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Abstract

This paper analyzes global dynamics in an overlapping generations general

equilibrium model with housing-wealth effects. It demonstrates that monetary

policy cannot burst rational bubbles in the housing market. Under monetary

policy rules of the Taylor-type, there exist global self-fulfilling paths of house

prices along a heteroclinic orbit connecting multiple equilibria. From bifurcation

analysis, the orbit features a boom (bust) in house prices when monetary policy

is more (less) active. The paper also proves that booms or busts cannot be ruled

out by interest-rate feedback rules responding to both inflation and house prices.
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1 Introduction

Theoretical developments in monetary economics over the last decades have focused on

monetary policy rules capable of ensuring macroeconomic stability. Since the inflation-

ary experience of the 1970s, central banks and academics have tried to design simple

rules that promote the credibility and transparency of monetary policy-making. Since

the seminal work by Taylor (1993), a large body of research has emphasized the sta-

bilizing properties of active monetary policy rules, whereby the central bank responds

to increases in inflation with a more than one-to-one increase in the nominal interest

rate.1 Empirical studies have shown that an active monetary policy stance mimics the

Federal Reserve’s behavior after 1979, over the Volcker-Greenspan period (e.g., Judd

and Rudebush, 1998; Taylor, 1999b; Clarida, Gaĺı and Gertler, 2000).

More recently, Meltzer (2011) and Taylor (2012) set out a distinction between a

“rules-based era”, from 1985 to 2003, and an “ad hoc era”, from 2003 to present.

Over the rules-based era, a period characterized by inflation stabilization, the Federal

Reserve’s policy is well described by a simple Taylor rule whereby the Federal Funds

Rate is set as a linear function of inflation and the output gap with coefficients of 1.5

and 0.5, respectively. Over the ad hoc era, a period devastated by the boom and bust

in the housing market, the Federal Reserve’s policy deviates from the Taylor rule. In

particular, from 2002 to 2006 the Federal Funds Rate was 2-3 percentage points below

the path prescribed by the Taylor rule for any period since 1980s (Poole, 2007; Taylor,

2007). Significant downward interest-rate gaps from the Taylor rule also occurred over

the same period in the OECD countries as a group (Ahrend, Cournède and Price,

2008).

Leamer (2007) and Taylor (2007, 2010, 2011) argue that such a “Great Deviation”

from rules-based policy making, resulting in a too accommodating monetary stance,

was a major cause of the economic and financial crisis erupted in 2007, since it triggered

1See Taylor (1999a), Woodford (2003), Gaĺı (2008), and references therein.
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boom-bust dynamics in house prices.

Could the rules-based approach to monetary policy be powerful enough to avoid

the possibility of house-price instabilities? This paper studies global dynamics in an

overlapping generations general equilibrium model à la Yaari (1965)-Blanchard (1985)-

Weil (1989). The overlapping generations setting proves to be a convenient framework

for making aggregate demand sensitive to housing wealth and for formalizing the in-

teractions between house-price dynamics and rules-based monetary policies.

It is shown that the rules-based approach to monetary policy is powerless to burst

rational bubbles in the housing market. Monetary policy feedback rules of the Taylor-

type do not eliminate the possibility of self-fulfilling paths of house prices satisfying

agents’ transversality conditions. It is demonstrated that global dynamics associated

to arbitrary revisions in house-price expectations follow a heteroclinic orbit connecting

multiple equilibria. In particular, it is shown that global house-price paths interact

with off-target inflation paths and lead the economy into a liquidity trap. From bi-

furcation analysis, it emerges that the orbit features a boom (bust) in house prices

when monetary policy is more (less) active. It is further proved that booms or busts

cannot be ruled out by interest-rate feedback rules responding to both inflation and

house prices. In particular, it is demonstrated that reacting to house-price inflation

more than to consumer-price inflation generates a basin of attraction to the liquidity

trap and even leads to local indeterminacy at the steady-state equilibrium away from

the trap.

The present paper is linked to both empirical and theoretical literature. Empirical

evidence by Muellbauer (2007), Campbell and Cocco (2007), and Carroll, Otsuka and

Slacalek (2011) finds highly significant housing-wealth effects on consumption. How-

ever, the link between house prices and consumption dynamics is typically overlooked

in standard frameworks for monetary policy analysis (e.g., Taylor, 1999; Woodford,

2003; Gaĺı, 2008). In this paper we intend to consider a dynamic general equilibrium
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framework in which housing-wealth effects do affect the monetary policy transmission

mechanism.

Theoretical works by Benhabib, Schmitt-Grohé and Uribe (2001, 2002, 2003) and

Schmitt-Grohé and Uribe (2009) show that once global dynamics are taken into ac-

count, the usual local stabilizing properties of Taylor (1993, 1999)-type interest-rate

feedback rules disappear. In particular, Taylor rules give rise to multiple self-fulfilling

decelerating inflation paths converging to a long-run equilibrium around which the

monetary authority is no longer capable to ensure aggregate stability. Their model is

based on the standard infinite-horizon representative agent setup. Therefore, aggregate

demand dynamics only depends on real interest rates. To incorporate housing-wealth

effects, we relax this paradigm and develop a monetary framework with overlapping

generations à la Yaari (1965)-Blanchard (1985)-Weil (1989). In this way, aggregate de-

mand dynamics will depend not only on real interest rates, but also on housing wealth.

As a consequence, monetary policy decisions will affect aggregate demand and inflation

through their effects on both the real interest rate and house prices. The model with

housing-wealth effects derived in this paper also constitutes a useful theoretical bench-

mark to investigate the dynamic properties of monetary policy feedback rules whereby

the nominal interest rate reacts not only to inflation but also to house prices.

Using a New Keynesian model with households’ borrowing constraints, Iacoviello

(2005) examines the role of house prices for the business cycle and the design of optimal

monetary policy. Consistently with the business cycle literature, the approach relies on

local dynamics, thereby abstracting from possible multiplicities of steady-state equi-

libria. This paper is different in two respects. First, we present an alternative way to

analyze the implications of house prices for monetary policy design, since we employ

an overlapping generations model.2 Second, a central focus of this paper is to depart

from local analysis. As recently advocated by Cochrane (2011), we use the criterion

2Nisticò (2012) studies the interactions between monetary policy and stock-price dynamics in a
New Keynesian model with an overlapping generations structure à la Yaari–Blanchard.
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of global determinacy to evaluate the connection between monetary policy rules and

macroeconomic stability.

The paper is organized as follows. Section 2 presents the model and the monetary

regimes. Section 3 analyzes the issue of global equilibrium dynamics under a baseline

Taylor-rule framework. Section 4 extends the analysis to the case of monetary policy

rules reacting to house prices. Section 5 concludes.

2 The Model

Consider the following monetary version of the Yaari (1965)-Blanchard (1985)-Weil

(1989) overlapping generations setup, extended to incorporate housing in the agents’

asset menu. Each individual faces a common and constant instantaneous probability

of death, µ > 0. Population grows at a constant rate n. At each instant t a new

generation is born. The birth rate is β = n + µ. Let N(t) denote population at time

t, with N (0) = 1. So the size of the generation born at time t is βN(t) = βent, and

the size of the surviving cohort born at time s ≤ t is βN (s) e−µ(t−s) = βe−µteβs. Total

population at time t is given by N(t) = βe−µt
∫ t

−∞ eβsds. As in Blanchard (1985),

there is no dynastic altruism. Financial wealth of newly born individuals is therefore

zero. Agents supply one unit of labor inelastically, which is transformed one-for-one

into output.3

The representative agent of the generation born at time s ≤ 0 chooses the time path

of consumption, c(s, t), real money balances, m(s, t), and housing, h(s, t), in order to

maximize the expected lifetime utility function given by

E0

∫ ∞

0

[
α log Λ (c(s, t),m(s, t)) + (1− α) log h(s, t)

]
e−ρtdt, (1)

3Brito and Dilão (2010) extend the Yaari–Blanchard continuous time overlapping generations model
for an endowment Arrow–Debreu economy with an age–structured population.
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where E0 is the expectation operator conditional on period 0 information, ρ > 0 is

the pure rate of time preference, and Λ (·) is a strictly increasing, strictly concave and

linearly homogenous function. Consumption and real money balances are Edgeworth

complements, that is, Λcm > 0, and the elasticity of substitution between the two is

lower than unity. Because the probability at time 0 of surviving at time t ≥ 0 is e−µt,

the expected lifetime utility function (1) is

∫ ∞

0

[
α log Λ (c(s, t),m(s, t)) + (1− α) log h(s, t)

]
e−(µ+ρ)tdt. (2)

Individuals accumulate their financial assets, a(s, t), in the form of real money

balances, interest bearing public bonds, b(s, t), and housing-wealth, q(t)h(s, t), where

q(t) is the relative house price. Therefore, a(s, t) = b(s, t) +m(s, t) + q(t)h(s, t). The

instantaneous budget constraint is given by

ȧ(s, t) = (R(t)− π(t) + µ) a(s, t) + y(s, t)− τ(s, t)− c(s, t)−

−R(t)m(s, t) +

[
q̇(t)

q(t)
− (R(t)− π(t))

]
q(t)h(s, t), (3)

where R(t) is the nominal interest rate, π(t) is the inflation rate, τ(s, t) are real lump-

sum taxes, and µa(s, t) is an actuarial fair payment that individuals receive from a

perfectly competitive life insurance company in exchange for their financial wealth at

the time of death, in the spirit of Yaari (1965).4 Since the asset menu includes housing

equity, a reverse-mortgage mechanism à la Eschtruth and Tran (2001) is operative.

Agents are prevented from engaging in Ponzi’s games, so that

lim
t→∞

a(s, t)e−
∫ t
0 (R(j)−π(j)+µ)dj ≥ 0. (4)

4Insurance companies collect financial assets from deceased individuals and pay fair premia to
current generations. The presence of the life insurance market precludes the possibility for individuals
of passing away leaving unintended bequests to their heirs. See Blanchard (1985).
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Letting z(s, t) denote total consumption at time t for the agent born at time s,

defined as physical consumption plus the interest forgone on real money holdings,

z(s, t) = c(s, t) +R(t)m(s, t), (5)

the individual optimizing problem can thus be solved using a two-stage procedure.5

In the first stage, consumers solve an intratemporal problem of choosing the effi-

cient allocation between consumption, c(s, t), and real money balances, m(s, t), in order

to maximize function Λ (·), for a given level of total consumption, z(s, t). Optimality

implies that the marginal rate of substitution between consumption and real money bal-

ances must equal the nominal interest rate, Λm (c(s, t),m(s, t)) /Λc (c(s, t),m(s, t)) =

R(t). Because preferences are linearly homogenous, this optimality condition assumes

the following form:

c(s, t) = Γ(R(t))m(s, t), (6)

where Γ′ (R) > 0.

In the second stage, individuals solve an intertemporal problem of choosing the

optimal time paths of total consumption, z(s, t), and housing, h(s, t), in order to

maximize their lifetime utility function (2), given the constraints (3), (4) and the

optimal condition (6).6 Optimality yields

ż(s, t) = (R(t)− π(t)− ρ) z(s, t), (7)

(1− α)

α

z(s, t)

q(t)h(s, t)
= (R(t)− π(t))− q̇(t)

q(t)
, (8)

lim
t→∞

a(s, t)e−
∫ t
0 (R(j)−π(j)+µ)dj = 0. (9)

5See Deaton and Muellbauer (1980). In the context of the Yaari–Blanchard framework, see Marini
and van der Ploeg (1988).

6See Appendix A for analytical details.
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Substituting the optimality condition (8) into the instantaneous budget constraint

(3), integrating forward, applying the transversality condition (9), and using the law of

motion of total consumption (7), we can express total consumption as a linear function

of total wealth:

z(s, t) = α(µ+ ρ)
(
a(s, t) + k(s, t)

)
, (10)

where k(s, t) ≡
∫ ∞

t (y(s, t)− τ(s, t)) e−
∫

v
t (R(j)−π(j)+µ)djdv denotes human wealth, de-

fined as the present discounted value of after-tax labor income. From (5), (6), and

(10), it also follows that

c(s, t) =
α(µ+ ρ)

L(R(t))

(
a(s, t) + k(s, t)

)
. (11)

Combining next (5), (6) and (7), we obtain the optimal time path of individual

consumption:

ċ(s, t) =

(
R(t)− π(t)− ρ− L′(R(t))

L(R(t))
Ṙ(t)

)
c(s, t), (12)

where L(R) ≡ 1+R/Γ (R) and L′(R) > 0. According to (12), the optimal consumption

growth rate is identical across all generations. Function L(R) satisfies L(0) = 1,

L(∞) = +∞, L′(0) = ∞ and L′(∞) = 0. The latter properties are verified, for

example, if we assume that Λ(c̄, m̄) is a CES function.

2.1 Aggregation and Fiscal Policy

We can now derive the evolution of aggregate variables. The population aggregate for a

generic variable at individual level, x(s, t), is defined as X(t) ≡ βe−µt
∫ t

−∞ x(s, t)eβsds.

The corresponding quantity in per capita terms is defined as x(t) ≡ X(t)e−nt =

β
∫ t

−∞ x(s, t)eβ(s−t)ds.

Suppose that each agent faces identical age-independent income and tax flows, so
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that y(s, t) = y(t) and τ(s, t) = τ(t), as in Blanchard (1985). Using a(t, t) = 0 and

c(t, t) = [α(µ+ ρ)/L(R(t))] k(t, t), the budget constraint, the optimal time path of

consumption, the optimal time path of house prices, and the transversality condition

expressed in per capita terms are, respectively, of the form7

ȧ(t) = (R(t)− π(t)− n) a(t) + y(t)− τ(t)− c(t)−

−R(t)m(t) +

[
q̇(t)

q(t)
− (R(t)− π(t))

]
q(t)h(t), (13)

ċ(t) =

(
R(t)− π(t)− ρ− L′(R(t))

L(R(t))
Ṙ(t)

)
c(t)− αβ(ρ+ µ)

L(R(t))
a(t), (14)

q̇(t)

q(t)
= (R(t)− π(t))− (1− α)

α

L(R(t))c(t)

q(t)h(t)
, (15)

lim
t→∞

a(t)e−
∫ t
0 (R(j)−π(j)+µ)dj = 0. (16)

From (14), the rate of change of per capita consumption depends on the level of financial

wealth a(t), since future cohorts’ consumption is not valued by agents currently alive.

In particular, older generations are wealthier than younger generations, and so consume

more and save less. Only in the limiting case in which the birth rate β is equal to zero,

per capita consumption dynamics follows the standard Euler equation prevailing in the

infinitely-lived representative agent paradigm.

The flow budget constraint of the government in per capita terms is given by

ḃ(t) + ṁ(t) = (R(t)− π(t)− n) b(t)− τ(t)− π(t)m(t). (17)

To concentrate on the implications of housing-wealth effects, the government is assumed

to adopt a tax policy consisting in balancing the budget at all times. It then follows

7See Appendix B for analytical details.
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that taxes are such that

τ(t) + π(t)m(t) = (R(t)− π(t)− n) b(t). (18)

2.2 Monetary Policy Rules

We consider first the case in which the monetary authority follows a conventional Taylor

rule, controlling R(t) according to a feedback rule of the form

R(t) = T (π(t)), (19)

where T (·) is a continuous, strictly increasing and strictly positive function. Monetary

policy is active when T ′(π(t)) > 1 and passive when T ′(π(t)) < 1. In particular, we

may assume, as advocated by Taylor (1993, 1999), a linear rule such as

T (π(t)) = r̃ + π(t) + γ(π(t)− π̃), (20)

where r̃ and π̃ are the central bank’s targets for the real interest rate and the inflation

rate, and γ > 0 is the policy parameter featuring an active monetary policy.

We shall also consider alternative rules controlling for both general price inflation

and the housing price level,

T (π(t), q(t)) = r̃ + π(t) + γ(π(t)− π̃) + ϵ(q(t)− q̃), (21)

where q̃, ϵ > 0, or controlling for both general price and housing price inflations,

T

(
π(t),

q̇(t)

q(t)

)
= r̃ + π(t) + γ(π(t)− π̃) + δ

q̇(t)

q(t)
, (22)

where δ > 0.

9



2.3 Equilibrium

Total output y(t) and housing supply h̄(t)s are assumed to grow at the constant rate n,

without loss of generality. It follows that per capita output and housing are constant

and can be normalized to one, y(t) = y = hs = 1, for analytical convenience. Equi-

librium in the goods market requires that c(t) = y = 1. Equilibrium in the housing

market requires that h(t) = hs = 1. The balanced budget rule implies ḃ(t) + ṁ(t) = 0,

so that total government liabilities are constant over time, b(t) +m(t) = l, where l is

a constant. For analytical convenience, we can study the dynamic properties of the

model normalizing the constant l to zero.

Using the law of motion of per capita consumption (14), the equilibrium real interest

rate is given by

R(t)− π(t) = ρ+
L′(R(t))

L(R(t))
Ṙ(t) +

αβ(ρ+ µ)

L(R(t))
q(t). (23)

Then, the nominal interest rate dynamics are given by

Ṙ(t) =
1

L′(R(t))
[(R(t)− π(t)− ρ)L(R(t))− αβ(ρ+ µ)q(t)] . (24)

From (15), house price dynamics are given by

q̇(t) = [R(π(t))− π(t)] q(t)− (1− α)

α
L [R(π(t))] . (25)

The equilibrium dynamic system is completed by introducing a monetary policy

rule. Consider a generic rule as

R(t) = T (π(t), q(t), q̇(t)/q(t)) , (26)

where T (π, q, q̇/q) is increasing and additively separable in all its components. We can
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solve equation (26) for π to get

π(t) = P (R(t), q(t), q̇(t)/q(t)). (27)

An active policy is such that ∂T/∂π > 1, which implies that 0 < ∂P/∂R < 1 for any

(R, q, q̇/q). To be an equilibrium, the paths (R(t), q(t), π(t))t∈[0,∞), solving equations

(24), (25) and (27), should verify the no-Ponzi game and the transversality conditions.

3 Conventional Taylor Rule

We analyze initially local and global equilibrium dynamics under the baseline Taylor-

rule framework.

3.1 Steady-State and Local Dynamics

A generic conventional Taylor rule implies π = P (R) = T−1(R), where 0 < P
′
(R) < 1.

We can rewrite the system (24)-(25) as

q̇(t) = (R(t)− P (R(t))) (q(t)−Ψ(R(t))) , (28)

Ṙ(t) =
αβ(ρ+ µ)

L′(R(t))
(Φ(R(t))− q(t)) , (29)

where

Ψ(R) ≡
(
1− α

α

)(
L(R)

R− P (R)

)
, (30)

Φ(R) ≡
(
R− P (R)− ρ

αβ(ρ+ µ)

)
L(R). (31)

Equilibrium steady states are bounded values for R and q, such that the transversality

condition (16) holds. Hence limt→∞ (R(t)− P (R(t)) + µ) > 0.
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Defining

r∗ ≡
ρ+

√
ρ2 + 4β (1− α) (ρ+ µ)

2
(32)

and observing that r∗ > ρ > 0, the following proposition holds.

Proposition 1 Assume a conventional Taylor rule in which monetary policy is globally

active. Then: (a) if P (0) ≥ 0, there is a unique steady state equilibrium (R∗, q∗) =

(R∗
1, q

∗
1), where

q∗1 =

(
1− α

α

)
L(R∗

1)

r∗
> 0, (33)

and R∗
1 = {R : R − P (R) = r∗} is the unique element; (b) if 0 > P (0) > −r∗, there

are two equilibrium steady states (0, q∗0) and (R∗
1, q

∗
1), where

q∗0 = −
(
1− α

α

)
1

P (0)
> 0; (34)

and (c) if P (0) ≤ −r∗, there is a unique steady state equilibrium (R∗, q∗) = (0, q∗0).

Proof. See Appendix C.

As a result, interest-rate feedback rules of the Taylor-type may give rise to multiple

steady-state values for house prices. The long-run inflation rates associated to the

two steady states q∗0 and q∗1 are π∗
0 = P (0) < 0 and π∗

1 = P (R∗
1) = R∗

1 − r∗ > π∗
0,

respectively.8

Compare the steady-state level of house prices associated with a zero nominal in-

terest rate, q∗0, with the steady-state level of house prices associated with a positive

nominal interest rate, q∗1. From Proposition 1, it follows that q∗0 > q∗1 if and only if

r∗ + P (0)L(R∗
1) > 0.9 The latter condition is sufficient for the existence of two steady

8For the case of a linear rule à la Taylor (1993, 1999), we can determine R∗
1 explicitly. Substituting

equation (20) yields R∗
1 = (1+γ)(P (0)+r∗)/γ = r∗+ π̃+(r∗− r̃)/γ, because P (0) = (γπ̃− r̃)/(1+γ).

In this case, a necessary condition for the existence of two steady states is (1 + γ)r∗ − γπ̃ > r̃ > γπ̃.
9Therefore, the relationship between the house prices for the two possible long-run nominal interest

rates depends upon the long-run real interest rate, the substitutability between real money balances
and consumption, and the characteristics of the Taylor rule.
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states, since it satisfies r∗ + P (0) > 0. However, if r∗ + P (0) > 0 ≥ r∗ + P (0)L(R∗
1),

we have two steady states and q∗0 ≤ q∗1. If we assume a linear conventional Taylor rule,

the case in which q∗0 > q∗1 occurs when

Γ

(
(1 + γ)r∗ + γπ̃ − r̃

γ

)
>

r̃ − γπ̃

γ
, (35)

which tends to be verified when the long-run real interest rate r∗, the inflation target

π̃, the elasticity of substitution between real money balances and consumption, and/or

the monetary policy feedback parameter γ are sufficiently large.

Explore now local equilibrium dynamics. Linearizing equations (28) and (29) in

the neighborhood of any point (R, q), we obtain the Jacobian

J =

R− P (R) (1− P ′(R))(q −Ψ(R))− (R− P (R))Ψ′(R)

−αβ(ρ+µ)
L′(R)

αβ(ρ+µ)
(L′(R))2

(Φ′(R)L′(R)− (Φ(R)− q)L′′(R))

 . (36)

The trace and the determinant of the Jacobian matrix are

trJ = R− P (R) +
αβ(ρ+ µ)

L′(R)

(
Φ′(R)− (Φ(R)− q)

L′′(R)

L′(R)

)

and

det J =
αβ(ρ+ µ)

L′(R)

 (R− P (R))
(
Φ′(R)−Ψ′(R) + (q − Φ(R))L

′′(R)
L′(R)

)
+

+(1− P ′(R))(q −Ψ(R))

 .

We readily observe that

Ψ′(R) = Ψ(R)

(
L′(R)

L(R)
− 1− P ′(R)

R− P (R)

)
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and

Φ′(R) = Φ(R)

(
1− P ′(R)

R− P (R)− ρ
− L′(R)

L(R)

)
.

Hence, the following proposition holds.

Proposition 2 Let the assumptions in Proposition 1 hold, such that there are two

steady state equilibria. Then, the steady state (0, q∗0) is a singular saddle point and the

steady state (R∗
1, q

∗
1) is a source.

Proof. See Appendix D.

From Proposition 2, since both R(t) and q(t) are jump variables, the steady state

in which R∗ = R∗
1 > 0 is locally determinate and the steady state in which R∗ = 0 is

locally indeterminate.

As a result, even in the presence of housing-wealth effects, an active monetary

policy stance in the spirit of Taylor (1993, 1999b) exhibits the usual property of local

determinacy. In particular, in the neighborhood of (R∗
1, q

∗
1), and in the absence of

exogenous fundamental shocks, the only equilibrium path is R(t) = R∗
1, and q(t) = q∗1.

Nevertheless, in a small neighborhood around the steady state in which R∗ = 0,

local indeterminacy applies, i.e., there exist infinite equilibrium paths of R(t) and q(t)

converging asymptotically to the steady state: for any initial R (0) there exists a q (0)

such that the time paths of R(t) and q(t) satisfying the system (28)-(29) will converge

asymptotically to that steady state. As this is a singular steady state, in the sense

that the eigenvalues for system (R, q) are infinite, the speed of approach is locally

very high. Singular steady states appear in economic theory from the existence of

static constraints in some macroeconomic models, as in Leeper and Sims (1994), and

Barnett and He (2004, 2006, 2010). However, in our case, the singularity has a different

nature: it is related to the properties of function Γ(R), since when R tends to zero the

relationship between consumption and money demand becomes locally insensitive to
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the nominal interest rate. This type of singularity seems not to have been examined

previously and can only be analyzed by investigating global dynamics.

3.2 Global Dynamics

We now conduct a global dynamics analysis of the effects of the baseline Taylor-rule

framework. Thereafter, we shall investigate whether changing the Taylor rule by in-

corporating the housing prices significantly modifies the dynamics.

Proposition 3 Let the assumptions in Proposition 1 hold, such that there are two

steady state equilibria. Then, there is a heteroclinic orbit joining steady states (R∗
1, q

∗
1)

and (0, q∗0). The orbit has a positive slope near the steady state (R∗
1, q

∗
1) and has a zero

slope near the steady state (0, q∗0).

Proof. See Appendix E.

Figures 1 and 2 present the phase diagrams for the cases in which q∗0 > q∗1 and q∗0 <

q∗1. In both cases, there is a heteroclinic trajectory joining the two steady states, and

this trajectory is positively sloped at the neighborhood of (R∗
1, q

∗
1). This implies that

the nominal interest rate follows a non-monotonous trajectory in the case depicted in

Figure 1. The boom in house prices stimulates aggregate demand and thus inflation via

the positive wealth effect on aggregate consumption. However, the aggressive increase

in the real interest rate implied by the Taylor rule makes the economy spiral down

into an off-target decelerating-inflation path, leading the economy to the liquidity trap

equilibrium.

As a consequence of Proposition 3, there is not only local indeterminacy at the

steady state (q∗0, 0), but also global indeterminacy: any point along the heteroclinic

orbit is an equilibrium and, if it is not located at any of the two steady states, there is

a transition dynamics which converges asymptotically to the liquidity trap. Next, we

set out the rationale for our results.
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Figure 1: Phase diagram for a conventional Taylor rule: r∗ + P (0)L(R∗
1) > 0. The

figure is built by assuming L(R) = 1 + ξR1−ζ , a linear rule R = r̃ + π + γ(π − π̃), and
the values of the parameters α = 0.5, β = 0.01, ξ = 1, ζ = 0.4, µ = 0.01, ρ = 0.02,
γ = 0.5, r̃ = 0.03 and π̃ = 0.

The isocline q̇ = 0 has just one branch, q = Ψ(R), while the isocline Ṙ = 0 has two

branches, R = 0 and q = Φ(R). The slopes of the last two equations are, respectively,

dq

dR

∣∣∣∣
q̇=0

= Ψ′(R) = Ψ(R)

(
L′(R)

L(R)
− 1− P ′(R)

R− P (R)

)
(37)

and

dq

dR

∣∣∣∣
Ṙ=0

= Φ′(R) = Φ(R)

(
1− P ′(R)

R− P (R)− ρ
+

L′(R)

L(R)

)
. (38)

With the assumptions made at Proposition 1, the isocline q̇ = 0 has a positive value

at R = 0 and an asymptote at this point, because q = Ψ(0) > 0 if P (0) < 0 and

Ψ′(0) = Ψ(0)(L′(0) + (1 − P ′(0))/P (0)) = +∞. On the other side, Ψ′(∞) = 0. For

positive nominal interest rates, the slope depends upon the relationship between the

wealth effect on consumption and the monetary rule. The schedule has a negative slope

everywhere if Ψ
′
(R) < 0, that is, if L′(R)/L(R) < (1 − P ′(R)/(R − P (R)). This is
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Figure 2: Phase diagram for a conventional Taylor rule: r∗ + P (0)L(R∗
1) < 0. We use

the same functional forms and parameters as in Figure 1 with γ = 0.2 instead.

the case depicted in Figure 1. However, if this condition does not hold, that is locally

L′(R)/L(R) > (1−P ′(R)/(R−P (R)), the two isoclines are locally increasing. This is

the case depicted in Figure 2.

Let us consider the following example: if the monetary rule is linear and Λ(c,m) is

a CES function,

Λ(c̄, m̄) =
[
ηc̄

ζ
ζ−1 + (1− η) m̄

ζ
ζ−1

] ζ−1
ζ

, (39)

with 0 < η, ζ < 1, the first case occurs if

−
(
1 + γ

γ

)
P (0) =

r̃ − γπ̃

γ
<

[
1

ξ

(
ζ

1− ζ − γ

)ζ
]1/(1−ζ)

,

where ξ ≡ [η/ (1− η)]1−ζ . There are two cases. First, if γ > 1 − ζ, the isocline q̇ = 0

is locally increasing. Second, if γ < 1 − ζ, the isocline q̇ = 0 may (not) be locally

increasing, for an active Taylor rule, if the target for the real interest rate is relatively

high (low), the target for the inflation rate is relatively low (high), and/or the degree
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of reactiveness of the nominal interest rate to inflation is relatively low (high).

If the first case occurs, then we always have q∗1 < q∗0. In the second case, we may

have q∗1 > q∗0, depending upon the deep parameters for the consumer demand and the

monetary rule. A necessary condition for q∗1 > q∗0 is that locally Ψ′(R) > 0.

The equilibrium point R∗ = 0 always exists and is, geometrically, in the intersection

of isocline q̇ = 0 with the first branch of isocline Ṙ = 0. The second equilibrium point,

which exists under the conditions of Proposition 1, is in the intersection of the isocline

q̇ = 0 with the second branch of the isocline Ṙ = 0, whose slope is given by equation

(38). For the range in which q > 0, we have Φ(R) > 0, which means that the branch

of the isocline, in which q = Φ(R), is globally increasing. Since

Ψ(0)− Φ(0) =
(P (0) + r+)(P (0) + r−)

αβ(ρ+ µ)P (0)
,

where

r+ ≡
ρ+

√
ρ2 + 4β (1− α) (ρ+ µ)

2
, r− ≡

ρ−
√
ρ2 + 4β (1− α) (ρ+ µ)

2
,

and P (0) < 0, a necessary condition for the existence of the steady state (R∗
1, q

∗
1), which

was introduced in Proposition 1, is P (0) + r+ > 0, implying that Ψ(0) − Φ(0) > 0,

which means that the isocline q̇ = 0 cuts the q−axis above the isocline Ṙ = 0. In

Proposition 2, we proved that this steady state is locally a source.

Furthermore, we may conjecture that the unstable manifold associated to the equi-

librium point (R∗
1, q

∗
1) and the stable manifold associated to the equilibrium point

(0, q∗0) intersect. The proposition proves that this conjecture is right, which means

that a heteroclinic orbit defined as

Ω ≡
{
(R, q) ∈ W : lim

t→∞
(R(t), q(t)) = (0, q∗0), lim

t→−∞
(R(t), q(t)) = (R∗

1, q
∗
1)

}
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Figure 3: Bifurcation diagram for the conventional Taylor rule in the space (r̃, γ). The
values for the other parameters are as in Figure 1.

exists in W ⊆ R2
+. In our case, Ω corresponds to the set of all the equilibrium values

for the nominal interest rate and house prices. All other points, in W/Ω, lead to a

violation of the transversality and/or the no-Ponzi game condition.

This means that there is global indeterminacy: any initial point (R(0), q(0)) ∈ Ω

is an equilibrium point and converges asymptotically to (0, q∗0). Condition (35) implies

that if the monetary policy is more (less) active, then the reduction of the nominal

interest rate is correlated with an increase (decrease) in the prices of houses. Along a

liquidity-trap path, in fact, the central bank adopting the Taylor-rule framework tries

to stimulate aggregate demand and thus inflation by decreasing the nominal interest

rate more than proportionally with the decline in inflation. This policy triggers a fall in

the real interest rate. If the interest rate cuts are sufficiently aggressive, house prices

will increase even along the decelerating-inflation trajectory, as it emerges from the

bifurcation diagram in Figure 3.
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4 Alternative Taylor Rules

We now examine local and global equilibrium dynamics for the case of Taylor rules

that incorporate house prices. We start with rule (21) and next we study rule (22).

4.1 Taylor Rule Depending on the Level of Housing Prices

For the case of rule (21), we have π = P (R, q), where

P (R (t) , q (t)) =
1

1 + γ
R (t)− ϵ

1 + γ
q̃ + P (0, 0), (40)

with P (0, 0) ≡ (γπ̃ − r̃ − ϵq̃)/(1 + γ).

Hence, the dynamic system assumes the form

q̇(t) = (R(t)− P (R(t), q(t))) (q(t)−Ψ(R(t), q(t))) , (41)

Ṙ(t) =
αβ(ρ+ µ)

L′(R(t))
(Φ(R(t), q(t))− q(t)) , (42)

where Ψ(R, q) and Φ(R, q) are as in equations (30) and (31), in which P (R) is substi-

tuted by P (R, q) as in equation (40).

This case does not present substantial changes as regards the conventional Taylor

rule, as we shall see in the following Proposition.

Proposition 4 Assume a modified Taylor rule depending on the level of housing prices

as in equation (21) in which the monetary policy is active, meaning that 0 < ∂P/∂R <

1, and define

BP (0, 0) ≡ P (0, 0)

2
+

[(
P (0, 0)

2

)2

+
ϵ(1− α)

α(1 + γ)

]1/2

> 0.

Hence:
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(a) if r+ + P (0, 0) ≤ B(P (0, 0), then there is an unique equilibrium steady state

(R∗, q∗) = (0, q∗0) where

q∗0 =
1 + γ

ϵ
BP (0, 0); (43)

(b) if r++P (0, 0) > B(P (0, 0), then there are two equilibrium steady states (R∗, q∗) =

(0, q∗0) and (R∗, q∗) = (R∗
1, q

∗
1) where

q∗1 =
(1 + γ)(P (0, 0) + r+)− γR∗

1

ϵ
(44)

and

R∗
1 =

{
R : L(R) =

(
α(1 + γ)r+
(1− α)ϵ

)(
P (0, 0) + r+ − γ

1 + γ
R

)}
,

and there is a heteroclinic trajectory connecting those two equilibrium steady

states, starting from equilibrium (R∗
1, q

∗
1), which is locally a source, and converging

asymptotically to equilibrium (0, q∗0).

Proof. See Appendix F.

The equilibrium (0, q∗0) is again singular and behaves globally as a saddle point:

for R∗ = 0, we have q̇ S 0 if and only if q S q∗0, and the vector field is horizontal on

the space W . The equilibrium steady state (R∗
1, q

∗
1) also displays local determinacy,

because the local Jacobian has positive eigenvalues for the admissible values of the

parameters.

The global dynamics is as in the version of the model with a conventional Taylor rule

(see Figure 4). There is a heteroclinic orbit connecting equilibria (R∗
1, q

∗
1) to (0, q∗0).

The only combinations of equilibrium nominal interest rates and housing prices are

those along the orbit, which means that there is global indeterminacy.

Therefore, this Taylor rule does not change qualitatively the dynamics, but only

21



Figure 4: Phase diagram for Taylor rule (21). The figure is built by assuming the same
functional forms and the same parameters as Figure 1, and ϵ = 0.002 and q̃ = 50.

quantitatively. However, since

P (0, 0) =
γπ̃ + ϵq̃ − r̃

1 + γ

can have any sign, although it has all parameters positive, the definition of the target

values is less stringent than in the case of the conventional Taylor rule. Furthermore,

we can exclude the case in which there is a unique steady state equilibrium (R∗
1, q

∗
1).

That is, the equilibrium with a zero nominal interest rate always exists.

4.2 Taylor Rule Depending on the Rate of Growth of Housing

Prices

For the case of rule (22), the inflation rate becomes a function of the rate of change of

housing prices,

π(t) =
R(t) + γπ̃ − r̃ − δq̇(t)/q(t)

1 + γ
,
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and the general equilibrium dynamic system is

q̇(t) =
γR(t) + r̃ − γπ̃

1 + γ − δ
(q(t)−Ψ(R(t))) , (45)

Ṙ(t) =
αβ(ρ+ µ)

L′(R(t))
(Φ(R(t))− q(t)) +

δ

1 + γ

L(R(t))

L′(R(t))

q̇(t)

q(t)
, (46)

where Ψ(R) and Φ(R) are similar to equations (30) and (31),

Ψ ≡
(
1− α

α

)(
(1 + γ)

γR + r̃ − γπ̃

)
L(R), (47)

Φ ≡
(
γR + r̃ − γπ̃ − (1 + γ)ρ

αβ(ρ+ µ)(1 + γ)

)
L(R). (48)

Therefore, we can state the following proposition.

Proposition 5 Let the same assumptions as in Proposition 1 hold. Then the existence,

multiplicity and magnitudes of the steady-state equilibria are as in Proposition 1. In

addition:

(a) if 1+γ > δ, then the steady state (0, q∗0) (if it exists) is singular and is a general-

ized saddle point and the steady state (R∗
1, q

∗
1) (if it exists) is a source, and there

is a heteroclinic orbit joining them.

(b) if 1 + γ < δ, then the steady state (0, q∗0) (if it exists) is singular and is a gen-

eralized sink and the steady state (R∗
1, q

∗
1) (if it exists) is a saddle point. If there

are two steady state equilibria, the saddle manifold associated to (R∗
1, q

∗
1) is the

boundary of the basin of attraction of equilibrium (0, q∗0).

Proof. See Appendix G.

As in the version of the model with the conventional Taylor rule (see Proposition

1), the steady-state equilibria of housing prices are given in equations (34) and (33).

From now on, consider the the values for the parameters such that there are two steady
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Figure 5: Phase diagram for Taylor rule (22). The figure is built by assuming the same
functional forms and the same parameters as in Figure 1, and δ = 0.5 < 1 + γ.

state equilibria. The associated phase diagrams are given in Figure 5, for the case in

which 1 + γ > δ, and in Figure 6, for the case in which 1 + γ < δ.

If δ < 1+γ, whereby the central bank reacts more to consumer-price inflation than

to house-price inflation, the global dynamics is similar to the version of the model with

a conventional Taylor rule (see Figure 5): there is global indeterminacy in the sense

that there is an interval for initial values of R, R(0) ∈ (0, R∗
1) which are equilibrium

values and the nominal interest rate tends (possibly in a non-monotonous way) to the

steady state R∗ = 0. For a given initial value of the nominal interest rate in that

interval, there is a single initial value for the equilibrium house prices. Next, the pair

(R(t), q(t)) will follow along the heteroclinic orbit Ω converging to (0, q∗0).

If δ > 1 + γ, whereby the central bank reacts more to house-price inflation than to

consumer-price inflation, the global dynamics changes substantially (see Figure 6): the

two steady-state equilibria are both locally and globally indeterminate. In particular,

the steady state (R∗
1, q

∗
1) is locally indeterminate of order one and the steady state (0, q∗0)

is locally indeterminate of order two. The orders of indeterminacy are given by the
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Figure 6: Phase diagram for Taylor rule (22). B0 is the basin of attraction of equilibrium
(0, q∗0) and Ws

1 is the stable sub-manifold associated to (R∗
1, q

∗
1). The figure is built by

assuming the same functional forms and the same parameters as in Figure 1, and
δ = 5 > 1 + γ.

dimension of the local stable manifolds. Globally, the stable sub-manifold associated to

equilibrium (R∗
1, q

∗
1), W

s
1 , bounds the basin of attraction, B0, of the steady state (0, q∗0).

In our case, this means that the set B0 ∪W s
1 is the space of equilibrium states of the

economy, in the sense that all the trajectories starting in it are equilibrium trajectories.

However, if (R(0), q(0)) ∈ B0, then the equilibrium trajectory will converge to (0, q∗0),

while, if (R(0), q(0)) ∈ W s
1 , then the equilibrium trajectory will converge to (R∗

1, q
∗
1).

This means that if we have an initial nominal interest rate R(0) ̸= 0, there will be one

single initial value q(0), say q1(0), such that the pair (R(t), q(t)) will converge to the

steady state (R∗
1, q

∗
1), but an infinite number of initial values q(0) > q1(0) such that

(R(t), q(t)) will converge to the steady state (0, q∗0). Indeterminacy of order two indeed

implies that there is an infinite number of initial equilibrium values for q (0), given

R(0), and not just one as in the version with a conventional Taylor rule.
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5 Conclusions

The interaction between monetary policy and house prices arguably has been one

of the most debated topics in recent years. The Federal Reserve’s accommodating

monetary policy of 2002-2006 - the so-called Great Deviation from the Taylor rule

- is argued to be responsible for the global crisis started in 2007, since it generated

boom-bust patterns in house prices. In this paper we have presented an overlapping

generations economy with housing-wealth effects and demonstrated that house-price

instabilities can well occur even if the central bank follows monetary policy feedback

rules of the Taylor-style. In particular, global equilibrium dynamics satisfying agents’

tranversality conditions follow a heteroclinic orbit connecting multiple steady-state

equilibria. Rules-based monetary policies, even when they aim to fight aggressively

booms or busts in house prices, can well induce an off-target self-fulfilling trajectory

in which house prices and inflation converge to a liquidity trap. Reacting to house-

price inflation more than to consumer-price inflation gives rise to a basin of attraction

to the liquidity trap, and introduces local indeterminacy at the off-trap steady state.

Bifurcation analysis reveals that, along a liquidity-trap path, a central bank adopting

a sufficiently aggressive monetary policy conforming to the Taylor principle may bring

about an off-target self-fulfilling boom in house prices, even if the economy is spiraling

down into a decelerating inflation dynamics. Hence, active monetary policy cannot be

used to prevent the occurrence of bubbles.
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A Solution of the Representative Consumer’s Prob-

lem

In the intertemporal optimization problem, the representative consumer born at time

s chooses the optimal time path of total consumption, z(s, t), to maximize the lifetime

utility function (2), given (6) and the constraints (3) and (4). Using the definition

of total consumption, z(s, t) ≡ c(s, t) + R(t)m(s, t), and the optimal intratemporal

condition (6), we can write

log Λ (c(s, t),m(s, t)) = log υ(t) + log z(s, t), (49)

where υ(t) ≡ Λ
(

Γ(R(t))
Γ(R(t))+R(t)

, 1
Γ(R(t))+R(t)

)
is the same for all generations. Therefore, the

intertemporal optimization problem can be formalized in the following terms:

max
{z(s,t), h(s,t)}

∫ ∞

0

[
α (log υ(t) + log z(s, t)) + (1− α) log h(s, t)

]
e−(µ+ρ)tdt, (50)

subject to

ȧ(s, t) = (R(t)− π(t) + µ) a(s, t) + y(s, t)− τ(s, t)− z(s, t) +

+

[
q̇(t)

q(t)
− (R(t)− π(t))

]
q(t)h(s, t), (51)

and given a(s, 0). The optimality conditions are

ż(s, t) = (R(t)− π(t)− ρ)z(s, t), (52)

1− α

α
z(s, t) =

[
(R(t)− π(t))− q̇(t)

q(t)

]
q(t)h(s, t), (53)

lim
t→∞

a(s, t)e−
∫ t
0 (R(j)−π(j)+µ)dj = 0. (54)
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Therefore, the individual budget constraint (51) can be expressed as

ȧ(s, t) = (R(t)− π(t) + µ) a(s, t) + y(s, t)− τ(s, t)−

−z(s, t) +

[
q̇(t)

q(t)
− (R(t)− π(t))

]
q(t)h(s, t)

= (R(t)− π(t) + µ) a(s, t) + y(s, t)− z(s, t)− 1− α

α
z(s, t)

= (R(t)− π(t) + µ) a(s, t) + y(s, t)− 1

α
z(s, t). (55)

Integrating forward (55), using the transversality condition (54) and (52), total con-

sumption turns out to be a linear function of total wealth:

z(s, t) = α(µ+ ρ)
(
a(s, t) + k(s, t)

)
, (56)

where k(s, t) is human wealth, defined as the present discounted value of after-tax labor

income, k(s, t) ≡
∫ ∞

t (y(s, t)− τ(s, t)) e−
∫

v
t (R(j)−π(j)+µ)djdv. From (6),

z(s, t) = L(R(t))c(s, t), (57)

where L(R(t)) ≡ 1 +R(t)/Γ (R(t)). Time-differentiating (57) yields

ż(s, t) = L′(R(t))c(s, t)Ṙ(t) + L(R(t))ċ(s, t). (58)

Therefore, the dynamic equation for individual consumption is

ċ(s, t) = (R(t)− π(t)− ρ) c(s, t)− L′(R(t))Ṙ(t)

L(R(t))
c(s, t). (59)
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B Aggregation

The per capita aggregate financial wealth is given by

a(t) = β

∫ t

−∞
a(s, t)eβ(s−t)ds. (60)

Differentiating with respect to time yields

˙a(t) = βa(t, t)− βa(t) + β

∫ t

−∞
ȧ(s, t)eβ(s−t)ds, (61)

where a(t, t) is equal to zero by assumption. Using (3) yields

˙a(t) = −βa(t) + µa(t) + (R(t)− π(t)) a(t) + y(t)− τ(t)− c(t)−

−R(t)m(t) +

[
q̇(t)

q(t)
− (R(t)− π(t))

]
q(t)h(t)

= (R(t)− π(t)− n) a(t) + y(t)− τ(t)− c(t)−

−R(t)m(t) +

[
q̇(t)

q(t)
− (R(t)− π(t))

]
q(t)h(t). (62)

Using (11), the per capita aggregate consumption is given by

c(t) =
α(µ+ ρ)

L(R(t))
(a(t) + k(t)) , (63)

where k(t) =
∫ ∞

t (y(t)− τ(t)) e−
∫

v
t (R(j)−π(j)+µ)djdv is the per capita aggregate human

wealth. Next differentiate with respect to time the definition of per capita aggregate

consumption, to obtain

˙c(t) = βc(t, t)− βc(t) + β

∫ t

−∞
ċ(s, t)eβ(s−t)ds. (64)
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Note that c(t, t) denotes consumption of the newborn generation. Since a(t, t) = 0,

from (11) we have

c(t, t) =
α(µ+ ρ)

L(R(t))

(
k(t, t)

)
. (65)

Using (12), (63) and (65) into (64) yields the time path of per capita aggregate con-

sumption:

ċ(t) = (R(t)− π(t)− ρ) c(t)− L′(R(t))Ṙ(t)

L(R(t))
c(t)− αβ(ρ+ µ)

L(R(t))
a(t). (66)

C Proof of Proposition 1

Any equilibrium steady states, (R∗, q∗), are bounded points (R, q) ∈ (R+,R++) such

that q̇ = Ṙ = 0 and the transversality condition holds if R∗ − P (R∗) > −µ. From

equation (28), q̇ = 0 if and only if q = Ψ(R). From equation (29), Ṙ = 0 if and only

if R = 0, because L′(0) = ∞, or q = Φ(R). Therefore, there are two candidates for

equilibrium steady states. First, we have R = 0 and q = q∗0 ≡ Ψ(0) = −(1−α)/(αP (0))

which constitute indeed an equilibrium point only if P (0) < 0. In this case, the

transversality condition is verified, because the condition −P (0) > −µ always holds.

Second, from the condition q = Ψ(R) = Φ(R), there is a second candidate if the set

{R ≥ 0 : Ψ(R) = Φ(R) > 0} is non-empty. We have

Ψ(R) = Φ(R) ⇔ (R−P (R)−ρ)(R−P (R))−β (1− α) (ρ+µ) = (r− r+)(r− r−) = 0,

where

r+ ≡
ρ+

√
ρ2 + 4β (1− α) (ρ+ µ)

2
, r− ≡

ρ−
√

ρ2 + 4β (1− α) (ρ+ µ)

2

and r = R−P (R) > −µ from the transversality condition. Because β (1− α) (ρ+µ) >

0, then r+ > ρ > 0 > r−. As L(R) > 1, then the condition r > ρ must hold,
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which implies that the transversality condition is always met. Therefore, an equivalent

condition for the existence of a second steady state is R∗
1 = {R ≥ 0 : R − P (R) =

r+}. From the assumption that the monetary policy is globally active, R − P (R) is

monotonically increasing in R, which means that R−P (R) ∈ [−P (0),+∞). Therefore,

the steady state (R∗
1, q

∗
1) exists if P (0) + r+ ≥ 0, where q∗1 = Ψ(R∗

1) = Φ(R∗
1). As a

result, there is multiplicity if 0 > P (0) ≥ −r+, there is only one steady state (R∗
1, q

∗
1)

if P (0) > 0, and there is only steady state (0, q∗0) if P (0) + r+ < 0. We set r∗ = r+.

D Proof of Proposition 2

For the steady-state equilibrium (R∗, q∗) = (R∗
1, q

∗
1), we have the trace and determinant

of the Jacobian given by

trJ(R∗
1) = r∗ + αβ(ρ+ µ)

Φ′(R∗
1)

L′(R∗
1)

= 2r∗ − ρ+
(1− P ′(R∗

1)L(R
∗
1)

L′(R∗
1)

and

det J(R∗
1) = r∗αβ(ρ+ µ)

(
Φ′(R∗

1)−Ψ′(R∗
1)

L′(R∗
1)

)
=

(2r∗ − ρ)(1− P ′(R∗
1))L(R

∗
1)

(r∗ − ρ)L′(R∗
1)

> 0,

because

Φ′(R∗
1) = q∗1

(
1− P ′(R∗

1)

r∗ − ρ
+

L′(R∗
1)

L(R∗
1)

)
> 0,

yielding the eigenvalues λ1 = 2r∗ − ρ > 0 and λ2 = (1 − P ′(R∗
1))L(R

∗
1)/L

′(R∗
1) > 0 if

the monetary policy is locally active, 1 − P ′(R∗
1) > 0. Then the steady state (R∗

1, q
∗
1)

is always a source.

Evaluating the trace and the determinant for equilibrium (R∗, q∗) = (0, q∗0), with

q∗0 = Ψ(0), we get

trJ(0) = −P (0) + αβ(ρ+ µ)

(
Φ′(0)

L′(0)
+ (Ψ(0)− Φ(0))

L′′(0)

(L′(0))2

)
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and

det J(0) = −P (0)
αβ(ρ+ µ)

L′(0)

(
Φ′(0)−Ψ′(0) + (Ψ(0)− Φ(0))

L′′(0)

L′(0)

)
.

As

Ψ′(0)− Φ′(0)

L′(0)
= Ψ(0)− Φ(0) =

(P (0) + r+)(P (0) + r−)

αβ(ρ+ µ)P (0)
> 0,

we have

trJ(0) = −(2P (0) + ρ) +
(P (0) + r+)(P (0) + r−)

P (0)

L′′(0)

(L′(0))2
,

det J(0) = (P (0) + r+)(P (0) + r−)

(
1− L′′(0)

(L′(0))2

)
.

Recall that this steady state exists only if P (0) < 0, and observe that L′(0) = ∞ and

L′′(0)/(L′(0))2 = −∞. Then

trJ(0) = det J(0) =


−∞, if P (0) + r+ > 0

+∞, if P (0) + r+ < 0

which means that the eigenvalues of the Jacobian are infinite and the steady state is

singular. If P (0) + r+ > 0, the steady state is multiple (case (b) in Proposition 2) and

is a kind of non-regular saddle point, and, if P (0) + r+ < 0, the steady state is unique

(case (c) in Proposition 2) and is a kind of non-regular source. In any case, the flow

approaches or diverges from (0, q∗0) at an infinite speed and is non-differentiable locally.

In order to study local dynamics, we can use several methods, such as, first, finding

a de-singularized projection and studying its local dynamics, and, second, studying

global dynamics.

If we use the first method, the natural way to remove the singularity introduced by
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L′(R) at R = 0, would be to recast the system in variables (L, q),

q̇ = q (R− P (R))−
(
1− α

α

)
L,

L̇ = L′(R)Ṙ = L (R− P (R)− ρ)− αβ(ρ+ µ)q,

where L ≥ 1, R = R(L) is increasing and R(1) = 0, R′(1) = 0. However, in this case

there is an unique steady state (L(R∗
1), q

∗
1). Therefore, this method does not solve our

de-singularization problem. We use the second method in the proof of Proposition 3.

There, we show that the singular steady state (0, q∗0), for the case P (0) + r+ > 0 (i.e.,

case (b) in Proposition 2) behaves as a generalized saddle point.

E Proof of Proposition 3

As the system (28)-(29) does not have an explicit solution, we must employ qualitative

methods in order to study global dynamics. One possible method is to find a first

integral of system (28)-(29), that is, a Lyapunov function V (.) such that V (R, q) =

constant. We could not find this function. Another method is to determine a trapping

area for the heteroclinic orbit. The rationale is the following: as the steady state

(R∗
1, q

∗
1) is a source, the unstable manifold is the set R+/(R

∗
1, q

∗
1); as the steady state

(0, q∗0) is a saddle point, the stable manifold is, locally, composed by a single trajectory

belonging to R+; therefore there is an intersection of the unstable manifold of the first

point and of the stable manifold of the second which is non-empty. In order to prove

that it exists, and to characterize it, we consider a trapping area for the heteroclinic

orbit. In order to prove this, we start by determining the slopes of the heteroclinic

orbit in the neighborhoods of the two equilibria, we build a trapping area enclosing the

heteroclinic, and demonstrate that all the trajectories starting inside the trapping area

escape from it, with the exception of those starting at any point along the heteroclinic

orbit.
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E.1 Slopes of the Eigenspaces Associated to the Two Equilib-

ria

The unstable eigenspace Eu
1 is the tangent space to the unstable manifold associated

to equilibrium (R∗
1, q

∗
1), in the space where (R, q) ∈ W ⊆ R2

+ lie,

Wu
1 ≡

{
(R, q) ∈ W : lim

t→−∞
(R(t), q(t)) = (R∗

1, q
∗
1)

}
.

The unstable eigenspace Eu
1 is the linear space which is tangent to Wu

1 and is spanned

by the eigenvectors (V1, 1)
⊤ and (V2, 1)

⊤ which are associated to eigenvalues λ1 and λ2,

respectively, where

V1 = −r+Ψ
′(R∗

1)

r+ − ρ
, V2 =

(r+ − ρ)L′(R∗
1)

L(R∗
1)

.

In general, V2 > 0 and the sign of V1 is ambiguous. Observe that the the slope

of Eu
1 ,

dq
dR

∣∣
Eu
1
, is the opposite to the slope of isocline q̇ = 0, locally at the steady

state (R∗
1, q

∗
1). Let us call Eu

1,+ ( Eu
1,−) the eigenspace related to the dominant (non-

dominant) eigenvalue. The following conditions can be proved: (1) if r+ > (1 −

P ′(R∗
1))L(R

∗
1)/L

′(R∗
1), then 2r+ − ρ > (1 − P ′(R∗

1))L(R
∗
1)/L

′(R∗
1), which is equivalent

to λ1 > λ2, and therefore Eu
1,+ = {(R, q) ∈ W : (q − q∗1) = V1(R − R∗

1)} and Eu
1,− =

{(R, q) ∈ W : (q − q∗1) = V2(R − R∗
1)}. In this case, V1 < 0 and V2 > 0 and

the slope associated to the dominant eigenvalue is negative and the slope associated

to the non-dominant eigenvalue is positive; (2) if λ1 < λ2, which is equivalent to

2r+−ρ < (1−P ′(R∗
1))L(R

∗
1)/L

′(R∗
1), then r+ < (1−P ′(R∗

1))L(R
∗
1)/L

′(R∗
1), and Eu

1,+ =

{(R, q) ∈ W : (q−q∗1) = V2(R−R∗
1)} and Eu

1,− = {(R, q) ∈ W : (q−q∗1) = V1(R−R∗
1)}.

In this case, V1 > V2 > 0 and the slope associated to the both eigenvalues are both

positive, but the one associated with Eu
1,− is steeper.
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The stable manifold associated to steady state (0, q∗0) is defined as

Ws
0 ≡

{
(R, q) ∈ W : lim

t→∞
(R(t), q(t)) = (0, q∗0)

}
.

However, we saw that the projection of the steady state (0, q∗0) in the space W is

singular. This means that the solution approaches the singular steady state asymp-

totically with an infinite speed. In order to characterize the dynamics in the space W

in the neighborhood of (0, q∗0), we have to take a different approach: observe that, as

R′(1) = 0, then a näıve calculation for the slope of the stable manifold in the neigh-

borhood of the singular equilibria could be dq/dR = (r+ − ρ)/(αβ(ρ+ µ)R′(1)) = ∞.

Instead, observe that along the singular surface R = 0 we have Ṙ = 0 and q̇ =

P (0)(Ψ(0) − q). Then, from any point along this surface where q ̸= q∗0 = Ψ(0), an

unstable trajectory unfolds. This means that any trajectory coming from R > 0 will

be deflected away from the equilibrium point on hitting the surface R = 0, with the

exception of the one which converges to the equilibrium point (0, q∗0). The (global)

direction of the vector field generated by equations (28)-(29) is given by

dq

dR

∣∣∣∣
(q̇,Ṙ)

=
L′(R)(R− P (R))(q −Ψ(R))

αβ(ρ+ µ)(Φ(R)− q)
. (67)

In order to determine the slope of the trajectory which converges to the singular steady

state, we determine the slope of the vector field hitting the surface R = 0 using equation

(67). We have

dq

dR

∣∣∣∣
R=0

=
−L′(0)P (0)(q −Ψ(0))

αβ(ρ+ µ)(Φ(0)− q)
=


∞, if q ̸= q∗0

0, if q = q∗0

because L′(0) = ∞. Therefore, the stable manifold associated to the singular steady

state (0, q∗0) is horizontal in the space W .
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The heteroclinic orbit, Ω = Ws
0 ∩Wu

1 , is tangent to a horizontal line in the neigh-

borhood of the equilibrium point (0, q∗0) and is positively slopped in the neighborhood

of (R∗
1, q

∗
1), because it is tangent to Eu

1,−.

E.2 Trapping Area

Next we consider the case in which λ1 < λ2, which is depicted in Figure 1. Recall

that Ω is tangent to a line dq/dR = 0 in the neighborhood of point (0, q∗0). Observe

that, in the neighborhood of point (R∗
1, q

∗
1), the slope of the eigenspace associated to

the non-dominant eigenvalue (λ1) and of the isocline Ṙ = 0 are both positive, but the

former is less steep that the later because (see Figure 7)

dq

dR

∣∣∣∣
Ṙ

=
dq

dR

∣∣∣∣
Eu
1,−

= Φ′(R∗
1) +

r+
r+ − ρ

Ψ′(R∗
1) = −2r+ − ρ

r+ − ρ
q∗1

(
L′(R∗

1)

L(R∗
1)

)
< 0.

As the heteroclinic Ω is tangent to that eigenspace in the heighborhood of that equi-

librium point, it will lie between the isocline Ṙ = 0 and Eu
1,− and will never cross this

line.

This allows to consider the trapping area whose sides are given by the segment of the

isocline q̇ = 0 between the two equilibria (recall that the two equilibria lay along this

isocline), by a line passing through the steady state (R∗
1, q

∗
1), whose slope is given by the

eigenvector which is associated to the non-dominant eigenvalue and by the horizontal

segment such that q = q∗0, between the q axis and the previous eigenvector-line.

Formally, the trapping area [A,B,C] is defined by the vertices A ≡ (0, q∗0), B ≡

(R∗
1, q

∗
1), and C ≡ (RC , q

∗
0) = (R∗

1 − (q∗1 − q∗0)/V1, q
∗
0) and the sides (A,B) = {(R, q) ∈

(0, R∗
1) × (q∗1, q

∗
0) : q̇ = 0}, (A,C) = {(R, q) : R ∈ (0, R∗

1), q = q∗0}, and (B,C) =

{(R, q) ∈ (R∗
1, RC)× (q∗1, q

∗
0) : q = q∗1 + V1(R−R∗

1)}.

Next we have to demonstrate that the (global) direction of the vector field, given

by equation (67), which is generated by equations (28)-(29), allows us to prove that all
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the trajectories hitting the three boundaries of the trapping exit the trapping area.

At side (A,B) we have q̇ = 0 and Ṙ < 0, because

Ṙ
∣∣∣
(A,B)

=
αβ(ρ+ µ) (Φ(R)−Ψ(R))

L′(R)
=

L(R)(R− P (R)− r+)(R− P (R)− r−)

L′(R)(R− P (R))
< 0,

given the fact that −r− < R − P (R) < r+ if R ∈ [0, R∗
1). Then, as the slope of the

vector field in the interval is

dq

dR

∣∣∣∣
(A,B)

= 0,

then the vector field points globally out of the trapping area within (A,B) with a

horizontal slope.

At side (A,C), the vector field corresponds to a horizontal line between point A

and point C, which is in the intersection of a horizontal line passing through the q-axis

and the direction defined by the eigenvector associated to the dominant eigenvalue

at point B. These two lines meet at point C. Along (A,C), we have Ṙ < 0 for

R ∈ (0,Φ−1(q∗0)), Ṙ = 0 at point R = Φ−1(q∗0) and Ṙ > 0 for R ∈ Φ−1(q∗0), RC , and,

we have q̇ > 0 everywhere. As the slope of the vector field is given by

dq

dR

∣∣∣∣
(A,C)

=
L′(R)(R− P (R))(q∗0 −Ψ(R))

αβ(ρ+ µ)(Φ(R)− q∗0)


< 0, if R ∈ (0,Φ−1(q∗0)

∞ if R = Φ−1(q∗0)

> 0, if R ∈ (Φ−1(q∗0), RC)

then the vector field points globally out of the trapping area, at all points located at

(A,C).

At side (B,C), which is a segment of the eigenspace Eu
1,− between points (R∗

1, q
∗
1)

and (RC , q
∗
0), the vector field has local time-variations given by Ṙ > 0 and q̇ > 0. As

this side has a slope given by V1, then the trajectories exit the trapping area if the
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slope of the vector field is less steep than V1, that is, if and only if

dq

dR

∣∣∣∣
(B,C)

− dq

dR

∣∣∣∣
Eu
1,−

=
L′(R)(R− P (R))(q −Ψ(R))

αβ(ρ+ µ)(Φ(R)− q)
+

r+Ψ
′(R∗

1)

r+ − ρ
< 0.

The numerator is equivalent to

L′(R)(R− P (R))(q −Ψ(R)) + (Φ(R)− q) (r+L
′(R∗

1)− L(R∗
1)(1− P ′(R∗

1))) <

L′(R)(R− P (R))(q −Ψ(R)) + (Φ(R)− q) ((R− P (R))L′(R∗
1)− L(R∗

1)(1− P ′(R∗
1))) <

L′(R∗
1)(R− P (R))(Φ(R)−Ψ(R))− (Φ(R)− q)L(R∗

1)(1− P ′(R∗
1)) <

(Φ(R)− q) (L′(R∗
1)(R− P (R))− L(R∗

1)(1− P ′(R∗
1))) <

(Φ(R)− q) (L′(R∗
1)r+ − L(R∗

1)(1− P ′(R∗
1))) < 0.

It is negative because R > R∗
1 implies L′(R) < L′(R∗

1), R − P (R) > r+, q > Ψ(R),

and because we assume L′(R∗
1)r+ < L(R∗

1)(1 − P ′(R∗
1) from λ1 < λ2. Then, all the

trajectories reaching segment (B,C) will exit the trapping area.

Therefore, there is an unique trajectory starting from point B, (R∗
1, q

∗
1), that does

not hits the boundaries of the trapping area, and therefore converges to point A, (0, q∗0).

This is the heteroclinic trajectory Ω, and it happens to cross the isocline Ṙ = 0.

F Proof of Proposition 4

We use the same methods as for the proof of Propositions 1, 2 and 3.

First, the steady-state conditions are q = Ψ(R, q) and R = 0 or q = Φ(R, q), and a

steady state is an equilibrium if R∗ − P (R∗, q∗) + µ > 0. A steady state exists and is

an equilibrium if there is a q∗ > 0 such that q∗ = Ψ(0, q∗) and −P (0, q∗) > −µ. Using

the Taylor rule (21), the equilibrium condition is equivalent to (q − q+)(q − q−) = 0,
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Figure 7: Proof of Proposition 3.

where

q± =

(
1 + γ

ϵ

)P (0, 0)

2
±

[ (
P (0, 0)

2

)2

+
1− α

α

ϵ

1 + γ

]1/2
 .

As q− < 0 < q+, then

q∗0 = q+ =

(
1 + γ

ϵ

)
BP (0, 0) > 0,

which holds for any P (0, 0). As

−P (0, q∗0) =
ϵ

1 + γ
q∗0 − P (0, 0) = BP (0, 0)− P (0, 0) =

= −P (0, 0)

2
+

[(
P (0, 0)

2

)2

+
1− α

α

ϵ

1 + γ

]1/2

> 0,

then the transversality condition holds without further conditions.

An interior steady state is determined from the non-negative values of (R, q) such

that q = Ψ(R, q) = Φ(R, q) > 0. If we define r(R, q) ≡ R − P (R, q), this condition

is equivalent to (r − r+)(r − r−) = 0. As a necessary condition for a positive q is

r(R, q) > ρ, then r(R, q) = r+ > −µ, which means that the transversality condi-
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tion is automatically verified. This is equivalent to γR + ϵq = (1 + γ)(P (0, 0) + r+).

Substituting in q = Ψ(R, q), we get the equation

L(R) =
α

1− α

[(
1 + γ

ϵ

)
(P (0, 0) + r+)−

γ

ϵ
R

]
r+.

After some algebra, we can prove that this equation has a non-negative solution for R

if and only if r+ + P (0, 0) ≥ BP (0, 0) > 0.

The local dynamics are determined in the same way as in the proofs of Propositions

2 and 3. But, in this case, the eigenvalues for the steady state (R∗
1, q

∗
1) are

λ1 = 2r+ − ρ > 0,

λ2 =
ϵ

1 + γ
q∗1 +

γ

1 + γ

L(R∗
1)

L′(R∗
1)

> 0

for the values of the parameters such that there are two steady states.

G Proof of Proposition 5

It is easy to see that the steady state conditions are exactly the same as in the case of

the conventional Taylor rule. The only thing that may change is related to the local

and global dynamics of the model.

Applying the same methods as for the proof of Proposition 2, we find the eigenvalues

for the steady state (R∗
1, q

∗
1):

λ1 = 2r+ − ρ > 0,

λ2 =
γ

1 + γ − δ

L(R∗
1)

L′(R∗
1)
,

where sign(λ2) = sign(1 + γ − δ).
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