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Abstract

This study investigates the contagion risk contribution of the energy sector using the delta Con-
ditional Value-at-Risk (∆CoV aR) approach of Adrian and Brunnermeier (2016) based on quantile
regression. This methodology allows us to identify a measure of contagion risk for the energy sec-
tor, to single out the systemically important energy “institutions”, and to assess whether there are
risk spillovers from the energy sector to the whole economy. The results show that energy mar-
kets contribute to contagion risk and that there are spillovers from the energy sector to the entire
economic system. Additionally, we investigate three subperiods (pre-crisis, crisis, and post-crisis)
and document that the contagion risk has exerted the most negative consequences for the entire
economy during the crisis period.
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1. Introduction

The impact of the global financial crisis made the reduction of systemic risk and the

spreading of contagion a top priority for policy makers. Systemic risk arises if the distress

in one institution or group of financial institutions (e.g., a bank or a financial company)

threatens the functioning of the entire financial system and then spills over to the rest of

the economy (Hellwig, 1998).

The global financial crisis has, indeed, demonstrated that breakdowns in individual

parts or components of the financial system, could have disruptive effects for the entire

financial network and contagion effects could spread out to the economy at large. The

collapse of important financial institutions, such as the Lehman Brothers, in fact, produced

long-lasting consequences for the U.S. and European economies. According to Laeven and

Valencia (2012), the recent banking crises caused a median output loss of 25% of GDP and

a median increase in public debt of 24% of GDP.

Starting from this background, the present study aims to move the attention from the

traditional financial sector to the energy sector by examining the potential contagion risks
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coming from energy companies that compose the S&P500 Index. The purpose is twofold: i)

we establish if energy companies entering the S&P500 index (individually or as a whole by

the means of the S&P500 Energy index) are systemically risky; and ii) we rank the most

risky energy enterprises according to their contagion impact to the rest of the economy

proxied by the S&P500 Ex Energy index.

Differently from the extant literature that has extensively investigated the transmission

of risks from one financial institution to another within the same sector, we focus on whether

and to which extent the risk of a distress of one energy company or group of companies can

affect the entire system represented by the economy at large. Indeed, the spillover effects

generated from the energy sector can be so strong to trigger economic instability, that can

be so severe to hamper economic growth and welfare.

In our analysis, the risk of contagion coming from the energy sector is therefore caused

by extreme price shocks (i.e., abnormal price falls located on the far left tail of the return

distribution) of a given company that can transmit across the sector and affect negatively

the entire economy. Technically, the risk of extreme price shocks and their impact on

the economy are identified by the ∆CoV aR measure of risk, recently proposed by Adrian

and Brunnermeier (2016). Thus, ∆CoV aR captures the potential for the propagation of

specific company or group of companies distress within the sector and toward the entire

economy by gauging the increase in tail co-movements.

The rationale for examining the contribution to contagion risk coming from energy

companies is driven by the fact that commodity trading could cause an analogous degree

of risk as the one caused by financial markets. The global financial crisis, in fact, prompted

dramatic consequences: stock markets plunged, banks collapsed and the entire global fi-

nancial system was on the verge of catastrophe. A similar economic scenario could be set

off by the collapse in oil prices. The recent crash in crude-oil prices has in fact sucked out

energy firms’ profits and put pressure on their debt service.

Besides, with the new European market infrastructure regulation (EMIR) package,

the EU has pointed out that systemic risk and contagion effects can be channelled from

energy and food sectors to the financial sector through the use of derivatives. In this

context, we evaluate if there are systemically important energy “institutions” because

evaluating the risk stemming from important energy companies is of great importance for

the regulators. In addition, there is a certain similarity between energy companies and

financial institutions. Both are crucial to all the sectors of the economy and the distress
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in one or group of them is susceptible to trigger cascading effects with serious damages to

the whole economy. Indeed, demand for energy is usually inelastic, showing evidence of

the strong dependence of the entire economy on energy prices. Integration of conventional

asset markets may further allow shocks to easily propagate and trigger waves of contagion.

Therefore, the identification of contagion risk not only in the financial system, but also in

the energy system becomes a key priority to achieve macroeconomic stability.

In order to measure a single energy company’s contribution to contagion risk and which

institutions are in fact systemically important, we use the Conditional Delta Value at

Risk (∆CoV aR) methodology developed by Adrian and Brunnermeier (2016) and the

tests of significance and dominance proposed by Bernal et al. (2014). Although a large

number of risk measures, such as the Systemic Risk Index (Acharya et al., 2012, 2010;

Brownlees and Engle, 2017) and the Game theoretic “Shapley Value” (Tarashev et al.,

2016; Drehmann and Tarashev, 2013), have been proposed in the literature1, we focus on

the ∆CoV aR approach since it can be seen as a measure more closely capturing contagion

risks2. Conversely, the Systemic Risk Index and the “Shapley Value” are measures that

more closely capture the exposure to common shocks that affect the whole financial system.

In addition, the ∆CoV aR measure is a more flexible approach that nicely allows us to

assess interconnectedness across sectors and, given that it relies on high-frequency data3,

is a highly reactive “bottom-up” risk measure. In particular, ∆CoV aR enables gauging

the severity of distress in the system, conditional on distress in a given company or in a

group of companies. The test of significance of ∆CoV aR allows determining whether or

not an energy “institution” can be classified as being systemically important on the basis of

the estimated contagion risk contribution. Therefore, this measure quantifies the potential

“cascade” effects in the system given distress in a specific company. Finally, the test of

dominance enables testing whether or not, according to ∆CoV aR, one energy “institution”

is more systemically important than another.

The study provides several contributions to the extant literature. It explicitly examines

the extent to which the energy sector contribute to contagion risk. In this sense, contagion

risk quantifies the extent to which a tail event in a particular energy company can generate

1See Bisias et al. (2012) for a comprehensive survey.
2The prefix “Co” in ∆CoV aR stands for Contagion, Conditional, Co-movement.
3Indeed, price and stock returns, used to compute the ∆CoV aR, reflect information more rapidly than

non-trading-based measures such as accounting variables, especially considering that such information is

mostly not available on a daily frequency.
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and spread out a tail event to other energy companies and to the rest of the economy.

The focus on how energy companies contribute to contagion risk has hardly been the

subject of research. To our knowledge, only the study by Algieri and Leccadito (2017) has

examined contagion risk in the energy, food and metal markets, but a thorough analysis

that scrutinizes specific energy companies and establishes which of them contributes the

most to contagion risk with spillover effects across the sector has so far not been undertaken.

Put differently, we move the attention from energy markets as in Algieri and Leccadito

(2017), to the energy sector. An interesting study that looks at systemic risk is provided

by Kerste et al. (2015). The authors using a risk measure based on the expected fraction

of additional failing firms methodology found that contagion runs from the banking sector

towards the energy sector, but not vice-versa.

Differently from Algieri and Leccadito (2017) and Kerste et al. (2015), we rank energy

companies on the basis of their contribution to contagion risk and examine three time

frames: a pre-crisis period (2005-2006), a crisis period (2007-2011), and a post-crisis period

(2012-2013) with the objective to identify differences and similarities across times and

evaluate whether our findings are sensitive to the considered sample period.

An additional novelty of the study relates to the use of the ∆CoV aR risk measure to

detect impacts and interactions within the energy sector, and examine dependence during

extreme market events. This methodology has been generally applied to financial institu-

tions. We extend it to energy companies and, in addition, we develop a new joint signifi-

cance (or dominance) test that combines significance (or dominance) tests corresponding

to different probability levels.

The remainder of the study is organized as follows: Section 2 depicts the adopted

methodology, Section 3 describes the data used in the study, Section 4 presents the empir-

ical analysis and discusses the results, and Section 5 concludes.

2. Methodology

Let {Rsystemt }t and {Rit}t denote the time-series of returns4 of a financial market in-

dex (“the system”) and of energy company i (or an index comprising energy companies),

4Price returns Rt are daily logarithm price differential, i.e., Rt = lnSt − lnSt−1 where St is the price of

the stock at time t.
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respectively. The CoV aRsystem|i is the Value-at-Risk5 (V aR) of the financial system con-

ditional on the company log-returns being equal to its level of V aR for a τ thi quantile (i.e.,

Ri = V aRRi(τi)). Put differently, given some critical level τ , the CoV aR measure is de-

fined as the quantile of the system conditional on Ri being equal to its τi − V aR (i.e. the

quantile of the distribution of Rsystem conditional to Ri = V aRRi(τi)). Formally,

P
(
Rsystem ≤ CoV aRsystem|i(τ)|Ri = V aRRi(τi)

)
= τ

and

P
(
Ri ≤ V aRRi(τi)

)
= τi.

Adrian and Brunnermeier (2016) propose to measure the effect of an extreme event

affecting company i on the system by the difference between the CoV aR of the system

when company i is in distress – i.e., when it is at a critical tail level such as τi = 1% – and

the CoV aR of the same system when company i is at a “normal” or uncritical level – i.e.,

when it is at τi = 50%. In detail, the ∆CoV aR measure they introduce is defined as

∆CoV aRsystem|i(τ) = CoV aRsystem|R
i=V aRRi (τi)(τ)− CoV aRsystem|Ri=V aRRi (50%)(τ)

and quantifies the increase in the contagion risk when the institution experiences extreme

events.

In our application, we implement a battery of significance tests with null hypothesis:

H0 : ∆CoV aRsystem|i(τ) = 0, τ ∈ T ⊂ (0, 1)

Rejection of such hypothesis implies that energy company i (or the aggregated energy

index) truly contributes to contagion risk.

We also carry out a set of dominance tests, with null hypothesis:

H0 : |∆CoV aRsystem|i(τ)| ≤ |∆CoV aRsystem|j(τ)|, τ ∈ T ⊂ (0, 1).

The latter test is useful to rank different energy companies based on the impact on the

system. In particular, the rejection of the null implies that company i dominates company

j, i.e., company i is systemically riskier than company j.

5The Value-at-Risk is a probabilistic measure that evaluate the potential loss in value/returns of a risky

asset or portfolio over a defined period (e.g., one day) for a given confidence interval. For instance, if 1

day-V aR on an asset is 1 million with 95% confidence level, there is a only a 5% chance that the value of

the asset will drop more than 1 million over any given day. The V aR is the maximum loss of value, which

statistically corresponds to the lower (left) tail of the unconditional value/return distribution with a 5%

cumulative value.
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2.1. Estimation

In order to construct the ∆CoV aR measures we implement a six-step estimation pro-

cedure.

Step 1 We first run the τi-quantile regression following Koenker (2005), among the others:

Rit = αi + γiMt + eit (2.1)

where the error term eit is assumed to be i.i.d with zero mean and unit variance

and independent of the set of explanatory variables Mt.

Step 2 We obtain the τi–V aR for energy company i as the predicted value

V̂ aR
i

t(τi) = α̂i + γ̂iMt. (2.2)

Here α̂i and γ̂i represent the estimated parameters from eq. (2.1).

Step 3 We repeat the first two steps using 0.5 instead of τi to obtain 50%–V aR for financial

institution i.

Step 4 We run the τ -quantile regression:

Rsystemt = a+ bRit + cNt + εt (2.3)

where the error term εt is assumed to be i.i.d with zero mean and unit variance

and independent of Rit and of the set of explanatory variables Nt.

Step 5 We compute the following CoV aR measures:

ĈoV aR
system|Ri=V aRRi (τi)

t (τ) = â+ b̂V̂ aR
i

t(τi) + ĉNt

ĈoV aR
system|Ri=V aRRi (50%)

t (τ) = â+ b̂V̂ aR
i

t(50%) + ĉNt

where â, b̂, and ĉ represent the estimated parameters from eq. (2.3).

Step 6 We obatain the estimated ∆CoV aR measure as the following difference:

̂∆CoV aR
system|i
t (τ) = ĈoV aR

system|Ri=V aRRi (τi)

t (τ)−ĈoV aR
system|Ri=V aRRi (50%)

t (τ).
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2.2. Testing Procedures

To implement the significance and dominance tests, we extend the testing procedure

proposed by Bernal et al. (2014). For a fixed value of τ , the authors test whether or not

the cumulative distribution functions (CDFs) of CoV aRs at a the τi level and at the 50%

level are different from each other. This is achieved by bootstrapping the Kolmogorov-

Smirnov (KS) test statistic using the procedure proposed by Abadie (2002). The KS test

cannot be used directly because the estimated distributions introduce an unknown nuisance

parameter that jeopardizes the distribution-free character of the KS test. Hence, Bernal

et al. (2014) use the method of Abadie (2002) that allows to obtain critical values by

resampling the test statistic under conditions consistent with the null hypothesis. The

method of Abadie (2002) consists in a nonparametric i.i.d. block bootstrap in stochastic

dominance tests, in which data are divided into blocks that are resampled to replicate the

time-dependent structure of the original data.

The two-sample Kolmogorov-Smirnov statistic is defined as:

Kmn(τ) = sup
u
|Fm(u)−Gn(u)| , (2.4)

where m and n are the size of the two samples and Fm(u) and Gn(u) are the CDFs of the

CoV aRsystem|R
i=V aRRi (τi)(τ) and CoV aRsystem|R

i=V aRRi (50%)(τ), respectively.

For the dominance hypothesis with a fixed value of τ , the test statistic to bootstrap is

given by:

Gmn(τ) = sup
u
|Am(u)−Bn(u)| , (2.5)

where Am(u) and Bm(u) are the CDFs of the absolute values of ∆CoV aRsystem|i(τ) and

∆CoV aRsystem|j(τ) and m and n are the size of the two samples. Again, bootstrap-based

methods are needed to calculate the p-values for the dominance test.

We extend the testing procedure of Bernal et al. (2014) by combining significance or

dominance tests corresponding to different values of τ , for instance τ ∈ {0.01, 0.05, 0.1}.

Given a set of J possible values for τ , {pl}l=1,...,J , the test statistic we propose is given by

the sum of test statistics for individual values of pl, i.e.,

Kmn =

J∑
l=1

Kmn(pl). (2.6)

for the significance test, and

Gmn =

J∑
l=1

Gmn(pl). (2.7)
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for the dominance test.

To determine the p-value associated to (2.6), the strategy is also to use bootstrap-

based methods. In particular, at the hth replica of the bootstrap, first the time series of

CoV aRs associated to p1 are sampled with replacement to obtain Kh
mn(p1), then the time

series associated to p2 are sampled with replacement to quantify Kh
mn(p2), and so on until

we derive Kh
mn(pJ). The hth replica for the bootstrapped test statistic is then given by

Kh
mn =

∑J
l=1K

h
mn(pl). We proceed in a similar manner to obtain the p-value associated

to (2.7).

3. Data Description

In our empirical application we apply the tests described in the previous section to

CoV aRs or ∆CoV aRs estimated for a sample of 35 energy companies entering the S&P500

Energy index6. All the considered companies, which belong to the sector “Energy” accord-

ing to the Global Industry Classification Standard (GICS), are reported in Table 1 and

listed by sub-industry group in Table 2. The data consists of daily observations covering

the period from 3 October 2005 to 19 June 2013.

In our analysis, the system is mirrored by daily returns of the S&P500 ex Energy

index7, while the institutions are proxied, by daily returns either of single energy companies

(components of the S&P500 Energy index) or of the S&P500 Energy index. In this way,

we can characterize both the behaviour to contagion risk of each single energy enterprises

(company level) and the behaviour of all companies considered together (sector level).

The stock market data for the single 35 energy companies and in aggregate are taken

from S&P website8.

It should be noted that the emphasis on stock returns is motivated by the desire to

include the most recent information for risk measurement; stocks returns reflect information

more rapidly than non-trading-based measures such as accounting variables, especially

considering that such information is mostly not available on a daily frequency.

The set of Mt and Nt variables includes those factors identified by the literature (Fama

and French, 1989; Ferson and Harvey, 1994) as possible drivers of energy and stock market’s

6Currently, the S&P500 Energy index comprises 40 companies. In this study we exclude five companies

due to lack of data at the beginning of the period of analysis.
7The index comprises the S&P500 companies that do not belong to the energy sector.
8http://us.spindices.com/
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returns. Specifically, Mt comprises:

� the CBOE Volatility Index (VIX), which captures the implied volatility of the S&P500

index and reflects stock market expectations of volatility. It is a popular barometer

of investor sentiment and often referred to as the “fear index” (Koch, 2014; Bae et al.,

2003);

� the Baltic Dry Index proxy for global demand (Kilian, 2013);

� the MSCI Emerging Market Index proxy for the strength of economic growth in

emerging economies that determines the commodity demand from emerging markets

(Koch, 2014; Tang and Xiong, 2012);

� the S&P500 equity index to control for broad market exposure. Changes in the equity

index can also signal shifts in economic activity and real demand for commodities

(Tang and Xiong, 2012);

� the dollar effective exchange rate index as risk factor to control for the exposure of

energy futures (priced in US dollars) to exchange rate risk (Algieri, 2014; Erb and

Harvey, 2013);

� the US three month T-bill (short-term interest rate) used as barometer of global

changes in the international monetary policy (Manera et al., 2013; Chevallier, 2009;

Bae et al., 2003; Bessembinder and Chan, 1992);

� the spread between Moody’s BAA and Moody’s AAA Corporate Bond yields – i.e.,

yield returns of bonds rated BAA and AAA by Moody’s – represents the default risk

premium (sometimes called the junk bond yield) (Manera et al., 2013; Chevallier,

2009; Sadorsky, 2002);

� TED spread (i.e., the difference between the 3-Month London Interbank Offered Rate

(LIBOR) and 3-Month Treasury Bill) provides a measure of stress (or not) in credit

markets and, therefore, it is an indicator of world financial and economic health

(Manera et al., 2013; Bae et al., 2003).

Nt comprises the same group of variables excluding the S&P500 equity index. All

variables included in Mt and Nt are taken from Bloomberg database. Table 3 displays the

variables entering the analysis.
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4. Empirical Results and Discussion

The empirical analysis is carried out for the whole sample ranging from to 3 October

2005 to 19 June 2013 and for three subsamples9 labelled pre-crisis (from 3 October 2005

to 1 August 2007), crisis (from 2 August 2007 to 31 December 2011) and post-crisis (from

02 January 2012 to 19 June 2013).

Table 4 reports the results of the significance test when we use the S&P500 Energy

Index as the “institution” and the S&P500 ex Energy Index as the system.

It is worthwhile noticing that when energy companies are considered in aggregate, they

have a critical impact on the rest of the economy, i.e., the contagion risk contribution of

all oil and gas enterprises taken together is significant given that the null hypothesis is

rejected. Hence, it can be stated that energy companies produce spillover effects on the

whole economy. This holds true for all the considered sample period, 2005–2013.

The situation changes if one analyses the subperiods. It is interesting to observe that

while in the pre-crisis period energy companies do not trigger any contagion risk event, their

importance increases during the crisis time, and it continues soon after. It also emerges

that while 33 out of 35 companies have significantly contributed to contagion risk during

the period 2007–2009, a reduced number of enterprises have exerted a systemic effect in

other periods of time.

Table 5 reports the results of the significance tests for each company as well as the

ranking based on the results of the dominance tests. In particular, for the entire period

of analysis, the oil and gas drilling company Transocean dominates in term of riskiness

29 out of the 30 remaining significant companies (corresponding to a percentage share of

96.67%), followed by Hess Corporation, Tesoro Petroleum, and CONSOL Energy. The less

risky companies are Cabot Oil & Gas, FMC Technologies, Halliburton, and Marathon Oil

Corporation. Totally insignificant companies, i.e., those for which the p-value of the signif-

icance test is larger than 5%, are Cameron International Corporation, EQT Corporation,

and Range Resources Corporation.

Tables 6, 7, and 8 display the results for the three subperiods considered, i.e., the

pre-crisis, crisis, and post-crisis period, respectively. The findings suggest that the energy

9The cut-off date for each subperiod has been taken on the basis of the major events that have char-

acterized the world economy, namely we have considered the period of economic growth and prosperity

in financial markets until the period of financial turmoil which marked the entry into the second largest

economic recession, and the period of slow recovery.
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sector and energy companies under study all represented a higher source of risk for the

real economy between 2007 and 2012 than during the other periods. This could be due

to the fact that during times of financial crisis, losses tend to spread from a single insti-

tution/sector across other institutions/sectors, leading to increased system-wide risk and

probable deterioration of the whole stock market system. Furthermore, the dynamics of

∆CoV aR point to the presence of procyclicality which occurs because risk measures tend

to be low in booms and high in crises.

At company level, Exxon is ranked first in terms of risk during the pre-crisis period and

during the crisis, but its degree of riskiness has fizzled out after 2011. Exxon’s percentage

share of dominance is estimated to be 87.5% between 2005-2007 and 100% during the crisis.

The companies Chevron and Apache turn out to be risky for all the three subsamples

and their degree of dominance is quite strong. In terms of percentage share on the total

significant firms, both Chevron and Apache enterprises record higher values in the pre-crisis

period (81.25% and 62.50%, respectively), than during (59.38% and 21.88%, respectively),

and after the crisis (57.14% and 50%, respectively). These results imply that when high

ranking energy companies face distress they can trigger serious problems to the energy

market with negative consequences for the whole economy. Conversely, energy companies

with a low ranking generate less difficulties for the rest of the economy. In this context, we

would expect that among the seven of the S&P 500’s top ten losers on the year 2015 there

are some companies that can trigger more negative domino effects than others. Given that

the worse performances were recorded by Chesapeake Energy Corp and Consol Energy Inc.

that went down by 77% respectively, followed by Southwestern Energy Co., that collapsed

by 74%, we would expect that these three companies would impact more severely on the

energy sector and the economy than other enterprises.

The company Halliburton, which deals with oil and gas equipment and services, is

always not significant for the system. It is interesting that a number of companies are

significantly risky during the crisis, but not before or after. Companies belonging to this

group are Cameron, Anadarko, Consol, EOG, FMC, Helmerich, Hess, Schlumberg, Tesoro,

Transocean, and Williams.

5. Conclusions and Policy Implications

After the financial crisis, the policy debate has focused the attention not only on how

to mitigate the risk stemming from systemically important financial institutions, but also
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on the possibility of risks in the non-financial system, including energy markets. This is

because in a globalized and financialized economy, economic agents are becoming increas-

ingly more interconnected. This favours the spread of adverse shocks occurring in one or

several financial and non-financial institutions not only towards their own sectors, but also

to the rest of the economy. Indeed, while rooted in physical markets, non-financial markets

are directed impacted by the financial sector and sensitive to spillover effects.

In this paper we have applied the market-based measure, ∆CoV aR proposed by Adrian

and Brunnermeier (2016) to the energy sector, and extended the tests of significance and

dominance of ∆CoV aR implemented by Bernal et al. (2014). The ∆CoV aR measure has

permitted us to evaluate the contribution to contagion risk of each single energy enterprise

by measuring the system’s minimum loss in market–valued assets (i.e., the financial sys-

tem’s V aR) when the energy enterprise is suffering losses equal to its V aR and when the

same energy enterprise is in its median state.

The two tests have allowed determining whether or not an energy enterprises can be

classified as being systemically important on the basis of the estimated contagion risk

contribution, and whether or not one energy company is more important than another in

spreading contagion. We found that important spillover effects take place from the energy

sector to the whole economy, and that a high contagion risk has characterized energy

markets during the great financial crisis of 2007-2009, and during the period corresponding

to the major Eurozone sovereign turmoil. In fact, we found that the conditional value at

risk has increased considerably during the financial crisis and remains larger in magnitude

after it for the oil and gas companies in the sample. This pattern could be due to the

fact that the growth of derivatives and financial contracts has increased contagion risk

by expanding linkages among markets and financial institutions. The findings indicate

that some energy firms such as Exxon, Chevron and Apache turn out to play a key role

for contagion risk management, as they heavily outweigh other firms within the economic

network. This feature holds also at the industry level, with industries classified according

to the Global Industry Classification Standard. The three companies together with few

other energy firms have a significant impact on the whole economy during a period of

turmoil and can actually be ranked according to their contagion risk contribution on the

basis of ∆CoV aR at a given point in time.

From a policy perspective these results point to the fact that when energy firms become

“distressed” they can be precursor to more defaults and can cause economic havoc. In ef-
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fect, since the energy sector generates important spillover effects on the economy, it finishes

influencing strongly macroeconomic stability. This is particular true during economy’s bust

phases, when risk measures tend to increase. In fact, ∆CoV aR measures for the energy

sector tends to be pro-cyclical. The empirical evidences bring about the necessity of mon-

itoring energy markets, that have been formerly considered “safe haven”, in the attempt

to contain contagion risks. This is because risks taken by important energy companies

can affect other companies and, via energy prices, spread to the entire energy sector with

“negative externalities” for the entire economy. Indeed, the distress of the energy sector

may cause higher energy prices volatility, and this would in turn increase uncertainty and

impact on growth negatively. Therefore, policymakers should remain vigilant about the

possibility of disorderly energy market functioning and scrutinize those companies that

have a high risk ranking with the aim to reduce vulnerabilities. In addition, given that

historically, corporate defaults in the energy sector have tended to pick up in response to

falling oil prices with a lag of about 12 months (Fitch, 2015), aftershocks for the corpo-

rate sector may yet remain high. It should be mentioned that the present analysis is one

of the first attempts to assess contagion risk in the energy sector and further research is

still needed in order to dig into the systemic connections across sectors and broaden the

discussion on regulating non-financial sectors.
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Table 1: S&P500 Energy Companies

Companies Included Companies Excluded

Ticker Company Ticker Company

APC Anadarko Petroleum Corp CPGX Columbia Pipeline Group Inc

APA Apache Corporation KMI Kinder Morgan

BHI Baker Hughes Inc MPC Marathon Petroleum

COG Cabot Oil & Gas PSX Phillips 66

CAM Cameron International Corp. SE Spectra Energy Corp.

CHK Chesapeake Energy

CVX Chevron Corp.

XEC Cimarex Energy

COP ConocoPhillips

CNX CONSOL Energy Inc.

DVN Devon Energy Corp.

DO Diamond Offshore Drilling

ESV Ensco plc

EOG EOG Resources

EQT EQT Corporation

XOM Exxon Mobil Corp.

FTI FMC Technologies Inc.

HAL Halliburton Co.

HP Helmerich & Payne

HES Hess Corporation

MRO Marathon Oil Corp.

MUR Murphy Oil

NOV National Oilwell Varco Inc.

NFX Newfield Exploration Co

NBL Noble Energy Inc

OXY Occidental Petroleum

OKE ONEOK

PXD Pioneer Natural Resources

RRC Range Resources Corp.

SLB Schlumberger Ltd.

SWN Southwestern Energy

TSO Tesoro Petroleum Co.

RIG Transocean

VLO Valero Energy

WMB Williams Cos.
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Table 2: Global Industry Classification Standard (GICS) Sub-industry classification of the com-

panies included in the study.

GICS Sub-industry N. of Companies %

Coal & Consumable Fuels 1 2.86%

Integrated Oil & Gas 5 14.29%

Oil & Gas Drilling 4 11.43%

Oil & Gas Equipment & Services 6 17.14%

Oil & Gas Exploration & Production 17 48.57%

Oil & Gas Refining & Marketing & Transportation 2 5.71%

Table 3: Variables Description. M denotes the state variables used in eq. (2.1). The state variables

(N) used in eq. (2.3) are the same as those in M excluding the S&P500 index log-returns.

Description Ticker

M Market Volatility Index (VIX) VIX Index

Baltic Dry Freight BDIY Index

MSCI Emerging Markets Index MXEF Index

Standard & Poor’s 500 SPX Index

Dollar effective exchange rate DXY Curncy

Three month T-bill USGG3M Index

Moody’s BAA Corporate Bond yield MOODCBAA Index

Moody’s AAA Corporate Bond yield MOODCAAA Index

TED spread BASPTDSP Index

System S&P500 Ex Energy SPXXEGP Index

“Institutions” S&P500 Energy SPN Index

35 Companies of the S&P500 Energy Index (Table 1)
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Table 4: Significance test considering the S&P500 Energy Index as “Institution”. Results are

for the combined test (τ ∈ {0.01, 0.05, 0.1}) with τi = 5%. P-values have been obtained using a

bootstrap procedure with 10,000 replicas.

Test Statistic P-value Significant Companies

(Out of 35)

All Sample 0.545 0.000 31

Pre Crisis (03/10/2005 to 01/08/2007) 0.082 1.000 17

Crisis (02/08/2007 to 31/12/2011) 0.542 0.000 33

Post Crisis (02/01/2012 to 19/06/2013) 0.545 0.000 15
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Table 5: Significance test considering the 35 companies of the S&P500 Energy Index as “Insti-

tutions” for the period 2005-2013. Results are for the combined test (τ ∈ {0.01, 0.05, 0.1}) with

τi = 5%. P-values have been obtained using a bootstrap procedure with 10,000 replicas. Share is

calculated as the ratio between dominated companies and the remaining significant companies.

Company Ticker Test Statistic P-value Dominated Share

Companies

Transocean RIG 0.939 0.000 29 96.67%

Hess Corporation HES 0.928 0.000 28 93.33%

Tesoro Petroleum Co. TSO 0.808 0.000 26 86.67%

CONSOL Energy Inc. CNX 0.779 0.000 25 83.33%

Occidental Petroleum OXY 0.917 0.000 24 80.00%

Murphy Oil MUR 0.613 0.000 23 76.67%

Newfield Exploration Co NFX 0.841 0.000 22 73.33%

Baker Hughes Inc BHI 0.671 0.000 21 70.00%

ConocoPhillips COP 0.635 0.000 21 70.00%

Exxon Mobil Corp. XOM 0.501 0.000 21 70.00%

Chevron Corp. CVX 0.537 0.000 19 63.33%

Devon Energy Corp. DVN 0.410 0.000 17 56.67%

Pioneer Natural Resources PXD 0.392 0.000 17 56.67%

Schlumberger Ltd. SLB 0.423 0.000 15 50.00%

Noble Energy Inc NBL 0.366 0.000 13 43.33%

Williams Cos. WMB 0.352 0.000 13 43.33%

Apache Corporation APA 0.324 0.000 12 40.00%

Anadarko Petroleum Corp APC 0.301 0.000 9 30.00%

Chesapeake Energy CHK 0.275 0.000 9 30.00%

Diamond Offshore Drilling DO 0.304 0.000 7 23.33%

Ensco plc ESV 0.328 0.000 7 23.33%

Helmerich & Payne HP 0.267 0.000 6 20.00%

EOG Resources EOG 0.236 0.000 4 13.33%

National Oilwell Varco Inc. NOV 0.243 0.000 3 10.00%

ONEOK OKE 0.250 0.000 2 6.67%

Southwestern Energy SWN 0.226 0.000 2 6.67%

Cimarex Energy XEC 0.158 0.000 1 3.33%

Valero Energy VLO 0.215 0.000 1 3.33%

Cabot Oil & Gas COG 0.167 0.000 0 0.00%

FMC Technologies Inc. FTI 0.141 0.000 0 0.00%

Marathon Oil Corp. MRO 0.208 0.000 0 0.00%

Insignificant Companies

Cameron International Corp. CAM 0.106 0.066

EQT Corporation EQT 0.074 0.709

Halliburton Co. HAL 0.017 0.914

Range Resources Corp. RRC 0.107 0.060
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Table 6: Significance test considering the 35 companies of the S&P500 Energy Index as “Insti-

tutions” for the period 03/10/2005 to 01/08/2007 (Pre-Crisis). Results are for the combined test

(τ ∈ {0.01, 0.05, 0.1}) with τi = 5%. P-values have been obtained using a bootstrap procedure with

10,000 replicas.

Company Ticker Test Statistic P-value Dominated Share

Companies

Exxon Mobil Corp. XOM 1.767 0.000 14 87.50%

Chevron Corp. CVX 1.246 0.000 13 81.25%

Apache Corporation APA 0.713 0.000 10 62.50%

Newfield Exploration Co NFX 0.826 0.000 8 50.00%

Devon Energy Corp. DVN 0.707 0.000 6 37.50%

EQT Corporation EQT 0.800 0.000 4 25.00%

ONEOK OKE 1.028 0.000 4 25.00%

Valero Energy VLO 0.509 0.000 4 25.00%

Chesapeake Energy CHK 0.507 0.000 3 18.75%

ConocoPhillips COP 0.478 0.000 2 12.50%

Marathon Oil Corp. MRO 0.391 0.000 1 6.25%

Cabot Oil & Gas COG 0.441 0.000 0 0.00%

Cimarex Energy XEC 0.239 0.015 0 0.00%

Murphy Oil MUR 0.296 0.000 0 0.00%

Occidental Petroleum OXY 0.417 0.000 0 0.00%

Pioneer Natural Resources PXD 0.241 0.013 0 0.00%

Range Resources Corp. RRC 0.267 0.003 0 0.00%

Insignificant Companies

Anadarko Petroleum Corp APC 0.070 1.000

Baker Hughes Inc BHI 0.154 0.628

Cameron International Corp. CAM 0.098 0.998

CONSOL Energy Inc. CNX 0.028 1.000

Diamond Offshore Drilling DO 0.130 0.899

Ensco plc ESV 0.187 0.230

EOG Resources EOG 0.130 0.895

FMC Technologies Inc. FTI 0.161 0.537

Halliburton Co. HAL 0.126 0.925

Helmerich & Payne HP 0.200 0.136

Hess Corporation HES 0.037 1.000

National Oilwell Varco Inc. NOV 0.089 1.000

Noble Energy Inc NBL 0.104 0.996

Schlumberger Ltd. SLB 0.083 1.000

Southwestern Energy SWN 0.202 0.117

Tesoro Petroleum Co. TSO 0.191 0.196

Transocean RIG 0.035 1.000

Williams Cos. WMB 0.033 1.000
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Table 7: Significance test considering the 35 companies of the S&P500 Energy Index as “In-

stitutions” for the period 02/08/2007 to 31/12/2011 (Crisis). Results are for the combined test

(τ ∈ {0.01, 0.05, 0.1}) with τi = 5%. P-values have been obtained using a bootstrap procedure with

10,000 replicas.

Company Ticker Test Statistic P-value Dominated Share

Companies

Exxon Mobil Corp. XOM 0.243 0.000 32 100.00%

EQT Corporation EQT 0.890 0.000 30 93.75%

Ensco plc ESV 0.258 0.000 29 90.63%

Occidental Petroleum OXY 0.473 0.000 29 90.63%

Murphy Oil MUR 0.547 0.000 28 87.50%

Transocean RIG 0.481 0.000 26 81.25%

Tesoro Petroleum Co. TSO 1.027 0.000 25 78.13%

Chesapeake Energy CHK 0.445 0.000 21 65.63%

Schlumberger Ltd. SLB 0.372 0.000 21 65.63%

ConocoPhillips COP 1.223 0.000 20 62.50%

Chevron Corp. CVX 0.353 0.000 19 59.38%

Devon Energy Corp. DVN 0.504 0.000 18 56.25%

National Oilwell Varco Inc. NOV 0.189 0.000 18 56.25%

Valero Energy VLO 0.173 0.003 18 56.25%

EOG Resources EOG 0.252 0.000 17 53.13%

Pioneer Natural Resources PXD 0.418 0.000 16 50.00%

FMC Technologies Inc. FTI 0.179 0.001 15 46.88%

ONEOK OKE 0.434 0.000 15 46.88%

Hess Corporation HES 0.466 0.000 14 43.75%

Cameron International Corp. CAM 0.148 0.028 13 40.63%

Southwestern Energy SWN 0.432 0.000 12 37.50%

Helmerich & Payne HP 0.453 0.000 11 34.38%

CONSOL Energy Inc. CNX 0.505 0.000 10 31.25%

Anadarko Petroleum Corp APC 0.178 0.002 8 25.00%

Newfield Exploration Co NFX 0.431 0.000 8 25.00%

Apache Corporation APA 0.449 0.000 7 21.88%

Williams Cos. WMB 0.424 0.000 6 18.75%

Diamond Offshore Drilling DO 0.350 0.000 5 15.63%

Cimarex Energy XEC 1.087 0.000 4 12.50%

Cabot Oil & Gas COG 0.323 0.000 2 6.25%

Noble Energy Inc NBL 0.476 0.000 2 6.25%

Marathon Oil Corp. MRO 0.412 0.000 1 3.13%

Range Resources Corp. RRC 0.736 0.000 0 0.00%

Insignificant Companies

Baker Hughes Inc BHI 0.122 0.219

Halliburton Co. HAL 0.062 0.999
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Table 8: Significance test considering the 35 companies of the S&P500 Energy Index as “Insti-

tutions” for the period 02/01/2012 to 19/06/2013 (Post-Crisis). Results are for the combined test

(τ ∈ {0.01, 0.05, 0.1}) with τi = 5%. P-values have been obtained using a bootstrap procedure with

10,000 replicas.

Company Ticker Test Statistic P-value Dominated Share

Companies

National Oilwell Varco Inc. NOV 0.837 0.000 14 100.00%

Noble Energy Inc NBL 0.706 0.000 11 78.57%

ONEOK OKE 0.752 0.000 10 71.43%

Apache Corporation APA 0.589 0.000 8 57.14%

Chevron Corp. CVX 0.534 0.000 7 50.00%

Ensco plc ESV 0.559 0.000 6 42.86%

Occidental Petroleum OXY 0.597 0.000 6 42.86%

Diamond Offshore Drilling DO 0.520 0.000 5 35.71%

Chesapeake Energy CHK 0.343 0.000 4 28.57%

Cabot Oil & Gas COG 0.379 0.000 2 14.29%

Murphy Oil MUR 0.313 0.001 2 14.29%

Valero Energy VLO 0.425 0.000 2 14.29%

Baker Hughes Inc BHI 0.262 0.021 0 0.00%

ConocoPhillips COP 0.319 0.001 0 0.00%

Southwestern Energy SWN 0.283 0.006 0 0.00%

Insignificant Companies

Anadarko Petroleum Corp APC 0.071 1.000

Cameron International Corp. CAM 0.057 1.000

Cimarex Energy XEC 0.044 1.000

CONSOL Energy Inc. CNX 0.049 1.000

Devon Energy Corp. DVN 0.054 1.000

EOG Resources EOG 0.087 1.000

EQT Corporation EQT 0.046 1.000

Exxon Mobil Corp. XOM 0.180 0.526

FMC Technologies Inc. FTI 0.054 1.000

Halliburton Co. HAL 0.052 1.000

Helmerich & Payne HP 0.155 0.821

Hess Corporation HES 0.074 1.000

Marathon Oil Corp. MRO 0.074 1.000

Newfield Exploration Co NFX 0.063 1.000

Pioneer Natural Resources PXD 0.095 1.000

Range Resources Corp. RRC 0.221 0.144

Schlumberger Ltd. SLB 0.202 0.286

Tesoro Petroleum Co. TSO 0.041 1.000

Transocean RIG 0.174 0.589

Williams Cos. WMB 0.044 1.000
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