders) and hubs (28% for laggards vs. 20% for leaders) and 

it is slightly higher in the case of switches (23% for laggards vs. 24% for leaders).  

 

Finally, technological leadership seems to ease the transition from a non innovator to an innovator 

state. In the case of great innovators, it increases the probability for hubs (24% for laggards vs. 37% 

for leaders). In the case of small innovators, it increases the probability for both routers (21% for 

laggards vs. 23% for leaders) and switches (30% for laggards vs. 40% for leaders). The following 

section presents our results for the multivariate analysis and tests our hypotheses. 

 

6.2. Multivariate analysis 

Table 7 reports the results of the Cox conditional risk set estimates for persistence in innovation in 

the hub market. Explanatory variables are introduced in sequence.  

 

[Insert Table 7 about here] 

 

Model (1) considers the impact on persistence of distance to frontier only. The coefficient is 

negative and significant suggesting that firms located closer to the technological frontier at time t 

have a higher likelihood to introduce a new product in the following period. In other words, 

leaders are relatively more persistent innovators than laggards. The sign is robust to the inclusion 

of additional explanatory variables. A one unit decrease in the distance to frontier increases the 

likelihood to innovate of about 18.4%.19 In model (2) we control for the impact of firm size, sales, 

and age on persistence. The inclusion of these variables decreases the number of observation to 126 

due to missing information. Consistently with previous findings (Geroski et al., 1997) our results 

suggest that large firms are more likely to innovate though the relationship seems to be non linear 
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as indicated by the negative coefficient of SIZE SQ. Each additional employee increases the 

likelihood to innovate on average by 17.1%. The coefficient of SALES is not significant though it 

becomes significant in the following specification. What is interesting is that the coefficient is 

always negative evidence that the size of the market negatively impacts on innovation persistence. 

Also the coefficient of AGE is not significant. In the final specification (model 3) we include our 

indicators of intangible capital based on patents. We first control for the presence of ‘state 

dependence’ by looking at whether product innovation at t is associated to patenting at t-1. We 

then check whether the relationship depends on the number of patents. Finally, we further control 

for the intensity of patenting by dividing the stock of patents by the number of employees. Also in 

this case the coefficient is positive and significant. Altogether, these results indicate the presence of 

a ‘state dependence effect’ in which product innovation in one period is positively associated to 

both patenting and the number patents filed in the previous period. These effects notwithstanding, 

the relationship between possession of intangible capital and product innovation is not 

straightforward given that the coefficient for innovation propensity, as captured by the stock of 

patents per employees, is negative and significant.    

 

Table 8 reports the result for the router market.  

 

[Insert Table 8 about here] 

 

Again the coefficient for distance to frontier is negative and significant indicating that also in this 

case technological leadership seem to impact positively on persistence in product innovation. In 

this case the impact of leadership seems slightly smaller than in the case of hubs as a one unit 

decrease in the distance to frontier increases the likelihood to innovate of 15.4%. The coefficient is 

quite stable across specification though the significance level changes as additional variables are 

added. Two important differences with respect to the previous results exist. First, our controls for 
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size are significant, albeit weakly, only in the final specification. Second, the coefficient of AGE is 

now negative and significant indicating that in this market young firms are relatively more 

innovative than older ones. Finally, as in the previous case, the higher the lagged number of 

patents filed the higher the likelihood of introducing a new product. 

 

Results for the switch market are summarised in Table 9.  

 

[Insert Table 9 about here] 

 

The coefficient for distance to frontier is negative and significant suggesting that the farther firms 

locate from the technological frontier the lower is the likelihood of introducing a new product in 

the subsequent year. Again technological leadership seems positively associated to persistence in 

innovation and in this case the magnitude of the impact if much greater than in the two previous 

cases. In particular a one unit decrease in the distance to frontier increases the likelihood to 

innovate of 21.2% suggesting that in the switch market being leaders is crucial for continuing to 

innovate. Concerning our control variables, we do not find a significant impact of firm size, sales,  

or age. All our patent indicators are instead significant. In particular, we find evidence of state 

dependence as suggested by the positive and significant coefficient for the lagged patent dummy. 

Also, the likelihood of introducing a product innovation increases with the number of patents filed 

at t-1.  

 

All in all these results support Hypothesis 1. To test the remaining hypotheses we turn to the analysis 

of multiproduct firms.  
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6.3. Leadership and persistence in innovation in related markets  

We now look at whether technological leadership impacts on persistence across related markets. 

As discussed in Section 3, hubs, routers, and switches are component of technological systems and 

may or may not be produced by the same firm. In this context it is interesting to understand 

whether technological leadership in a focal market could lead to persistence in a related market for 

those firms active in more than one market. We explore this possibility in Table 10 which reports a 

series of conditional risk set Cox models for firms active at least in two markets.20  

 

 [Insert Table 10 about here] 

 

Model (1) considers the likelihood of introducing a new hub model for those firms manufacturing 

both hubs and routers. The coefficient for distance to frontier is negative and significant 

confirming that technological leadership in the hub market increases the likelihood to innovate in 

hubs. This finding supports Hypothesis 2. The coefficient for distance to frontier in the router market, 

though negative, is not significant an indication that leadership in this related market is not 

associated to persistence in product innovation in hubs. Given that hubs and routers represent the 

two ‘extremes’ of complexity in the LAN product spectrum (i.e. they are not adjacent markets) this 

result is somewhat expected. Model (2) analyses the impact on the likelihood of persisting in 

innovation in hubs of leadership in the switch market. In this case leadership in hubs is still 

associated to persistence in the hub market (again supporting Hypothesis 2).  

 

In Model (3) we look at persistence in routers for routers and hubs producers. Leadership in 

routers is still relevant as indicated by the coefficient for distance to frontier for routers which is 

again negative and significant (supporting Hypothesis 2). However, the coefficient for leadership in 

hubs is not significant. These results mirror our findings from Model (1) concerning the relatively 

‘un-relatedness’ of the two markets. Model (4) relates persistence in routers to technological 
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leadership in the switch market. The negative and significant coefficient for distance to frontier in 

the switch market indicates that leadership in switches positively affects persistence in innovation 

in routers. A one unit decrease in the distance to frontier in the switch market increases the 

likelihood to innovate in routers of 27.9%. This evidence suggests that switch leaders could 

persistently innovate in the router market. It gives support to Hypothesis 3 according to which the 

closer a firm is to the technological frontier in a specific market (switch in this case), the more 

likely is to persist in product innovation in an adjacent market (routers). 

 

Finally, we look at how leadership in related markets affects persistence in innovation in switches. 

Model (5) considers the case of leadership in hubs. The coefficient for distance to frontier in hubs is 

negative and significant indicating that leadership in the hub market is positively associated to 

persistence in switches. Since hubs and switches are adjacent markets, again Hypothesis 3 is 

supported. In this case, a one unit decrease in the distance to frontier in the hub market increases the 

likelihood to innovate in switches of 36.5%. Leadership in routers instead does not seem to affect 

persistence in switches (Model (6)). 

 

To summarise, our findings for the case of multiproduct firms always support Hypothesis 2. In 

particular, the closer a firm is to the technological frontier in a specific market, the more likely is to 

persist in product innovation in that same market. Hypothesis 3 is also supported. The closer a 

firm is to the technological frontier in a specific market, the more likely is to persist in product 

innovation in an adjacent market. However, our findings for related markets need to be further 

qualified.  

 

All in all our analysis confirms that the structure of the LAN industry in the 1990s was vertically 

differentiated with three markets each one characterised by products with different levels of 

complexity. Within each market, technological leaders were relatively more likely than laggards to 
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persist as product innovators. For multiproduct firms, innovating in related markets resembled a 

single step-upward-one way climbing of a ‘product quality ladder’. The climbing occurred in ‘single 

steps’, because leaders in each market could innovate in an adjacent market only (i.e. go to the next 

step but not jump directly to the top of the ladder). The climbing was ‘upward and one way’ 

because leaders engaged in product innovation in more complex but not in less complex markets. 

Technological laggards instead could not reach higher steps. 

 

7. Sensitivity analysis 

Though interesting, it may be argued that our results suffer from important limitations. The first 

limitation concerns the presence of reverse causality. Our main argument is based on the idea that 

technological leadership leads to product innovation. However, in the industrial organization 

literature it is often argued that incumbents innovate in order to deter market entry or catching up 

by followers. If this is true, then technology leadership would follow persistence. To account for 

this is particularly important in our setting given that our period of observation is, for all but one 

of the markets, two-sided censored. The second limitation is that the analysis may suffer from an 

omitted variable bias. Due to information availability constraints in our analysis we are not 

controlling for any R&D input measures. If one assumes that R&D spending and product 

innovation are positively related and that persistent innovators spend continuously more on R&D, 

then it may be argued that our results follows from the fact that R&D spending correlates both 

with persistence in innovation and technological leadership. In this section we will try to address 

these two limitations by estimating a model with conditional frailty. In addition to this check, we 

will also test the robustness of our results to the presence of non-linear relationship between 

technological leadership and persistence. 
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7.1. Conditional frailty estimation 

In this section we generalize the CPHM introduced in Section 5 by adding an individual time-

invariant frailty term (i) to the hazard function (1). The purpose of this generalization is to 

separate the persistence effect driven by true event dependence form the spurious one caused by 

time-invariant unobserved heterogeneity across individuals. We adopt the specification of the 

Conditional Frailty Cox (CFC) model proposed by Box-Steffensmeier and De Boef (2007)21 by 

generalizing the hazard and partial likelihood functions (1) and (3) as follows: 

 

hik t;Zik  h0k t  tk1 exp 'Zik t  i                                                          (8) 
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Maximization of (9) is performed using the Expectation-Maximization (E-M) algorithm and 

assuming a gamma distribution for i and treating them as missing data. Controlling for 

unobserved heterogeneity allows us to partially solve the ‘initial condition’ problem for left 

censored observed spells (Ham and Lalonde, 1996) mentioned above. As we do not observe the 

initial state of the firm in each market, with the exception of the market for switches, our results 

may be biased by the presence of the ’initial condition‘ problem . As the CFC model assumes a 

functional form for the duration distribution of each initial state that is different not only from that 

of the other spells, but also from that of the other individuals, we can draw more robust 

conclusions in term of causality interpretation by allowing each firm’s initial state to be correlated 

with its time-invariant unobserved characteristics. Concerning the omitted variable bias, the CFC 

model can alleviate the problem as long as we assume that some important factors omitted from 

the hazard equation, such as R&D input measures, do not significantly change over time.22 
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Results from the estimation of the CFC model are reported in Table 11 in which the main findings 

of the CPHM are confirmed. 

 

[Insert Table 11 about here] 

 

In particular, the coefficient of the distance to the technological frontier is negative and significant 

in each of the three markets. The magnitude of this effect, which is comparable across markets as 

the distances to the frontier are standardized, is larger in the case of routers, with a coefficient 

which is almost double (in absolute terms) than the ones for hubs and switches. Finally, in the case 

of switches, the Frailty 2 Test does not reject the null hypothesis of the absence of a significant 

unobserved heterogeneity factor (i) for this sub-sample. As the switch market is the only one in 

our sample which we can observe since its inception, this result suggests that the CFC model is 

actually helpful in taking into account the initial condition problem that potentially affects the left-

censored observations in both the hubs and the routers markets. 

 

7.2. Controlling for the non linearity in the relationship between technological leadership and 

persistence 

In this sub-section we check for the presence of a non-linear relationship between technological 

leadership and persistence in product innovation which has already been detected in previous 

works (Lerner 1997; Lee et al., 2011). We perform this analysis by defining, for each market, two 

dummy variables that identify the firms laying in the second and third tertiles of the distribution 

of our continuous measure of technological leadership.23 Results are reported in Table 12. 

 

[Insert Table 12 about here] 
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In all the three case, the most significant decrease in the hazard to innovate occurs when moving 

from the 2nd to the 3rd tertile suggesting that the negative effect of being distant from the 

technological frontier is less severe for firms that can be classified technological leaders (1st tertile) 

or followers (2nd tertile) and more pronounced for the laggards (3rd tertile). 

 

8. Conclusion 

This paper has studied the relationship between technological leadership and persistence in 

product innovation for a sample of firms operating during the 1990s in three markets in the LAN 

industry a high-tech sector. During the period analysed here, the three markets under 

consideration (i.e. hubs, routers, and switches) differed in terms of product complexity, 

opportunity to innovate, barrier to entry and exit, and levels of concentration thus providing an 

interesting case to study persistence in product innovation. We first carried out a univariate 

analysis based on TPMs. Our analysis has revealed that persistence in product innovation is 

relatively higher for complex products (i.e. product with many technical characteristics and high 

interdependencies among them). In complex product markets technological leaders seem to 

innovate more systematically than in non complex products. Also, large innovators tend to be 

more persistent innovators than small innovators. Finally, technological leadership positively 

impacts on innovation persistence in the case of greater innovators and negatively in the case of 

small innovators. However, particularly in the case of complex products, leadership may help 

small innovators to overcome the innovative threshold and enter in the innovator state. 

 

We then carried out a multivariate analysis by estimating conditional risk sets duration analysis. 

This analysis has revealed that, controlling for market and firm size, technological leadership 

seems to be always an important prerequisite for persistence in product innovation with 

technological leaders always more persistent innovators than laggards. Our results have 

highlighted the presence of a direct relationship between persistence in product innovation and 
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(lagged) patenting. In addition to this, we also found that the number of (lagged) patents increases 

persistence in product innovation. Finally, we also found that technological leadership plays an 

important role for innovating in related markets. In particular, technological leaders in one market 

can also systematically innovate in an adjacent market. Our sensitivity analysis has revealed that 

our main results are robust to control for unobserved heterogeneity and for the presence of non 

linearity in the indicator of technological leadership.  

 

These results have implications for our understanding of firms’ strategies for product innovation 

in high-tech industries. In particular, the finding that technological leaders are more persistent 

innovators than laggards suggests that these firms are responsible for extending the technological 

frontier which is not inconsistent with findings from other studies of technological races in hi-tech 

industries (Khanna, 1995; Lerner, 1997).  

 

Our results also allow us to speculate about the determinants of product portfolio changes and 

extensions. Our finding that technological leaders are more persistent is consistent with a situation 

in which they mainly change their product portfolio through product proliferation and the 

introduction of product families. Our finding for related markets suggests instead that we should 

expect to find differences between incumbents in terms of expansion of their product portfolio 

with technological leaders more able to ‘stretch’ their product portfolio farther than laggards as 

they can innovate in more complex but adjacent markets. 

 

Though interesting, our analysis is not without important limitations. First, we have considered 

the case of a specific industry characterised by high dynamism and high rate of innovation. Ideally 

one would like to compare our results with the case of other industries both high-tech but also 

low-tech in which technological leadership may be expected to play a less important role for 

innovation persistence. Second, our analysis is restricted to a ten years time span. Future research 
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should try to extend the time series. Finally, our analysis has focussed on the relationship between 

technological leadership and innovation persistence. It has remained silent about the issue of 

persistence in technological leadership. Whether persistence in leadership can be considered a pre-

condition for persistence in innovation will be a topic for future research. 
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LIST OF TABLES 
Table 1: Summary descriptive statistics  

 Obs. Mean SD Min Max 
Hubs      
DIST FRONT HUBS 204 0 1 -1.570 1.985 
SIZE (EMPLOYEES/100) 126 3.157 6.660 0.003 31.270 
SALES (LOG - MIL$) 147 1.318 2.363 -2.742 6.775 
AGE (LOG - YEARS) 204 2.430 0.822 0 4.477 
NUMBER OF PRODUCTS AT ENTRY 204 2.015 1.533 1 8 
NUMBER OF PATENTS AT T-1/1000 204 0.080 0.302 0 2.405 
PATENT AT T-1 (DUMMY) 204 0.456 0.499 0 1 
PATENT STOCK/EMPLOYEES 126 0.176 0.352 0 3.571 
Routers      
DIST FRONT ROUTERS 246 0 1 -1.99 2.38 
SIZE (EMPLOYEES/100) 246 3.756 7.407 0.001 31.700 
SALES (LOG - MIL$) 136 1.242 2.657 -4.500 6.775 
AGE (LOG - YEARS) 159 2.375 0.890 0 4.477 
NUMBER OF PRODUCTS AT ENTRY 246 2.028 1.329 1 7 
NUMBER OF PATENTS AT T-1/1000 246 0.062 0.301 0 2.405 
PATENT AT T-1 (DUMMY) 246 0.321 0.468 0 1 
PATENT STOCK/EMPLOYEES 136 0.113 0.173 0 0.781 
Switches      
DIST FRONT SWITCHES 149 0 1 -2.10 1.81 
SIZE (EMPLOYEES/100) 98 2.301 5.081 0.001 30.740 
SALES (LOG - MIL$) 113 1.425 2.355 -2.738 6.775 
AGE (LOG - YEARS) 149 2.299 0.916 0 4.477 
NUMBER OF PRODUCTS AT ENTRY 149 1.745 1.420 1 8 
NUMBER OF PATENTS AT T-1/1000 149 0.057 0.233 0 2.405 
PATENT AT T-1 (DUMMY) 149 0.544 0.500 0 1 
PATENT STOCK/EMPLOYEES 98 0.214 0.433 0 3.571 
All markets      
SIZE (EMPLOYEES/100) 360 3.150 6.587 0.001 31.700 
SALES (LOG - MIL$) 419 1.318 2.472 -4.500 6.775 
AGE (LOG - YEARS) 599 2.375 0.874 0 4.477 
NUMBER OF PRODUCTS AT ENTRY 599 1.953 1.426 1 8 
NUMBER OF PATENTS AT T-1/1000 599 0.067 0.286 0 2.405 
PATENT AT T-1 (DUMMY) 599 0.422 0.494 0 1 
PATENT STOCK/EMPLOYEES 360 0.163 0.327 0 3.571 
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Table 2: Transition probabilities between innovative states  
 HUBS SWITCHES ROUTERS 
 Innovative at t+1 Innovative at t+1 Innovative at t+1 
 Non Innovator Innovator Non Innovator Innovator Non Innovator Innovator 

Non innovator 77.92% 22.08% 63.29% 36.71% 76.12% 23.88% 
Innovator 56.20% 43.80% 52.94% 47.06% 42.52% 57.48% 
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Table 3: Transition probabilities between innovative states: Leaders vs. Laggards 
 HUBS SWITCHES ROUTERS 

Leaders Innovative at t+1 Innovative at t+1 Innovative at t+1 
 Non Innovator Innovator Non Innovator Innovator Non Innovator Innovator 

Non innovator 76.45% 23.55% 56.10% 43.90% 76.29% 23.71% 
Innovator 51.30% 48.70% 47.50% 52.50% 36.64% 63.36% 
Laggards       

Non innovator 78.90% 21.10% 67.26% 32.74% 76.00% 24.00% 
Innovator 60.14% 39.86% 56.45% 43.55% 47.24% 52.76% 
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Table 4: Transition probabilities between innovative states: Great vs. Small innovators 
 HUBS SWITCHES ROUTERS 

Great Inn. Innovative at t+1 Innovative at t+1 Innovative at t+1 
 Non Innovator Innovator Non Innovator Innovator Non Innovator Innovator 

Non innovator 70.29% 29.71% 51.85% 48.15% 71.19% 28.81% 
Innovator 37.50% 62.50% 26.04% 73.96% 29.30% 70.70% 
Small Inn.       

Non innovator 80.17% 19.83% 66.79% 33.21% 78.27% 21.73% 
Innovator 74.62% 25.38% 76.85% 23.15% 57.66% 42.34% 
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Table 5: Transition probabilities between innovative states for Great Innovators: Leaders vs. Laggards  
 HUBS SWITCHES ROUTERS 

Leaders Innovative at t+1 Innovative at t+1 Innovative at t+1 
 Non Innovator Innovator Non Innovator Innovator Non Innovator Innovator 

Non innovator 63.49% 36.51% 44.12% 55.88% 74.24% 25.76% 
Innovator 36.00% 64.00% 21.43% 78.57% 19.18% 80.82% 
Laggards       

Non innovator 76.00% 24.00% 57.45% 42.55% 69.37% 30.63% 
Innovator 39.62% 60.38% 29.63% 70.37% 38.10% 61.90% 
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Table 6: Transition probabilities between innovative states for Small Innovators: Leaders vs. Laggards  
 HUBS SWITCHES ROUTERS 

Leaders Innovative at t+1 Innovative at t+1 Innovative at t+1 
 Non Innovator Innovator Non Innovator Innovator Non Innovator Innovator 

Non innovator 81.01% 18.99% 60.67% 39.33% 77.11% 22.89% 
Innovator 80.00% 20.00% 76.32% 23.68% 58.62% 41.38% 
Laggards       

Non innovator 79.66% 20.34% 69.89% 30.11% 79.08% 20.92% 
Innovator 72.22% 27.78% 77.14% 22.86% 56.96% 43.04% 
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Table 7: Conditional risk set Cox models for persistence in innovation (Hub Market) 
 [1] [2] [3] 
DIST FRONT HUBS T-1 (STANDARD.) -0.222*** -0.259*** -0.203*** 
 [0.0770] [0.0844] [0.0713] 
SIZE (EMPLOYEES/100)  0.219*** 0.213** 
  [0.0744] [0.0896] 
SIZE SQ (EMPLOYEES/100 SQUARED)  -0.00716*** -0.00869*** 
  [0.00228] [0.00308] 
SALES (LOG - MIL$)  -0.0853 -0.177** 
  [0.0543] [0.0692] 
AGE (LOG - YEARS)  -0.117 -0.248 
  [0.128] [0.156] 
NUMBER OF PRODUCTS AT ENTRY   0.00794 
   [0.0602] 
NUMBER OF PATENTS AT T-1/1000   1.538*** 
   [0.342] 
PATENT AT T-1 (DUMMY)   0.728*** 
   [0.207] 
PATENT STOCK/EMPLOYEES   -1.920** 
   [0.840] 
Observations 204 126 126 
No of failures 152 102 102 
Time at risk 371 215 215 
Log pseudo-likelihood -463.163 -247.309 -240.333 
Wald chisq.  8.34*** 19.26*** 48.34*** 

Robust standard errors in brackets. Efron method for ties. Standard errors adjusted for clustering on firms. 
* significant at 10%; ** significant at 5%; *** significant at 1% 
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Table 8: Conditional risk set Cox models for persistence in innovation (Router Market) 
 [1] [2] [3] 
DIST FRONT ROUTERS T-1 (STANDARD.) -0.255*** -0.145* -0.167** 
 [0.0711] [0.0801] [0.0841] 
SIZE (EMPLOYEES/100)  0.0562 0.101* 
  [0.0539] [0.0593] 
SIZE SQ (EMPLOYEES/100 SQUARED)  -0.00193 -0.00379** 
  [0.00155] [0.00169] 
SALES (LOG - MIL$)  0.00902 -0.0609 
  [0.0585] [0.0651] 
AGE (LOG - YEARS)  -0.184** -0.345*** 
  [0.0790] [0.0814] 
NUMBER OF PRODUCTS AT ENTRY   0.0479 
   [0.0735] 
NUMBER OF PATENTS AT T-1/1000   0.702*** 
   [0.163] 
PATENT AT T-1 (DUMMY)   0.432** 
   [0.175] 
PATENT STOCK/EMPLOYEES   -0.0570 
   [0.461] 
Observations 246 135 135 
No of failures 191 116 116 
Time at risk 386 195 195 
Log pseudo-likelihood -601.639 -279.253 -274.622 
Wald chisq.  12.84*** 19.45*** 61.88*** 

Robust standard errors in brackets. Efron method for ties. Standard errors adjusted for clustering on firms. 
* significant at 10%; ** significant at 5%; *** significant at 1% 
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Table 9: Conditional risk set Cox models for persistence in innovation (Switch Market) 
 [1] [2] [3] 
DIST FRONT SWITCHES T-1 (STANDARD.) -0.222*** -0.215** -0.239** 
 [0.0820] [0.101] [0.0932] 
SIZE (EMPLOYEES/100)  -0.0113 0.0244 
  [0.0907] [0.0719] 
SIZE SQ (EMPLOYEES/100 SQUARED)  -0.000342 -0.00200 
  [0.00237] [0.00194] 
SALES (LOG - MIL$)  0.0524 -0.153 
  [0.0958] [0.0934] 
AGE (LOG - YEARS)  -0.0725 0.0792 
  [0.143] [0.111] 
NUMBER OF PRODUCTS AT ENTRY   0.0360 
   [0.0250] 
NUMBER OF PATENTS AT T-1/1000   0.795** 
   [0.366] 
PATENT AT T-1 (DUMMY)   1.067*** 
   [0.251] 
PATENT STOCK/EMPLOYEES   -0.406** 
   [0.174] 
Observations 149 98 98 
No of failures 111 79 79 
Time at risk 199 126 126 
Log pseudo-likelihood -326.393 -198.508 -190.663 
Wald chisq.  7.35*** 9.05* 92.81*** 

Robust standard errors in brackets. Efron method for ties. Standard errors adjusted for clustering on firms. 
* significant at 10%; ** significant at 5%; *** significant at 1% 
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Table 10: Conditional risk set Cox models for persistence in innovation – Related market analysis 
 HUBS ROUTERS SWITCHES 
 [1] [2] [3] [4] [5] [6] 
DIST FRONT HUBS T-1 (STANDARD.) -0.263* -0.242* -0.0932  -0.455**  
 [0.138] [0.135] [0.133]  [0.204]  
DIST FRONT ROUTERS T-1 (STANDARD.) -0.295  -0.440** 0.00787  -0.0896 
 [0.216]  [0.175] [0.122]  [0.155] 
DIST FRONT SWITCHES T-1 (STANDARD.)  0.141  -0.328** -0.133 -0.290 
  [0.16]  [0.166] [0.197] [0.248] 
SIZE (EMPLOYEES/100) 0.258** 0.182* 0.0426 0.146 0.0673 0.0249 
 [0.120] [0.101] [0.0824] [0.109] [0.145] [0.120] 
SIZE SQ (EMPLOYEES/100 SQUARED) -0.00111*** -0.00286*** -0.000449* -0.00206** -0.000324 -0.000167 
 [0.000430] [0.000668] [0.000267] [0.000930] [0.000342] [0.000347] 
SALES (LOG - MIL$) -0.193 -0.480*** 0.00845 -0.107 -0.144 -0.371** 
 [0.139] [0.179] [0.155] [0.128] [0.132] [0.170] 
AGE (LOG - YEARS) 0.748 -0.213 -0.0635 -0.397 0.128 -0.0809 
 [0.508] [0.453] [0.169] [0.300] [0.360] [0.152] 
NUMBER OF PRODUCTS AT ENTRY 0.781** 0.106 -0.0600 -0.117 -0.00237 -0.0272 
 [0.392] [0.120] [0.114) [0.106] [0.0332] [0.0382] 
NUMBER OF PATENTS AT T-1/1000 1.870*** 7.803*** 1.371*** 3.986* 0.870** 0.533 
 [0.614] [1.838] [0.333] [2.113] [0.387] [0.344] 
PATENT AT T-1 (DUMMY) -0.0529 2.112*** 0.825* 0.852 1.180** 1.635*** 
 [0.662] [0.769] [0.459] [0.519] [0.596] [0.600] 
PATENT STOCK/EMPLOYEES -3.743 -1.985 -1.197 -0.0616 -0.0145 2.109 
 [2.508] [1.453] [2.722] [2.070] [0.352] [1.826] 
Observations 38 49 37 34 48 34 
No of failures 29 34 30 29 36 29 
Time at risk 61 76 58 48 61 41 
Log pseudo-likelihood -31.418 -36.712 -30.690 -22.828 -58.623 -36.760 
Wald chisq.  111.75*** 146.73*** 44.02*** 37.35*** 100.23*** 316.86*** 

Robust standard errors in brackets. Efron method for ties. Standard errors adjusted for clustering on firms. 
* significant at 10%; ** significant at 5%; *** significant at 1% 



 48

Table 11: Conditional Frailty Cox models for persistence in innovation  
 HUBS ROUTERS SWITCHES 
 [1] [2] [3] [4] [5] [6] 
DIST FRONT HUBS T-1 (STANDARD.) -0.257 -0.242     
 [0.128]** [0.131]*     
DIST FRONT ROUTERS T-1 (STANDARD.)   -0.416 -0.428   
   [0.136]** [0.133]**   
DIST FRONT SWITCHES T-1 (STANDARD.)     -0.215 -0.282 
     [0.123]* [0.134]** 
SIZE (EMPLOYEES/100) 0.401 0.398 0.068 0.104 0.011 0.011 
 [0.131]*** [0.135]*** [0.077] [0.078] [0.116] [0.116] 
SIZE SQ (EMPLOYEES/100 SQUARED) -0.014 -0.014 -0.002 -0.004 -0.002 -0.002 
 [0.005]*** [0.005]*** [0.002] [0.003] [0.004] [0.004] 
SALES (LOG - MIL$) -0.145 -0.233 -0.035 -0.091 -0.141 -0.141 
 [0.113] [0.123]* [0.086] [0.091] [0.141] [0.141] 
AGE (LOG - YEARS) -0.158 -0.157 -0.212 -0.391 0.167 0.167 
 [0.229] [0.231] [0.160] [0.169]** [0.219] [0.219] 
NUMBER OF PRODUCTS AT ENTRY  0.002  -0.028  -0.092 
  [0.116]  [0.101]  [0.083] 
NUMBER OF PATENTS AT T-1/1000  0.789  0.878  0.754 
  [0.628]  [0.496]*  [0.479] 
PATENT AT T-1 (DUMMY)  0.849  0.438  1.148 
  [0.324]***  [0.268]**  [0.348]*** 
PATENT STOCK/EMPLOYEES  -1.956  -0.349  -0.385 
  [1.199]  [0.854]  [0.355] 
Observations 126 126 135 135 98 98 
2 Frailty Test (all i=0) 31.68*** 22.86** 16.31* 10.93* 0.01 0.01 
Log pseudo-likelihood -201.9 -197.4 -200.3 -196.8 -163.7 -155.7 
LR Test 63.6*** 64.7*** 40.2*** 40.4*** 4.31 20.4** 

Robust standard errors in brackets. Efron method for ties. Standard errors adjusted for clustering on firms. 
* significant at 10%; ** significant at 5%; *** significant at 1% 
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Table 12: Conditional risk set Cox models for persistence in innovation: dummy variable models. 
 HUBS ROUTERS SWITCHES 
 [1] [2] [3] [4] [5] [6] 
DIST FRONT (2ND TERTILE) -0.288 -0.291 -0.069 -0.063 -0.210 -0.051 
 [0.243] [0.261] [0.185] [0.180] [0.258] [0.221] 
DIST FRONT (3RD  TERTILE) -0.526 -0.374 -0.469 -0.562 -0.387 -0.471 
 [0.211]** [0.199]* [0.207]** [0.194]*** [0.274] [0.270]* 
SIZE (EMPLOYEES/100) 0.215 0.215 0.056 0.105 -0.012 0.009 
 [0.078]*** [0.094]** [0.053] [0.056]* [0.091] [0.074] 
SIZE SQ (EMPLOYEES/100 SQUARED) -0.007 -0.009 -0.002 -0.004 -0.001 -0.001 
 [0.002]*** [0.004]*** [0.002] [0.002]** [0.002] [0.002] 
SALES (LOG - MIL$) -0.074 -0.172 0.010 -0.067 0.059 -0.152 
 [0.056] [0.069]** [0.058] [0.063] [0.095] [0.091]* 
AGE (LOG - YEARS) -0.127 -0.241 -0.194 -0.370 -0.075 0.101 
 [0.127] [0.153] [0.075] *** [0.079]*** [0.138] [0.108] 
NUMBER OF PRODUCTS AT ENTRY  0.022  0.047  0.0517 
  [0.061]  [0.070]  [0.031]* 
NUMBER OF PATENTS AT T-1/1000  1.504  0.683  0.834 
  [0.336]***  [0.154]***  [0.347]** 
PATENT AT T-1 (DUMMY)  0.742  0.495  1.056 
  [0.211] ***  [0.182]***  [0.242]*** 
PATENT STOCK/EMPLOYEES  -2.039  -0.059  -0.472 
  [0.883] **  [0.465]  [0.168]*** 
Observations 126 126 135 135 98 98 
2 Frailty Test (all i=0) 34.80*** 22.44** 20.73** 15.22** 0.01 0.01 
Log pseudo-likelihood -202.6 -198.2 -199.7 -195.85 -164.4 -156.4 
LR Test 65.5*** 62.9*** 47*** 48.6*** 2.94 18.9** 

Robust standard errors in brackets. Efron method for ties. Standard errors adjusted for clustering on firms. 
* significant at 10%; ** significant at 5%; *** significant at 1% 
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APPENDIX 
 

Table A1: OLS regressions on observed hub prices 
  
BACKPLANE CAPACITY (LOG) 0.229 
 [0.055]*** 
MAXIMUM NO OF PORTS (LOG) 0.551 
 [0.066]*** 
TOKEN RING (DUMMY) 0.336 
 [0.141]** 
OTHER STANDARDS (DUMMY) 0.669 
 [0.179]*** 
MANAGEMENT SOFTWARE (DUMMY) 0.185 
 [0.118] 
CONSTANT 6.052 
 [0.307]*** 
Observations 518 
Rsq 0.802 
Dependent variable: logarithm of deflated list product price. Robust standard errors in brackets 
*Significant at 10%, ** significant at 5%, *** significant at 1%. Year and firm dummy variables omitted for clarity 
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Table A2: OLS regressions on observed router prices 
  
MAXIMUM NO OF LANS (LOG) 0.503 
 [0.069]*** 
MAXIMUM NO OF WANS (LOG) 0.376 
 [0.058]*** 
FRAME RELAY SUPPORT (DUMMY) 0.166 
 [0.081]** 
ISDN & ATM SUPPORT (DUMMY) 0.045 
 [0.132] 
SONET SUPPORT (DUMMY) 0.425 
 [0.213]** 
OSPF ALGORITHM SUPPORT (DUMMY) 0.071 
 [0.107] 
RIP1-2 ALGORITHM SUPPORT (DUMMY) -0.222 
 [0.150] 
APPLETALK PROTOCOL SUPPORT (DUMMY) -0.053 
 [0.104] 
DECNET PROTOCOL SUPPORT (DUMMY) 0.186 
 [0.129] 
IPX PROTOCOL SUPPORT (DUMMY) -0.059 
 [0.111] 
SNA PROTOCOL SUPPORT (DUMMY) 0.141 
 [0.073]** 
TCP/IP PROTOCOL SUPPORT (DUMMY) 0.244 
 [0.167] 
XNS PROTOCOL SUPPORT (DUMMY) 0.141 
 [0.108] 
CONSTANT 7.785 
 [0.402]*** 
Observations 731 
Rsq 0.850 
Dependent variable: logarithm of deflated list product price. Robust standard errors in brackets 
*Significant at 10%, ** significant at 5%, *** significant at 1%. Year and firm dummy variables omitted for clarity 
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Table A3: OLS regressions on observed switch prices 
  
BACKPLANE CAPACITY (LOG) 0.191 
 [0.038]*** 
NO OF ETHERNET PORTS (LOG) 0.068 
 [0.030]** 
NO OF FAST ETHERNET PORTS (LOG) 0.014 
 [0.040] 
NO OF FDDI PORTS (LOG) 0.031 
 [0.069] 
NO OF TOKEN RING PORTS (LOG) 0.116 
 [0.043]*** 
NO OF 100VG ANY-LAN PORTS (LOG) 0.185 
 [0.131] 
NO OF ATM PORTS (LOG) 0.043 
 [0.061] 
NO OF GIGABIT ETHERNET PORTS (LOG) 0.370 
 [0.066]*** 
VLAN CAPABILITY (DUMMY) 0.145 
 [0.115] 
CHASSIS (DUMMY) 0.815 
 [0.160]*** 
FIXED CONFIGURATION (DUMMY) -0.064 
 [0.090] 
CONSTANT 8.341 
 [0.334]*** 
Observations 513 
Rsq 0.666 
Dependent variable: logarithm of deflated list product price. Robust standard errors in brackets 
*Significant at 10%, ** significant at 5%, *** significant at 1%. Year and firm dummy variables omitted for clarity 
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Table A4: Correlation matrices  
Hubs N=126 1 2 3 4 5 6 7 
1. DIST FRONT HUBS 1       
2. NUMBER OF PRODUCTS AT ENTRY -0.3676 1      
3. SIZE (EMPLOYEES/100) 0.067 -0.2558 1     
4. SALES (LOG - MIL$) 0.0164 -0.206 0.9428 1    
5. AGE (LOG - YEARS) -0.0076 -0.1034 0.5853 0.3511 1   
6. NUMBER OF PATENTS AT T-1/1000 0.165 -0.2549 0.3966 0.2022 0.5868 1  
7. PATENT AT T-1 (DUMMY) 0.0641 -0.2057 0.6979 0.5833 0.6105 0.5398 1 
8. PATENT STOCK/EMPLOYEES 0.0149 -0.0988 0.3504 0.2408 0.5161 0.2843 0.2702 
Routers N=135        
1. DIST FRONT ROUTERS 1       
2. NUMBER OF PRODUCTS AT ENTRY 0.0909 1      
3. SIZE (EMPLOYEES/100) 0.0006 -0.1081 1     
4. SALES (LOG - MIL$) -0.0892 -0.0851 0.7682 1    
5. AGE (LOG - YEARS) 0.0522 0.1593 0.4015 0.4117 1   
6. NUMBER OF PATENTS AT T-1/1000 0.0633 0.059 0.6596 0.4823 0.4963 1  
7. PATENT AT T-1 (DUMMY) -0.1386 0.1307 0.1818 0.4257 0.3918 0.2879 1 
8. PATENT STOCK/EMPLOYEES 0.1029 0.1162 0.3265 0.3451 0.349 0.5058 0.4335 
Switches N=98        
1. DIST FRONT SWITCHES 1       
2. NUMBER OF PRODUCTS AT ENTRY -0.1954 1      
3. SIZE (EMPLOYEES/100) -0.0694 -0.0397 1     
4. SALES (LOG - MIL$) -0.1738 0.0626 0.7551 1    
5. AGE (LOG - YEARS) -0.0738 -0.0068 0.6437 0.6511 1   
6. NUMBER OF PATENTS AT T-1/1000 -0.0159 -0.0028 0.6715 0.5215 0.4757 1  
7. PATENT AT T-1 (DUMMY) -0.1763 0.1361 0.2575 0.5196 0.1871 0.221 1 
8. PATENT STOCK/EMPLOYEES -0.0043 -0.0339 0.1019 0.118 0.2237 0.1337 0.0644 
All markets N=359        
2. NUMBER OF PRODUCTS AT ENTRY - 1      
3. SIZE (EMPLOYEES/100) - -0.1333 1     
4. SALES (LOG - MIL$) - -0.044 0.6964 1    
5. AGE (LOG - YEARS) - -0.0376 0.4457 0.5277 1   
6. NUMBER OF PATENTS AT T-1/1000 - -0.0528 0.6747 0.5317 0.5065 1  
7. PATENT AT T-1 (DUMMY) - 0.0453 0.2407 0.4759 0.2969 0.2612 1 
8. PATENT STOCK/EMPLOYEES - -0.0701 0.146 0.1891 0.2677 0.2289 0.1638 



 

                                                 
1 Concerning the interpretation of the threshold effect, Geroski et al. (1997) argue that while dynamic economies may 

lead to longer and more persistent spells of innovation by firms, they do so only when the threshold of initial or pre-spell 

innovative activity is high enough to temporarily overcome strong ‘within spell forces’ which may delay the production 

of innovation. In Malerba et al. (1997) the threshold has been found to constrain the innovative activity especially of small 

and medium firms 

2 Further empirical investigations based on country level innovation surveys are: Roper and Hewitt-Dundas (2008) who 

study persistence in both product and process innovation for a sample of innovators in Ireland; Clausen et al. (2012) who 

find that differences in persistence between product and process innovations are mediated by firms’ innovation 

strategies for a sample of Norwegian high-tech and low-tech firms; Raymond et al. (2010) who find that firms in the high-

tech sector are more persistent innovators than firms in the low-tech one. Further evidence on persistence is found by 

both Peters (2009) and Castillejo et al. (2004). The former paper studies persistence both in manufacturing and services 

for a sample of German firms. The latter provides evidence on the case of Spanish manufacturing firms. Both these 

papers measure persistence in terms of total innovation expenditure an indicator of input in the innovation process. 

3 Alternatively incumbents may rely upon other traditional means, such as patents, to continue to benefit from their 

market power. In the LAN industry, particularly during the period under examination here, competition mainly 

revolved around the definition and commercialization of open transmission and communication standards. Therefore, 

patents played a minor role as appropriation tools. 

4 The marginal benefits also set the conditions for a leader ‘to persist being a leader’. These conditions depend on the 

opportunity costs of switching to a new technology. When opportunity costs are negligible, as in Schivardi and 

Schneider (2008), technological leaders are always able to maintain their leadership. When the opportunity costs are 

assumed to be inversely related to the relative advantage of the leader, as in Metcalf (2011), the leader firm becomes less 

able to keep its leadership the higher its initial advantage with respect to competitors. In our paper we do not examine 

the issue of persistence in technological leadership. Rather we focus on the relationship between technological leadership 

and innovation persistence.  

5 Lerner (1997) studies the technology race in the Hard Disk Drive industry. He finds that laggards whose technological 

performance lies between 25% and 74% of that of the leader are most likely to innovate. No effect is found for the firms 

located in the bottom 25%. 

6 Alternatively, expansion of a firm’s product portfolio to adjacent markets may be the consequence of ‘brand extension’ 

when consumers are uncertain about product characteristics and brands may play an informational role (Choi, 1998), or 

follow from a strategy of entry deterrence (Choi and Scarpa, 1992).  
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7 McElheran (2010) provides a recent review of these topics. 

8 According to Levinthal (1997) product complexity can be assessed along two dimensions: number of product 

characteristics and extent of interdependences among the characteristics. The higher the number of technical 

characteristics the higher the extent of complexity. The stronger the level of interdependences the more difficult is to 

change a characteristic without repercussions on the others and therefore on the overall design of a product. 

9 Since technological leadership is measured in terms of firm’s location with respect to the technological frontier, we need 

to use information on the first product introduction to calculate this indicator. Another source of left censoring is the fact 

that routers and hubs already existed prior to 1990. 

10 For the exposition of the model we draw upon Squicciarini (2009). 

11 An alternative would be to measure the technological frontier by relying upon an overall performance measure (such 

as data processing speed) and/or upon a single ‘representative’ technical characteristic. With respect to these options, 

our approach has at least two advantages. First and foremost it is more comprehensive as it allows the inclusion of 

several technological characteristics which may impact on the quality adjusted price of the new product. Second, it 

allows us to include both firm and time fixed effect in the regression. Controlling for firm fixed effect is particularly 

important to capture unobservable effects (i.e. brand effects), firms’ specific practices (i.e. company related quantity 

discounts), and/or firms’ specific innovation strategies (i.e. companies using high quality components through licenses) 

which may impact on prices. Results for the hedonic price regressions for each market are reported in the Appendix.  

12 For private firms this information was not always available with consequent loss of observations in the econometric 

exercise.  

13 It is important to stress that leadership in terms of market sales does not necessarily entail technological leadership 

measured in terms of location with respect to the technological frontier. It is possible that in some markets new entrants 

(incumbents) may turn out to be technological leaders (laggards) even though their total sales are relative lower (higher) 

with respect to incumbents (new entrants). In the LAN industry, Cisco Systems, one of the leaders in terms of market 

shares, is arguably considered to be also the technological leader both in term of patent portfolio and overall quality of 

its products (Hochmuth, 2006).  

14 PATENT STOCK accounts for the number of citations received by the patents. It is depreciated at the 15% rate.  

15 A qualification is in order here. Our patent based indicators do not simply consider the total number of patents 

granted to each firm. Instead we consider only the patents that are related to the specific LAN product (i.e. hubs, routers, 

switches). Identification of these patents is done on the basis of the main International Patent Classification (IPC) class (at 

8 digits) of the patent. 
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16 We assessed the degree of multicollinearity in our survival models by estimating the same models with Ordinary Least 

Squares techniques, using the logarithm of the time spells as dependent variable, and by computing the Variance 

Inflation Factor (VIF). For every model, a value of VIF higher than the standard tolerance level of 5 was detected only for 

the estimates associated with SIZE and SIZE SQ. In all the estimated models the average VIF was never higher than the 

maximum tolerance level of 10. 

17 In the TPM analysis, we define technological leaders (laggards) those firms whose distance to technological frontier at 

entry is lower (higher) than the average in that year. 82% of incumbents in our sample introduce their ‘best’ product 

within three years after entry. 65% do it within the first year.   

18 The average firm in our sample has introduced three products. Thus we adapt Cefis’ (2003) definition to our case and 

define ‘great innovators’ firms that have introduced at least three new products in at least one year included in our time 

period. Between 30-38% of firms in our sample are great innovators depending on the specific market.  

19 In this and in the following regressions, all marginal effects are calculated with reference to the final model 

specification (Model 3).  

20 This focus implies a non trivial reduction of the sample size available for our analyses and may raise some concerns 

about the unbiasedness of our estimates. In fact, as pointed out by Firth (1993), the phenomenon of monotone likelihood 

(which causes the parameter estimates of a Cox model to diverge, with infinite standard errors, while the likelihood 

converges to a finite value) primarily occurs in small samples, with substantial censoring and several highly predictive 

covariates. This problem has been analyzed more in deep by Heinze and Schemper (2001), who studied the behaviour of 

the bias-reducing penalized likelihood estimator proposed by Firth (1993) using Monte-Carlo simulations and showing 

that monotone likelihood rarely occurs with continuous covariates and few censored observations. On the basis of these 

findings we are quite confident on the accuracy of our estimates none of ore estimated coefficients or standard errors 

tend to diverge, almost all of our covariates, except PATENTS (T-1), are continuous and less than 10% of our 

observations are censored. 

21 In this paper the authors show, by using simulated and real data taken from clinical trials, that most of the commonly 

used model for repeated events, such as the Conditional-Cox and the Frailty-Cox models, lead to biased estimates when 

both true event dependence and unobserved heterogeneity are simultaneously present, whereas with the CFC model the 

bias disappears at cost of a minimal loss of efficiency. 

22 This assumption seems reasonable in the presence of high adjustment and sunk costs (see for instance: Himmelberg 

and Petersen, 1994). 

23 The excluded category is the first tertile including the closest firms to the technological frontier. 




