
Cost Efficiency, Asymmetry and Dependence in US electricity
industry.

Graziella Bonanno

bonanno@diag.uniroma1.it

Department of Computer, Control, and Management Engineering ”Antonio Ruberti” - Sapienza University

of Rome (Italy)



Cost Efficiency, Asymmetry and Dependence in US electricity
industry.

Abstract

—————————————————————–

We propose an empirical application of models derived in Bonanno et al. (2017) for estimating cost

efficiency (CE) on data used by Greene (1990) to test Gamma distribution for the inefficiency component

and by Smith (2008) to test the dependence between the two error terms of a Stochastic Frontier (SF).

We also derive the closed–form of denisty function of the overall error term and the formula to calcu-

late the Cost Efficiency (CE) scores.
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1 Introduction

After the methodological derivation of a new specification of SF proposed for production functions by

Bonanno et al. (2017), this paper aims to show how asymmetry of the random error and dependence between

it and the inefficiency component are introduced also in cost frontiers.

The basic formulation of a cost frontier model can be expressed as c = f(Q,P;β)eε, where c are

the firm-specific total costs, Q is a vector of outputs, P is a vector of input prices and β is the vector of

unknowns parameters (details are in Kumbhakar and Lovell, 2000). The error term, ε, is assumed to be

made of two statistically independent components, a positive random variable, said u, and a symmetric

random variable, said v. While u reflects the difference between the observed value of c and the frontier

and it can be interpreted as a measure of firms’ inefficiency, v captures random shocks, measurement errors
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and others statistical noise. We have ε = u+ v in a cost function. Moreover, it allows random variation of

frontier across firms.

We propose a model can capture the dependence structure between u and v, modeling it with a copula

function that allows to specify the joint distribution with different marginal probability density functions

in a simple way. In addition, we introduce the asymmetry of the random error assigning it a Generalized

Logistic distriution. Finally, differing from Greene (1990) who assigns a Gamma function to the inefficiency

component, we consider an Exponential distribution.

In some special cases, the convolution between the two error components admits a semi–closed expres-

sion also in cases of statistical dependence. An example is provided in Smith (2008), where the author

obtains an expression for the density of the composite error in terms of Hypergeometric functions for the

model with an exponential distribution for the inefficiency error, a logistic distribution for the random error

and a FGM copula. We obtain a first generalization of Smith (2008) by using a Generalized Logistic (GL)

distribution for the random error density. This distribution describe situations of symmetry or asymmetry

(positive or negative) according to values that takes on one of its parameters. This allows us to analyze the

statistical properties of a model in which both statistical dependence and possible asymmetry in the random

error component.

We can derive the explicit density function when we use a simple copula (FGM), but for more complex

cases (i.e. when we use a more complicated copula, the so-called Frank copula), we build a computational

tool that allows maximum likelihood estimation of SF models with a wide range of marginal distributions

(see Nelsen (1999) for details on copula functions). The resulting approximations of the density of each

sampling unit are then plugged into the log–likelihood function.

The paper proceeds as follows. Section 2 show briefly the economic model and the statistical specifi-

cation and the Section 3 reports the estimation from the US electricity industry already analyzed in earlier

paper by Smith (2008) to test for dependence and in paper of Greene (1990) to test other marginal distribu-

tions.1 Conclusions follow.
1The same data are used also by Christensen and Greene (1976), but we got data from Table 3 of Greene (1990).
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2 The model specification

2.1 The economic model

The model to be fit is a cost function, expressed by a Cobb-Douglas relationship, with one outputQ that is a

function of three labor, capital and fuel, with respective factor prices Pl, Pk and Pf . In order to consider the

homogeneity of cost function with respect to input prices, the dependent variable and two input prices (Pl

and Pk) are expressed relative to Pf . The statistical model we use, however, includes a location parameter

that can lead to identification problems. For this reason, differently from Smith, we do not include the

intercept β0. Smith (2008) use a normal–half normal model for the marginal distributions, while our choice

is based on a more flexible distribution of random error (Table 2).

log

(
Cost

Pf

)
= β1logQ+ β2log

2Q+ β3log

(
Pl
Pf

)
+ β4log

(
Pk
Pf

)
+ u+ v, (1)

2.2 The statistical model

In what follows, we report the proposition in which we derive the density function of the composite error

ε when dependence is modeled through FGM copula. For the more complicated Frank copula, we cannot

derive an explicit function of the error term, but we use a numerical tool in order to obtain the estimations.

We report details on the marginal distributions and copula functions in table 1.

In particular, we assume that u ∼ E(δu), v ∼ GL(αv, δv) and the dependence between u and v

is modeled by FGM copula. Let k1(ε) be defined as k1(ε) = exp{− ε+δv [Ψ(αv)−Ψ(1)]
δv

}, we derive the

following:

• The density function of the composite error is

fε(ε; Θ) = w1(ε)2F1

(
αv + 1, αv +

δv
δu

;αv +
δv
δu

+ 1;−k1(ε)−1
)
+

w2(ε)2F1

(
2αv + 1, 2αv +

δv
δu

; 2αv +
δv
δu

+ 1;−k1(ε)−1
)
+

w3(ε)2F1

(
αv + 1, αv + 2

δv
δu

;αv + 2
δv
δu

+ 1;−k1(ε)−1
)
+

w4(ε)2F1

(
2αv + 1, 2αv + 2

δv
δu

; 2αv + 2
δv
δu

+ 1;−k1(ε)−1
)

(2)
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where the functions w1(.), w2(.), w3(.) and w4(.) are, respectively, defined as:

w1(ε) = (1− θ) αvk1(ε)−αv

δu
(
αv + δv

δu

) w2(ε) = 2θ
αvk1(ε)−2αv

δu
(
2αv + δv

δu

)
w3(ε) = 2θ

αvk1(ε)−αv

δu
(
αv + 2 δvδu

) w4(ε) = −4θ
αvk1(ε)−2αv

δu
(
2αv + 2 δvδu

)
• The expected value, the variance and the third central moment of the composite error are given by:

E[ε] = δu, (3)

and

V [ε] = δ2
u + δ2

v [Ψ′(αv) + Ψ′(1)] + θ δuδv [Ψ(2αv)−Ψ(αv)] (4)

where Ψ(·) and Ψ′(·) are, respectively, the Digamma and Trigamma functions.

Table 1: Marginal distribution functions and copulas.

Parameters Density Distribution

Exponential δu > 0 1
δu
e
− u
δu 1− e−

u
δu

GL αv , δv > 0 αv
δv

e
− v+δv [Ψ(αv)−Ψ(1)]

δv(
1+e

− v+δv [Ψ(αv)−Ψ(1)]
δv

)αv+1
(1 + e

− v+δv [Ψ(αv)−Ψ(1)]
δv )−αv

FGM copula θ ∈ (−1, 1) 1 + θ(1− 2Fu)(1− 2Gv) FuGv
(
1 + θ(1− Fu)(1−Gv)

)
Frank copula θ ∈ (−∞,∞) \ {0} θ(1−e−θ)e−θ(F (u)+G(v))

[(1−e−θ)−(1−e−θF (u))(1−e−θG(v))]2
−θ−1 ln[1 +

(e−θF (u)−1)(e−θG(v)−1)

(e−θ−1)
]

Finally, the estimation of the cost efficiency CEΘ is obtained through 2

CEΘ = E[e−u|ε = ε∗] =
1

fε(.; Θ)

∫
<+

e−ufu,v(u, x− u; Θ)du (5)

2Details on calculation of CE scores are available upon request.
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3 Empirical results

Our application concerns the estimation of cost frontier for a sample of 123 firms operating in US electricity

markets in 1970. As we already mentioned in the Introduction, the same data sample was used by Greene

(1990) and Smith (2008) to give applications of new SF specifications. We include this application in order

to provide a thorough comparison between different statistical models. In fact, in addition to the classic SF,

we estimate different models as summarised in Table 2.

Table 2: Summary of the statistical models.
Name Random Error Distribution Inefficiency Distribution Dependence

Classic SF Normal ∼ (σ2
v) Truncated Normal ∼ (σ2

u) No

IS Symmetric GL ∼ (αv = 1, δv) Exp ∼ (δu) No

DS Symmetric GL ∼ (αv = 1, δv) Exp ∼ (δu) FGM copula

DSFrank Symmetric GL ∼ (αv = 1, δv) Exp ∼ (δu) Frank copula

IA GL ∼ (αv , δv) Exp ∼ (δu) No

DA GL ∼ (αv , δv) Exp ∼ (δu) FGM copula

DAFrank GL ∼ (αv , δv) Exp ∼ (δu) Frank copula

Legend: ClassicSF stands for the tradional model of Stochastic Frontier; IS stands for independence and symmetry; DS is the
model with FGM dependence and symmetry; DSFrank stands for Frank dependence and symmetry; IA is the model with

independence and asymmetry; DA stands for FGM dependence and asymmetry; finally, DAFrank stands for Frank dependence and
asymmetry.

Classic SF is used as benchmarking model. All the other models have the same marginal distributions

of the inefficiency error, while the distribution of random error component changes depending on whether

we consider v-symmetric or v-asymmetric.

In detail, models differ each other by the functional form of dependence and the skewness of v. In

particular, we fit one model with no dependence, one with the FGM copula and one model with the Frank

copula. Then, considering αv = 1, we estimate the same three models as above (with independence, FGM

and Frank copulas).

Table 3 reports the results. In parentheses, there are the t-statistics.

After obtaining significative elasticities, the attention is for the measure of association θ that is negative

but not significative in all three models constructed under hypotheses of dependence. It is not a surprising

finding because also Smith (2008) rejects the dependence between u and v.
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Now the attention is for αv-parameter. Table 4 shows the t-test on symmetry of v. In particular, we widely

accept the null hypothesis of symmetry in all three models can capture the possible asymmetry of the

random error (IA, DA and DAFrank).

These two results are in line with the choice of IS model. In fact, it shows the smallest value of AIC measure,

even if, following Burnham and Anderson (2004), IS, DS and IA models are indifferent each other.

Based on the estimated models we compute the individual cost efficiency (CE). In table 5 we report

some descriptive statistics of CE for each mode (i.e. mean and standard deviation)l and figure 1 shows plot

of the estimated efficiencies of each firm for all models we fit. From both, we can see eterogeneity of results

across different models. In addition, the estimated values tend to be similar in the same class of models,

especially when dependence is the characteristic used to identify the class.

Table 3: Estimates for US electricity market.
Classic SF IS DS DSFrank IA DA DAFrank

β0 -7.410 -7.877 -7.800 -7.875 -7.786 -7.773 -7.789
-22.17 -25.45 -25.16 -26.68 -23.01 -24.36 -26.29

β1 0.408 0.4467 0.4472 0.4712 0.4489 0.4502 0.4633
10.32 12.84 13.01 16.00 13.05 13.04 15.83

β2 0.031 0.0283 0.0283 0.0269 0.0282 0.0281 0.0274
11.55 11.71 11.86 13.06 11.66 11.63 13.25

β3 0.245 0.3111 0.2904 0.2855 0.2953 0.2870 0.2747
3.70 4.97 4.63 4.82 4.27 4.43 4.60

β4 0.059 0.0236 0.0329 0.0221 0.0356 0.0360 0.0268
0.96 0.42 0.59 0.41 0.62 0.64 0.50

δu 0.097 0.123 0.133 0.107 0.129 0.133
4.15 3.02 10.05 4.60 1.69 10.04

αv 0.662 0.745 1.020
1.50 1.73 2.61

δv 0.058 0.064 0.069 0.045 0.055 0.069
6.28 4.56 11.52 2.20 2.36 6.37

θ -0.99984 -0.4973 -0.99980 -0.4083
-0.85 -0.19 -0.41 -0.17

γ =
V (u)
V (ε)

∗
0.673 0.462 0.726 0.790 0.542 0.771 0.801

log-likelihood 66.12 68.20 68.62 67.54 68.52 68.74 67.51

AIC -118.24 -122.39 -121.25 -119.08 -121.04 -119.47 -117.02
Source: our elaborations on data from Greene (1990).

Legend: IS stands for independence and symmetry; DS is the model with FGM dependence and symmetry; DSFrank stands for
Frank dependence and symmetry; IA is the model with independence and asymmetry; DA stands for FGM dependence and

asymmetry; DAFrank stands for Frank dependence and asymmetry.
*V(ε) for DSFrank and DAFrank is calculated as the variance of the estimated ε̂.
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Figure 1: Cost Efficiency by observation for each model
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Figure 2: Kernel density of Cost Efficiency for each model
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Table 4: Results of t-test on symmetry for v.
H0 : αv = 1 vs H1 : αv 6= 1

IA DA DAFrank

t-statistic 0.796 0.514 0.051

p-value 0.401 0.660 0.9601

Table 5: Some descriptive statistics of Cost Efficiency.
Classic SF IS DS DSFrank IA DA DAFrank

MEAN 0.8884 0.9447 0.8956 0.8815 0.9413 0.8913 0.8792
SD 0.0536 0.0627 0.0657 0.0605 0.0735 0.0479 0.0668
MIN 0.6812 0.6286 0.6271 0.5674 0.5891 0.6195 0.5693
MAX 0.9704 0.999957 0.9980 0.9519 0.9999 0.9973 0.9530

Source: our elaborations on data from Greene (1990).
Legend: IS stands for independence and symmetry; DS is the model with FGM dependence and symmetry; DSFrank stands for

Frank dependence and symmetry; IA is the model with independence and asymmetry; DA stands for FGM dependence and
asymmetry; DAFrank stands for Frank dependence and asymmetry.

4 Conclusions and future research

Even if we reject dependence and asymmetry, our models improve the classic SF estimations. This finding

suggests to continue researching for further evolution of SF models. In particular, one aspect to consider

is the assignment of a more flexible distribution also for the inefficiency component. When Exponential is

used for u, the so-called γ-parameter, calculated as the ratio between the variance of the inefficiency and the

variance of the overall error term, depends on the estimated value of δu in significative extent, as the variance

of u-Exponential is equal to δ2
u. In our empirical application on data from US electricity, we estimate a

“good value” of δu, which allows us to obtain a γ-parameter signaling the presence of inefficiency. But,

in many cases, δu tend to be very small. The conclusion of the absence of inefficiency in this case could

be misleading. This is the reason to propose a more general model in which also u is distributed through a

more flexible function.
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