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Abstract

This paper proposes a valuation model for the GLWB option in
variable annuity contracts using tractable financial and stochastic mor-
tality processes in a continuous time framework. The policy has been
analyzed assuming a static approach, in which policyholders withdraw
each year just the guaranteed amount. Specifically we have considered
the basic model proposed by Fung et al.|[2014] and we have general-
ized it introducing more realistic assumptions. In particular, we have
taken into account a CIR stochastic process for the term structure of
interest rates and a Heston model for the volatility of the underlying
account, analyzing their effect on the fair price of the contract. We
have addressed these two hypotheses separately at first, and jointly af-
terwards. As part of our analysis, we have implemented the theoretical
model using a Monte Carlo approach. To this end, we have created ad
hoc codes based on the programming language MATLAB, exploiting
its fast matrix-computation facilities.

Keywords: Variable annuities, Guaranteed Lifetime Withdrawal Ben-
efit (GLWB), static approach, systematic mortality risk, interest rate
and volatility risk, Monte Carlo approach.
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1 Introduction

The past twenty years have seen a massive proliferation in insurance-linked
derivative products. The public, indeed, has become more aware of invest-
ment opportunities outside the insurance sector and is increasingly trying to
seize all the benefits of equity investment in conjunction with mortality pro-
tection. The competition with alternative investment vehicles offered by the
financial industry has generated substantial innovation in the design of life
products and in the range of benefits provided. In particular, equity-linked
policies have become ever more popular, exposing policyholders to financial
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markets and providing them with different ways to consolidate investment
performance over time as well as protection against mortality-related risks.
Interesting examples of such contracts are variable annuities (VAs). This
kind of policies, first introduced in 1952 in the United States, experienced
remarkable growth in Europe, especially during the last decade, character-
ized by “bearish” financial markets and relatively low interest rates. Being a
quite new product class, an industry standard definition does not yet exist.
Ledlie et al.| [2008| describe them as unit-linked or managed fund vehicles
which offer optional guarantee benefits as a choice for the customer. They
are generally issued with a single premium (lump sum) or single recurrent
premiums. The total amount of premiums is also named the principal of
the contract or the invested amount. Apart from some upfront costs, premi-
ums are entirely invested into a well diversified reference portfolio. In USA
the National Association of Variable Annuity Writers explain that “with a
variable annuity, contract owners are able to choose from a wide range of
investment options called sub accounts, enabling them to direct some as-
sets into investment funds that can help keep pace with inflation, and some
into more conservative choices. Sub accounts are similar to mutual funds
that are sold directly to the public in that they invest in stocks, bonds, and
money market portfolios”. Customers can therefore influence the risk-return
profile of their investment by choosing from a selection of different mutual
funds, from more conservative to more dynamic asset combinations[l] Dur-
ing the contract’s lifespan, its value may increase, or decrease, depending
on the performance of the reference portfolio, thus policyholders are pro-
vided with equity participation. Under the terms and conditions specified
by the contract, the insurer promises to make periodic payments to the client
on preset future dates. These payments are usually determined as a fixed
or variable percentage of the invested premium and are deducted from the
contract’s value, until the drawdown process will exhaust, sooner or later,
the VA sub-account. It is well-rendered the risks underlying the policy. A
prolonged negative performance of the reference portfolio during the lifes-
pan of the contract could preempt its end and consequently reduce the total
withdrawals received by the policyholder. The same happens for example
if the annuitant dies few years after the contract’s drafting, unlike his/her
expectations. Just to face these risks that the VA market has begun to de-
velop, insomuch as this class of annuities has achieved resounding success
among investors. Many other features, in fact, contributed to make these
products attractive. The success of variable annuities is no doubt due to
the presence of tax incentives, introduced by governments to support the

'From the insurer’s perspective, the buyer’s portfolio choice can have a substantial
impact on the profitability of the variable annuity. Individuals could increase risk and
return in their portfolios to the point that the guarantee becomes unprofitable for the
insurers. This is the reason why many actual prospectus of offered VAs restrict investment
choices for their buyers.



development of individual pension solutions and contain public expenditure.
Among them, a tax deferability of investment earnings until the commence-
ment of withdrawals and a tax-free transfer of funds between VA investment
options are allowed. But, in respect of traditional life insurance products,
the main feature of variable annuities is the possibility of enjoying of a large
variety of benefits represented by guarantees against investment and mortal-
ity /longevity risks. Available guarantees are usually referred to as GMxB,
where “x” stands for the class of benefits involved. A first classification is
between:

e Guaranteed Minimum Death Benefits (GMDB);
e Guaranteed Minimum Living Benefits (GMLB).

The GMDB rider is usually available during the accumulation period and
it addresses the concern that the policyholder may die before all payments
are made. If it happens, the beneficiary receives a death benefit equal to
the current asset value of the contract or, if higher, the guaranteed amount,
which typically is the amount of premiums paid by the deceased policyholder
accrued at the guaranteed rate.

In contrast, living benefits can be described as wealth-preservation or wealth-
decumulation products as they enable the policyholder to preserve wealth
during the drawdown period. There are three common types of living ben-
efit riders: the Guaranteed Minimum Accumulation Benefits (GMAB); the
Guaranteed Minimum Income Benefits (GMIB) and the Guaranteed Mini-
mum Withdrawal Benefits (GMWB). In this work we will refer to the last
rider, and to be more precise, to its ultimate version, represented by the
Guaranteed Lifetime Withdrawal Benefit. In fact, as a result of rising life
expectancies as well as increases in lifestyle and health-care costs, retire-
ment lifespans have become both longer and more expensive. At the same
time, with the social security system under considerable stress, the idea that
individuals and households need to plan for their own retirement is gain-
ing traction. To satisfy these new needs insurance companies have started
offering a lifetime benefit feature with GMWB, enabling the investor to si-
multaneously manage both financial as well as longevity related risks. This
new rider is commonly known as “Guaranteed Lifetime Withdrawal Benefits”
(GLWB) and guarantees policyholders the possibility of withdrawing an an-
nual amount (typically 4% to 7%) of their guaranteed protection amount
(GLWB Base) for their entire lifetime, no matter how the investments in the
sub-accounts perform. It’s the only product that combines longevity pro-
tection with withdrawal flexibility, hence it is seen as a “second-generation”
guarantee. The guarantee can concern one or two lives (typically spouses).
Each annual withdrawal does not exceed some maximum value, but it is
evident that the total amount of withdrawals is not limited, depending on
the policyholder’s lifetime. Annual withdrawals of about 5% of the (single



initial) premium are commonly guaranteed for insured aged 60+. In case
of death any remaining fund value is paid to the insured’s dependants. In
deferred versions of the contract, the product is fund linked during the de-
ferment and the account value at the end of this period, or a guaranteed
amount if greater, is treated like a single premium paid for an immediate
GLWB.

Insurance companies charge a fee for the offered benefits. Guarantees and
asset management fees, administrative cost and other expenses are charged
typically deducting a certain percentage of the underlying fund’s value from
the policyholder’s funds account on an annual basis. Very rarely they are
charged immediately as a single initial deduction. This improves the trans-
parency of the contract, as any deduction to the policy account value must
be reported to the policyholder. Some guarantees can be added or removed,
at policyholder’s discretion, when the contract is already in-force. Accord-
ingly, the corresponding fees start or stop being charged. Unlike most “good”
investments, VAs’ fees are quite high. For this reason, they used to receive
heaps of bad press. Also investors don’t look kindly upon this aspect, be-
cause of the combination of investment management and insurance expenses
substantially reduces their returns.

There have been several papers devoted to the pricing and hedging of vari-
able annuities with various forms of embedded options. In [Bacinello et al.
[2014] we can find a quite exhaustive classification of the papers on GMWBs
and GLWs. The GLWB option has been launched in the market recently,
therefore a detailed literature is not yet available. GMWB, which is a sim-
ilar option except that it guarantees withdrawals over only a fixed number
of years, has been analyzed initially by |[Milevsky and Salisbury [2006]. The
authors consider two policyholder behavior strategies. Under a static with-
drawal approach the contract is decomposed into a Quanto Asian Put op-
tion plus a generic term-certain annuity. Numerical PDE methods are used
to evaluate the ruin probabilities for the account process and the contract
value. Considering a dynamic approach where optimal withdrawals occur,
instead, an optimal stopping problem akin to pricing an American put op-
tion emerges, albeit complicated by the non-traditional payment structure.
The free boundary value problem is solved numerically. The authors find
fees’ values greater than those charged in the market. The optimal behav-
ior approach has been then formalized in Dai et al. |2008] where a singular
stochastic control problem is posed. |Chen and Forsyth [2008| explore the
effect of various modeling assumptions on the optimal withdrawal strategy
of the policyholder, and examine the impact on the guarantee value under
sub-optimal withdrawal behavior. The authors moreover propose numerical
schemes for pricing various types of guaranteed minimum benefits in VAs
using an impulse control formulation. Bauer et al. [2008] develop an exten-
sive and comprehensive framework to price any of the common guarantees
available with VAs. Monte Carlo simulation is used to price the contracts



assuming a deterministic behavior strategy for the policyholders. In order to
price the contracts assuming an optimal withdrawal strategy, a quasi-analytic
integral solution is derived and an algorithm is developed by approximating
the integrals using a multidimensional discretization approach via a finite
mesh. In all these papers the guarantees are priced under the assumption of
constant interest rates. Peng et al. [2012] derive the analytic approximation
solutions to the fair value of GMWB riders under both equity and interest
rate risks, obtaining both the upper and the lower bound on the price process.
Allowing for discrete withdrawals, Bacinello et al.| [2011] consider a number
of guarantees under a more general financial model with stochastic interest
rates and stochastic volatility in addition to stochastic mortality. In partic-
ular for GMWBs, a static behavior strategy is priced using standard Monte
Carlo whereas an optimal lapse approach is priced with a Least Squares
Monte Carlo algorithm. The pricing models of GLWB can be considered
as extensions of those concerning the GMWB guarantee together with the
inclusion of mortality risk. Shah and Bertsimas| [2008| analyze the GLWB
option in a time continuos framework considering simplified assumptions on
population mortality and adopting different asset pricing models. [Holz et al.
[2012] price the contract for different product design and model parameters
under the Geometric Brownian Motion dynamics of the underlying fund pro-
cess. They also consider various forms of policyholder withdrawal behavior,
including deterministic, probabilistic and stochastic models. Other papers
investigate the impact of volatility risk, for example |[Kling et al.|[2011]. [Pis-
copo and Haberman [2011] assess the mortality risk in GLWB but not the
other risks and their interactions. [Fung et al. [2014], in particular, deal
with these aspects, analyzing equity and systematic mortality risks under-
lying the GLWB, as well as their interactions. The valuation, however, has
been performed in a Black and Scholes economy: the sub-account value has
been assumed to follow a geometric Brownian motion, thus with a constant
volatility, and the term structure of interest rates has been assumed to be
constant.

In the following section we will introduce briefly the valuation model
proposed in [Fung et al. [2014] with the aim of generalizing it later on. The
backing hypotheses, indeed, do not reflect the situation of financial markets.
In order to consider a more realistic model, we have sought to weaken these
misconceptions. Specifically we have taken into account a CIR stochastic
process for the term structure of interest rates and a Heston model for the
volatility of the underlying account, analyzing their effect on the fair price
of the contract. We have addressed these two hypotheses separately at first,
and jointly afterwards. As part of our analysis, we have implemented the the-
oretical model using a Monte Carlo approach. To this end, we have created
ad hoc codes based on the programming language MATLAB, exploiting its
fast matrix-computation facilities. Sensitivity analyses have been conducted
in order to investigate the relation between the fair price of the contract and



important financial and demographic factors.

2 Basic model

In this section we briefly describe the valuation model proposed in [Fung et al.
[2014], introducing its components: the financial market and the mortality
intensity. We will first describe them separately, and then successively we
will combine them into the insurance market model.

2.1 The financial component

Let (Q,3,F,P) be a filtered probability space, where P is the real world or
physical probability measure and F = (F;):>0 is a filtration satisfying the
usual conditions of right continuity, i.e. F; = (,~, Fu, and P-completeness,
i.e. Fy contains all P-null sets.

Let P be the upfront single premium paid at the inception of the contract,
t = 0. No initial sales charge is applied, so the deposited amount is entirely
used for immediate investment in the available sub accounts. Let z the age
of the policyholder at time ¢t = 0, and suppose that w is the maximum attain-
able age (or limiting age), i.e. the age beyond which survival is assumed to
be impossible. The limiting age w allows for a finite time horizon T' = w — x.
Suppose that the investment portfolio has both equity and fixed income ex-
posure.

Under the real world probability measure P, we assume that the riskless com-
ponent (fixed income investment) is modelled by the money market account
B(t) with the following ordinary differential equation:

dB(t) = rB(t)dt (1)

where 7 > 0 is the instantaneous interest rate. Setting B(0) = 1, we have
B(t) = ¢" for t > 0.

The risky component is a stock (or stock index) whose price under P follows
the usual Geometric Brownian motion:

dS(t) = uS(t)dt + oSE)dWs(t),  S(0) >0 2)

where y € R, 0 > 0 and Wy is a standard Brownian motion.

We initially assume interest rate r and equity volatility ¢ to be constant.
Let us define the pair p(t) = (£(t),n(t)) as the portfolio held at time ¢, where
&(t) is the number of stocks held at time ¢ and 7(t) denotes the deposit on
the savings account at time ¢.

Therefore the reference investment fund V'(-) can be written as:

V(t) = £(6)S(t) +n(t)B(t)



and so its dynamics is given by:

AV (t) = &(t)dS(t) + n(t)dB(t)

— EWS(E) + (O BM]dE + ot (SO AWs () ®)

Let 7(t) = é(f/)ggt) denote the proportion of the retirement savings being
invested in the equity component. All the usual assumptions on the perfect
markets hold: there are no arbitrage opportunities (i.e., there is no way to
make a riskless profit), it is possible to borrow and lend any amount, even
fractional, of cash at the fixed riskless rate, it is possible to buy and sell any
amount, even fractional, of the stock (this includes short selling) and the
above transactions do not incur any fees or costs (i.e., frictionless market).
However, in our model, we assume 0 < 7(-) < 1. In addition we consider 7(+)
constant, say equal to 7, that is the policyholder invests a fixed proportion
of his/her retirement savings in equity and fixed income markets throughout
the investment period. We can therefore rewrite equation as:

dV(t) = [um + r(1 — m)|V(t)dt + oV (t)dWs(t) (4)
Therefore the dynamics of the relative returns can be written as:

V() = [um + r(1 — 7)]dt + onrdWs(t) (5)

V(t)
As results from the description of the policy, the VA sub-account held by
the policyholder is influenced by the variable market performance, the guar-
antee fees charged by the insurance company and the periodic withdrawals
provided by for the contract.

Denote with A(t) the VA account value at time t.
Since the initial premium is invested in the market, it is subject to daily
fluctuations (at least considering the equity component), the size and extent
of which remain a priori uncertain. Therefore, also the balance of the VA
account at a given point in time ¢, A(t), could be either positive or negative.
Should market performance result in low or negative returns, A(-) may reduce
to zero or even fall below this value.
The other two elements (fees and withdrawals) are deducted from the VA
sub-account, so they reduce its value.
Let a be the annual fee rate applied by the insurance company for activating
the GLWB option. Fees are deducted from the account value as long as the
contract is in force and the account value is positive.
Let v(t) be the withdrawals made by the policyholder at time ¢.
The above considerations imply that the dynamics of the VA sub-account
can be described using the following stochastic differential equation (SDE):
dv (t)

AA() = —aA()dt = 7()dt + AW 7= (6)



or equivalently, from equation , as:

dA(t) = —aA(t)dt — v(t)dt + A(t){[um + r(1 — m)]dt + omdWs(t)} 7)
= (ur+7r(l—7m)— @)A(t)dt —~(t)dt + om A(t)dWs(t)

This equation holds as long as A(-) > 0. In fact, once A(-) hits the zero

value, it remains to be zero forever afterwards. That is, the zero value is

considered to be an absorbing barrier of A(-). Furthermore, being P the

amount originally paid by the policyholder, we have:

A0) =P

In other words, upon contract signature (at time ¢ = 0), the balance of
the VA sub-account exactly matches the initial investment made by the
policyholder.

Using ¢(t) to define the withdrawal rate allowed by the insurance com-
pany at time ¢, the withdrawals guaranteed at time ¢ are given by g(¢)P. In
our valuation analysis we adopt a static approach (Bacinello et al.| [2011]),
in which the policyholder withdraws exactly the guaranteed amount each
year. Therefore, the possibility of increasing or reducing the amount with-
drawn depending on the financial needs of the policyholder is not considered.
Important reasons support our choice. First of all, VA providers can influ-
ence the behavior of policyholders through imposing penalty charges on the
amount of withdrawal that exceeds the guaranteed amount. In practice, ad-
ditional high indirect costs in terms of taxes on the excess distributions make
taking large strategic withdrawals even more unattractive. Moreover, we
have to consider that these options are being introduced in pension plans, in
order to ensure a constant income during retirement and provide protection
against market downside risk (Piscopo and Haberman| [2011]). In addition,
Holz et al||2012] note that the value of a lifetime GMWB and so the fair
guarantee fee under optimal customer behavior differs only slightly from that
assuming deterministic behavior. In closing, a typical individual insured is
unable to hedge risks due to his/her own longevity and less equipped than
large institutions like insurance companies to hedge financial risks. Hence in
our analysis we consider a typical investor with a more simplistic determin-
istic withdrawal behavior compared with an arbitrageur.

From now on we assume that the guaranteed withdrawal rate does not
vary over time but remains constant:

g(t) =y

as well as withdrawals, hence we have:



With these considerations in mind, we can write the dynamics of the VA
sub-account as:

dA(t) = (pr +r(1 —m) — a)A(t)dt — Gdt + o A(t)dWs(t)
P (8)

The GLWB option is activated and has a positive value only if the process
hits zero before the death date of the policyholder. If, due to declining
stock markets combined with the reducing effect of fees and withdrawals,
the account value of the policy becomes zero while the insured is still alive,
then the GLWB guarantee becomes effective and the insured can continue
to withdraw the same guaranteed amount annually until death. In this case,
the account balance is not sufficient to fund the guaranteed withdrawals and
intervention by the insurance company is necessary. If, on the contrary, the
dynamics of the VA sub-account is such that “ruin” never occurs (or occurs
after the policyholder has passed away), then the GLWB guarantee has a
zero payout. Indeed, in this case, the account balance is in itself sufficient
to assure the policyholder of all the withdrawals until his/her death and the
guarantee therefore does not need to be activated.

2.2 The mortality component

An important requirement for the GLWB’s activation is the survival of the
policyholder. For this reason it is important to consider the uncertainty re-
lated to the random residual lifetime of insureds (mortality risk) in addition
to that related to financial factors (financial risk). Traditionally, a central
role in the definition of a mortality model has been played by the force of
mortality (or mortality intensity), defined as the instantaneous rate of mor-
tality at a given age x. In particular, among the plausibile features that
such a model would meet, the term structure of mortality rates, consider-
ing the usual ages at which VA policies are underwritten, should only be
increasing to reflect the biologically reasonableness for age-specific pattern
of mortality, and mean-reversion should not be a desirable property for mor-
tality dynamics. The inclusion of mean reversion entails that if mortality
improvements have been faster than anticipated in the past then the poten-
tial for further mortality improvements will be significantly reduced in the
future. Such property is difficult to justify on the basis of previous observed
mortality changes and with reference to our perception of the timing and im-
pact of, for example, future medical advances. Therefore, given the criteria
described in |Cairns et al.|[2006] and according to Fung et al. [2014], we adopt
a one-factor, non mean-reverting and time homogeneous affine process for
modeling the mortality intensity, u;1+(t), of a person aged x at time ¢t = 0,



as follows:

{ dplg it (t) = (a + b,ux-‘rt(t))dt + ouN Hatt (t)dWM (t) (9)
1z(0) >0

with a # 0, b > 0 and o, > 0 being the volatility of the mortality intensity.
It is reasonable to assume the independence of the randomness in mortal-
ity and that in interest rates, so Wj; denotes a standard Brownian motion
independent of Wg.

2.3 The combined model

Recall the filtered probability space (€2, F,F,P) introduced above. The fil-
tration F; describes the total information available at time ¢ and it has to be
large enough to support the processes representing the evolution of financial
variables and of mortality. Formally we write:

Fe =G VI,
where G; V H; is the o-algebra generated by G; U H;, with
G =o(Ws(s), Wa(s): 0 <s<t)
Hie=0([7<5y: 0< 5 < 1)
Thus, G; is generated by the two independent standard Brownian Motions,
Wg and Wy, which describe the uncertainties related to equity and mortal-
ity intensity, respectively, and H; describes the information set that indicates
if the death of the policyholder has occurred before time t.
It is a well-known result in asset pricing theory that, under reasonable eco-
nomic assumptions, the market price of a security is given by its expected
discounted cash-flows. Discounting takes place at the risk-free rate and the
expectation is taken with respect to a suitably risk-adjusted probability mea-
sure. The incompleteness of insurance markets implies that infinitely many

such probabilities exist. We assume henceforth that the insurer has picked

out a specific probability for valuation purposes, say Q. In particular we
define Wé@(t) and Wj\%(t) as:

AW (t) = ?dt +dWs(t) (10)
AW G () = A/ o (£)dt + AWy (2) (11)

By the Girsanov Theorem these are standard Brownian motions under the
Q measure with % and A/ pg4+(t) representing the market price of equity
risk and systematic mortality risk, respectively.

If we consider the new probability space (Q2,F,F,Q), the evolutions of
the VA sub-account and of mortality intensity become:

dA(t) = (r — @) A(t)dt — Gdt + o A()dW(t) (12)
paii(t) = (a + (b= Aoy pass(t)dt + 0/ 1o (AW G () (13)
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2.4 The valuation formula

There are two perspectives from which to view the GLWB rider [Hynd-
man and Wenger, 2014]. A policyholder usually considers the VA and the
GLWRB rider as one combined instrument and he/she is interested in the to-
tal payments received over the duration of the contract. On the other hand,
although the rider is embedded into the VA, the insurer might want to con-
sider it as a separate instrument, being interested in mitigating and hedging
the additional risk attributed to the rider.

2.4.1 The policyholder’s perspective

Viewing the policy from a policyholder’s perspective, the risk-neutral value
at time ¢ of the GLWB can be seen as the sum of the no-arbitrage values of
the living and death benefits.

Living benefits are represented by static withdrawals made by the policy-
holder during the lifetime of the contract while he/she is alive. The income
from these withdrawals can be regarded as an immediate life annuity, whose
no-arbitrage value at time ¢ is equal to:

w—x—t
LBY!(t) = I(;onG /0 sPpye T ds (14)

where 0 < ¢ < w —x, Ij;54 is an indicator function taking value of one if
the individual is still alive at time ¢, and zero otherwise and ;P,4; is the
@Q-survival probability at time ¢ + s of an individual alive and aged x + ¢ at
time t.
Death benefits can be calculated considering the payoff that the beneficiary
will receive at the random time of policyholder’s death, 7. Therefore we can
writd?

DBPY(1) = A(T) (15)

The market value at time ¢ of the death benefit is given by:
w—x—t
DEVI(®) =Ly [ o) B A+ 9)lds (19)
0

where fy14(s) = —%( sPr4t) is the density function under Q of the remaining
lifetime of an individual aged = 4 ¢ at time ¢ and E;@ denotes conditional
expectation.

Both LBP(t) and DBVP°(t) are values of cash inflows, while the amount
in the investment account A(t) is viewed as a cash outflow to the VA provider.

2Recall that A(t) > 0 V¢ because, once the account process hits the zero value, it
remains to be zero forever afterwards. That is, the zero value is an absorbing barrier of
A(+). Hence, we don’t need to take its positive part.
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The risk-neutral value at time ¢ of the complete contract (VA plus GLWB
rider), net of the outflow to the VA provider, is therefore defined as:

VPol(t) = LB\ (t) + DBV (t) — I~ Alt) (17)

In particular, at time ¢ = 0 it is:

vPol(0) = LBP°Y(0) + DBVP(0) — A(0) (18)
Since
oPp = EQJe™ Jo patuw)du)
we have p
Jals) = = gosPe = B Joperttip,  (5)]
S

The contract value at time ¢ = 0 is therefore given by:
yrl(0) = G / JPre "5 dst / EQfem I mevuduy, (NES(0=S A(5))ds— A(0)
0 0
The independence between Wg and WB implies that:
vrl0) = @ / sPpe " ds+ / EQe Jo pavulw)duy,  (5)e™75 A(s)]ds— A(0)
0 0
Equivalently:
w—T S S
vl o) = B U (Ge_me_ Jo paudu g A(s)e=se™ o *‘Hu@)dmm(s))d‘s] —A(0)
0
or, in more compact terms:

Vol (0) = E° [/Ow_$ o~ Jo tatu(u)du —rs (G+A(s)uz+s(s)>ds—A(O)] (19)

The guarantee is considered fair to both, policyholder and insurer, at time
t =0, if it holds:
VPeL0) = 0 (20)

As a consequence, the fair fee rate is defined as the rate o* > 0 that solves

(20):
o VPO 0f) =0 (21)

This equation does not have a closed form solution and numerical methods

must be used to find o*.

It is possible to obtain the risk neutral value of the contract also in terms
of the policyholder’s random time of death. Recall that we are modeling the
policyholder’s random residual lifetime as an F-stopping time 7 admitting a

12



random intensity p,. Specifically, we regard 7, as the first jump-time of a
nonexplosive F-counting process N recording at each time ¢t > 0 whether the
individual has died (N; # 0) or not (N; = 0) (Biffis| [2005]). To improve ana-
lytical tractability, we further assume that N is a doubly stochastic (or Cox)
process driven by a subfiltration G of I, with G-predictable intensity u. We
assume that the nonnegative predictable process u satisfies fg sds < 00 a.s.
for all £ > 0. We then fix an exponential random variable ® with parameter
1, independent of Go,. Under these assumptions, Biffis [2005] defines the
random time of death 7 as the first time when the process [; ptats(s)ds is
above the random level ®, so we set:

t
T = inf{t eRy: / Uats(s)ds > @} (22)
0

With these considerations, we can express the risk-neutral value of the
GLWB option as:

vrel(0) = EQ [G/ e "ds + eTTA(T)} — A(0) (23)
0
and consequently, the fair fee rate as:

o s EQ [G /OT e Pds+e "TA(T) — A(O)} =0 (24)

2.4.2 The insurer’s perspective

The alternative valuation prospective, concerning the insurer, considers the
GLWRB rider as a standalone product.

Recall that the trigger time defined by |[Milevsky and Salisbury| [2006] is the
first passage time of the process A(t) hitting the zero value, that is

C=inf{t>0: A(t) =0} (25)

Once A(t) hits the zero value, it remains to be zero forever afterwards. That
is, the zero value is considered to be an absorbing barrier of A(t) as we have
already explained earlier. We use the convention inf(0)) = co. If { < T we
say that the option is triggered (or exercised) at trigger time (. Therefore,
under @, the value process of the VA sub-account is given by:

{ dA(t) = (r — ) A(t)dt = Gdt + 7o AWAWEE) 1oy ¢ (o)

A(0) =P

and
At) =0 fort > (¢

Under this approach, the rider value process can be defined as the risk-neutral
expected discounted difference between future rider payouts and future fee
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revenues, or the expected discounted benefits minus the expected discounted
premiums.

At time (, if the policyholder is still alive, the rider guarantee entitles the
policyholder to receive an annual payment of G until his/her death. The
expected discounted benefits are therefore calculated as

) w—x—1t t+s
B0 T [ SR ([ 0a0) Ingan)as @

= H{’T>t} Aw_$_ fr+t(3) <gAAr(0)>E;@((€_TC — €_r8)+)d8 (28)

Fee revenue is received up to the depleting time of the account value, of course
if the policyholder is alive. In other terms, the insurer charges a certain
percentage of the account value up to the earliest between policyholder’s
death and VA account value’s depleting. Hence, the expected discounted
premiums are:

, w—z—t t+(CAs)
P =Ty [ fER ([ et aawan)as (29)
t

where 21 A 2 = min{z1,z2}. Denote by Vi"(t) the value at time ¢ of the
GLWB contract. It is defined as:

Vins(t) — Bins(t) o Pins (t) (30)
The fair guarantee fee rate can be calculated, again, as:
o VI(0;0%) =0 (31)

Fung et al.||2014] show the equivalence of the two approaches. While the
first one is computationally more efficient, the second approach highlights
the theoretical result that the market reserve of a payment process is defined
as the expected discounted benefits minus the expected discounted premi-
ums under a risk- adjusted measure (Dahl and Moller [2006]).

In the implementation of the valuation model we will refer to the policy-
holder’s approach.

2.5 Numerical results

Since for SDEs involved in the valuation model previously described there
are no explicit solutions, numerical methods have to be used. In particular,
we have adopted a Monte Carlo approach: random variables have been sim-
ulated by MATLAB high level random number generators, while for the ap-
proximation of expected values, scenario-based averages have been evaluated
by exploiting MATLAB fast matrix-computation facilities. These two MAT-
LAB specific properties have allowed to break down computational costs, in
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Table 1: Parameters for the financial model

P=100 [ r=4% [0 =25% [ 7 =0.70 | g = 5% |

Table 2: Calibrated parameters for the mortality model

a—0.001 | b—0.087 [ ,—0.021 | p65(0)—0.01147 [ A=04 |

terms of complexity and time. In addition, among the numerical approaches
proposed in literature for the approximate numerical solution of SDEs we
have chosen the Euler-Maruyama method (Kloeden and Platen [1999]). In
the described model we consider a representative individual aged 65 at the
inception of the contract, ¢t = 0, and whose limiting age is set to be 120.
Therefore, we focus on the time interval [0,55]. We require to use a num-
ber of samples sufficiently large and a time step sufficiently small to make
numerical results more accurate. Thus, we have chosen to simulate 100000
trajectories of the Wiener process using a step-size At = 0.02, so 2750 points
for the discretization of the interval [0, 55].
Table [I] summarizes the parameters’ values for the financial component of
the model used in our simulation as a base case, unless stated otherwise.
The values of the parameters a, b, and o, in the intensity mortality dynam-
ics are those reported in [Fung et al.| [2014] and obtained by calibrating the
survival curve implied by the mortality model to the survival curve obtained
from population data using the Australian Life Tables 2005-2007. Data are
reported in Table

We have computed the fair fee rates using both valuation formulae
and , creating ad hoc MATLAB codes (called respectively Algorithm1
and Algorithm 2). Results are illustrated in Table The two valuation
formulae have been tested to be equivalent also computationally. The reader,
in effect, can note the negligible gap between the fair fee rates computed
through the two Algorithms. However, since Algorithm 2 is a lot more
efficient in terms of computing time, all the next experiments have been
carried out with this procedure. In addition, we have conducted a sensitivity
analysis investigating the relationship between the fair fee rate and important
financial and demographic factors, such as interest rates, the volatility of the
reference fund, the market price coefficient of the systematic mortality risk
and the volatility of the mortality intensity. Moreover, each experiment has
been fulfilled considering the effect of varying guaranteed withdrawal rates.
Results are reported in Table
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Figure 1: Sensitivity of the initial contract value with respect to the fee rate
« for policyholders aged 65

2.5.1 Withdrawal rate, g

When the withdrawal rate g increases, there are two possible effects: on
the one hand, the periodic amount withdrawn (G = gA(0)) increases and
consequently also the value of the living benefits increases; on the other
hand, just because the policyholder can withdraw a greater amount, the VA
sub account value decreases; thus, the value of the death benefit decreases.
Overall, the relationship between g and the value of the living benefit prevails
(being a guaranteed amount) so that the contract becomes more valuable as
g increases. Figure [I] shows the curve representing the initial contract value
as a decreasing function of a. When g goes up, this curve shifts to the right.
Fees charged to make the contract value fair are graphically obtained through
the intersection between the curve and the horizontal line corresponding to
the initial premium’s value. Therefore, as the withdrawal rate increases, also
fair fee rates will be greater. We can note the positive effect of the guaranteed
withdrawal rate on the GLWB value (and consequently on the fair fee rates)
in all the following analyses.

2.5.2 Interest rate, r

As the interest rate r increases, the discounted value of each withdrawal
decreases; so the value of the living benefit decreases at each time point.
Instead, concerning the value of the death benefit there are opposite effects.
In fact, on the one hand, a greater risk-free rate increases the account value
since r enters its drift; on the other hand, however, the discounting takes
place at a higher rate, so the discounted value of the death benefit decreases.
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Overall, these two effects balance out, so the contribution of death benefits
disappears. A higher interest rate, therefore, results in a translation on the
left of the curve reported in figure 1} consequently fair fee rates will be lower.
A remark beyond the model, in economic terms, is also possible. Recall that
the GLWB option allows the policyholder to withdraw a periodic amount
independently from the market performance. Therefore, other things being
equal, when the interest rate level is high, policyholders will prefer more
profitable investments. In this case, to attract sales leads, GLWB providers
will charge lower fee rates and will suffer a challenging situation. On the
contrary, a low interest rate level will encourage clients to invest in these
contracts; consequently their demand will increase and so will do the required
fee rates.

2.5.3 Volatility of the investment account, 7o

In this analysis we have kept o constant at the level of 25% and set m €
{0,0.3,0.5,0.7,1}, so that the study represents also the sensitivity of the fair
fee rate with respect to the equity exposure 7. As the volatility increases,
the value of the living benefit does not change because the withdrawals are
constant over time and do not depend on the account value, while the value
of the death benefit increases. In fact, the higher is the volatility wo the
higher is the VA account value. The positive relationship between o* and
m - o can be explained with financial theory: options are more expensive
when volatility is high. Recall that at inception of the contract (for some
products also during the term of the contract) the insured has the possibility
to influence the volatility by choosing the underlying fund from a selection of
mutual funds. Since for some products offered in the market the fees do not
depend on the fund choice, this possibility presents another valuable option
for the policyholder. Thus, an important risk management tool for insurers
offering VA guarantees is the strict limitation and control of the types of
underlying funds offered within these products.

2.5.4 Market price coefficient of the systematic mortality risk, A

We can note that, when A is positive and increases, the effect on the mortality
intensity p is negative; so it will be an improvement in the survival proba-
bility. Higher life expectancy, so also higher probabilities of GLWB option
activation, lead insurance company to increase the charged fees. Therefore,
the relation between A and «o* is positive.

2.5.5 Volatility of the mortality intensity, o,

The effect of the volatility parameter of the mortality intensity o, on the fair
fee rate o is similar to that of the market price coefficient of the mortality
risk A. In fact, an increase in 0, leads to a decrease in the mortality intensity
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14, S0 to an improvement in the survival probability. Hence, higher volatility
of mortality leads not only to higher uncertainty about the timing of death
of an individual, but also to an increase in the survival probability. To face
this situation, the insurance company, other things being equal, has to charge
higher fees.

3 Extended model: stochastic interest rate and/or
volatility

Until now, the theoretical model described for the pricing of the GLWB
option has rested upon some assumptions that are, to some extent, “counter-
factual”. The valuation has been performed in a Black and Scholes economy:
the sub-account value has been assumed to follow a geometric Brownian mo-
tion, thus with a constant volatility, and the term structure of interest rates
has been assumed to be constant. These hypotheses, however, do not find
justification in the financial markets. For the purpose of considering a model
that is closer to the market, we sought to weaken these misspecifications. In
particular, we consider a generalization of the proposed model, in which the
volatility of the underlying portfolio and the interest rate are considered to
be stochastic processes rather than a constant.

3.1 Stochastic interest rate

The assumption of deterministic interest rates, which can be acceptable for
short-term options, is not realistic for medium or long-term contracts such as
life insurance products. GLWB contracts are investment vehicles with a long
term horizon and as such they are very sensitive to interest rate movements
which are by nature uncertain. A stochastic modeling of the term structure
is therefore appropriate. Many models have been developed in literature (see
Shao [2012]). Among them, we will refer to the Cox-Ingersoll-Ross (CIR)
model. Consider that, for our pricing purposes, in what follows we will
express all the dynamics directly under the QQ risk neutral measure. The
CIR simplest version describes the dynamics of the interest rate r(t) as a
solution of the following stochastic differential equation:

{ dr(t) = k(F — r(t))dt + n+/r({t)dW2(t) (32)
r(0) >0

where k£ > 0 determines the speed of adjustment of the interest rate towards
its theoretical mean 7 > 0, n > 0 controls the volatility of the interest rate,
and W, is a Q-standard Brownian motion. This process has some appealing
properties from an applied point of view. In particular, the condition

2k > n?
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Table 3: Fair guarantee fees (%) using Algorithm 1 and Algorithm 2

Algorithm 1 Algorithm 2

9 9
4.5% 5% 5.5% | 4.5% 5% 5.5%

1% 1.7909 3.3066 7.3373 | 1.7898 3.3083 7.3825
2% 0.9593 1.6279 2.8531 | 0.9550 1.6246 2.8505
3% 0.5346 0.8833 1.4477 | 0.5270 0.8774 1.4422
4% 0.3009 0.4963 0.7969 | 0.2905 0.4874 0.7891
5% 0.1686 0.2812 0.4517 | 0.1557 0.2698 0.4415
6% 0.0932 0.1584 0.2576 | 0.0781 0.1444 0.2450
™% 0.0503 0.0879 0.1458 | 0.0336 0.0718 0.1307
8% 0.0260 0.0473 0.0809 | 0.0079 0.0296 0.0638

0% 0.0003 0.0040 0.0454 | 0.0012 0.0061 0.0492
7.5% | 0.0377 0.0991 0.2317 | 0.0350 0.0979 0.2326
12.5% | 0.1413 0.2691 0.4874 | 0.1350 0.2645 0.4847
17.5% | 0.3009 0.4963 0.7969 | 0.2905 0.4874 0.7891
25% | 0.6029 0.8932 1.3064 | 0.5820 0.8725 1.2849

-0.4 | 0.2354 0.3896 0.6237 | 0.2266 0.3827 0.6181
0 0.2662 0.4396 0.7043 | 0.2568 0.4321 0.6981
0.4 0.3009 0.4963 0.7969 | 0.2905 0.4874 0.7891

A 0.8 0.3397 0.5606 0.9039 | 0.3275 0.5500 0.8948
1.2 0.3825 0.6330 1.0279 | 0.3722 0.6240 1.0196

1.6 0.4283 0.7139 1.1723 | 0.4300 0.7166 1.1752

0 0.2340 0.3883 0.6236 | 0.2185 0.3755 0.6121

0.0110 | 0.2588 0.4286 0.6881 | 0.2463 0.4183 0.6789

o, 0.0210 | 0.3009 0.4963 0.7969 | 0.2905 0.4874 0.7891

0.0310 | 0.3626 0.6008 0.9715 | 0.3565 0.5955 0.9675
0.0410 | 0.4296 0.7362 1.2232 | 0.4450 0.7459 1.2267
0.0510 | 0.4846 0.8903 1.5576 | 0.5574 0.9393 1.5800
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would ensure that the origin is inaccessible to the process, so that we can
grant that r(t) remains positive; moreover, the interest rate is elastically
pulled towards the long-term constant value 7 at a speed controlled by k
(mean-reverting). These properties are attractive in modeling real-life inter-
est rates.

Considering a CIR model for the interest rate, the new dynamics of the VA
sub-account become:

dA(t) = (r(t) — @) A(t)dt — Gdt + 7o A()dW(t) (33)

Therefore, our model is specified through the following system of stochastic
differential equations:

dA(t) = (r(t) — a)A(t)dt — Gdt+7raA( )dWS(t), A(-) >0,A(0) >0
dr(t) = k(F — r(t))dt + n+/r(t)dW2(t) 7(0) >0

dUz+t( ) (a ( /\Uu)ﬂx-&-t dt + Uu V M+t (t)dW% (t), N(O)(?Z)O
where dWg(t)dW,.(t) = ps,dt, with |ps,| < 1, is the correlation between
the reference fund and interest rate. W2 and Wj\% are instead considered
independent, as well as we took Wg and Wg More explicitly, we can rewrite

system as:

dA(t) = (r(t) — a)A(t)dt — Gdt + To A(t) <p5,,«dW,@(t) +,/1— p%ﬂ,de(t))

dr(t) = k(F — r(t))dt + n/r(t)dW2(t)
dpare(t) = (a + (b — )‘Uu)ﬂx+t ))dt + /a1 () AW (1)

where Ws and W, are independent Brownian motions, A(0),r(0),x(0) > 0
and A(-) >0
The valuation formula becomes:

-
o+ BQ [G / e~ Jordugy o= Jirdu gy A0 =0 (36)
0

A drawback of the CIR process is that the SDE is not explicitly
solvable. Our pricing approach, however, requires to solve the problem of
simulating a CIR process. As before, we adopt an Euler-Maruyama approx-
imation scheme. However, some problems arise. A theoretical difficulty con-
cerns the square-root term. In fact, the square root is not globally Lipschitz.
Therefore the usual theorems leading to strong or weak convergence (Kloe-
den and Platen| [1999]), which require the drift and diffusion coefficients to
satisfy a linear growth condition, cannot be applied. Hence, the convergence
of the Euler scheme is not guaranteed. Various methods have been proposed
to solve this problem and to prove the convergence (the interested reader can
refer to Lord et al.|[2010]). There exists another problem of practical nature.
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Table 4: Calibrated parameters for the CIR process

k=0.01]7n=001]r0)=7=0.02] pg, =02

In fact, despite the domain of the square root process being the nonnegative
real line, the discretization is not guaranteed to be the same. For any choice
of the time grid, indeed, the probability of the interest rate becoming neg-
ative at the next time step is strictly greater than zero. Practitioners have
therefore often opted for a quick “fix” by either setting the process equal to
zero whenever it attains a negative value (so considering only the positive
part of the process), or by reflecting it in the origin, and continuing from
there on (so taking advantage of the absolute value function). These fixes
are often referred to as absorption or reflection (Lord et al.|[2010]). In what
follows, we use z7 = max(z,0) as fixing function. Therefore, we consider
only the positive part of the process:

r(t+ At) = [r(t) + k(7 — 7)) At + /T () AW ()] F (37)

The parameters of the CIR process are those reported in |Grzelak and
Oosterlee| [2011] and summarized in Table

As in the previous section, we have conducted sensitivity analyses in order
to study the relationship between the fair fee rate and the same financial and
demographic factors. Similarly we note a positive relation of the fair fee rate
o with the market price coefficient of mortality risk A (see ﬁgure, with the
volatility of the mortality intensity o, (see figure [3) and with the volatility
of the investment account 7 - o (see figure {4)).

We have then analyzed the impact of varying the parameters of the in-
terest rate model on the fair fee rate: the mean reversion coeflicient k£ and
the rate of diffusion 7.

An increase in the mean reversion coefficient k, in general, doesn’t have a
clear effect on the contract fair price; its contribution, in fact, depends on
the sign of the difference 7 — r(¢). In particular, if 7 > r, when k increases,
the CIR drift factor will be greater, pushing the interest rate upwards. This
will lead to a smaller value of the GLWB contract and consequently of the
fair fee rate. When r > 7, the relation is inverse, even if interest rates are
already high, so the impact on the contract fair price could be also in this
case negative.

Analogue considerations hold for the diffusion coefficient 1. In fact, an in-
crease in the volatility of interest rates n would amplify the effect of the ran-
dom shock on the rate. Therefore, depending on the the sign of the dW,.(t)
term (recall that Brownian motion’s increments are normally distributed
with expectation zero), its impact on the interest rate (and consequently on
the fair fee rate) could be both positive and negative.
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Figure 2: Sensitivity of the fair fee rate a* with respect to the market price
coefficient of systematic mortality risk A for policyholders aged 65
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Figure 3: Sensitivity of the fair fee rate a® with respect to the volatility
parameter of mortality intensity o, for policyholders aged 65
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Figure 4: Sensitivity of the fair fee rate o™ with respect to the volatility of
the investment account wo for policyholders aged 65

In addition, we have studied the impact on the fair fee rate of the long-run
mean of r, 7, and of its initial value, r(0), considering different values for k
and 7. Results are reported in Tables [f and [l In particular, if £ = 0, so
when only the diffusion of the CIR process is present, Table [5| confirms that
the fair contract price is not dependent on the long-run mean of r. More-
over, if n = 0, so if the random shock on the rate is zero, we are in the case
of deterministic interest rates, and more precisely, if in addition 7 = r (the
diagonal of the first table in Table @, we are considering constant interest
rates.

3.2 Stochastic volatility

It is widely recognized that financial models which consider a constant volatil-
ity parameter (such as the Black-Scholes one) are no longer sufficient to cap-
ture modern market phenomena, especially since the 1987 crash. Empirical
studies of stock price returns, in fact, show that volatility exhibits “random”
characteristics. The natural extension of these models that has been pur-
sued in the literature and in practice, suggests to modify the specification of
volatility to make it a stochastic process. Stochastic volatility models predict
that volatility itself follows a stochastic process (Fouque et al.| [2000]):

{o(t),t = 0} (38)

with
o(t) = f(v(t)) (39)



Table 5: Sensitivity of the fair fee rate o™ with respect to the long-run mean
7 and to the initial value r(0), with different values for the mean reversion

coefficient &

_ r(0) _ r(0)
k= 0.00 0.01 0.02 0.04 k= 0.01 0.01 0.02 0.04
0.01 | 3.3178 1.6570 0.5244 0.01 | 3.3138 1.7427 0.5978
T 0.02 | 3.3178 1.6570 0.5244 3 0.02 | 3.1067 1.6531 0.5710
0.04 | 3.3178 1.6570 0.5244 0.04 | 2.7427 1.4911 0.5216
r(0) r(0)
k= 0.50 0.01 0.02 0.04 k=100 0.01 0.02 0.04
0.01 | 3.2854 2.9273 2.3605 0.01 | 3.2832 3.0887 2.7471
T 0.02 | 1.7880 1.6237 1.3489 7 0.02 | 1.7044 1.6214 1.4706
0.04 | 0.6461 0.5925 0.4998 0.04 | 0.5680 0.5434 0.4980

Table 6: Sensitivity of the fair fee rate o* with respect to the long-run mean
7 and to the initial value r(0), with different values for the rate of diffusion

n
r(0 (0
1= 0.000 0.01 0.<0% 0.04 || 7= 0005 0.01 o.(o% 0.04
0.01 | 3.2809 1.7078 0.5702 0.01 | 3.2935 1.7216 0.5813
7 0.02 | 3.0729 1.6190 0.5441 7 0.02 | 3.0856 1.6325 0.5550
0.04 | 27104 1.4583 0.4961 0.04 | 2.7230 1.4714 0.5065
r(0 (0
1= 0.010 0.01 0.(0; 0.04 | 170020 0.01 0.(0; 0.04
0.01 | 3.6268 2.0990 0.8786 0.01 | 3.3138 1.7427 0.5978
7 0.02 | 3.4304 2.0052 0.8451 7 0.02 | 3.1057 1.6531 0.5710
0.04 | 3.0778 1.8318 0.7822 0.04 | 27427 1.4911 0.5216
_ r(0)
1= 0.050 001 002  0.04
0.01 | 3.3760 1.8052 0.6452
7 0.02 | 3.1668 1.7142 0.6172
0.04 | 2.8019 1.5493 0.5654
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Table 7: Calibrated parameters for the volatility process

10=03]7=06]v(0)=0v=0.05] ps, =—0.3

where f(h) > 0 Vh € R and {v(t),t > 0} represents a stochastic process.
Various alternative models have been proposed in literature, differentiated
for the driving process v(t) and for the function f. Among them, we have
chosen to consider the Heston model. The new dynamics of the VA sub-
account becomes:

dA(t) = (r — @) A(t)dt — Gdt + wa (t) A(t)dW(t) (40)
where o(t) = \/v(t) and
do(t) = (T — v(t))dt + v/ v(t)dW,(t) (41)

Recall that for our pricing purposes, we have expressed all the dynamics
directly under the Q risk neutral measure. As described for the interest
rates CIR process, also in this case the use of an Euler discretization can
give rise to a problem of practical nature. In fact, it is not guaranteed the
positivity of the domain of the square root process. So, as in the interest
rate case, in what follows, we use ¥ = max(z,0) as fixing function.

The parameters of the volatility process are those reported in |Grzelak and
Oosterlee| [2011] and summarized in Table . Sensitivity analyses have been
conducted in order to study the relationship between the fair fee rate and
the same financial and demographic factors, as well as in respect of the
parameters of the Heston model. Results and considerations are analogue to
those for the CIR interest rates process above described.

3.3 The Heston-CIR hybrid model

Derivatives that depend on a variety of factors can be modeled through the
specification of a system of stochastic differential equations, that correspond
to the involved state variables. By correlating the SDEs from the different
asset classes one can define so-called hybrid models. In our case, in partic-
ular, we have combined the stochastic processes described in the previous
subsections for the term structure of interest rates and the volatility of the
underlying account.

The generalized model, under the @Q measure, can be expressed in the fol-

25



lowing way:

dA(t) = [(r(t) — )A(t) — Gldt+ 7/ o(t)At)dW (L)

dv(t) = 0(v — v(t))dt+ ’y\/ de]@(t) (42)

dr(t) = k(7 — r(t))dt+ ny/r( dW@(t)
dpayi(t) = [a+ (b= Aop) ot (B dt+  0pn/ase(B)AW (1)

with A(0),v(0),r(0),(0) > 0 and A(-) > 0. The various random factors
may be independent, but more realistically, there is often correlation between
them. In our model, we consider 4 Wiener processes: those related to VA-sub
account, interest rate and volatility processes are all correlated each other,
while we assume independence between financial and systematic mortality
risk, 8o par,s = pmw = pymyr = 0.

There is not a closed form solution of our hybrid model, therefore numerical
approximation has to be employed.

To construct discretized correlated Wiener processes for use in SDE solvers,
we begin with a desired correlation matrix that we would like to specify for
the Wiener processes Wg, W,,, W,..

pPSs,s PSv PSr
C= Pv,S Pvw  Pur
Pr,S  Prv  Prr

C' is a symmetric matrix with units on the main diagonal. To simplify and
lighten the notation, we set

P1 = PSw P2 = PS,r P3 = Pu,r

So, we have:

P11 P2
C = | * 1 P3
* 1

Our aim is to write the system of SDEs in terms of independent Brow-
nian motions in order to simulate the involved processes.

We make use of the Cholesky decomposition to factorize the positive definite
matrix C' into the product of a unique lower triangular matrix L with strictly
positive entries on the main diagonal and its transpose:

C=LLT
with
1 0 0
p1 V1-pi 0

L= 2
pP3—pP1p2 2 pP3—P1pP2
p2 1-p3—
1=pi 2 1-pf
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Table 8: Sensitivity of the fair fee rate a® with respect to o, and A with
different values for the correlation coefficient p, .,

g g
pro = 0.00 45% 5% 559 || Pro = 019 45% 5% 5.5%
0 06854 1.1021 1.8295 0 |0.6792 1.0971 1.8262

0.0110 | 0.7692 1.2520  2.1275 0.0110 | 0.7622 1.2461  2.1220
0.0210 | 0.9210 1.5367 2.7266 0.0210 | 0.9161 1.5317 2.7219

Tn 0.0310 | 1.2178 2.1167 4.0845 || 7* 0.0310 | 1.2150 2.1152  4.0845
0.0410 | 1.7497 3.2978  7.8394 0.0410 | 1.7483 3.2980  7.8472
0.0510 | 2.6391 5.9230 28.6995 0.0510 | 2.6426 5.9275 28.7127

04 |0.6989 1.1142 1.8327 0.4 | 06928 1.1080 1.8265

0 | 07966 1.2966 2.2051 0 |0.7902 1.2906 2.1990

\ 04 | 09210 15367 27266 | | 04 |09161 15317 2.7219
0.8 | 1.0830 1.8580 3.4897 0.8 | 1.0792 1.8549 3.4875

1.2 | 1.2803 2.2977  4.7085 1.2 | 1.2835 2.2932  4.7077

1.6 | 1.5520 2.9283  6.9568 1.6 | 1.5462 2.9230 6.9673

L is called the Cholesky factor of C' and it can be interpreted as a generalized

square root of C.

With these considerations in mind, with the help of the upper matrix, we
can rewrite the subsystem of the first three SDEs in (42)) as:

where

T/ v(t)
0

Bl

p17/ V(1)
V1= py/o(t)

dWsQ(t)
dt + B | dw,
aw, (1)

p2m/v (1)
931111%27\/@

“)

\/1 — 5 - (’%%)20\/@

and dl/ffi@(t) (¢ = S,v,r) are independent Brownian motions. After the
Euler discretization of the involved processes, we have proceeded to price
the GLWB option using Algorithm 2. We used the values reported in the
previous Tables 4] and [7] for the parameters of the CIR and Heston processes.
In addition, we set p;., equal to 0.15. Numerical results are reported in Table

In particular, as before, we have conducted sensitivity analyses in order
to study the relationship between the fair fee rate and the demographic
factors already examined, i.e. the market price coefficient of mortality risk
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Table 9: Summary comparison

n=0|7n=001| n=0 | n=0.01
vy=0 =0 vy=06| v=0.6
0 0.9882 | 1.0122 1.0796 1.0971
0.0110 | 1.1386 | 1.1659 1.2256 1.2461
0.0210 | 1.4335 | 1.4669 1.5054 1.5317

T8 0.0310 | 1.9964 | 2.0417 | 2.0765 | 2.1152
0.0410 | 3.1473 | 3.2212 | 3.2305 | 3.2980
0.0510 | 5.6904 | 5.8595 5.7648 5.9275

-0.4 | 1.0044 | 1.0292 1.0906 1.1080
0 1.1914 | 1.2198 1.2693 1.2906
A\ 0.4 1.4335 | 1.4669 1.5054 1.5317

0.8 1.7492 | 1.7893 1.8217 1.8549
1.2 2.1741 | 2.2237 | 2.2507 | 2.2932
1.6 2.7910 | 2.8555 2.8658 2.9230

and the volatility of the mortality intensity. As in the previous experiments,
we can note a positive relation of the fair fee rate o® with A and with o,.
In addition, as in many papers on these topics the correlation coefficient
prv 1s set equal to zero, we have considered also this hypothesis. Numerical
analyses show the stability of the results: little changes in the correlation
coefficient correspond to little changes in the fair fee rates.

4 Conclusions

In conclusion, we have summarized in Table [9] all the results obtained in
order to compare them. In particular we show how the fair price of the
GLWB contract changes when we consider the basic model (first column), a
stochastic process only for the term structure of interest rates (second col-
umn), a stochastic process only for the volatility of the reference fund (third
column) or a combined stochastic model (last column). Numerical results
confirm that introducing random shocks on interest rates and/or volatility
increases the value of the fees that GLWB’ issuers have to charge in order
to fairly price the contract. Therefore, a more general stochastic approach,
especially that obtained allowing both interest rates and volatility to vary
randomly, makes the contract undoubtedly more expensive, but it is more
able to describe the real fluctuations of the market, so it is recommended in
order to avoid underestimation of the liabilities of the insurance company.
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