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Abstract

In this paper we model interbank liquidity networks as �ow networks. The aim is to

compare the ability of di¤erent network structures to cope with the liquidity risk faced by

the banks. In particular, we analyze the e¢ ciency of three network structures �star-shaped,

complete and incomplete � in transferring liquidity among banks. It turns out that the

star-shaped interbank networks achieve the full coverage of liquidity risk with the smallest

amount of interbank deposits held by each bank. This implies that star-shaped networks

generate the minimum counterparty risk for the banks. Moreover, the star-shaped network

is more resilient to systemic risk: the default of one or more banks is less likely to cause the

default of the entire system in a star-shaped network than in a complete network. These

results provides a rationale of the consistent empirical evidence that interbank network are

sparse networks.

JEL Classi�cation: D85, G21.

Keywords: Interbank Network, Liquidity Coinsurance, Flow Networks.

�We thank Marco della Seta, Fabio Feriozzi, Ra¤aele Mosca, Wolf Wagner and seminar participants

at the Financial Networks Conference 2011 (Geneva), Tilburg University and University of Pescara for

helpful comments. The usual disclaimer applies.
yCentER, EBC, Department of Finance, Tilburg University. E-mail: fabio.castiglionesi@uvt.nl.
zUniversity of Pescara, Faculty of Economics. E-mail: m.eboli@unich.it.

1



1 Introduction

One of the main functions provided by banks is liquidity transformation. Banks are there-

fore characterized by a maturity mismatch between long-term assets and short-term lia-

bilities. A necessary consequence is that banks are exposed to a substantial amount of

liquidity risk. As a form of coinsurance, banks share such a risk by holding gross liquid

positions: each bank deposits a sum in other banks and receives deposits from other banks.

These cross-holdings of interbank deposits form an interbank liquidity network.

On the one hand, this network of interbank deposits serves the purpose of re-allocating

liquidity from banks that have a liquidity surplus to banks that face liquidity de�cits. On

the other hand, the interbank network becomes a channel of contagion in case of defaults.

By choosing the amount of interbank deposits, banks face a trade-o¤. The larger the

interbank deposits and the larger the possible liquidity transfers (hence the larger the

insurance against liquidity risk). However, the larger the interbank deposits and the larger

the exposure to counterparty and systemic risk, that is the risk of direct and indirect

contagion, respectively. It is then relevant to identify the network shape that allows the

largest liquidity transfer with the smallest interbank exposures.

We address this issue in a novel way by modelling an interbank network as a �ow

network and applying some of its properties.1 A �ow network is a weighted directed graph

endowed with source nodes and sink nodes. In our model, the source nodes are attached

to the banks that experience a liquidity surplus, while the sink nodes are attached to the

banks that face a liquidity de�cit. We model an interbank liquidity transfer as a �ow

going from the source nodes to the sink nodes; a �ow that is driven by interbank deposits

withdrawals.

Under the assumption that interbank deposit withdrawals are coordinated by a social

planner, we evaluate and compare the performance of di¤erent interbank network structures

in providing full coverage of liquidity risk (i.e., the complete transfer of liquidity from

surplus banks to de�cit banks). We consider a complete, a star-shaped (also known as

�money centre�) and an incomplete interbank network. In the complete network every

bank is connected to all other banks; in the star-shaped network a bank is at the center

1See Ahuja, Magnanti, and Orlin [1] for an exhaustive textbook treatment of �ow networks.
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and it is connected to all peripheral banks and the latter are connected only with the bank

at the center; in the incomplete network each bank is connected only to part of the other

banks. It turns out that each structure attains full insurance against liquidity risk but with

di¤erent amount of interbank deposits. We show that the star-shaped network achieves

the full coverage of liquidity risk with the minimum amount of interbank deposits.

The intuition of this result is the following. The cross-holding of interbank deposits

between pair of banks that are in the same liquidity condition �i.e., either both in de�cit or

both in surplus �does not a¤ect the ability of the network to transfer liquidity from surplus

banks to de�cit bank (also known as the carrying capacity of a network). Interbank deposits

between banks that are both in need of liquidity, or both have an excess of liquidity, are

somehow redundant. Complete and incomplete networks have a carrying capacity equal

to the total of interbank deposits that de�cit banks hold in surplus banks. Therefore,

the interbank deposits that de�cit banks hold in other de�cit banks represent an �excess�

of interbank exposure (with respect to the coverage of liquidity risk). In a star-shaped

network instead the carrying capacity is equal to the total of interbank deposits that

de�cit banks hold in the bank at the center. In a star-shaped network the central node

acts as a hub that channels liquidity �ows from banks in surplus towards banks in de�cit

without excessive interbank exposure. The star-shaped interbank network achieves the

largest possible liquidity transfer for any given size of the interbank deposits.

The previous result has two consequences concerning the exposure of a network to �-

nancial contagion. First, the star-shaped network guarantees the liquidity risk coverage

with the minimum expected losses due to the default of a debtor (i.e., it minimizes coun-

terparty risk). In this respect, a star-shaped network performs better than a complete

network which, in turn, performs better than an incomplete interbank network. Second,

we show that the star-shaped network is less exposed to systemic risk than the complete

network. Ceteris paribus, the minimum shock capable of inducing the insolvency of all

banks in a star-shaped network is strictly larger than the corresponding shock in the case

of a complete network.2 We �nally analyze the performance of the three network structures

when the withdrawal decisions of banks are decentralized and independent. Also when the

withdrawals decisions are not coordinated by the planner, the star-shaped network is the

most e¢ cient in guaranteeing the full coverage of liquidity risk with the minimum exposure

2The comparison on systemic risk cannot be extended to incomplete networks because there are no

general results about contagion thresholds for such a class of networks (see footnote 9 for more details).
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to contagion.

To motivate our analysis, we refer to recent empirical studies that document the struc-

ture of existing interbank networks. This strand of empirical research has been spurred

by the crucial role that interbank markets played in the 2007/2008 �nancial crisis. The

picture that emerges is consistent across di¤erent studies and it sustains our result. Based

on transaction data from the Fedwire system, Soromäki et al. [24] and Beck and Atalay [8]

�nd that the actual interbank lending networks formed by US commercial banks is quite

sparse. It consists of a core of highly connected banks, while the remaining peripheral

banks connect to the core banks. An almost identical feature is found in banking networks

in other countries like the UK, Canada, Japan, Germany and Austria (see, respectively,

Bank of England [7], Embree and Roberts [18], Inaoka et al. [21], Craig and von Peter [14],

Boss et al. [9]). Our model provides a rationale for these �ndings since the star-shaped is

a special case of core-periphery structures, with one node in the core.

Several papers have analyzed empirically the relationship between interbank network

structure and the exposure to contagion. Degryse and Nguyen [15] investigate the evolution

of contagion risk for the Belgian banking system. They �nd that a change from a complete

structure (where all banks have symmetric links) toward a money-centers structure (where

money centers are symmetrically linked to otherwise disconnected banks) has decreased

the risk and impact of contagion. Mistrulli [23] focuses on the Italian interbank network

and, analyzing its evolution through time, �nds that complete connection among banks is

not always less conducive to contagion than other structures. He shows that less connected

networks could be more resilient to contagion. The evidence provided by these studies is

supportive of our results.

The remainder of the paper is organized as follows. In the rest of the introduction, we

discuss the related literature. In section 2 we formalize the interbank network as a liquidity

�ow network. Section 3 analyzes the e¢ cient network (section 3.1) and its implication for

counterparty risk (section 3.2) and contagion risk (section 3.3). Section 4 shows that, when

withdrawal decisions are decentralized, the same results of the e¢ cient network obtain.

Sections 5 concludes. The Appendix contains the proofs.

1.1 Related literature

Our paper stems from the micro-banking literature that investigates the relationship be-

tween interbank deposit structures and systemic risk. This literature focuses on simple
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network structures and ad-hoc liquidity shock occurrences in order to obtain analytical

results, which clearly depend on the assumptions of each model. Allen and Gale [5] show

that the banking system is more fragile when the interbank market is incomplete (cycle-

shaped) than when the interbank market is complete. Brusco and Castiglionesi [11] and

Freixas et al. [20] instead show that an incomplete cycle-shaped interbank market is more

resilient than a complete interbank market.

Similar to the micro-banking literature, the present paper considers the interbank net-

work as a way to eliminate aggregate liquidity risk and it analyzes how di¤erent network

structures are able to cope with idiosyncratic risk. That is, how e¢ ciently interbank net-

works channel liquidity from banks that have excessive liquidity holdings to banks that

are in need of liquidity. Di¤erent from the micro-banking literature, we consider networks

with an arbitrary numbers of banks and, more importantly, a wider realization of liquidity

shocks. While it is common to assume "alternate" liquidity shocks in the banking literature

(i.e., adjacent banks have di¤erent liquidity shocks so they always trade in the interbank

market), we do not restrict the occurrence of liquidity shocks (i.e., adjacent banks can have

the same shock). The present paper also consider star-shaped and incomplete networks

beside the complete and cycle-shaped networks usually studied in the micro-banking liter-

ature.3 This has important implications for the banking literature since one of our results

establishes that incomplete networks are not able to guarantee the reallocation of liquidity

in the interbank market. This implies that cycle-shaped networks, which are a particular

case of incomplete ones, cannot represent an e¢ cient device to reallocate liquidity when a

more general liquidity shock structure is taken into account.

Our analysis is also inspired by the work by Eisenberg and Noe [17]. They represent

the network of payment system as a lattice, and study the �ows of payment that clear

such network of �nancial obligations. Given the operating cash �ows of the agents in the

system and a generic network of obligations, they show that the clearing payments vector

is unique under a mildly restrictive condition.4 Since the clearing payments vector cannot

3Freixas et al. [20] actually analyze also a three-banks example of a money center system, arguing that

too-central-to-fail policies could be rationalized by avoiding contagious defaults to the peripheral banks.

Unlike the present paper, they cannot compare the money center system with other structures of interbank

networks.
4Eisenberg and Noe [17] use Tarski�s �xed-point theorem to establish that the clearing payments vector

has a lower and an upper bound. To guarantee uniqueness, they introduce a regularity condition that

requires that in the set of agents involved in a contagion process there is at least one agent with strictly
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be characterized in analytical form for generic networks, Eisenberg and Noe [17] provide a

computational characterization of such a vector.5 Our work also studies �ows of payments

in networks of obligations, but our method and focus are di¤erent. We use �ow network

theory (as opposed to lattice theory) to characterize, in an analytical fashion, the maximum

�ow of interbank payments. We focus our analysis on three speci�c classes of networks, in

order to compare their e¢ ciency in providing the full coverage of the liquidity risk.

The present paper is also related to the growing theoretical literature that model inter-

bank relationship as networks (see Allen and Babus [3] for a survey). Leitner [22] shows

how the threat of contagion may be part of an optimal network. The possibility that the

failure of a bank can spread to the entire network makes ex-ante optimal to establish links

among banks to obtain mutual insurance and prevent the collapse of the network. Babus

[6] shows that this form of insurance between banks emerges endogenously in a network

formation game. Castiglionesi and Navarro [12] instead rationalize the formation of the

interbank network structure as the trade o¤ between liquidity coinsurance and counter-

party risk. Allen et al. [4] analyze the interaction between �nancial connections due to

overlapping portfolio exposure and systemic risk.

An alternative approach has resorted to numerical simulations to shed some light on

the dynamics of contagion processes in generic and complex �nancial networks. In this

literature the analysis relies on numerical simulations of default contagion either on ran-

domly generated networks (see Alenton et al. [2] and Cifuentes et al. [13]) or on national

interbank systems (see Upper [25]). Our approach is alternative to the previous ones since,

to the best of our knowledge, the present paper is the �rst to apply �ow theory to study

the e¢ ciency of interbank networks.

2 The Interbank Network

Let N := (
;�) be an interbank network, i.e., a connected, directed and weighted graph.

The node !i (i = 1; 2; :::; n) in 
 represents a bank and the links in � � 
2 represent

the interbank deposits that connect the members of 
 among themselves. The short term

liabilities of a bank !i in 
 comprise customers (households) deposits, hi; and interbank

positive operating cash �ow.
5The authors characterise the clearing payment vector as the solution of a linear programming problem

and of an algorithm that numerically computes such a vector.
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deposits, di: For simplicity, we assume that a bank in 
 has no long-term liability but its

own equity ei. On the asset side, a bank !i holds long-term assets, ai, which are liabilities of

agents that do not belong to 
, and short-term assets ci, which are deposits made by bank

!i in other banks of the network. The budget identity of a bank is: ai + ci = hi + di + ei.

A link lij 2 � represents the interbank obligations, and its direction goes from the debtor

node !i to the creditor node !j. The weight of the link lij 2 � is equal to the amount of
money cji that bank !j has deposited in bank !i.

To analyze the �ows of liquidity that can be carried by an interbank networkN , we need

to model a liquidity shock. In this way, we transform the network N into a �ow network.

We assume that the liquidity shock consists of a reallocations of customer deposits across

banks, while the aggregate liquidity in the network remains constant. Formally, a liquidity

shock is an ordered vector of scalars � = [�1; �2; :::; �n], where
P


 �i = 0. We consider

symmetric liquidity shocks: that is, half of the banks faces an increase in customer deposits

equal to the scalar �, while the other half faces a decrease in customer deposits equal to

its opposite, � �. Notice this is a conventional way of representing the liquidity risk due

to �uctuations in customer deposits (see, among others, Allen and Gale [5] and Brusco

and Castiglionesi [11]). To each node !i in 
 that experiences an increase of customer

deposits, we attach a source node si and a link lsi, that connects the source node to the

bank. Correspondingly, to each node !i in 
 that faces a decrease of such deposits, we

attach a sink node ti and a link lit, that connects the bank to the sink node.

A liquidity shock that hits an interbank network N is then de�ned as a four-tuple

� = fS; T;�+;��g composed by: i) the set of source nodes S = fsij8i 2 
 s.t. �i > 0g ;
ii) the set of sink nodes T = ftij8i 2 
 s.t. �i < 0g ; and iii) the sets of links �+ = flsig
and �� = flitg that connect sources and sinks to the corresponding banks. Adding a
liquidity shock � to an interbank liquidity network N we obtain an interbank liquidity

�ow network L, which is an n-tuple L = fN;�;�g = f
;�; S; T;�+;��;�g, where � is
a capacity function that associates to the links in � a capacity equal to the value of the

corresponding interbank deposits, and to the links in �+ and �� a capacity equal to the

value of the corresponding variations of customers�deposits.

An interbank liquidity �ow in L is a value assignment to the links in �; �+ and ��

such that: i) no link carries a �ow larger than its own capacity (capacity constraint); ii) the

divergence of a node, i.e., the di¤erence between its in�ow and its out�ow, is null for all

nodes in 
 (�ow conservation property). A �ow that complies with both these requirements
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is said to be feasible. In other words, a �ow in a �ow network is feasible if it comes out

of the sources, crosses the network and ends entirely in the sinks, without exceeding the

capacity of the links that carry it. The value of the largest feasible �ow that can cross a

�ow network is called the carrying capacity of the network. As will be clearer below, the

carrying capacity depends on the structure of the network.

Finding the carrying capacity of a network is a fundamental problem in the theory of

�ow networks �known as the maximum �ow problem. A solution to this problem is given

by the minimum cut-maximum �ow theorem provided by Ford and Fulkerson [19]. This

theorem states that the carrying capacity of a network is equal to the capacity of the cut

which has the smallest capacity among all possible cuts of the network.6 In other words,

the cut of the smallest capacity is the bottleneck of a network and sets the upper bound

to the magnitude of the �ows that such a network can transfer from sources to sinks. The

maximum feasible �ow of a network is achievable by a network administrator, with a proper

value assignment to the �ows carried by each link in �:7

In the present analysis, the convenience of the Ford-Fulkerson theorem is that the

maximum liquidity transfer implementable by an interbank liquidity network is achieved

by a social planner who acts as a network administrator. In the next Section (Lemmas

1, 2 and 3) we apply the Ford-Fulkerson theorem to determine the value of the carrying

capacity of an interbank network.

3 The E¢ cient Network

The e¢ ciency of an interbank network in providing coverage from liquidity risk, depends

on the banks� choice about deposits placements and withdrawals. Ex ante, before the

occurrence of the liquidity shock, the banks decide how much to deposit in other banks,

and in which banks to place such deposits. These choices determine the shape of the

network N , i.e., the set of existing links � and the capacities of such links. We take such

decisions as given, and we focus the attention on three network structures: the star-shaped,

complete and incomplete regular networks.

6A cut is a partiton
�
U;U

	
of the set of nodes of a �ow network such that S � U and T � U; i.e. all

source nodes are in U and all sink nodes are in U . The capacity of a cut is the sum of the capacities of its

forward links, which are the links going from U into U .
7To obtain the maximum �ow, the network administrator must ensure that all forward links that cross

the minimum cut are �lled to capacity, while all backward links that cross such a cut must carry no �ow.
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The second relevant decision that banks have to made after the shock occurs, is how

much to withdraw and from whom. This decision determines the actual liquidity transfer

that, starting from the surplus nodes, reaches the de�cit nodes. The e¢ cient network

is derived under the assumption that the withdrawals decisions of the banks in 
 are

coordinated by a network administrator (who acts as a central planner).8 The objective of

the planner is to achieve the complete coverage of liquidity risk with the minimum amount

of interbank deposits c hold by banks.

We also make the following assumptions to simplify the analysis and the comparison of

complete, incomplete and star-shaped networks:

1. In the complete and incomplete networks, all banks are identical. In the star-shaped

network, all peripheral banks are identical and the composition of the balance sheet

of the central node is assumed to be proportional to the one of a peripheral node,

i.e. they have the same balance sheet ratios.

2. All deposits in a network have the same size: cij is the same for all lji in �.

Assumption 1 is not strictly necessary. All the results presented below hold as long as

all banks in 
 are �proportional�to one another, that is they have the same ratios between

pairs of their balance sheet items. Assumption 2 is coherent with assumption 1 and the

assumption of symmetric shock (�;��): if identical banks face the same liquidity risk, it
is plausible that they deposit in other banks the same amount of deposits.

To evaluate and compare the performance of the three di¤erent interbank �ow networks,

we proceed in two steps. For each network considered, we �rst establish the conditions that

ensure that the complete coverage of liquidity risk is feasible. In other words, we identify

su¢ cient and necessary conditions for the existence of interbank liquidity transfers which

are large enough to cover the liquidity shortages generated by the liquidity shock. Then,

given those conditions, we establish for each network structure the minimum interbank

deposit that supports the optimal re-allocation of liquidity.

3.1 Full Coverage of Liquidity Risk

An interbank network can provide full coverage of liquidity risk only if its carrying capacity

is large enough to reallocate deposits across banks, satisfying the liquidity needs generated

8In Section 4 we analyze decentralized banks withdrawal decisions.
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by the changes in customers�deposits. To be able to fully cover the liquidity risk posed

by symmetric shocks (�, � �), an interbank network L must be able to carry a �ow larger
than or equal to (n=2)�, which is the total liquidity need of the banks in de�cit.

It is important to highlight that the coverage of liquidity risk in our analysis corre-

sponds to the �rst-best allocation characterized by Allen and Gale [5]. To apply �ow

network theory to their environment, it is su¢ cient to associate to the banks with an high

liquidity need a sink node and to the banks with a low liquidity need a source node.9

Like in Allen and Gale, where the �rst best allocation is obtained with di¤erent sizes of

interbank deposits, depending on the network considered, full coverage of liquidity risk is

here guaranteed with di¤erent interbank exposures depending on the network at hand. We

generalize the analysis by Allen and Gale considering networks with an arbitrary number

of banks, and alternative structures like the star-shaped.

1. Star-shaped Networks. A star-shaped interbank network consists of a central node,

!c 2 
; that places a deposit in each of the remaining n � 1 peripheral banks which, in
turn, place their deposits in !c and exchange no deposits among themselves. Let Ls =�

;�s; S; T;�+;��;�

	
be a star-shaped interbank liquidity �ow network that complies

with the above assumptions, i.e. �s = flic; lciji 2 
n!cg, and the capacity function �
assigns i) a capacity equal to � to all the links in �+ and ��, and ii) a capacity equal to c

to all the links in �s. That is, c is the amount deposited by each peripheral bank in !c and

is the amount that the central node deposits in each of the peripheral ones. Moreover, let


+ be the set of banks that experience a positive change in customers deposits, and 
�

be the set of banks that experience a negative change in customers deposits.

Lemma 1 The carrying capacity of a star-shaped interbank liquidity �ow network Ls is

equal to (n=2)� if c � �. Conversely, if c < �; then the carrying capacity of Ls is equal to
(n=2)c.

Thus, for all c � �, the carrying capacity of a network Ls is equal to the value of a

complete liquidity transfer. In a star-shaped network the full coverage of liquidity risk is

9Following the notation of Allen and Gale [5], let us indicate with !H (!L) the high (low) liquidity need

faced by a bank and with  = (!H + !L)=2 the expected liquidity need. The �ow from the source nodes

would be � = �!L and the �ow to the sink node would be �� = �(!H�): Notice that !H� = �!L:
In Allen and Gale banks use the network to insure against customer deposits �uctuations from the expected

value : In our model, such �uctuations have expected value equal to zero
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attainable as long as the interbank deposits of a peripheral bank are larger than or equal

to the possible liquidity need �. This upper bound is achieved by the social planner that

coordinates banks�withdrawals. We have the following

Proposition 1 In a star-shaped interbank liquidity �ow network Ls, full coverage of liq-

uidity risk is achieved with c � � if interbank deposits withdrawals are coordinated.

2. Complete Networks. In a complete interbank network, each bank places a deposit

in every other bank: �c = flijji 6= j; i; j = 1; :::; ng : Let Lc =
�

;�c; S; T;�+;��;�

	
be

a complete interbank liquidity �ow network where the capacity function � assigns i) a

capacity equal to � to all the links in �+ and ��; and ii) the same capacity cij to all the

links in �s, where
P

j cij = (n � 1)cij = c: As above, let 
+ be the set of surplus banks
and 
� be the set of de�cit banks.

Lemma 2 The carrying capacity of a complete interbank liquidity �ow network Lc is equal

to (n=2)� if c � n�1
n
2�. Conversely, if c < n�1

n
2�; then the carrying capacity of Lc is equal

to n2

4(n�1)c which, for c <
n�1
n
2�; is smaller than (n=2)�.

Therefore the carrying capacity of Lc is equal to min[(n=2)�; n2

4(n�1)c]. A complete

interbank network is able to support the complete liquidity transfer if and only if the total

interbank deposits c hold by each bank is at least n�1
n
2�. In a complete network, this upper

bound to the liquidity transfers is achieved by the central planner. We have the following

Proposition 2 In a complete interbank liquidity �ow network Lc, full coverage of liquidity

risk is achieved with c � n�1
n
2� if interbank deposits withdrawals are coordinated.

3. Incomplete Regular Networks. Generic incomplete interbank networks, i.e. with-

out restrictions on their shape, are di¢ cult to analyze. For the sake of tractability, we

focus the attention on incomplete networks which are regular and bilateral. That is, net-

works where i) all nodes have the same degree, and the indegree and outdegree of each

node are equal;10 ii) deposits are pairwise mutual. In order to ensure that an incomplete

network is capable of reallocating liquidity across banks, it is necessary that the network

is connected for any realization of the shock. This connectivity is guaranteed if each bank

10The indegree (outdegree) of a node is the number of its incoming (outgoing) links.
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places deposits in at least n=2 banks. If this condition is not met, a shock may divide the

network into two disconnected sub-networks with no carrying capacity.

Let Lr =
�

;�r; S; T;�+;��;�

	
be an incomplete regular interbank liquidity �ow

network where the capacity function � assigns i) a capacity equal to � to all the links in

�+ and ��, and ii) the same capacity cij to all the links in �r. Let k be the indegree (and

the outdegree) of all nodes in 
; then kcij = c is the amount of interbank deposits held by

each bank. We have the following

Lemma 3 The carrying capacity of an incomplete regular interbank liquidity �ow network

Lr with degree k (with k = n=2; :::n � 1) is equal to (n=2)� if and only if cij � 1
k+1�n=2�,

hence c � k
k+1�n=2 �. Conversely, if cij <

1
k+1�n=2�, then the carrying capacity of L

r is equal

to n
2
(k + 1� n=2)cij which is smaller than (n=2)�.

Thus, in an incomplete regular network with degree equal to k � n=2 and a link

capacity equal to cij � 1
k+1�n=2�, a complete coverage of liquidity risk is possible. Under

these conditions, a central planner can achieve the full coverage of liquidity risk. We have

the following

Proposition 3 In an incomplete regular interbank liquidity �ow network Lr with degree

k � n=2, full coverage of liquidity risk is achieved with c � k
k+1�n=2 � if interbank deposits

withdrawals are coordinated.

We are now in a position to compare the amount of interbank deposits that banks

have to hold to cover the liquidity risk in the three di¤erent interbank networks. If n = 2

the amount of interbank deposits hold in the three networks is the same and equal to the

liquidity shock �. This is quite intuitive since in a two-banks network the structure of the

network does not play any role. If n � 3 the amount of interbank deposits hold in the

star-shaped network is strictly less than the interbank deposit in the complete network.

In the incomplete network the total interbank deposits c that each bank holds depends on

the value of the degree k. Since c is decreasing in k, the minimum interbank deposits in

the incomplete regular network is obtained when k = n � 1, which implies c = n�1
n
2�. In

an incomplete regular network the amount of interbank deposits hold by each bank it is at

best equal to the amount in the complete network, otherwise it is higher.

While the star-shaped network allows each bank to hold interbank deposits equal to

the liquidity shock �, the complete and the incomplete regular networks induce banks to
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hold an amount of interbank deposits that exceeds the value �. And this is so even if

the interbank withdrawals are coordinated by a network administrator. Notice that, for

n large enough, a bank in the star-shaped network holds an amount of interbank deposits

that is roughly half of the amount that a bank holds in the complete network. The saving

on interbank holdings is quite sizable when the number of banks in the network becomes

large.

Why the complete and, a fortiori, the incomplete network force banks to hold too much

interbank deposits? We already noticed that interbank deposits between two banks with

the same liquidity shock (in particular, banks in de�cit) are redundant since they do not

increase the carrying capacity of the interbank network. Formally, in all the three network

structures the cut (
+;
�) is the one with the smallest capacity, that is the one that sets

the upper bound to the value of the feasible �ows. Note that no link between pairs of

banks in 
+ or in 
� crosses such a cut. For this reason, in Lc and Lr, the cross-holding

of deposits among banks in 
� (as well as the cross-holding of deposits among banks in


+) increases the amount of interbank exposures in the network without increasing the

systemic capability of transferring liquidity from surplus banks to de�cit banks. In the

star-shaped network, instead, there is no cross-holding of deposits among de�cit banks or

among surplus banks, thus there are no excessive interbank exposures. In a star-shaped

network each bank can hold an amount of interbank deposits equal to the shock � without

spare interbank exposure.

We summarize the previous analysis in the following

Proposition 4 Assume n � 3, then the star-shaped network achieves the full coverage of
liquidity risk with the minimum amount of interbank deposits.

We have implicitly assumed so far that reducing the size of interbank deposits is valuable

since it reduces the risk of contagion without further de�ning such risk. We are going to

analyze this issue in the next two sections considering two forms of �nancial contagion: i)

counterparty risk, i.e. the risk that a debtor defaults on its obligations, and ii) systemic

risk, i.e. the risk that the network is a¤ected by a domino e¤ect capable of propagating

the losses originated from a shock.
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3.2 Counterparty risk

The counterparty risk faced by a bank is the risk of su¤ering a loss due to the default of a

debtor. Naturally, such a loss grows with the value of the credit granted to the defaulting

debtor. In an interbank network L, the default of a bank !i 2 
 in�icts a loss to the banks
that placed a deposit in !i. Taking the defaults as uncorrelated events, the exposure to

counterparty risk of a member of L grows linearly with its total intra-network exposures.11

Let the defaults of the nodes in 
 be represented by binomial random variables (sol-

vent/insolvent) which are identically and independently distributed. Let p be the proba-

bility of default of a node, and �e 2 [0; 1] be the share of the value of a �nancial claim that
is expected to be lost upon default of the debtor (i.e., the expected loss-given-default).

Then, the loss that a node !i 2 
 expects to incur because of the default of one or more
of its debtors in P (!i) = f!jjlji 2 �g is equal to p�e

P
j cij, for j 2 P (!i). Since

P
j cij

is smaller in Ls than in Lc, and smaller in Lc than in Lr, we have that the star-shaped

network minimizes the exposure of banks to counterparty risk, followed - in order - by the

complete network and the incomplete regular network.

3.3 Systemic risk

Systemic risk is broadly de�ned as the risk that, in a network of agents connected to one

another by �nancial obligations, the initial default of one or more agents can induce the

default of otherwise solvent agents and possibly lead to a systemic crisis involving the entire

network. To compare the exposure to systemic risk of the three network structures, we

represent them as �nancial �ow networks.12 We turn an interbank network N = (
;�)

into a �ow network adding

1. A set A = fakg of source nodes, i.e., nodes with no incoming links, that represent
the external assets held by the members of 
.

2. Two sinks (i.e. terminal nodes with no outgoing links) Q and H; where Q represents

11There is evidence that defaults in �nancial systems are correlated. This evidence has challenged

traditional conterparty risk analysis, and there are attempts to embed correlated defaults in the evaluation

of counterparty risk (see, inter alia, Brigo and Pallavicini [10]). Such analysis would fall beyond the limits

of this paper and we content ourselves with considering counterparty risk with uncorrelated defaults. We

do however take into account the clustering of defaults in the analysis of systemic risk in Section 3.3.
12For a more general analysis of domino e¤ects in �nancial �ow networks see Eboli [16].
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the shareholders who own the equity of the agents in 
, and H represents the house-

holds who hold debt claims, in the form of deposits and bonds, against the agents in


.

3. Three sets of links: �a =
�
lki
	
, that connect the external assets ak to their owners

in 
; ii) �q =
�
liQ
	
, that connect the agents in 
 to the sink Q, i.e., to their

shareholders; and iii) �h = fliHg that connect the agents in 
 to the sink H, i.e., to
their bondholders and depositors.

Let i) N c =
�

;�c; A;Q;H;�a;�q;�h

	
, ii) N r =

�

;�r; A;Q;H;�a;�q;�h

	
and iii)

N s =
�

;�s; A;Q;H;�a;�q;�h

	
be, respectively, the �nancial �ow networks correspond-

ing to the complete, incomplete and star-shaped interbank liquidity networks de�ned above.

The resiliency to systemic risk of the di¤erent networks is evaluated assuming that at

least one of the banks in 
 goes bankrupt due to an exogenous solvency shock. This shock

is de�ned as a loss of value of some assets ak that causes the insolvency of one or more

banks in the network. This is called the set of primary defaults and it is indicated with

�. To focus on direct balance-sheet contagion, we assume that the solvency shock does

not a¤ect the value of the assets ai of the banks in 
n�. Default contagion occurs if the
losses transmitted by the banks in � to their creditors are large enough to cause secondary

defaults, i.e. the default of one or more banks in 
n�.
As a measure of the systemic risk, we characterize two thresholds of default contagion.

The �rst threshold of contagion � 1 of a network is the smallest shock that is su¢ cient to

cause secondary defaults. The �nal threshold of contagion � 2 is the smallest shock that

is capable of inducing the failure of all nodes in the network. Therefore, ceteris paribus,

the higher these two thresholds are and the larger the size of the external shock capable of

inducing default contagion is (i.e., the more resilient the network is). Particular relevance

has � 2 since it indicates the threshold of the meltdown of the entire network.

We determine both thresholds for the complete and the star-shaped interbank networks,

while for the incomplete regular network we must content ourselves with considering the

�rst threshold of contagion.13 We assume that the total stock of equity, E =
P

i2
 ei, and

the total external debt, H =
P

i2
 hi, are the same in the star-shaped and in the complete

13Final thresholds of contagion of incomplete regular networks can be characterized only for �cycle-

shaped�networks (see Eboli [16]). However, cycle-shaped networks cannot provide full coverage of liquidity

risk like any incomplete regular networks with degree k < n=2 (see also Proposition 3). For this reason we

do not consider cycle-shaped networks.
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networks.14 We start to analyze the complete network since it is easier to compute the two

thresholds of contagion. Indeed, they coincide independently on the composition of the set

of primary defaults. We have the following

Proposition 5 In a complete network N c the �rst threshold of contagion � c1 and the �nal

threshold of contagion � c2 coincide and are equal to

� c1 = �
c
2 = nei + ei

hi
dij
, (1)

where dij = cji is the amount deposited by bank j in bank i.

Under the assumption that all banks in N c are equal to one another, we have E = nei,

H = nhi and di = (n� 1)dij. Therefore the total intra-network exposures of the banks in
N c is equal to Dc =

P
i2
 di = (n� 1)

P
i2
 dij = (n� 1)ndij. Hence equation (1) can be

rewritten as

� c1 = �
c
2 = E +

EH

Dc

n� 1
n

. (2)

In the star-shaped network the two thresholds of contagion may coincide or not de-

pending if the central node is in the set of primary defaults or not. We have the following

Proposition 6 If the central node !c is in the set of primary defaults �, then in a star-

shaped network N s the �rst threshold of contagion � s1 and the �nal threshold of contagion

� s2 coincide and we have either

� s1 = �
s
2 = (n� 1)ep + ec + ep

hc
dp
for � = !c, (3)

or

� s1 = �
s
2 =

�
(n� 1)ep + ec + ep

hc
dp

��
1 +

hp
dp

�
��c

hp
dp
for � = f!c; !pj for some p 2 
n!cg ,

(4)

where �c is the loss of value of assets ac borne by the central node.15

14This assumption is made to compare the resiliency of di¤erent networks. In the present analysis this

assumption is not restrictive since banks do not face any agency problem. In an environment with moral

hazard instead the level of bank capitalization a¤ects the network structure (see Castiglionesi and Navarro

[12]).
15In order not to violate the de�nition of �rst threshold, �c is restricted to be smaller than or equal to

ec + ep(n�m) + ephc=dp: In turn, this implies that the threshold in (4) is strictly larger than the one in
(3).
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From equations (3) and (4) we have that the resiliency of a star-shaped network depends

on the ratio hc=dp that, since in the star-shaped network dc = (n � 1)dp, can be written
as hc(n � 1)=dc. Thus, equations (3) and (4) depend on the ratio between customer and
intra-network deposits of the central node. To isolate this e¤ect and focus the analysis

solely on the shape of a network, we have assumed that the balance sheet of the central

node is a re-scaling of the one of a peripheral node, i.e. center and peripheral nodes have

the same balance sheet ratios, in particular hc=dc = hp=dp and ec=dc = ep=dp.

In a star-shaped network, the total intra-network exposures of the banks in N s is

Ds =
P

p2
n!c dp + dc = 2(n � 1)dp, while the stocks of equity and customer deposits
are E = (n � 1)ep + ec and H = (n � 1)hp + hc; respectively. Under the assumption
of equal balance sheet ratios, we have that ec = E=2, hc = H=2, ep = E=2(n � 1) and
hp = H=2(n� 1). Thus, equations (3) and (4) can be rewritten, respectively, as:

� s1 = �
s
2 = E +

EH

Ds

1

2
for � = !c (5)

� s1 = �
s
2 =

�
E +

EH

Ds

1

2

��
1 +

H

Ds

�
� �c

H

Ds
for � = f!c; !ij for some i 2 
n!cg (6)

If the central node !c is not in the set of primary defaults, the �rst and the �nal

thresholds of contagion of the star-shaped network do not coincide. We have the following

Proposition 7 If !c =2 �, then in a star-shaped network the �rst and �nal thresholds of
contagion are, respectively, equal to

� s1 = mep + ec

�
1 +

hp
dp

�
(7)

and

� s2 =

�
(n� 1)ep + ec + ep

hc
dp

��
1 +

hp
dp

�
, (8)

where m is the minimum number of peripheral defaults which is su¢ cient to induce the

default of the central node, i.e. m is such that
Pm

p=1 dp = ec.

Assuming equal balance sheet ratios, equations (7) and (8) can be rewritten, respec-

tively, as

� s1 = ec +mep +
EH

Ds

1

2
(9)

and

� s2 =

�
E +

EH

Ds

1

2

��
1 +

H

Ds

�
. (10)
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The relative values of these contagion thresholds, hence the relative exposure to systemic

risk of the networks N c and N s, depend on the magnitude of the intra-network deposits

Dc and Ds. As shown in Section 3.1, the amount of intra-network deposits required to

achieve full coverage of liquidity risk in the star-shaped network is smaller than the amount

required in the complete network, that is Dc = n�1
n
2Ds. It follows that the threshold in

(10) is larger than the one in (6) which, in turn is larger than the one in (5) which, in

turn, is equal to (2). That is, when peripheral nodes are in the set of primary defaults

(either with or without the central node), the magnitude of the minimum shock su¢ cient

to induce the defaults of all banks in the star-shaped network is always larger than the

magnitude of the corresponding shock in the complete network. Conversely, if the initial

shock involves the central node only, then the risk of a complete system meltdown is the

same in both networks.

This result is explained by the fact that the central node provides some shelter to the

peripherals banks which are not in the set of primary defaults, since it absorbs part of the

losses with its own equity and diverts another part of the �ow of losses towards the holders

of its customer deposits hc. Conversely, when the central node is the only node in the

set of primary default the shelter role cannot be played and the exposure to systemic risk

of the two network structures is the same. To sum up, the complete meltdown of a star-

shaped interbank network is less likely to occur than the meltdown of a complete interbank

network for any probability distribution over the set of possible external shocks.16

4 Decentralized Interbank Withdrawals

In this section we remove the assumption of centralized banks withdrawal decisions and

show under which conditions decentralized withdrawal decisions can replicate the e¢ cient

network. We still consider the same network structures, but with two alternative individual

withdrawal decisions of the banks:

� Selective withdrawal : banks in liquidity de�cit withdraw deposits �rst from the
16Notice that it is possible to increase the �rst threshold of a star-shaped network by re-allocating the

equity endowments. If every bank in the periphery transfer an amount x of capital to the central node,

then ec would increase by an amount (n � 1)x. At the same time the amount mep would decrease by
mx. Since m � (n� 1), then � s1 in equation (9) increases. Therefore, in order to increase the resiliency of
the central node (and increase the �rst threshold of contagion) peripheral banks should be relatively less

capitalized than the bank acting as center (which is a systemic bank).
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neighbors that have a liquidity surplus, if any.

� Pro-rata withdrawal : banks in liquidity de�cit withdraw the same quota of de-

posits from all their neighbors.

The selective withdrawal in the one considered in the traditional micro-banking litera-

ture (see, for example, Allen and Gale [5]) since it is consistent with the observability of

the bank�s liquidity shock (contrary to the depositor�s shock which is private information).

The selective withdrawal in the interbank market implements the e¢ cient allocation since

it guarantees the same feasibility conditions attained by the social planner. The pro-rata

withdrawal is more a behavioral assumption (not consistent with the observability of the

bank�s liquidity shock) and it would be unable to implement the e¢ cient allocation in the

micro-banking literature.

Following Section 3.1, we consider the e¤ects of the two decentralized withdrawal poli-

cies and �nd, for each network structure, the minimum interbank deposit that supports

the full reallocation of liquidity. This upper bound is achieved or not, depending on the

withdrawal policies undertaken by banks.

When interbank withdrawals are selective, we have the following

Proposition 8 Assume banks make selective interbank withdrawal decisions. Then: i) in

a star-shaped interbank liquidity �ow network Ls, full coverage of liquidity risk is achieved

with c � �; ii) in a complete interbank liquidity �ow network Ls, full coverage of liquidity

risk is achieved with cij � n�1
n
2�; iii) in an incomplete regular interbank liquidity �ow

network Lr, full coverage of liquidity risk is not guaranteed.

Therefore, if interbank withdrawals follow a selective criteria, both the star-shaped and

the complete decentralized networks achieve the full coverage of liquidity risk with the

amount of interbank deposits established in Section 3.1. Hence, all the results presented in

Sections 3.2 and 3.3 carry over to networks with decentralized withdrawal decisions when

these occur in a selective manner. In the case of incomplete network instead, the full

coverage of liquidity risk in not guaranteed in a network with uncoordinated withdrawal

decisions.

When interbank withdrawals are made pro-rata, we have the following

Proposition 9 Assume banks make pro-rata withdrawal decisions. Then: i) in a star-

shaped interbank liquidity �ow network Ls, full coverage of liquidity risk is achieved with c
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� 2�; ii) in a complete interbank liquidity �ow network Ls, full coverage of liquidity risk

is achieved with cij � n�1
n
2�; iii) in an incomplete regular interbank liquidity �ow network

Lr, full coverage of liquidity risk is not guaranteed.

If banks follow a pro-rata withdrawal policy the complete and the incomplete networks

deliver the same solution of the selective withdrawal policy. However, the star-shaped

network obtains the full coverage of liquidity risk with an higher amount of interbank

deposit than in the e¢ cient network analyzed in Section 3.1. If interbank deposits are

withdrawn pro-rata, banks in the star-shaped network hold an amount of interbank deposits

higher than what they have to hold in a complete network.

The central node in the star-shaped network however can easily enforce interbank with-

drawals in a selective manner (and not pro-rata) since it is the only node that has more

than one interbank deposits and therefore it is the only one that decides on the withdrawal

policy. The star-shaped network avoids any coordination failures in the withdrawing policy.

The star-shaped network seems to be an optimal device to enforce the selective withdrawal

policy, allowing each bank to hold the e¢ cient amount of interbank deposits.

5 Conclusions

In this paper we investigate the e¢ ciency of di¤erent interbank network structures in

providing coverage of liquidity risk. We compare the performance of three kind of networks:

star-shaped, complete and incomplete regular networks. For this purpose, we represent

such interbank liquidity networks as �ow networks and apply some results of �ow network

theory. We �nd that star-shaped networks achieve a complete transfer of liquidity from

banks in surplus to banks in de�cit with the smallest amount of interbank deposits held

by each bank which is equal to the possible liquidity de�cit. Complete networks instead

achieve the full coverage of liquidity risk if each bank holds an amount of deposits which

is roughly twice the amount hold in the star-shaped network. Finally, incomplete regular

networks seem to be rather ine¤ective in transferring liquidity. These networks provide

complete insurance against liquidity risk only if i) each bank is connected to at least half

of the banks in the network, and ii) banks�withdrawals are coordinated. Even under these

conditions, liquidity insurance in incomplete networks requires interbank deposits which

are larger than the ones required in complete and star-shaped networks.
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The bene�ts of holding small interbank deposits lies in the containment of the risk of

�nancial contagion. We argue that star-shaped networks are the least exposed to coun-

terparty risk and systemic risk thanks to the smallest interbank deposits holding. Since

counterparty risk faced by a bank grows with the size of its interbank exposures, star-

shaped networks are the less exposed to counterparty risk. Finally, star-shaped networks

are less exposed than complete networks to the risk of systemic events thanks to the shelter

role of the central node.

6 Appendix

In order to characterize the carrying capacity of the di¤erent interbank �ow networks (in

Lemma 1, 2 and 3), we apply the minimum cut - maximum �ow theorem by Ford and

Fulkerson:

Theorem 1 (Ford and Fulkerson 1956) In every �ow network, the maximum total value

of a �ow equals the minimum capacity of a cut.

Proof of Lemma 1. This lemma can be established with informal arguments, under the

assumption that the central node withdraws deposits only from banks in liquidity surplus

(see proof of Proposition 8). However, we present the more general proof.

Let Ls be a star-shaped interbank liquidity network that is hit by a symmetric liquidity

shock (�;��) and let 
+ (
�) be the set of banks that face a positive (negative) change
of their customer deposits. Let (U;U) be a cut of Ls and recall that, by de�nition, S � U
and T � U . Let X = UnS = 
 \ U be the set of banks in U and, correspondingly, let

Y = UnT = 
 \ U be the set of banks in U . Let x� be the number of de�cit banks in X,
i.e. x� = j
�\U j, and y+ be the number of surplus banks in Y , i.e. y+ = j
+\U j: Recall
that the capacity �(U;U) of a cut is the sum of the capacities of its forward links, i.e. the

links starting in U and ending in U , which �in the case at hand �are: i) the links going

from X into Y , with weight c; ii) the links going from de�cit nodes in X into their sinks

in T; with weight �; and iii) the links going from the source nodes in S into the surplus

banks in Y , with weight �. The number of links starting in X and ending in Y is equal to

the cardinality of X, jXj, if the central node !c is in Y , otherwise it is equal to jY j if !c
is in X: Thus the capacity of a cut (U;U) of Ls is:

�(U;U) = jXj c+ x�� + y+� if !c 2 Y , (11)
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�(U;U) = jY j c+ x�� + y+� if !c 2 X. (12)

The partitions (X; Y ) of 
 that minimize the second and the third addenda of equation

(11) are i) for jXj � n=2, the ones where X is composed solely by surplus nodes, and ii)

for jXj > n=2; the ones where X includes the set of surplus nodes: Correspondingly, the

partitions (X; Y ) of 
 that minimize equation (12) are i) for jY j � n=2; the ones where Y
is composed solely by de�cit nodes, and ii) for jY j > n=2; the ones where Y includes the

set of de�cit nodes. Then let the cut ( eX; eY ) of 
 be such that: eX � 
+, for
��� eX��� � n=2;

and eX � 
+, for
��� eX��� > n=2; which implies eY � 
�, for

���eY ��� � n=2, and eY � 
�, for���eY ��� > n=2. Since we are seeking the partition that minimizes �(U;U), we focus on such
partitions ( eX; eY ) of 
. Note that, for ��� eX��� � n=2; y+ = (n=2� ��� eX���) and x� = 0, while for��� eX��� > n=2; y+ = 0 and x� = (��� eX���� n=2). Under such a restriction, rewrite equation (11)
as:

�(U;U) =
��� eX��� c+ y+� = ��� eX��� c+ ���n=2� ��� eX������ �.

Thus, if !c 2 Y : i) for c = � , �(U;U) = n
2
� for all

��� eX���; ii) for c < � , �(U;U) is minimal
�and equal to n

2
c �for

��� eX��� = n=2; iii) for c > �, �(U;U) is minimal �and equal to n
2
� �

for
��� eX��� = n and for ��� eX��� = 0.
By the same token, rewrite equation (12) as:

�(U;U) =
���eY ��� c+ x�� = ���eY ��� c+ ���n=2� ���eY ������ �.

Thus, if !c 2 X: i) for c = �, �(U;U) = n
2
� for all

���eY ��� ; ii) for c < � , �(U;U) is minimal
�and equal to n

2
c �for

���eY ��� = n=2, iii) for c > �, �(U;U) is minimal �and equal to n
2
� �

for
���eY ��� = n and for ���eY ��� = 0.

Proof of Proposition 1. Full coverage of liquidity risk is achieved if the interbank

liquidity �ow network can move an amount of deposits equal to (n=2)� from the source

nodes into the sink nodes, i.e. if the carrying capacity of Ls is equal to or larger than

(n=2)�. By lemma 1, such a capacity is achieved if c � � and, by the de�nition of carrying
capacity of a �ow network, a liquidity transfer equal to (n=2)� is achieved in Ls if interbank

deposits withdrawals are coordinated.

Proof of Lemma 2. Let Lc be a complete interbank liquidity network that is hit by

a symmetric liquidity shock, as de�ned above, and let 
+ (
�) be the set of banks that

face a positive (negative) change of their customer deposits. Let (U;U) be a cut of Lc and,
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as above in the proof of lemma 1, let i) X = UnS = 
 \ U be the set of banks in U ; ii)

Y = UnT = 
 \ U be the set of banks in U ; iii) x� be the number of de�cit banks in X;
iv) y+be the number of surplus banks in Y . Then the capacity �(U;U) of a cut in Lc is

�(U;U) = jXj jY j cij + x�� + y+�

= jXj (n� jXj)cij + x�� + y+�,

where jXj jY j cij is the sum of the capacities of the links starting from banks in X and

ending in banks in Y , the second addendum is the sum of the capacities of the links starting

from de�cit banks in X and ending in the sink nodes in T and, �nally, the third addendum

is the sum of the capacities of the links starting from the source nodes in S and ending in

surplus banks in Y . The partitions (X; Y ) of 
 that minimize the second and the third

addenda, x�� and y+�, are the ones where the set X is composed solely by surplus nodes,

for jXj � n=2, and includes the set of surplus nodes, for jXj > n=2. Then let the partition
( eX; eY ) of 
 be such that eX � 
+, for

��� eX��� � n=2, and eX � 
+, for
��� eX��� > n=2. Since we

are seeking the partition that minimizes �(U;U); we restrict the analysis to the partitions

( eX; eY ) of 
. Under this restriction, for ��� eX��� � n=2; y+ = (n=2 � j eXj) and x� = 0, while
for
��� eX��� > n=2; y+ = 0 and x� = (��� eX���� n=2). Hence we rewrite the capacity �(U;U) as:

�(U;U) =
��� eX��� (n� ��� eX���)cij + ���n=2� j eXj��� �. (13)

The �rst addendum of equation (13) is a concave parabola with two minima at the

extremes of the range of j eXj; i.e. it is minimal and equal to zero for ��� eX��� = 0 and ��� eX��� = n:
The second addendum is a piece-wise linear and convex function with minimum equal to

zero for
��� eX��� = n=2. It can be checked by inspection that, for all cij < �; equation (13) is

m-shaped, with three local minima corresponding to
��� eX��� = 0, ��� eX��� = n=2, and ��� eX��� = n.

More precisely:

1. for cij = 2
n
�, i.e. for c = n�1

n
2�, the capacity �(U;U) has three global minima, for��� eX��� = 0; ��� eX��� = n=2; and ��� eX��� = n; all equal to n

2
�;

2. for cij > 2
n
�, hence for c > n�1

n
2�, the capacity �(U;U) has two global minima, for��� eX��� = 0 and ��� eX��� = n; both equal to n
2
�;

3. for cij < 2
n
�, i.e. for c < n�1

n
2�, the capacity �(U;U) has a minimum for j eXj = n=2

and equal to
�
n
2

�2
cij =

n2

4(n�1)c <
n
2
�.

Proof of Proposition 2. By lemma 2, a complete interbank network Lc has a carrying

capacity su¢ cient to provide full coverage from liquidity risk, i.e. equal to (n=2)�, if
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c � n�1
n
2�. By the de�nition of carrying capacity, such a liquidity transfer equal to (n=2)�

is achieved if interbank deposits withdrawals are coordinated.

Proof of Lemma 3. Let Lr be an incomplete regular interbank liquidity network that is

hit by a symmetric liquidity shock, as de�ned above, and let 
+ (
�) be the set of banks

that face a positive (negative) change of their customer deposits. Let (U;U) be a cut of Lr

and, as above in the proofs of lemma 1 and 2, let i) X = UnS = 
\U be the set of banks
in U ; ii) Y = UnT = 
\U be the set of banks in U ; iii) x� be the number of de�cit banks
in X; iv) y+ be the number of surplus banks in Y . Then the capacity �(U;U) of a cut in

Lc is �(U;U) = �(X; Y ) + x�� + y+�. The �rst addendum is the sum of the capacities of

the links that go from X into Y , the second addendum is the sum of the capacities of the

links starting from de�cit banks in X and ending in the sink nodes in T and, �nally, the

third addendum is the sum of the capacities of the links starting from the source nodes in

S and ending in surplus banks in Y . Note that:

1. By the assumption of bilateral expositions among the banks in 
; we have that

�(X; Y ) = �(Y;X): For convenience, below we exploit the fact that; for jXj = n=2; :::; n;
�(X; Y ) is equal to �(Y;X) for jY j = n� jXj :
2. �(X;Y ); for jXj = 0; :::; n=2; is minimal for sets X which are maximally connected,

i.e. sets X such that each node in X is connected to all other nodes in X. The same applies

to �(Y;X) for jY j = 0; :::n=2: it is minimal for sets Y in which each node is connected to
all other nodes in Y .

3. x� and y+ are, respectively, minimal (i.e. equal to zero) for sets X composed only

by surplus nodes and for sets Y composed solely by de�cit nodes.

Hence, since we are seeking the cut that minimizes �(U;U); we restrict our attention

to partitions ( eX; eY ) of 
 where: i) for ��� eX��� � n=2, eX is maximally connected and eX � 
+;

ii) for
���eY ��� � n=2; eY is maximally connected and eY � 
�. Under this restriction we have

that, for jXj � n=2, y+ = (n=2�j eXj) and x� = 0; while for jXj � n=2; x� = (j eXj�n=2) =
(n=2� jeY j) and y+ = 0. Hence we have

�(U;U) =
��� eX��� h(k + 1)� ��� eX���i cij + �n

2
�
��� eX���� � for ��� eX��� � n=2, (14)

�(U;U) =
���eY ��� h(k + 1)� ���eY ���i cij + �n

2
�
���eY ���� � for ���eY ��� � n=2. (15)

It can be checked by inspection that, for all cij < 1
k
�, both equations (14) and (15) are

strictly concave, with local minima at the extremes of the range of their respective argu-

ments. More speci�cally, we have that:
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1. for cij = 1
k+1�n=2�, i.e. for c =

k
k+1�n=2�, i) equation (14) has two global minima, for��� eX��� = 0, and ��� eX��� = n=2; and ii) equation (15) has two global minima, for ���eY ��� = 0, and���eY ��� = n=2. Each of such minima is equal to n

2
�;

2. for cij > 1
k+1�n=2�, hence for c >

k
k+1�n=2�, both equations (14) and (15) are minimal

and equal to n
2
� for, respectively, j eXj = 0 and for jeY j = 0;

3. for cij < 1
k+1�n=2�, i.e. for c <

k
k+1�n=2�, both equations (14) and (15) are minimal

and equal to n
2
(k + 1� n

2
)cij <

n
2
� for, respectively, j eXj = n=2 and for jeY j = n=2.

Proof of Proposition 3. By lemma 3, an incomplete interbank network Lr has a

carrying capacity su¢ cient to provide full coverage from liquidity risk, i.e. equal to (n=2)�;

if c > k
k+1�n=2�. By the de�nition of carrying capacity, such a liquidity transfer equal to

(n=2)� is achieved if interbank deposits withdrawals are coordinated.

Proof of Proposition 5. In demonstrating this result and propositions 6 and 7 below,

we use a known property of network �ows: for a �ow de�ned in a �ow network, the value of

the net forward �ow that crosses a cut is the same for all the cuts of the network. Applying

this property to a �nancial �ow network N , we have that the value of the net forward �ow

that crosses all cuts of N equals the value of the exogenous shock, i.e., it is equal to the

�ow that crosses the cut fA; (
; H;Q)g. It follows that the value of the exogenous shock
is equal to the forward �ow that crosses the cut f(A;�); (
n�; Q;H)g, which is also the
net �ow across this cut, since no �ow crosses it in the opposite direction. Let m be the

number of primary defaults caused by a shock m = j�j and let bi 2 [0; 1] be a parameter
that measures the percentage loss-given-default of a node, i.e. it measures the share of the

value of the liabilities issued by the i-th bank which is lost upon its default. Each of node

!i in � sends 1) to the sink Q a �ow equal to its own equity ei; 2) to the sink H a �ow

equal to bihi; and 3) a �ow equal to bidij to each of its (n�m) creditors in 
n�: The shock
that comes out of the source nodes is then equal to

mei +

mX
i=1

bihi +
mX
i=1

bidij(n�m), (16)

where the term mei is the value of the �ow of losses going from � to Q, the sum
Pm

i=1 bihi

is the �ow of losses that goes from � to H, and the sum
Pm

i=1 bidij(n � m) is the �ow
of losses going from � to 
n�. In a complete network N c, each node in 
n� receives,
from its defaulting debtors, a �ow of losses equal to

Pm
i=1 bidij. For default contagion to

occur, this �ow of losses must be larger than or equal to the absorbing capacity of a node:Pm
i=1 bidij � ej. The value of an exogenous shock that is exactly large enough to cause
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such a condition to be ful�lled, i.e. such that
Pm

i=1 bidij = ej, constitutes both the �rst

and the �nal threshold of contagion of a network N c: all nodes in 
n� default together
if such a threshold is reached. This condition for contagion requires that

Pm
i=1 bi = ej=dij

and, substituting this value in (11), we obtain the �rst and �nal contagion thresholds of a

network N c.

Proof of Proposition 6. As above, we use the fact that the shock out of the source

nodes is equal to the forward �ow that crosses the cut f(A;�); (
n�; Q;H)g :Then, with
respect to the two cases listed in this theorem, we have that:

1) if � = !c; the �ow that crosses the cut f(A; !c); (
n!c; H;Q)g is equal to

ec + bchc + bcdp(n� 1),

where bc is the loss-given-default parameter of !c: Contagion occurs for any shock such that

bcdp(n� 1) � ep(n� 1). The smallest of such shocks is the one that causes bcdp(n� 1) =
ep(n � 1), hence bc = ep=dp. This condition characterizes both the �rst and the �nal

threshold of contagion: if bc = ep=dp, all agents in N s default. Substituting bc = ep=dp into

the above equation delivers the result.

2) if� = f!c; !pjfor some p 2 (1; :::; n� 1)g, the �ow that crosses the cut f(A;�); (
n�; H;Q)g
is equal to

(m� 1)ep + ec +
X

p2�n!c

bphp + bchc + bcdp(n�m),

where the sum (m � 1)ep + ec is the �ow of losses that goes from the set of primary

defaults into the sink Q, the sum
P

p2�n!c bphp + bchc is the �ow of losses that goes from

� into the sink Q, and the term bcdp(n�m) is the �ow that goes from the nodes in � to

their creditors in 
n�. Both �rst and complete contagion occur for any shock such that
bcdp(n�m) � ep(n�m), hence bc � ep=dp. Taking the smallest of such shocks �i.e., the
ones such that bc = ep=dp �we obtain the �rst and the �nal thresholds:

� s1(N
s) = � s2(N

s) = (m� 1)ep + ec +
X

p2�n!c

bphp + ep
hc
dp
+ ep(n�m)

= (n� 1)ep + ec + ep
hc
dp
+

X
p2�n!c

bphp. (17)
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For the �ow conservation property, applied to the central node !c; we have that:

�c +
X

p2�n!c

bpdp = ec + bcdp(n� 1) + bchc

= (n� 1)ep + ec + ep
hc
dp

thus X
p2�n!c

bp = (n� 1)
ep
dp
+
ec
dp
+ ep

hc
(d)2

� �c
d

that, substituted in equation (12), delivers the above result.

By the de�nition of contagion threshold, �c can not take on a value larger than

ep(n � m + 1) + ephp=dp because: i) in order to have m � 1 peripheral nodes in �; the
smallest possible shock born by those nodes must be equal to ep(m� 1), and ii) assumingP

p2�n!c �p = ep(m � 1), �c = ec + ep(n �m) + ephp=dp is su¢ cient to induce contagion.
This holds a fortiori if

P
p2�n!c �p > ep(m� 1):

Proof of Proposition 7. If � = f!pjfor some p 2 (1; :::; n� 1)g and !c =2 �; the �ow
that crosses the cut f(A;�); (
n�; H;Q)g is equal to

mep +
mX
p=1

bphp +
mX
p=1

bpdp,

where mep and
Pm

p=1 bphp are the �ows that � sends into Q and H, respectively, andPm
p=1 bpdp is the �ow that the central node !c receives from the defaulting nodes in �: The

condition for the �rst threshold of contagion is:
Pm

p=1 bpdp = ec, hence
Pm

p=1 bp = ec=dp and,

substituting this into the above equation, we obtain that � s1 (N
s) = mep + ec(1 + hp=dp);

The second and �nal threshold of contagion, is set by the �ow that crosses the cut

f(A;�; !c); (
n(�; !c); H;Q)g which is equal to

mep + ec +
mX
p=1

bphp + bchc + bcdp(n�m� 1),

where: mep+ec =
�!
f ((�; !c); Q),

Pm
p=1 bphp+bchc =

�!
f ((�; !c); H), and bcdp(n�m�1) =

�!
f (!c;
n(�; !c)). All nodes in 
n(�; !c) default if the central node sends to each of them
a �ow larger than or equal to ep. The �nal threshold of contagion is equal to the smallest

of such shocks: bcdp = ep. Hence bc = ep=dp and

� s2(N
s) = (n� 1)ep + ec + ep

hc
dp
+

mX
p=1

bphp. (18)
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As above, to obtain
Pm

p=1 bp; we resort to the fact that the �ow that enters the central

node is equal to the �ow that exits from it:
mX
p=1

bpdp = ec + bcdp(n� 1) + bchc

= (n� 1)ep + ec + ep
hc
dp
.

Thus
mX
p=1

bp = (n� 1)
ep
dp
+
ec
dp
+ ep

hc
(dp)2

:

Substituting this value in equation (13), we obtain the above result.

Proof of Proposition 8. Let the interbank liquidity networks at hand be hit by a

symmetric liquidity shock, as de�ned above, and let 
+ (
�) be the set of banks that face

a positive (negative) change of their customer deposits. Suppose that the banks in de�cit

withdraw their interbank deposits in a selective fashion. Then:

i) In a star-shaped interbank liquidity network Ls we have that: a) if the central node

in faces a liquidity de�cit, each of the (n=2) � 1 peripheral de�cit banks withdraws �
from the central node and the latter withdraws � from each of the n=2 peripheral surplus

banks; and b) if the central node has a liquidity surplus, each of the n=2 peripheral de�cit

banks withdraw � from the central node and the latter withdraws � from each of the

n=2� 1 peripheral surplus banks. Both these complete liquidity transfers are feasible with
interbank deposits c � �:
ii) In a complete interbank liquidity network Lc, each of the n=2 banks that face a

liquidity de�cit withdraws (2=n)� from each of the n=2 surplus banks. This complete

liquidity transfer is feasible with interbank deposits cij � (2=n)�.
iii) In an incomplete regular interbank liquidity network Lr, selective withdrawals en-

sure a complete re-allocation of liquidity if only if the sets of surplus banks 
+ and of

de�cit banks 
�are maximally interconnected, i.e. if each surplus (de�cit) bank is directly

connected with all other surplus (de�cit) bank.

If this condition holds, then each surplus (de�cit) bank is bilaterally connected to

k + 1� n=2 de�cit (surplus) banks, where k is the degree of the nodes in Lr. A complete
liquidity transfer is achieved as each de�cit bank withdraws 1

k+1�n=2� from the k+1�n=2
surplus banks to which is connected.

If, conversely, the above condition does not hold, then there is in Lr i) a non empty set


+ composed of surplus bank connected to more than k + 1� n=2 de�cit banks, and ii) a
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non empty set 

+
composed of surplus bank connected to fewer than k + 1 � n=2 de�cit

banks. As the de�cit banks withdraw their deposits from surplus banks, the banks in 
+

face a liquidity shortage while the banks in 

+
still have a surplus of liquidity. Then, to

prevent a complete transfer of liquidity, it is su¢ cient that there is one bank in 
+ with no

direct links with banks in 

+
. Such a bank, facing a liquidity shortage, withdraws deposits

from all its neighbors (since it has no neighbor with spare liquidity), including the ones

in 
�, which are (formerly) de�cit banks with no spare liquidity and no deposits left in

surplus banks. Thus, part of the initial liquidity shortage faced by the banks in 
� remains

within such set of banks, while an equal amount of spare liquidity remains in the hands of

surplus banks.

In sum, in an incomplete regular interbank liquidity network Lr; selective withdrawals

do not guarantee a complete re-allocation of liquidity because there is no guarantee that

i) the sets of surplus banks 
+ and of de�cit banks 
�are maximally interconnected, and

ii) all banks in 
+ are connected to at least one bank in 

+
.

Proof of Proposition 9. Let the interbank liquidity networks at hand be hit by a

symmetric liquidity shock, as de�ned above, and let 
+ (
�) be the set of banks that face

a positive (negative) change of their customer deposits. Suppose that the banks in de�cit

withdraw their interbank deposits in a pro-rata fashion. Then:

i) Let Ls be a star-shaped interbank liquidity network and suppose that the central

node !c has a liquidity surplus. The n=2 peripheral banks that face a liquidity de�cit

equal to �; the !p 2 
�; withdraw � from !c. The central node, then, faces a de�cit equal

to (n
2
� 1)� and withdraws (

n
2
�1)

n�1 � from each of the peripheral nodes !p in 
n!c. Then the
peripheral nodes in 
� face a de�cit equal to (n

2
�1)

n�1 � and withdraw the same amount from

!c. The latter, in turn, faces a de�cit equal to
(n
2
�1)2
n�1 � and withdraws

�
n
2
�1

n�1

�2
� from each

of the peripheral nodes. Now the peripheral nodes in 
� face a de�cit equal to
�

n
2
�1

n�1

�2
�

and withdraw the same amount from !c. At this point, !c faces a de�cit equal to
(n
2
�1)3

(n�1)2 �

and withdraws
�

n
2
�1

n�1

�3
� from each of the peripheral nodes. Thus, each !p in 
� faces a

de�cit equal to
�

n
2
�1

n�1

�3
� and, in turn, withdraws the same amount from !c, and so on

and so forth. In sum, at the end of such a recursive process of withdrawals, the peripheral

nodes in 
� withdraw from !c a total amount of deposits equal to �
1P
x=0

�
n
2
�1

n�1

�x
= n�1

n
2�,

while the central node withdraws �
1P
x=0

�
x
2
�1
x�1

�x
= � from each peripheral node. These
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withdrawals achieve the complete re-allocation of liquidity, form surplus to de�cit banks,

and are feasible for interbank deposits c � n�1
n
2�:

Suppose now that the central node !c faces a liquidity de�cit. The (n=2)�1 peripheral
banks that face a liquidity de�cit equal to �; the !p 2 
�; withdraw � from !c. The central
node, then, faces a de�cit equal to n

2
� and withdraws n=2

n�1� from each of the peripheral

nodes !p in 
n!c. Then the n=2 peripheral nodes in 
� face a de�cit equal to n=2
n�1� and

withdraw the same amount from !c. The latter, in turn, faces a de�cit equal to
(n
2
�1)

n�1
n
2
�

and withdraws (n
2
�1)

(n�1)2
n
2
� from each of the peripheral nodes. At this point, the peripheral

nodes in 
� face a de�cit equal to (n
2
�1)

(n�1)2
n
2
� and withdraw the same amount from !c. Then,

!c faces a de�cit equal to
(n
2
�1)2

(n�1)2
n
2
� and withdraws (n

2
�1)2

(n�1)3
n
2
� from each of the peripheral

nodes. Thus, each !p in 
� faces a de�cit equal to
(n
2
�1)2

(n�1)3
n
2
� and, in turn, withdraws the

same amount from !c; and so forth and so on. In sum, at the end of such a recursive process

of withdrawals, the peripheral nodes in 
� withdraw from !c a total amount of deposits

equal to �+ �
1P
x=0

(n
2
�1)x

(n�1)x+1
n
2
= 2�, while the central node withdraws �

1P
x=0

(n
2
�1)x

(n�1)x+1
n
2
= � from

each peripheral node. These withdrawals achieve the complete reallocation of liquidity,

from surplus to de�cit banks, and are feasible with interbank deposits c � 2�.
ii) In a complete interbank liquidity network Lc; each !i 2 
�; i.e. each of the n=2

banks hit by a liquidity de�cit, withdraws 1
n�1� from each of the remaining n � 1 banks

in 
n!i: Then, the banks in 
+ remain in surplus, while each bank !i in 
� faces now a
de�cit equal to

�
n
2
� 1
�

1
n�1� and, consequently, withdraws

�
n
2
� 1
�

1
(n�1)2 � from each bank

in 
n!i. Then, the banks in 
+ still have a liquidity surplus, while each bank !i in 
� faces
a de�cit equal to

�
n
2
� 1
�2 1

(n�1)2 � and, consequently, withdraws
�
n
2
� 1
�2 1

(n�1)3 � from each

bank in 
n!i; and so forth and so on. At the end of this recursive process of withdrawals,
each bank in 
� has withdrawn �

1P
x=0

�
n
2
�1

n�1

�x
1
n�1 =

2
n
�. These withdrawals achieve the

complete re-allocation of liquidity, form surplus to de�cit banks, and are feasible with

interbank deposits cij � 2n�1n �.
iii) In an incomplete regular interbank liquidity network Lr, pro-rata withdrawals en-

sure a complete re-allocation of liquidity if only if the sets of surplus banks 
+ and of

de�cit banks 
�are maximally interconnected, i.e. if each surplus (de�cit) bank is directly

connected with all other surplus (de�cit) bank.

If this condition holds, then each surplus (de�cit) bank is bilaterally connected to

k + 1� n=2 de�cit (surplus) banks, where k is the degree of the nodes in Lr. A complete
liquidity transfer is achieved as the each de�cit bank withdraws all its deposits, both from
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the k + 1� n=2 surplus banks and from the n=2� 1 de�cit banks to which is connected.
If, conversely, the above condition does not hold, then there is in Lr i) a non empty

set 
+ composed of surplus bank connected to more than k + 1 � n=2 de�cit banks, and
ii) a non empty set 


+
composed of surplus bank connected to fewer than k + 1 � n=2

de�cit banks. As each de�cit bank withdraws its deposits from all its neighboring banks,

the banks in 
+ face a liquidity shortage while the banks in 

+
still have a surplus of

liquidity. Then, the banks in 
+ withdraw deposits form their neighbors, including banks

in 
�; which are (formerly) de�cit banks with no spare liquidity and no deposits left in

other banks. Thus, part of the initial liquidity shortage faced by the banks in 
� remains

within such set of banks, while an equal amount of spare liquidity remains in the hands of

surplus banks.

In sum, in an incomplete regular interbank liquidity network Lr, pro-rata withdrawals

do not guarantee a complete reallocation of liquidity because there is no guarantee that

the sets of surplus banks 
+ and of de�cit banks 
� are maximally interconnected.
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