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Abstract: We jointly examine the issues of research team formation and of the allocation of 
scientific credit to individual team members in a dynamic setting, with reference to “double disclosure” 
instances (the same research result is both published and patented). Senior  and junior scientists decide 
whether to collaborate over an extended time horizon and bargain over the allocation of attribution rights 
(authorship and inventorship). Seniors make take-it-or-leave-offers, which juniors can either accept or 
sanction by exiting the team. Sustainable equilibria are found in which juniors trade inventorship for 
authorship, and opt to stay in the team. We test our theoretical predictions against an original dataset of 
“patent-publication pairs” produced by academics in seven European countries from 1997 to 2007. Younger 
and female authors are found to be more likely than older and male ones not to appear on patents, 
irrespective of the country and the technological field. First authors are more likely than middle authors to 
appear on patents, but when excluded they are less likely to quit the team, which we interpret as a sign of 
compliance with a successful negotiation outcome over attribution rights.  
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1. Introduction 
Once a classic topic in the sociology of science (Merton, 1968, 1988), scientific credit attribution has very 
recently come to the forefront of economic analysis (Bikard et al., 2015; Gans and Murray, 2014; Gans and 
Murray, 2013; Häussler and Sauermann, 2014, 2015; Lissoni et al., 2013). This resurgence of interest 
follows the recognition that scientific research, as measured by scientific publications, is increasingly 
conducted by teams, rather than individuals, and that such teams have been incessantly increasing in size as 
well as in geographical and organizational scope (Agrawal et al., 2013; Jones, 2009; Jones et al., 2008; 
Wuchty et al., 2007). At the same time, individual scientists still feed their careers with personal credit, 
including that for their role in research-related task such as grant-chasing and the commercialization of 
inventive results.  
We contribute to this literature by focussing on « double disclosure » instances, which occur when 
scientific research results originate both a publication and a patent output, thus giving birth to a patent-
publication pair (Murray and Stern, 2007), or a set of interrelated pairs. Solid evidence exists, which shows 
that authors of publications in the pairs generally outnumber inventors of related patents, so that some 
research team members are attributed authorship, but not inventorship. Lissoni et al. (2013)  suggest that 
exclusion from inventorship may result from a bargaining process within the team, in which senior and 
male scientists (ideally, the chiefs of labs) make take-it-or-leave-it offers to junior and female ones. 
Evidence from a sample of Italian patent-publication pairs was shown to be compatible with the theoretical 
setting. 
In this paper we extend Lissoni et al. (2013) in both a theoretical and an empirical direction. We develop a   
barganing model to a dynamic setting, in which junior inventors, if unhappy with the decisions, do not just 
have a voice option (litigating the senior’s decisions), but an exit one (they can leave the team). In this way, 
we can examine how the distribution of attribution rights may affect if not team formation, at least team 
stability. 
On the empirical side, we both explore the implications of our theory for the distribution of inventorship 
rights among team members and team stability,  with data from Austria, France, Germany, Spain, Sweden, 
and the UK. 
The results we obtain confirm, for all countries considered, the role of seniority and gender in the 
distribution of attribution rights, and suggests that exclusion from inventorship does not undermine team 
stability to the extent it is traded for first authorship.  
In the reminder of the paper we first review the most recent literature on scientific credit distribution in 
teams and team formation (section 2). We then present our theoretical model (section 3) and our data 
(section 4). Section 5 contains our econometric analysis, section 6 concludes. 
 
2. Background literature 
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Scientific credit is ultimately assigned to scientists working in team by third parties such as: the authors of 
follow-up publications, from whom citation rates depend; the funding agencies and their peer reviewers, to 
whom individuals submit their publication lists when grant-chasing; and perspective employers and 
consumers of consultancy services, who inspect the scientists’ CVs and other references. To the extent that 
none of these actors can directly observe each team member’s contribution, some heuristics or social norms 
have to exist that translates the collective achievement into a set of individual ones. A classic example in 
this sense is Merton’s Matthew Effect, by which credit in a team is distributed according to the relative 
status of team members, with the most accomplished and senior scientists getting a disproportionate share 
of it compared to junior fellows (Azoulay et al., 2013; Jin et al., 2013; Simcoe and Waguespack, 2011). An 
example of social norm is fractional counting, by which each individual in an N-authored paper gets the 
same share of credit, where the latter is any inverse function of N (1/N in simple fractional counting). 
Official instances of use of such norm can be found, for example, in Italian public competitions for 
professorial jobs of the recent past (Checchi, 1999). Non-alphabetical name-ordering conventions, some of 
which are explicitly recommended by scientific journals, serve the same purpose, but go in the direction of 
stressing inequalities in each author’s contribution (Engers et al., 1999; Rennie et al., 2000). In the same 
direction it goes the proposal, by an increasing number of journal editors, to dispose of authorship and 
replace it with “contributorship”, in order to distribute credit according to the specific tasks performed by 
each team member (Biagioli et al., 1999; Frische, 2012). 
The existing research on scientific credit attribution has kept distinct two different aspects of team-based 
research activity. First it investigates to what extent the prevailing social norms and heuristics shape the 
scientists’ decisions to work in teams1 (REF) and secondly investigates what consequences follow for the 
distribution of credit among team members, conditional on the prevailing heuristics and norms, as well as 
their strategic use by scientists (REF). This second stream of research assumes that some exogenous forces 
push scientists to work in teams. It is however important to ask how and why the distribution of scientific 
credit in teams affects the process of team formation. 
The two most important drivers of teamwork in science are the increase in fixed costs (equipment, 
infrastructure) and in the quantity of knowledge scientists need to muster in order to make any progress in 
their research (de Solla Price, 1963; Galison and Hevly, 1992; Jones, 2009). In this context, strong evidence 
exists that multi-authored papers rank higher than single-authored ones according to several impact 
metrics, which makes collaboration attractive. Still, it remains to be seen whether all team members reap 
the benefits of the collaboration. Setting aside all issues of “guest” or “ghost” authorship (Lissoni and 
Montobbio, 2015; Mowatt et al., 2002), one wishes to know whether the prevailing heuristics and norms 
for credit attribution work in the direction of favouring a distribution or a concentration of credit, and of 
their welfare implications. Based on a large dataset of scientific publications, Jin et al. (2013) show that the 
Matthew effect not only bestows more credit to more reputed scientists, but also protect them from the 
                                                           
1 Notice that some ambiguity permeates the entire literature, with reference to the concept of teams. While most authors 
abide nominally to Stephan’s, 2012, authoritative description of teams as hierarchical entities – with chiefs of labs 
recruiting and disposing of their team members -  the individual decisions to join a team or to admit a new member in 
his own team are often modelled as instances of collaboration among peers. We will come back to it later. 



 3

eventual blame for errors and omissions, which falls disproportionately on junior authors. This is coherent 
with the general finding that the rise of team science has gone hand in hand with a decline of concentration 
of research output at the departmental level, but an increase at the individual one (Agrawal et al., 2013). 
Such asymmetries in credit distribution beg the question of what incentives are left to junior and less 
reputed scientists to collaborate or join teams.  In a series of papers, some with co-authors, Joshua Gans 
and Fiona Murray assume away all positive returns to teamwork and collaboration, and model the 
emergence of co-authorship as the result of social norms distributing credit. Key assumptions concern the 
distribution of skills and roles among perspective team members, as well as the coordination costs and the 
degree of cumulativeness in the scientific enquiry. 
Bikard et al. (2013) adapt a model of collaboration choices by Becker and Murphy (1992) to the case of an 
individual scientist who decides whether to allocate her time between writing a paper with N co-authors 
and one single-authored paper. Scientists draw their utilities from reputation, which take the form of 
citations received by their papers, through several possible function s(N) (share of credit for an N-authored 
paper). For a given amount of time dedicated by the scientist to the single-authored and the multi-authored 
paper, the latter produces more total citations, increasing in N, but at the cost of increasing coordination 
costs. An empirical test follows, based on which the authors conclude that a sharing rule such as s=1/N is 
compatible with a rational allocation of time to collaboration. Notice that  1/N >1/N, which implies that 
a collaboration premium exists. Based on the further assumption that the social value of each publication 
coincides with the total number of citations received, the authors conclude that collaboration comes at a 
cost for society, namely the loss of single-authored publications that would have generated the same 
individual credit, but with more research output. A policy recommendation follows, which is either to limit 
collaboration or to find way to affect the social norms on credit distribution (such as replacing  1/N  with 
1/N). 
Gans and Murray (2013) consider a focal scientist facing a cumulative research project, to be undertaken in 
two steps, either alone or in collaboration, and with the possibility to module the publication output. The 
scientist can choose between three research strategies: (i) integration (he/she undertakes both steps alone 
and publishes one single-authored paper), (ii) collaboration (he/she collaborates with other scientists on both 
steps, and publishes one multi-authored paper), and (iii) publication (he/she completes the first step alone, 
publishes a single-authored paper with limited results of that step only, and get cited by other scientists’ 
follow-up papers on the second step). 
The publication strategy is the least expensive, as it does not entail any coordination costs nor any cost to 
acquire the necessary competencies to perform the second step. Which of the three strategies turns out to 
be privately optimal depends once again on the attribution norms, that is the functional form of s(N). And 
once again it is found that collaboration premia induce over-collaboration. 
Finally, Gans and Murray (2014) move  further towards the description of teams not as mere instances of 
collaboration among peers, but as hierarchical organizations. Two scientists are considered, alternatively 
portrayed as a pioneer and a follower, or a senior and a junior (the latter working in the lab managed by the 
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former). The overall quality of the two-step research output depends on quality of research at each step, 
which is a probabilistic function of effort. Some specialization exists, to the extent that the pioneer is the 
only scientist who can undertake the first step, and only the follower can achieve top quality in the second 
step. Several collaboration schemes are considered, depending on whether the pioneer must commit to co-
authorship from the start, or can postpone the final decision at the end of either the first step (after 
observing the outcome of his own effort) or the second one (after observing also the outcome of the 
follower’s effort). Society can correctly assign an economic value to whatever research output the two 
scientists produce, but not to each scientist’s contribution (asymmetric information). Thus, it applies some 
probability-based heuristics to estimate the relative contributions of the two scientists, which end up 
affecting the latter’s efforts. The Pareto optimal equilibrium occurs under the regime in which the pioneer 
(senior) can dispose of co-authorship until the second step, which (quite intuitively) results in a maximum 
effort deployed the follower (junior) and in the largest expected value of research. 
The  literature on team formation and credit attribution rightly attracts our attention to how attribution 
norms may shape team formation, but it is quite limited in its description of the team’s structure and 
activity. Even in Gans and Murray (2014), the senior and the junior scientist’s look much less a chief-of-lab 
and his/her postdoc than two scientists with different experience (and possibly from different labs or 
universities) who have the possibility, and no obligation, to join efforts. The relationship exists only insofar 
the collaboration occurs, and the collaboration extends only to the joint paper.  
As Stephan (2012) reminds us, the reality of research teams, to be intended as labs, is different. Contractual 
arrangements exist, which imply some sunk costs for the creation of team, and bind the team members for 
some time and to a multiplicity of deliverables. These may include a variety of outputs from research 
contracts (reports, proofs of concepts, prototypes…) as well as inventions stemming from fundamental 
research (Häussler and Sauermann, 2014). This broaden up the possibility to negotiate the distribution of 
scientific credit over and beyond the instance of a single paper. It also brings us back to Merton’s original 
idea of authorship as symbolic intellectual property, which members of a team can dispose of according to 
economic considerations. (Merton stressed the cases of a senior scientist giving it up when wishing to 
increase the visibility of a junior colleague, or reclaiming it all for himself when a scientific prize was at 
stake). 
Lissoni et al. (2013) consider the case of teams involved in the joint production of research results that are 
both amenable to be patented and published, as it is often the case in fields such as biotechnology or 
materials science (Fehder et al., 2014; Gans et al., 2013; Haeussler and Sauermann, 2013). Senior and junior 
scientists are bound by a long-term relationship and negotiate over the attribution of authorship (in 
particular, first authorship) and inventorship. The relative value of the two attribution rights differ across 
scientists. Authorship is relatively more valuable for juniors, as it is the currency they need to build their 
academic career. Seniors, whose career are established, attach instead greater relative value to inventorship 
and, possibly, getting exclusive control of the patent. Gender may combine with seniority, to the extent 
that female scientists may attach less value to inventorship, due to the well-documented obstacles they face 
when engaging in commercialization efforts (Ding et al., 2013; Thursby and Thursby, 2005; Whittington 
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and Smith-Doerr, 2005). Authorship and inventorship are distributed by senior scientists: they make take-
it-or-leave-it offers to juniors, whose only alternative to acceptance is (costly) litigation. 
It is then showed and tested that junior and female scientists may find it optimal to trade inventorship for 
authorship, irrespective of their effective contribution. This sends a false signal to the scientists’ perspective 
customers, employers, and research partners, which entails a social cost. Still, the model falls short of  
investigating how the junior scientist may anticipate the senior’s offer and decide in advance whether to 
join the team or not; or at least to exercise an exit option, alternative to litigation, which would allow us to 
observe (at least in principle) some instability in teams’ composition as a function of internal negotiations of 
attribution rights. It is the second route that we take in this paper.  
 
 3. Negotiation over Authorship and Inventorship and Team Dynamics: A 2-Scientist Model  
3.1 The model 
We extend the model by Lissoni et al. (2013), to a dynamic setting. Time is discrete, with periods ݐ =
0, 1, … , ∞.. We consider a team composed by a senior scientist (S) and a junior one (J), who engage in 
repeated collaborations, best described as a sequence of projects, one at each time t  (in first instance, we 
also assume both scientists to be male). Each project, which requires the participation of S and J as 
necessary inputs, originates with certainty one paper and one patent. Besides, each project consists of two 
stages, namely: 

1. the team formation stage, in which S and J decide to form the team, based on the expected 
allocation of attribution rights and the consequent payoffs 

2. the attribution rights allocation stage, in which the team delivers its output and the 
attribution rights are definitely assigned. 

S has full control over the allocation of attribution rights, that is he can decide who will be listed as author 
of the paper, and in which position, and who will be included as inventor in the patent. His decision cannot 
be litigated (for example, because this would prohibitively costly), so that the allocation of attribution 
rights that legal norms would prescribe according to the contribution of each scientist is in fact irrelevant.  
In the first stage of project S proposes to J an allocation of attribution rights A, and J decides whether 
joining the team or not. We assume, however, that S cannot commit to the allocation A he proposes (that 
is, he can renege on it at the time of filing the patent application or submitting the paper for publication). 
A is fully described by i) the identity of scientist who should be listed as first author; ii) the identity of the 
scientists who should be listed in the patent. For example A(S,SJ) stands for an allocation in which S is the 
first author, and both S and J are included in the patent (the order of the inventors on patents is irrelevant, 
as it conveys no information on individuals’ contribution). We denote with ܴଵௌ the value of publication for S 
if he is listed as first author, and ܴேଵௌ  if he is not. The corresponding values for J are ܴଵ and ܴேଵ . The 
common value from a patent is ݒ/݊, where ݊ = 1,2 is the number of inventors listed in the patent. 
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In case J, based on A, does not join the team, both J and S get a reservation utility equal to 0. If the team is 
formed, then in the second stage the paper and the patent are produced, S take a final decision on the 
allocation of attribution rights, and the corresponding payoffs are assigned.   
For J, the relationship with S implies a sunk cost I (ܴଵ >  at the time when the team is formed, while no (.ܫ
investment in the relationship is required for S 2. S and J are characterized by an intertemporal utility 
function with discount factor ߜௌ and ߜ. ߜ assumes a value ߜ > 0 with probability 1, while ߜௌ may assume 
two values, ߜ > 0 with probability ߤ and 0 with probability 1 −  are common knowledge. In ߤ and ߜ  .ߤ
other words, there are two types of senior scientists: the forward looking type (if ߜௌ =  to whom we will , (ߜ
refer as the ߜ − and the myopic type or  0 ݁ݕݐ −  In the first stage at t=0 S’s type is not observed by .݁ݕݐ
J, which only knows the type distribution. Alternatively, ߜ may be interpreted as the objective probability 
that the relationship between S and J “survives” each period t, instead of being terminated for exogenous 
reasons (such as a shortage of funds). In this interpretation, S estimates correctly the value of  ߜ with 
probability ߤ, and sets it mistakenly at 0 with probability 1 −   .,ߤ
We assume that in a non-repeated interaction, the unique (subgame perfect) equilibrium is such that the 
team is not formed.  This boils down to assume ܴேଵ <  In fact, once the team is formed (and the patent .ܫ
and paper are produced) S maximizes its payoff by assigning himself the first position in the paper and 
excluding J from the patent. In this case, J gets ܴேଵ . By proceeding backwards, in the team formation stage 
J correctly predicts that its payoff if he joins the team will be ܴேଵ −  which is lower than the outside ,ܫ
option. Without loss of generality, we shall assume from now on that ܴேଵ = 0. 
S maximizes its current payoff also in a repeated relationship when is a 0 −  Therefore, J would prefer .݁ݕݐ
not to form a team with S if ߤ is too small. However, when S is a ߜ −  different outcomes may be ,݁ݕݐ
sustained as equilibria in the supergame, involving the formation of the team and different attribution 
rights.  
First of all, we observe that since no investment is required by S, the latter always prefer to team up with J 
(independently from S’s type). So, in each period t, the only relevant action for S is choosing the allocation 
of attribution rights. We denote each action with a pair of element: the first is the scientist who is first 
author, the second is the set of scientists included in the patent. For J, instead, the relevant action choice is 
to join the team or not. In the repeated game, S’s and J’s actions at time t are a function of game history.  
As usual in repeated games, we will proceed by considering under which conditions on the parameters 
(expressed in terms of threshold for ߜ) a specific allocation of attribution rights is sustainable, in that a 
ߜ −  for S has no profitable deviation in the supergame. In a repeated interaction, J can threaten to ݁ݕݐ
leave the team if “exploited” (denied the attribution rights he was promised), which is bad for the ߜ −  ݁ݕݐ
in the long run. Such equilibrium may be interpreted both as an implicit contract between S and J, or a 
                                                           
2 We justify this assumption as follows: J both scientists have learning costs when it comes to start a new project, by J’s 
are much larger than S’s, which we set at  zero. 
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social norm prevailing in the scientific community. We focus on three possible allocations of attribution 
rights, to which we refer as norms,  which  S may be willing to sustain as part of the equilibrium in the 
supergame:3  

 J is first author, but he is excluded from the patent (norm 1) 
 J is first author, and he is included in the patent (norm 2) 
 S is first author, and J is included in the patent (norm 3) 

We shall assume that both S and J play trigger strategies, i.e. they switch forever to the unique equilibrium 
of the non-repeated interaction if a deviation is observed. The following Proposition summarizes the main 
result (the proof is the Appendix C).  
Proposition 1 (Norm 1) Suppose that the players’ strategies are such that i) the team is formed at t=0; ii) if S is  
ߜ −  he goes for A(J,S) in each period in which the team operates, if in all previous periods the team operated ,݁ݕݐ
with allocation A(J, S), and A(S,S) otherwise. iii) J joins the team a t=0;  iv) for each t>0, J stays in the team if S 
plays A(J,S) and quits forever otherwise. This is an equilibrium in the supergame if: 

ߜ ≥ ݔܽ݉ ൜ூିఓோభ
ூିఓூ , ோభೄିோಿభೄ

ோభೄା௩   ൠ. 
(Norm 2) Suppose that the players’ strategies are such that i) the team is formed at t=0; ii) if S is  ߜ −  he plays ,݁ݕݐ
A(J, SJ) in each period in which the team operates, if in all previous periods the team operated under A(J, SJ), and 
A(S,S) otherwise. iii) J joins the team a t=0;  iv) for each t>0, J stays in the team if S plays A(J,SJ) and quits forever 
otherwise. This is an equilibrium in the supergame if: 

ߜ ≥ ݔܽ݉ ቐܫ − ଵ ܴ)ߤ + (2ݒ
ܫ − ܫߤ , ܴଵௌ − ܴேଵௌ + 2ܴଵௌݒ + ݒ   ቑ 

(Norm 3) Suppose that the players’ strategies are such that i) the team is formed at t=0; ii) if S is  ߜ −  he plays ,݁ݕݐ
A(S,SJ) in each period in which the team operates if in all previous periods the team operated under A(S, SJ), and 
A(S,S) otherwise. iii) J joins the team a t=0;  iv) for each t>0, J stays in the team if S plays A(S,SJ) and quits forever 
otherwise. This is an equilibrium in the supergame if: 

ߜ ≥ ݔܽ݉ ቐܫ − ߤ ܫ2ݒ − ܫߤ ,
2ܴଵௌݒ + ݒ   ቑ 

As it is usual the case for repeated games, the model allows for multiple equilibria, i.e. there are parameter 
regions in which more than one norm is sustainable as equilibrium. However, a graphical comparison of 
norm 1 and norm 2 (see respectively the red and black lines in Figure 1) show that when norm 2 is an 
equilibrium, norm 1 is an equilibrium, too. Since norm 1 yields a higher payoff to S than norm 2, we expect 

                                                           
3 We do not consider here norms in which S is excluded from the patent. That is, he is always listed as an inventor 
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norm 1 to prevail over norm 2, in which case the  exclusion of J from the patent does not lead him to leave 
the team as long as he is the first author in the paper.  
 
Figure 1.  Allocation of attribution rights: equilibrium conditions for Norms 1 (in red) and 2 (in black) 

 
 
Still, there can be (small) parameter regions in which norm 3 is the only possible equilibrium (grey triangle 
in Figure 2,). In this case, J is included in the patent, but loses the first position in the paper in favour of S.  
 
Figure 2.  Allocation of attribution rights: equilibrium Norms 1 (in red) and 3 (in black) 
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For any given value of  and ூିఓோభ

ூିఓூ  , the equilibrium conditions for Norm 1 are more likely to hold the 
larger the value v of the patent and the smaller S’s marginal value of first authorship (ܴଵௌ − ܴேଵௌ ), so that S 
is keen on trading the latter for exclusive inventorship. This may occur for very valuable patents and/or 
when S is a very senior and highly reputed scientist, whose marginal value of first authorship is pretty 
small. For v large and/or (ܴଵௌ − ܴேଵௌ ) small, the equilibrium is more likely to hold the lower ூିఓோభ

ூିఓூ , that is 
the larger ܴଵ (J is very junior and attaches great value to first authorship due to career concerns), and the 
lower I (J has not invested much in the partnership, so he may content himself with just first authorship). 
 
3.2 Intuitive extensions and testable propositions 
Our 2-scientist model does not lend itself to produce immediately testable propositions. The main reason 
for that is that most scientific teams in our fields of interest include more than 2 scientists, each of which 
contributes differently, both quantitatively and qualitatively, to the research effort.  
In these cases, several scientists may find themselves in the J’s position, namely as juniors who negotiate 
attribution rights with S (or a set of seniors, jointly running the lab). At the same time, the literature 
suggests that a division of labour may exist between team members, so that not all members contribute 
equally to the research effort and may reasonably claim first authorship. At an extreme, the contribution 
can be so weak that legal norms clearly prevent inventorship to be granted (see the discussion in Lissoni et 
al., 2013). Under these circumstances, several J scientists may be either ready to trade inventorship with 
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just middle (neither first nor last) authorship, or simply to reclaim “guest” or “gift” authorship from S, on 
the basis of circumstances external to the specific research project from which the publication draws. 
In this case, the equilibrium solution for our model suggests that any form of authorship will lead to the 
scientist’s decision to stay in the team. At the same time, though, if the team host several team members 
whose research effort is such that they all rightfully compete for first authorship (that is, in J’s position), 
those who do not get it may decide to quit if not compensated for the loss with inventorship.  
Therefore middle-authorship can both predict a higher probability of getting inventorship (as 
compensation for the loss of first authorship) or a lower one (the contribution to the research effort being at 
most sufficient for getting authorship, but not inventorship). Early evidence by Lissoni et al. (2013) suggest 
that the second case is the relevant one. 
Also from Lissoni et al (2013) we derive the suggestion that our model can be either extended to or 
reinforced in the case of J being a female scientists. As suggested by the literature, female scientists face 
both more difficulties in their academic careers (which makes first authorship particularly valuable) and in 
commercializing their research results (which lowers the subjective value of the patent). They can therefore 
be readier than men to trade inventorship for first authorship, and stay in the team if the bargain goes 
through. 
Based on our 2-agent model and this discussion, we can put forward the following testable propositions: 
Proposition 1. Junior (younger, lower-ranked) and female authors of a patent-related publication have higher 

probability not to appear on the patent than more senior and male ones, controlling for their 
position in the author by-line. 

Proposition 2. First authors’ probability to stay in the team (to publish again with the senior co-authors) is 
unaffected by their inclusion/exclusion in the patent’s inventor list 

Proposition 3. Middle authors who have been excluded from the patent have a lower probability to stay in 
team, conditional on their contribution to the research effort being the same as the first 
author’s 

We run two sets of regressions. In the first set we examine the probability of the author of a scientific 
publication to be excluded from the related patent(s), in order to test Proposition 1. We will refer to it as 
the “exclusion” regression set.  
In the second set of regression we examine the probability of the author of a patent-related scientific 
publication to publish again with one or more members of the same patent-related research team (namely, 
the co-authors of the specific publication or of other publications connected to the same patent). We test 
propositions 2 and 3. We will refer to this as the “renewed co-authorship” regression set.  
 
4. Data  
4.1 Methodology and contents 
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Our dataset results from a fairly complex data-mining methodology, which we illustrate at length in 
Appendix 1. Here we provide a summary of the key issues and descriptive statistics.  
The basic units of analysis in our regressions are authors of papers included in patent-publication “sets” 
(PPSs). Each set groups from one to several related patent-publications “pairs” (PPPs). PPPs are the 
empirical equivalent of “double disclosures” in our theoretical model. They consist of 1-to-1 patent-
publication matches, whose lists of inventors and authors share at least one surname-and-initial and, 
according to text analysis of titles and abstracts, are likely to deal with the same research result. PPSs that 
include more than one PPP can be of a 1-to-N type (one patent and several publications) as well as of N-to-
1 or N-to-N type, as illustrated in Figure 3 
 
Figure 3. Patent-publication pairs (PPPs) and patent-publication sets (PPSs): definition 

  
 
Our main source for patent data is the APE-INV programme (http://www.academicpatenting.eu), whose 
database contains information on academic patents filed at the European Patent Office (EPO), from several 
countries and priority dates comprised between 1997 and 2007. By academic patent we mean a patent 
application (whether granted or not) concerning an invention by one or more university-affiliated 
scientists, regardless of whether the applicant is a university, a business company, or an individual. The 
APE-INV data for each country were collected with a similar methodology, based on matching names of 
inventors and scientists, but on the basis of rather heterogeneous data sources on scientists (Lissoni, 2013). 
As a result, our sample cannot be considered representative at the cross-country level, due especially to 
under-representation of Belgium, France, and the UK, and over-representation of Italy and Spain.  
As for publications, we searched the Web of Science (WoS©, by Thomson Reuters) for authors with the 
same name and initials of the academic inventors, within a time range of two years before and two years 
after the patent’s priority year. We then allocated all the resulting patent-publication matches to seven 
technological fields. For each field, we conducted a separate text analysis of all matches, based on a field-
specific vocabulary. This produced a “similarity index” equal to the cosine distance between the vectors of 
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words contained in the titles and abstracts of the matched patents and publications, as in Lissoni et al. 
(2013)4.  
, We had access only to the publications dated from 1999 onward. This returned over 4.6 million matches 
with non-zero values of the similarity index, based on ~140000 publications and ~9000 patents. Out of 
these, we first retained for further analysis only the matches with similarity index greater than 0.2, which is 
less than half the observations in the first percentile of the frequency distribution of the index values. In 
order to minimize the probability to incur in false positives (see discussion in Appendix 1) we further 
restricted our analysis to the top 10% of the first percentile, for a total of 952 PPSs (3p90 sample). One 
further restriction (to the top 5% of the first percentile) reduces the PPSs to 561 (2p95 sample), which we 
use to conduct robustness tests. Around half the PPSs, whether in the 2P95 or 3P90 sample, is of the 1-to-1 
type; the rest is predominantly of the 1-to-N type, and hardly include more than 5 publications in the most 
restrictive sample (2p95) and 10 publications in the second most restrictive one (3P90), and almost never 
more than 2 patents (see table 1). These statistics reassure us about the selectivity of our algorithm when it 
matches publications to patents, and vice versa.  
 
Table 1.  PPS frequency distribution, by nr of patents and publications in the PPS 
 By nr of patents By nr of publications 
 2p95 3p90 pps_2p95 pps_3p90 
1 483 813 363 524 
2 62 109 96 187 
3 13 23 44 96 
4  2 24 48 
5 1 2 10 30 
6 1  6 19 
7   4 16 
8   3 8 
9  1  2 
10   3 1 
11-20 1 2 5 16 
21-50   3 3 
51-100    2 
Tot patents/publications 668 1154 1142 2299 
3p90: PPSs based on PPPs with similarity index values in the top 10% of the first percentile (952 obs) 2p95: PPSs based on PPPs with similarity index values in the top 5% of the first percentile (561 obs)  
 
Another useful information on the quality of our data can be obtained by calculating the difference between 
the number of inventors and the number of authors in each PPSs (an information we use in our regression 
exercises). In the case of 1-to-1 PPSs the difference is simply the difference between the number of 
inventors on the only patent and the number of authors on the only publication in the pair. In the case of 1-
to-N, N-to-1, and N-to-N PPSs  the difference is that between the total number of distinct inventors of the 
                                                           
4 When a patent was classified under more than one technological fields, we computed more than one similarity index for each one of its publication matches, and retained the maximum value.  
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patents and the total number of distinct authors of the publications in the same PPS. Negative values 
indicate that we have more authors than inventors. As expected, they prevail (see table 2). Very high 
absolute values, which refer to 1-to-N or N-to-N cases in which publications list many authors each, are 
rare: around 2% with ≥50, less than 20% with ≥10. 
 
Table 2. - % distribution of PPSs, by value of the difference between number of inventors and authors 
Nr inventors – nr authors PPS: 2p95 PPS: 3p90 
-700,-100 0.7 0.7 
-99,-50 1.8 1.3 
-49,-10 17.1 20.7 
-9,-5 20.7 21.1 
-4 6.2 6.4 
-3 7.1 8.0 
-2 11.4 8.9 
-1 9.3 9.3 
0 11.6 9.9 
+1 4.6 5.0 
+2 4.3 3.5 
+3 1.8 1.6 
+4 1.2 1.3 
+5,+9 1.8 1.8 
+10,+49 0.4 0.5 

 
When examining the technological field of the patents, negative values clearly prevail in three out of four 
science-based fields: “Instruments”, “Chemicals & Materials”, and “Pharma & Biotech” (with the latter 
exhibiting the largest differences, as also found by Fehder et al., 2014). This is line with our expectation to 
find more instances of “double disclosures” in science-based technologies, where the inventive activity of 
academic scientists may be a straightforward consequence of their research activity and our methodology is 
less likely to produce false positives. While in the other fields, many academic inventions stem out of 
targeted applied research or consultancy, or even extra-academic activities, which are less likely to be 
captured by publications.  
Finally, in order to measure the authors’ seniority, we went back to the WoS and collected all the 
publications by authors with the same surname and initials of the individuals included in the 3p90 PPS 
sample. We limited our search to journals relevant for the technological fields of the patents in the PPS and 
to authors with not exceedingly common surnames (such as Smith, Muller, or Park). We then calculated 
the year of the authors’ first publication and their stock of publication in each following year. 
Information on gender could not be retrieved by any automatic mean. Except for the authors with at least 
one patent (whose documentation reports full names), we had access only to name initials, as derived from 
WoS. This forced us to substantial manual work, which in turn was limited by time and budget constraints. 
Wherever possible, we downloaded the front page of each author’s papers and collected their first names 
from there, if available. We then matched it to those included in the IBM GNR’s library, and retrieved and 
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elaborated the associated information on gender. Where possible, ambiguous cases were solved manually, 
by inspecting the author’s affiliation and its country location or, for prolific authors, their webpage.5 
We thus managed to retrieve gender  information for 6242 authors, of which 33% turned out to be female. 
Their distribution across technologies and discipline is rather uneven, with a larger presence in Pharma & 
Biotech, Chemicals and Materials, and Scientific Instruments. 
 
4.2 Exclusion regressions: Variables and descriptive statistics 
For our main regressions, we consider all PPSs from the 3p90 class (952 units, for a total of 1154 patents 
and 2299 publications). Our observations are author-publication couples. That is, each publication in a PPS 
generate as many observations as the number of its authors, for a total of >19000. We then exclude from 
the sample all the publications whose number of authors is smaller than the total number of inventors in 
the PPS, as well those whose authors are listed alphabetically (in which case we consider the order of the 
authors in the by line to be uninformative). We also exclude a certain number of authors with extremely 
common surnames, for whom the information on the stock of publication and seniority would certainly be 
unreliable. This leaves with little more than 14000 observations (xxxx patents and 1820 publications). 
The binary dependent variable exclusion takes value one when the author of the publication does not appear 
as an inventor on any related patent.  
The main explanatory variables refer either to the characteristics of the author, the publication on which 
s/he appears, or the patent from which s/he is (or is not) excluded, as follows: 

- The position of the author in the publication’s by-line, namely: First, Middle, , Last; where Middle 
indicates any position in between the first and the last author, and is the reference case. 

- Female, which indicates the author’s gender. In several specifications we interact it with the author’s 
position in the by-line, with male middle authors (Male Middle ) as the reference case 

- The author’s seniority, relative to the co-authors on the same publication, at the time of the 
publication. We measure it with two sets of variables. The first set considers the stock of past 
publications, with two dummy variables: top_scholar =1 for the author in the co-authorship team with 
the largest stock of past publications, and bottom_scholar =1 for the author with the smallest stock of 
past publications (all intermediate cases as references). Alternatively, we consider one continuous 
variable (relative_scholarship), which ranges from 0 (for the bottom scholar) to 1 (for the top scholar)6. 

                                                           
5The IBM Global Name Recognition (IBM-GNR) system is a commercial product that performs various tasks, including the 
association of first names to gender, expressed as the probability p that the name is masculine (1-p feminine). Ambiguous cases are those in which a name’s gender varies by country (e.g. Andrea, which is masculine in Italy and feminine in German and English-speaking countries) or the name is epicene (is both feminine and masculine in the same country, such as Dominique and Yannick in France). More details in Appendix 1 
 
6 In detail: 

ℎ݅ݏݎ݈ܽℎܿݏ ݁ݒ݅ݐ݈ܽ݁ݎ = ݇ܿݐݏ − min (݇ܿݐݏ)
max (݇ܿݐݏ) − min (݇ܿݐݏ) 
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The second set considers each co-author’s date of first publication, with most_senior=1 for the co-
author whose first publication is the oldest, and most_junior=1 for the one with the most recent (all 
intermediate cases as references). Alternatively, we consider one continuous variable 
(relative_seniority), which ranges from 0 (for the bottom scholar) to 1 (for the top scholar)7. 
The two measures capture different aspects of seniority: the former measures experience in 
publishing, and may be relatively high for a young researcher with an intense publishing activity; the 
latter is a better proxy for age , as with an aged co-author with few publications (for example a 
laboratory technician occasionally rewarded with authorship).  

- Proximity, which is the inverse cosine distance measures between the patents and the publications in 
each PPS (with >1 patents or publications we consider the maximum distance) 

- The time distance between the publication and the related patent, expressed as the publication year 
minus the patent’s priority year (with >1 patents in the PPS we consider the maximum distance). 
We organize it in five dummies (-2 years, -1 year, 0 years, +1 year, +2 years), where negative values 
point at publications preceding the patents, and -2 years is the reference cases.  

- The number of authors in the publication (n_authors) and the number of inventors of the related 
patent (n_inventors; with >1 patents in the PPS we consider the total number of distinct inventors in 
the patent set) 

- The technological field, according to the following dummies: Electrical engineering & Electronics, 
Instruments, Chemicals & Materials, Pharmaceuticals & Biotechnologies, Other technologies (with Electrical 
engineering & Electronics as the reference case) 

- The country of the academic inventor in the patent, with Austria as the reference case 
Notice that while the same author enters several observations (as many as the publications on which she is 
listed), some of his/her characteristics may change across observations. In particular, the publication stock 
will increase when moving from less to more recent publications, and seniority may vary with both the date 
of the publication and, in relative terms, with respect to the seniority of the co-authors. 
Based on our model, we can put forward a number of a priori on the sign of our explanatory variables of 
interest. In particular, we expect junior and female authors to have a higher probability of exclusion from 
the patents related to their publications. 
As for our main controls, first and last authorship, they ought to be negatively correlated with the 
probability of exclusion, with the last author possibly exhibiting a lower exclusion probability than the first 
one. 
                                                                                                                                                                                                 
where stockij is the number of publications by co-author i at the time of paper j and min(stockj) [max(stockj)] is the minimum 
(maximum) value for the same variable among those of all co-authors of paper j. 7 In detail: 

ݕݐ݅ݎ݅݊݁ݏ ݁ݒ݅ݐ݈ܽ݁ݎ = 1 − ݎܽ݁ݕ ݐݏݎ݂݅ − min (݂݅ݎܽ݁ݕ ݐݏݎ)
max (݂݅ݎܽ݁ݕ ݐݏݎ) − min (݂݅ݎܽ݁ݕ ݐݏݎ) 

where first yearij is the year in which co-author i  of paper j first published an article recorded by the Web of Science and min(first yearj) [max(first yearj)] is the minimum (maximum) value for the same variable among those of all co-authors of paper j. 
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Other controls with expected negative coefficients are: 
- the proximity between the text (contents) of the matched patent and publication: the closer the 

match, the least likely it is to be a false one, one in which the patent and the publication are indeed 
unrelated and the exclusion probability high 

- the time distance between the patent and the publication: patent-publication matches in which the 
publication that follows the patent (time distance is positive) are less likely to be false ones, which 
lowers the probability of exclusion 

- the number of inventors on the patent: the larger their number, the less likely it is that some authors 
of the related publications will be excluded (conversely, the larger the number of authors, the higher 
the probability of exclusion, due to dilution of the average author’s contribution to the invention) 

Table 3 reports the summary statistics. Notice the high number of missing observations for gender-related 
variables, and the dominance of observations related to Pharmaceuticals & Biotechnologies. This is due to: 

- the  disproportionate number of PPPs we observe in this field, as opposed to other science-based field 
such as Electrical Engineering & Electronics and Chemicals & Materials, as discussed in section 4.1 and 
appendix A 

- the higher average number of authors per paper in the related disciplines. 
 
Table 3. Exclusion regression: summary statistics 
 Obs Mean Std. Dev. Min Max 
exclusion 14261 0.68 0.47 0 1 Middle 14261 0.74 0.44 0 1 First 14261 0.13 0.34 0 1 Last 14261 0.13 0.34 0 1 Female 9148 0.35 0.48 0 1 Male Middle 9148 0.45 0.50 0 1 Female Middle 9148 0.27 0.44 0 1 Male first 9148 0.08 0.27 0 1 Female first 9148 0.06 0.23 0 1 Male last 9148 0.12 0.32 0 1 Female last 9148 0.02 0.14 0 1 relative_scholarship 14244 0.26 0.35 0 1 relative_seniority 14247 0.38 0.36 0 1 top_scholar 14261 0.13 0.34 0 1 bottom_scholar 14261 0.20 0.40 0 1 most_senior 14261 0.14 0.34 0 1 most_junior 14261 0.22 0.42 0 1 proximity 14261 0.38 0.09 0.28 0.80 -2 years 14261 0.11 0.32 0 1 -1 year 14261 0.13 0.34 0 1 0 years 14261 0.19 0.39 0 1 +1 year 14261 0.28 0.45 0 1 +2 years 14261 0.28 0.45 0 1 n_authors 14261 9.60 5.44 2 55 n_inventors 14261 4.01 2.82 1 40 Electrical eng; Electronics 14261 0.08 0.27 0 1 Instruments 14261 0.19 0.39 0 1 Chemicals; Materials 14261 0.07 0.26 0 1 Pharmaceuticals; Biotech 14261 0.63 0.48 0 1 
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Other technologies 14261 0.03 0.16 0 1 Austria 14261 0.08 0.28 0 1 Belgium 14261 0.05 0.23 0 1 Spain 14261 0.14 0.34 0 1 France 14261 0.12 0.32 0 1 Italy 14261 0.55 0.50 0 1 Sweden 14261 0.02 0.15 0 1 UK 14261 0.04 0.18 0 1 
 
 
4.3 Renewed co-authorship regressions: variables and descriptive statistics 
For our main regressions, we start from thee PPSs in the 3p90 class. More precisely, we consider all 
authors listed on publications included in such PPSs, with the exception of those with very common names 
and those with no further publications, for a total of 10149 observations (authors times PPSs, as a few 
authors appear in more than one PPS). For such authors we collect all publications from the PPS’s date 
onward (future publications, for short). 
Our dependent variable is the author’s probability to stay in the PPS team. For each author, we then 
consider whether s/he publishes again with at least one contributor to the same PPS (PPS members, for 
short), namely a co-author of his/her publication(s) or the author of another publication in the same PPS. 
In this way, we try to capture all publications a research team may have produced in relationship to one or 
more patents, albeit possibly with different authors’ configurations; and the relationships of the individual 
author with the entire team, and not just the specific co-authors of one or another publication. 
As shown in table 4, almost all authors we retain for our regressions write at least one more paper with 
their previous PPS members (over 99%). This is possibly due to our definition of PPS, which is as 
conservative as possible and leaves out a few papers still related to the PPS. However, if we move from 1 to 
2 or more papers the relevant figure drops dramatically to around 14%, We then consider as our dependent 
variable a binary one, which takes value one if the author writes at least two papers with one or more 
previous PPS members, and zero otherwise. 
 
Table 4. Nr of renewed co-authorships per author, and % of first/last authorship – frequency distribution  
Nr of co-authorships Nr of authors % of authors 
none 9 0.09 
1 8,722 85.94 
>1 1,418 13.97 
Total 10,149 100 
 
The two explanatory variables of our interest concern the attribution rights s/he obtained by contributing 
to the PPSs of which s/he was a member, namely: his/her position in the PPS papers in which s/he appear 
as an author and the inventorship (inclusion in one or more patents). 
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As shown in table 5, most of the authors we consider have just one paper in the relevant PPS (around 74%) 
while very few have more than two (around 8%; with a maximum value of 25). As consequence, they most 
often enter our dataset with just one position in the author by-line, namely the one they got in the only 
paper they contributed to the PPS. When examining first authorship, around 84% of the authors never get 
it, 13.4% always get it (most often because they are first author of a single paper), and 3% get in on one or 
more, but not all their publications. The statistics for last authorship are very similar, while those for 
middle authorship are slightly more varied (respectively: 28%, 67%, and 5%). For ease of treatment, we 
consider the authors’ positions in all the papers in the same PPS with three simple dummies: First (if they 
have at least one paper as first author), Last (if they have at least one paper as last authors, and none as 
first, which is almost always the case), and Middle (if they never get first or last authorship, which will be 
our reference case). 
In addition, we also consider the number of papers each author has contributed to the PPS, which is at the 
same time an indicator of the seniority of the author within the PPS, and of the stability of his/her 
collaboration with the PPS team (Nr of authorships in PPS). 
As for inventorship, we measure it with a dummy that takes value 1 if the author has never been listed as 
inventor on the patents included in the PPS (Exclusion). 
An additional variable of interest is gender (Female), although its inclusion comes at the cost of losing 
about half the observations. 
 
Table 5. Nr of PPS  papers per author, and % of first/last authorship – frequency distribution  
Nr papers per author Nr of authors % of authors 

1 7,490 73.8 
2 1,858 18.3 

>2 801 7.9 
   % papers as last author Nr of authors % of authors 
0 8,484 83.6 

(0,100) 304 3.0 
100 1,361 13.4 

   % papers as last author Nr of authors % of authors 
0 8,371 82.5 

(0,100) 320 3.2 
100 1,458 14.4 

   % papers as middle author Nr of authors % of authors 
0 2,868 28.3 

(0,100) 498 4.9 
100 6,783 66.8 
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   Tot 10,149 100 
Authors who appear in more than one PPS are counted more than once    
 
We further control for : 

- The author’s seniority, as measured by the year of his/her first publication (First publication year) and 
the number of his/her publications before entering the PPS team (that is, at the time of the first 
publication included in the PPS; Publication Stock)  

- Proximity, which is measured as in the exlcusion regressions and controls for the quality of our 
publication-patent matching 

- The total number of authors in the PPS (N_authors in PPS) and the total number of inventors of the 
related patents (N_inventors in PPS) 

- The year of the most recent publication included in the PPS (Last year in PPS), which enter the 
regressions as a set of calendar dummies 

Table 6 reports the summary statistics. 
  
Table 6.  Renewed co-authorship regression: summary statistics 
 Obs Mean Std. Dev. Min Max 
Position:      Medium 10149 0.67 0.471 0 1 

First 10149 0.17 0.374 0 1 
Last 10149 0.16 0.370 0 1 

Exclusion 10149 0.69 0.463 0 1 
Nr authorships in PPS 10149 1.43 1.107 1 25 
Female 5886 0.32 0.467 0 1 
First publication year 10021 1992.81 11.986 1950 2014 
Publication stock 10021 26.59 57.457 0 1318 
Proximity 10149 0.42 0.102 0.28 0.93 
N_authors in PPS 10149 20.50 17.455 2 80 
N_inventors in PPS 10133 4.68 3.352 1 17 
Last year in PPS  10149 2004.87 2.454 1999 2009 
 
 
5. Results 
5.1 Probability of Exclusion from Inventorship 
Table 7 reports the results of various specifications of the exclusion regressions, all estimated with OLS 
(Linear Probability Model - LPM). Though our dependent variable is binary, we followed a recent trend 



 20

and went for LPM for three reasons. First, it makes it easy to interpret estimated coefficients as changes in 
probabilities. Second, when it comes to interaction terms, they lend themselves to a straightforward 
interpretation as cross-partial derivatives. Third, when most regressors are discrete variables, as it is our 
case, it provides a reasonable linear approximation of non-linear marginal effects (Angrist and Pischke, 
2009; ch. 3.4.2; Wooldridge, 2010; ch. 15.2). Still, we take care to validate our results by means of Logit 
estimates, which will also help us to further explore non-linearities. 
Overall, the results confirm previous findings by Lissoni et al. (2013) and extend them to countries other 
than Italy. The number of observations drops when moving from column (1) to column (2) and (3) due to 
the inclusion of gender among regression, for which we have many missing observations. As for columns 
(4) and (5) they reports results for specifications as in (3), but in absence of observations for, respectively, 
Pharmaceuticals & Biotechnology and Italy, namely the most represented technology and country in out 
dataset.  
Column (1) shows confirms a number of our a priori, namely the role of seniority, as well as the validity of 
our controls. Ceteris paribus, the co-author with the strongest publication record (relative_scholarship=1) has 
around 40% less probability to be excluded from the patent than the one with the weakest record 
(relative_scholarship=0). On top of this, the most junior co-authors have 5% more probability to be excluded 
from the patent. 
The size of these marginal effects is larger than the marginal effect of coefficients related to the authors’ 
position in the paper by-line, which are around -21% for last authors and -14% for first authors. Notice 
that, as expected, the probability of exclusion for last authors is lower than that for first ones. 
 
Table 7.  Exclusion regression: OLS estimates (3p90 PPS class) 
  (1) (2) (3) (4) (5) 
First -0.14*** -0.13***     (0.028) (0.031)    Last -0.21*** -0.19***     (0.025) (0.026)    Female  0.06***      (0.016)    Female Middle   0.06*** 0.04 0.07*** 

   (0.014) (0.027) (0.025) Male first   -0.16*** -0.17*** -0.21*** 
   (0.038) (0.047) (0.038) Female first   -0.04 0.01 -0.05 
   (0.031) (0.053) (0.044) Male last   -0.19*** -0.14*** -0.23*** 
   (0.029) (0.036) (0.031) Female last   -0.16*** -0.17*** -0.16** 
   (0.041) (0.059) (0.061) relative_scholarship -0.41*** -0.40*** -0.40*** -0.36*** -0.32*** 
 (0.036) (0.043) (0.043) (0.053) (0.039) most_junior 0.05*** 0.05*** 0.05*** 0.03 0.06*** 
 (0.014) (0.017) (0.017) (0.026) (0.022) proximity -0.18*** -0.17** -0.17** -0.17 -0.11 
 (0.058) (0.078) (0.078) (0.138) (0.119) -1 year 0.01 0.02 0.02 0.02 -0.04* 
 (0.019) (0.020) (0.020) (0.028) (0.024) 0 years -0.04** -0.02 -0.02 0.00 -0.11*** 
 (0.021) (0.030) (0.030) (0.037) (0.028) 
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+1 year -0.05* -0.03 -0.03 -0.03 -0.10*** 
 (0.028) (0.031) (0.031) (0.037) (0.023) +2 years -0.06* -0.06** -0.06** -0.08** -0.14*** 
 (0.030) (0.031) (0.031) (0.039) (0.027) n_authors 0.01*** 0.01*** 0.01*** 0.02*** 0.02*** 
 (0.002) (0.003) (0.003) (0.003) (0.003) n_inventors -0.03*** -0.03*** -0.03*** -0.04*** -0.03*** 
 (0.004) (0.005) (0.005) (0.010) (0.004) Instruments 0.09** 0.15*** 0.15*** 0.13*** 0.17** 
 (0.041) (0.055) (0.054) (0.049) (0.071) Chemicals; Materials 0.12*** 0.20*** 0.20*** 0.21*** 0.22*** 
 (0.044) (0.056) (0.056) (0.052) (0.072) Pharmaceuticals; Biotech 0.13*** 0.20*** 0.20***  0.17** 
 (0.040) (0.054) (0.054)  (0.071) Other technologies 0.07 0.13* 0.13* 0.13** 0.05 
 (0.054) (0.070) (0.070) (0.067) (0.086) Belgium -0.04 -0.00 -0.00 -0.03 0.02 
 (0.023) (0.034) (0.034) (0.066) (0.034) Spain -0.07*** -0.01 -0.01 -0.09 -0.00 
 (0.025) (0.033) (0.033) (0.057) (0.031) France -0.04* -0.02 -0.02 -0.03 -0.02 
 (0.020) (0.027) (0.027) (0.045) (0.026) Italy -0.08*** -0.05* -0.05 -0.12***   (0.025) (0.030) (0.030) (0.036)  Sweden 0.07* 0.10* 0.10* 0.06 0.12*** 
 (0.042) (0.051) (0.051) (0.075) (0.043) UK -0.06 -0.12** -0.12** -0.18*** -0.11* 
 (0.044) (0.056) (0.056) (0.057) (0.057) Constant 0.89*** 0.73*** 0.73*** 0.77*** 0.73*** 
 (0.052) (0.071) (0.071) (0.094) (0.094) 
      Observations 14,244 9,141 9,141 2,943 3,872 R-squared 0.216 0.238 0.239 0.228 0.246 F-test 106.4 70.74 67.35 30.99 41.39 

Robust standard errors in parentheses ; *** p<0.01, ** p<0.05, * p<0.1   
   

 
All controls work as expected, with a lower probability of exclusion when patents and papers in the PPS 
have more similar contents (the coefficient of proximity is negative and significant) and when the 
publication comes after the patent (negative coefficients for 0,+1, and +2 years of difference between the 
publication date and the patent date). This indicates that we control effectively for false patent-publication 
matches in the PPSs. In addition, the estimated coefficients for the number of authors and the number of 
inventors in the patent have the expected signs. 
Several country and technology variables have significant estimated coefficients. In particular, those for 
Instruments, Chemicals & Materials, and Pharma & Biotech are large, positive and significant, which is in line 
with our expectations that our patent-publication matching techniques work best in these fields. As for 
Other technologies, the frequent lack of significance is also explained by the low number of observations. 
The signs of country coefficients do not lend themselves to any straightforward interpretation. The 
positive sign for Sweden, and the negative sign of all other countries (which implies a positive one for the 
Austria, the reference case) could be interpreted as pointing in the direction of the importance of the 
professor privilege, which was retained by Austria until the early 2000s and still is in place in Sweden. 
According to this intuition, the professor privilege grant exclusive control of intellectual property rights to 
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faculty, as opposed to the university administration, which suggests that in these countries the senior 
researchers and chief of labs (most likely to be tenured) would have more power to exclude other team 
members from the patent. However, we tried to interact the country dummies with either the seniority 
variables and the variables indicating the position of authors in the by-line, but got no significant results 
(unreported, but available on request) .  
As for the signs of technology coefficients, the results may point at different practices across scientific 
disciplines (to which technological fields are correlated), but they can also be biased by the different quality 
of our patent-publication matching, for the part not captured by other regressors. At the moment, we 
propend for this interpretation, once again because interactions of seniority and position variables with the 
technological ones does not produce any result of interest (unreported, but available on request). 
In columns (2) we introduce gender, which turns out to be positive and significant as expected: ceteris 
paribus, female authors have 8% more probability to be excluded for the inventors. All other estimated 
coefficients remain more or less the same, which suggests little interaction of this variable with the others. 
We also notice a non-trivial increase of the goodness-of-fit (R2 from less than 0.20 to more than 0.22), 
which also points at the importance of gender. 
In column (3) we interact gender and position. The reason for doing this is as follows. When considering 
authors in intermediate position in the article by-lines (Middle=1, which is the omitted reference case) we 
cannot measure their relative contribution to the research effort, being the exact position in the by-line 
(second rather than third or fourth, but in any case never last) is uninformative in this respect. To the 
extent that women may be relegated to less important tasks, their exclusion from the patent, when middle 
authors, could be motivated not by gender per se, but by lower contribution to the invention. Column (3), 
however, proves this not to be the case, as the estimated coefficients for male and female first authors 
significantly differ: in particular, male first authors have a lower probability of exclusion than female ones, 
while female first authors are as likely to be excluded as male middle ones (their estimated coefficients not 
being significantly different from zero).  
When interacting gender with country variables we do not find significant results (unreported, available on 
results). We find some results for the interaction with technologies, in particular with Pharmaceuticals & 
Biotechnologies (unreported, available on results). Yet, this may be due to the relative low presence of 
women in other fields, or to the lower numerosity of observations in other fields, which limit the 
significance of any estimate. 
When removing the technology or the country with largest number of observations (respectively: 
Pharma&Biotech, column 4; and Italy, column 5) our results do not change. Some coefficients, while 
maintaining their sign, become insignificant, but this is most likely due to the drop in the number of 
observations. 
In appendix B, table B.1 report the equivalent logit estimates (odds ratios) of columns (1) to (3) of table 
5.1.1. and columns (1) to (3) of table 5.1.2, along with some graphical representation of predicted 
probabilities and marginal effect as function of the main variables of interest. The latter appear coherent 
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with the LPM estimates. However, one important advantage of logit regression with respect to LPM 
consists in the inherent non-linearity of the estimation. This makes room for interaction effects even in the 
absence of interaction terms. In this respect, figure B.3 is rather interesting, as it shows that gender 
differences in the probability of exclusion decline with the increase of seniority (relative_scholarship  1). 
As for robustness checks, table 8 reports the results for a set of regressions (identical to those in table 7) for 
the more restrictive 2p95 sample. The estimated coefficients do not change much. 
 
Table 8.  Exclusion regression: OLS estimates (2p95 PPS class) 
  (1) (2) (3) (4) (5) 
First -0.16*** -0.15***     (0.035) (0.039)    Last -0.22*** -0.19***     (0.034) (0.032)    Female  0.07***      (0.019)    Female Middle   0.07*** 0.05 0.06* 

   (0.019) (0.033) (0.035) Male first   -0.17*** -0.21*** -0.27*** 
   (0.048) (0.067) (0.055) Female first   -0.06 -0.02 -0.11** 
   (0.040) (0.075) (0.057) Male last   -0.19*** -0.12** -0.25*** 
   (0.036) (0.048) (0.046) Female last   -0.17*** -0.13 -0.19** 
   (0.056) (0.079) (0.088) relative_scholarship -0.42*** -0.40*** -0.40*** -0.37*** -0.29*** 
 (0.043) (0.051) (0.051) (0.075) (0.048) most_junior 0.05** 0.04** 0.04** 0.04 0.05* 
 (0.020) (0.022) (0.021) (0.035) (0.029) proximity -0.15* -0.17* -0.17* -0.15 -0.06 
 (0.080) (0.101) (0.101) (0.178) (0.173) -1 year 0.04 0.02 0.02 0.06* -0.07* 
 (0.026) (0.028) (0.028) (0.030) (0.040) 0 years -0.03 -0.02 -0.02 0.06 -0.12*** 
 (0.029) (0.035) (0.035) (0.036) (0.037) +1 year -0.05 -0.04 -0.04 0.02 -0.13*** 
 (0.036) (0.038) (0.038) (0.041) (0.035) +2 years -0.04 -0.06 -0.06 -0.00 -0.15*** 
 (0.041) (0.040) (0.041) (0.045) (0.036) n_authors 0.01*** 0.01*** 0.01*** 0.03*** 0.02*** 
 (0.003) (0.003) (0.003) (0.005) (0.004) n_inventors -0.05*** -0.05*** -0.05*** -0.05*** -0.05*** 
 (0.005) (0.006) (0.006) (0.013) (0.008) Instruments 0.10** 0.12* 0.11* 0.09* 0.11 
 (0.049) (0.059) (0.059) (0.056) (0.077) Chemicals; Materials 0.16*** 0.19*** 0.19*** 0.20*** 0.20** 
 (0.057) (0.060) (0.060) (0.060) (0.079) Pharmaceuticals; Biotech 0.15*** 0.19*** 0.19***  0.13* 
 (0.049) (0.058) (0.058)  (0.076) Other technologies 0.07 0.04 0.04 0.06 0.01 
 (0.058) (0.083) (0.083) (0.079) (0.105) Belgium -0.09** -0.08 -0.08 -0.06 -0.04 
 (0.037) (0.049) (0.050) (0.080) (0.044) Spain -0.10*** -0.05 -0.05 -0.03 -0.02 
 (0.032) (0.046) (0.046) (0.061) (0.040) France -0.08*** -0.06 -0.06 0.03 -0.05 
 (0.031) (0.041) (0.041) (0.059) (0.036) Italy -0.13*** -0.11** -0.11** -0.11**   (0.035) (0.047) (0.047) (0.044)  Sweden 0.03 0.05 0.05 0.16*** 0.08* 
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 (0.048) (0.061) (0.061) (0.045) (0.047) UK -0.10 -0.16** -0.16** -0.12* -0.14* 
 (0.065) (0.076) (0.076) (0.074) (0.077) Constant 0.97*** 0.90*** 0.90*** 0.69*** 0.87*** 
 (0.072) (0.090) (0.090) (0.126) (0.127) 
      Observations 8,070 5,075 5,075 1,381 2,109 R-squared 0.225 0.241 0.242 0.227 0.240 F-test 80.26 70.18 65.52 20.66 21.68 

Robust standard errors in parentheses ; *** p<0.01, ** p<0.05, * p<0.1      
 
5.2 Renewed co-authorship regressions 
Table 9 reports the results for three different specifications of the regression, with columns (1) to (3) being 
OLS estimates and columns (4) to (6) being Logit (estimated coefficients reported). We have chosen not to 
relegate Logit estimates to the Appendix because they serve well the purpose of illustrating some non-
linearities in the marginal effects of the variables of interest, even without the insertion of specific 
interaction terms (too many of which would make the results less intelligible). Data refer to PPS class in 
the 3p90 percentile of patent-publication similarity. 
Estimated coefficients in column (1) for First and Exclusion, and their interactions, go in the direction of 
confirming proposition 2 (the same holds for column (4)). Exclusion from the patent does not reduce the 
first author’s probability to publish again with the PPS team: the sum of coefficients for Exclusion and 
First*Exclusion is not significantly different from zero. Notice also that both first and last authors have a 
higher probability than middle ones to renew co-authorship. As for proposition 3, we observe that the 
estimated coefficient for Exclusion, which indicates the marginal effect of the exclusion from the patent for a 
middle authors, is significantly different from zero. This goes in the direction of confirming the 
proposition, although not completely, as we do not yet control for the first and middles authors’ 
contribution to the PPS. 
We try to do so in column (2), by inserting the number of papers each author has contributed to in the 
PPS, and its square term. We first observe that this variable has the largest predictive power on the 
probability of renewed co-authorship (the R2 of the regression jumps from around 8% to 50%). Both the 
coefficients for First and Last go to zero, as it is clearly the case that first and last authors are those most 
committed to the team and have the lion’s share of its efforts and publications. Still, the previous results 
hold, the sum of coefficients for Exclusion and First*Exclusion being once again zero. We observe however 
two counter-intuitive results. First, exclusion from the patent(s) appears to reinforce the last author’s 
probability to renew co-authorship, as the sum of coefficients for Exclusion and Last*Exclusion is positive 
and significant (albeit only at 90%). Second, the sign for Proximity turns to negative, which apparently 
suggests that the closer the papers and the publications in the PPS, the lower the probability to observe 
renewed co-authorship. As we intend Proximity as a control for the quality of our patent-publication 
matching, we expected the contrary (as it is the case in column (1)). Removing potential outliers, such as 
authors with a very large number of publications (over 10), does not change the results (unreported, but 
available on request). 
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Table 9.  Renewed co-authorship regressions: OLS & Logit estimates (3p90 PPS) 
  (1) (2) (3) (4) (5) (6) 

       First 0.07*** 0.02 0.01 0.48*** 0.18 0.09 
 (0.016) (0.012) (0.016) (0.110) (0.167) (0.190) 

Last 0.11*** -0.01 -0.01 0.63*** -0.21 -0.22 
 (0.016) (0.013) (0.018) (0.099) (0.181) (0.204) 

Exclusion -0.08*** -0.04*** -0.04*** -0.79*** -0.70*** -0.61*** 
 (0.011) (0.009) (0.012) (0.103) (0.162) (0.203) 

First*Exclusion 0.05** 0.04** 0.05** 0.56*** 0.74*** 0.76*** 
 (0.022) (0.015) (0.021) (0.154) (0.229) (0.264) 

Last*Exclusion -0.02 0.07*** 0.09*** 0.19 1.15*** 1.34*** 
 (0.022) (0.017) (0.022) (0.160) (0.258) (0.264) 

Female   -0.00   0.00 
   (0.009)   (0.136) 

Nr authorships in PPS  0.35*** 0.35***  5.01*** 3.79*** 
  (0.022) (0.024)  (0.363) (0.372) 

Nr authorships in PPS (sq)  -0.01*** -0.02***  -0.43*** -0.14*** 
  (0.002) (0.002)  (0.037) (0.015) 

First publication year -0.00** -0.00 0.00 -0.01*** -0.00 0.00 
 (0.000) (0.000) (0.000) (0.003) (0.005) (0.006) 

Publication stock 0.00*** 0.00 0.00 0.00*** 0.00 0.00 
 (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) 

Proximity 0.24*** -0.16** -0.16** 2.05*** -3.68*** -3.60** 
 (0.076) (0.067) (0.082) (0.613) (1.352) (1.464) 

N_authors in PPS 0.00*** 0.00 -0.00 0.02*** 0.01 0.00 
 (0.001) (0.001) (0.001) (0.004) (0.010) (0.012) 

N_inventors in PPS 0.01** 0.00 0.00 0.05** 0.00 0.03 
 (0.003) (0.003) (0.004) (0.024) (0.053) (0.066) 

Last year in PPS (dummies) yes yes yes yes yes yes 
       Constant 1.61** -0.13 -0.93 14.75** -1.29 -15.23 
 (0.776) (0.607) (0.814) (6.325) (10.683) (12.495) 
       Observations 10,005 10,005 5,819 10,005 10,005 5,819 

R2/Pseudo-R2 0.077 0.499 0.515 0.0934 0.568 0.565 
F-test 21.67 63.46 53.71    Model chi-square     428.6 485.5 326.3 
 Columns (1) to (3): OLS ; Columns (4) to (6) Logit (estimated coefficients reported) 
 Robust standard errors in parentheses ; *** p<0.01, ** p<0.05, * p<0.1    
 
The logit version of the same specification (column (4)) suggests an important qualification of our results, 
which we illustrate in figure 4. The figure reports the predicted probabilities of renewed co-authorship for 
middle, first, and last authors, as a function of the number of publications they contributed to the PPS and 
the exclusion from patents. For all types of authors, the probability to renew co-authorship appears to be 
close to zero if they contributed only one publication to the PPS (occasional PPS members or authors 
therein), and close to one if they contributed three articles or more (stable PPS members and authors), 
irrespective of their inclusion or exclusion from the patent(s). Having been excluded makes a difference 
only for authors with two papers in the PPS, which we could describe as neither occasional nor stable, and 
only for middle authors.  
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Figure 4.  Predicted probability of renewed co-authorship, by author’s position, inclusion in patent, and ex-ante co-authorships (Logit estimates - 3p90 PPS) 

 As from regression (3), table 5.2.1 (95% confidence intervals) / Other variables at means 
 
Going back to table 5.2.1 we comment upon column (3), in which we control also for the authors’ gender, 
but do not get any significant results for the specific coefficients. As for the others, the sign and size do not 
change much, despite the sample being halved due to missing observation for the new regressor. 
Table 10 reports the results for a robustness checks based on replacing the 3p90 sample with the 2p95 one, 
which contains closer patent-publication matches. Overall we obtain the same results as in the previous 
table, with some improvement. In particular, when controlling for Nr authorships in PPS, the sign of 
Proximity is no more negative; and the renewed co-authorship probability for the last author no more 
appears to be (positively) influenced by the exclusion from the patent (the sum of coefficients for Exclusion 
and Last*Exclusion is zero). 
 
Table 10.  Renewed co-authorship regressions: OLS & Logit estimates (2p95 PPS) 
   (1) (2) (3) (4) (5) (6) 

       First 0.07*** 0.02 0.04* 0.59*** 0.10 0.12 
 (0.021) (0.017) (0.021) (0.174) (0.282) (0.301) Last 0.08*** 0.02 0.03 0.60*** -0.36 -0.20 
 (0.021) (0.017) (0.023) (0.162) (0.279) (0.330) Exclusion -0.07*** -0.04*** -0.04** -0.75*** -0.80*** -0.71*** 
 (0.016) (0.012) (0.016) (0.159) (0.201) (0.251) First*Exclusion 0.05* 0.05** 0.06** 0.49*** 0.71** 0.67* 
 (0.024) (0.023) (0.030) (0.191) (0.324) (0.374) 
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Last*Exclusion -0.01 0.03 0.03 0.09 1.11*** 0.87** 
 (0.032) (0.023) (0.030) (0.238) (0.345) (0.396) Female   0.01   0.04 
   (0.010)   (0.165) Nr authorships in PPS  0.14*** 0.14***  4.08*** 4.06*** 
  (0.024) (0.022)  (0.395) (0.434) Nr authorships in PPS (sq)  -0.00*** -0.00***  -0.29*** -0.28*** 
  (0.000) (0.000)  (0.051) (0.049) First publication year -0.00*** -0.00*** -0.00** -0.02*** -0.01 -0.01 
 (0.000) (0.000) (0.001) (0.004) (0.007) (0.008) Publication stock 0.00** 0.00 0.00 0.00*** 0.00 0.00 
 (0.000) (0.000) (0.000) (0.001) (0.002) (0.002) Proximity 0.48*** 0.27*** 0.31*** 4.52*** 0.50 0.53 
 (0.096) (0.089) (0.106) (0.887) (1.700) (1.975) N_authors in PPS 0.00*** 0.00 0.00 0.01*** 0.01 0.01 
 (0.000) (0.000) (0.000) (0.002) (0.007) (0.007) N_inventors in PPS -0.01** -0.01*** -0.01*** -0.05* -0.23*** -0.24*** 
 (0.003) (0.003) (0.003) (0.026) (0.074) (0.079) Last year in PPS (dummies) yes yes yes yes yes yes 
       Constant 2.54*** 2.39*** 2.58** 28.13*** 14.52 3.54 
 (0.952) (0.747) (1.157) (8.419) (14.724) (16.763) 
       Observations 6,241 6,241 3,581 6,241 6,202 3,552 R2/Pseudo-R2 0.089 0.349 0.359 0.118 0.538 0.553 F-test 13.36 51.26 34.51    Model chi-square     315.1 455.0 394.1 

Columns (1) to (3): OLS ; Columns (4) to (6) Logit (estimated coefficients reported) 
 Robust standard errors in parentheses ; *** p<0.01, ** p<0.05, * p<0.1    
 
6. Conclusions 
Scientific credit is increasingly earned by individual scientists by means of contributions to collective, 
team-based research, whose results are indivisible across team members. In this paper we have argued that 
scientists in teams negotiate over the distribution of attribution rights in order to influence how third 
parties will bestow scientific credit to each of them. Since they attach different marginal values to 
authorship (and, in several fields, first authorship in particular) and inventorship, they can by and large 
reach privately optimal solutions, which will preserve the stability of the team, conditional on the 
bargaining power each team member has, according to his/her seniority and gender. However, nothing 
guarantees that this solution will also be socially optimal. In fact, interested third parties and society at 
large will be induced to under(over)-estimate the contribution to technology transfer by junior and female 
(senior and male) scientists, due to manipulation of inventorship attribution. 
Our paper contributes to what we described (in section 2) as the prequel literature on scientific credit 
distribution and team formation. It assumes that society applies a specific heuristic to distribute scientific 
credit across research team members (it values first over middle authorship; it reads last authorship as 
typical of senior authors; it splits credit for invention equally across inventors), and it infers its influence on 
team formation (in our case, team stability). It also contributes to what we described as the sequel 
literature, as it assumes that research is conducted by teams, and studies how different individuals within 
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the team may earn more or less scientific credit according not just to their contribution, but to their status 
(bargaining power).  
With respect to our own previous work (Lissoni et al., 2013) we prove the robustness of the original results 
by extending them to several European countries besides Italy, and extend the implications of our 
“negotiated” view of attribution rights to the case in which junior scientists have an exit option (and not 
just a voice, aka litigation, one). 
From the policy and managerial viewpoint, the key implication of our results is that scientists in a team 
have an economic interest in keeping the information on individual contribution as private as possible, since 
this gives them latitude to negotiate over attribution rights. As originally suggested by Robert Merton, the 
team leader (the Senior scientist of our model) may even have little interest in establishing clearly among 
themselves who did what and what he/she deserves in terms of public recognition. Such lack of clarity may 
give him/her more latitude in distributing the attribution rights according not to objective criteria, but 
subjective needs (returns from right), and for the sake of the team’s stability.  
From the policy viewpoint, this suggests that the national evaluation agencies (such as the English 
HEFCE, the Italian ANVUR, or the French HCERS) should be wary of treating bibliographic information 
as an objective measure of contribution to research and invention. And of how the economic value they 
attach to authorship and inventorship (in the form of rewards attached to it, for either the individuals or 
their institutions) will inevitably affect the negotiations within the team. 
These implications are even stronger from a managerial viewpoint, to the extent that university 
administrators are even more likely than evaluation agencies to distribute rewards for authorship and 
inventorship not just to teams or collections of teams (such as departments or faculties), but individuals. 
For example, an excessive emphasis on first authorship may put team stability at risk (as hopeful junior 
scientists who get middle authorship instead, are more likely to quit); and at the same time it gives leverage 
to senior scientists for staking their exclusive (or less inclusive) claims on inventorship.  
Our future research will go in the direction of exploring more in detail how such policy and managerial 
practices may affect, in theory, or have affected, historically, the scientists’ negotiation practices. 
   



 29

APPENDIX A - Patent-publication data collection and linkage 
 
A.1 Patent-publication pairs and sets: definition and collection methodology 
Observations in our regression analysis are authors of papers included in patent-publication “pairs” and/or 
“sets”. Patent-publication pairs (PPPs) are the empirical equivalent of “double disclosures” in our 
theoretical model. They consist of patents and publications whose lists of inventors and authors share at 
least one surname-and-initial and, according to text analysis of their titles and abstracts, are very likely to 
deal with the same research result. To the extent that the research result may be described by more than 
one patent and/or publication, PPPs may combine to form what we call patent-publication sets (PPSs), in 
which we have either one patent matched to N publications, or (less often) vice versa, or N patents matched 
to M publications (most  often with N<M). In figure A.1, lines represent PPPs (dyadic relationship 
between one patent and one publications, for a total of 7 instances), while PPSs are indicated with 
horizontal brackets, for a total of 3). 
Figure A.1 Patent-publication pairs (PPPs) and patent-publication sets (PPSs): definition 

  Our main source for patent data is the APE-INV programme, whose database contains information on 
patent applications over inventions by academic scientists from several European countries (in short: 
“academic patents”), as filed at the European Patent Office (EPO) from its opening in 1978 to around 2010. 
The countries we selected for this paper are Austria, Belgium, Italy, Spain, Sweden, and the UK. To these 
we added France, whose data were collected independently from APE-INV, but with a similar 
methodology.  All data, but the French ones, are available on the APE-INV website (http://www.esf-ape-
inv.eu/index.php?page=3#acadpat). We selected, where available, only patents with priority dates 
comprised between 1997 and 2007. 
According to the APE-INV definition, which emphasizes the origin of the invention as opposed to its 
property, academic patents were identified through name matching of inventors and academic scientists. 
Whether assigned to a university, a firm, or an individuals, all patents in our dataset contain at least one 
“academic inventor”, that is an inventor who conducted her patent-related research within a university.  
For all countries, inventors’ names come from EPO patent documents and were disambiguated, before 
matching, either by means of the Massacrator 2.0 algorithm (Pezzoni et al., 2014) or by similar algorithms 
(all discussed in a series of APE-INV “Name Game” workshops). As for scientists’ names, sources were less 
homogeneous, varying from administrative records of central governments (Italy) and individual 
universities (Austria, Belgium, France, Sweden, and the UK) to bibliometric sources (Spain). This implies 
that in some countries only tenured faculty were considered for name-matching with inventors, while in 
others untenured faculty, and even post-docs may have been included. In addition, for some countries data 
were provided for all universities and disciplines, while for others only selected ones were available (most 
notably, for Belgium only French-speaking universities were considered, while for the UK we have only 
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engineering faculties; as for France, small universities were ignored). Nor time coverage was uniform (we 
miss 1997-98 patents for Spain, and 2007 patents for the UK; see table A.1). As a result, our sample cannot 
be considered as representative of academic patenting in Europe, due especially to the under-representation 
of Belgium, France, and the UK, and the over-representation of Italy and Spain. More details on the 
sampling scheme for each country can be found in the papers also listed in table A.1.  
Table A.1 Patent sample and methodological reference, by country 
 patents years reference paper 
 nr % from to  
Austria 572 6.4 1997 2007 Stummer et al. (2013) 
Belgium 457 5.1 1997 2007 Mejer (2013) 
Spain 1820 20.4 1999 2007 Maraut and Martinez (2014) 
Italy 3217 36.0 1997 2007 Pezzoni et al. (2014) 
Sweden 579 6.5 1997 2007 Ljungberg et al. (2014) 
UK 917 10.3 1997 2006 Banal-Estanol et al. (2010) 
France 1371 15.3 1997 2007 Cassi (xxx) 
Total 8933 100    
 Figure  A.2 reports the breakdown of our patent dataset by technological field. We notice that the first four 
fields, which are the most science-based ones, make up for over 80% of the observations, with 
Pharmaceuticals & Biotechnology accounting alone for over one quarter of the observations, despite the 
absence of patents from UK in this field. This is in line with the literature on academic patenting, as 
surveyed by Lissoni (2013). 
Figure A.2 Patent sample: % distribution by technological field 

 Note: Observations are patent-in-technological field, with several patents being classified in more than one field (on average, 1.33 fields per patent). Total nr of observations = 12187    In order to identify the publications to associate to the academic patents in our sample we searched the 
Web of Science © (WoS, by Thomson Reuters), as follows. For each patent in our sample, we searched 
retrieved a large number of publications by authors with the same name and initials of the patent inventors. 
We restricted the search by producing a table of “incompatible” technological fields (of patents) and 

1.Electrical eng.; Electronics17%

2.Instruments20%

3.Chemicals; Materials20%

4.Pharmaceuticals; Biotech.27%

5.Industrial processes9%

6.Mechanical eng.;Machines;Transport5%

7.Consumer goods; Civil eng.2%
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disciplines (of journals)8. We also considered only the publications within a time range of two years before 
and two years after the patent’s priority year.9 
We then filtered all matches by technological fields. For each field, we conducted a separate text analysis of 
all matches, based on a weighted bag-of-words method. Roughly speaking, the method consists first in 
eliminating stop words from the titles and abstracts (we used the stop word lists available in Python; 
https://pypi.python.org/pypi/stop-words/2014.5.26). Second, a weight is assigned to all the remaining 
words, which is inversely proportional to the frequency of the word in the technological field under 
examination. In this way, the title and abstract of each document in a match are transformed in a vector of 
weights (varying from 0, for words that are present in the vocabulary of the technological field, but not on 
the document; and ~1, for very rare words). Finally, on the basis of the vectors of each matched patent and 
publication, we computed a “similarity index” equal to the cosine distance between the vectors, as in Lissoni 
et al. (2013)10.  
At the present stage of our research, we had access only to the publications dated from 1999 onward. This 
returned over 4.6 million matches with non-zero values of the similarity index, based on around 140000 
publications for around 9000 patents. Of these we retained for further analysis only the matches with 
similarity index greater than 0.2, which amount to less than half of all observations in the first percentile of 
the frequency distribution of the index values11. In total, we are dealing with 4359 publications and 2260 
patents. These form 6997 PPPs, which in turn form 1761 PPSs. In the following, we indicate this class of 
PPSs with the label p4Q3  
Figure A.3 reports the distributions of PPPs by technological field of the patents. When compared with 
figure A.1 it shows immediately that  “Pharmacauticals & Biotechnology”  is the technological field in 
which patents are most likely to correspond to a publication. The PPP share of this field is 40%, that is 13% 
more than that of patents. Among the other science-based technological field, “Electrical engineering & 
Electronics” and “Chemicals & Materials” see their share going down of, respectively, 4% and 3%. This is 
possibly due to an inferior propensity of scientists in these fields to “double disclose” their inventions, but 
also to the fact that they privilege conference proceedings to publications, with the former being 
underrepresented in WoS and not included in our search strategy. As for non-science based fields, they 
altoghether drop from 16% of the original patent sample to less than 10% of the PPPs. 
If we further restrict our analysis to higher values of the similarity index (top 10% of the first percentile) 
the number of PPPs falls to 952 (label 3p90). One further restriction (to the top 5% of the first percentile) 
further reduces to PPS to 561 (label 2p95).  
 

                                                           
8 For technological fields, we reclassified the original IPC codes of patents into 30 classes, in accordance with the  OST-INPI/FHG-ISI reclassification methodology, as updated by Coffano and Tarasconi (2014). As for disciplines, we simply adopted the classification scheme of the Journal Citation Reports  © (JCR, also by Thomson Reuters). 
9 In principle, no scientist should publish a paper before filing a patent at the EPO, in order to avoid killing the novelty requirement (contrary to the USPTO, the EPO does not allow for any grace period; Franzoni and Scellato, 2010).  At the same time,  it is unlikely that the same scientist, once filed the patent, will wait too long before submitting the paper, in order to avoid compromising her race to priority in academic recognition (in principle, it could make sense sending the paper to a journal right after having filed the patent application). This suggested us to limit the search for publications to a short time (that we set in two years) after the priority date of the patent. At the same time, though, it is possible that the scientist will try to publish a paper before filing the patent application, either by mistake (due to scant knowledge of patent laws) or by limiting the disclosure to parts of the research results that will not form the subject of claims. (This risks invalidating the patent, and in fact, a sizable proportion of patents on our database have not been granted, most often due to withdrawal after the publication of the search report.) For this reason, we also consider publications that appeared on journals up to two years before the priority date. 
10 Notice that when a patent was classified under more than one technological fields, we computed more than one similarity index for each one of its publication matches, and then retained the maximum value. This is because the various technological fields have different vocabularies, from which we obtain different weights for the same word, and possibly different similarity indexes between pairs of documents.  
11 More precisely, the observations we retain are those falling into the top quarter of the first percentile. 
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Figure A.3 Selected PPPs: % distribution by technological field 

   Table A.2 shows the distribution of similarity index across the PPSs within each possible sample: the more 
restrictive the sample (moving from p4Q3 to 2p95), the higher the average and median values (for PPSs 
including more than one paper and/or publication, the maximum value is considered).  
Table A.2 – Patent-publication sets (PPSs) : % distribution of observations, by sample (from less to more restricted) and values of similarity index* 
 

Similarity index (value intervals)  
 0.2-0.3 0.3-'0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 >0.8 TOT 
4q3 58.1 24.4 11.0 4.6 1.2 0.5 0.2 100 
3p90 19.0 47.6 21.3 8.6 2.3 0.8 0.3 100 
2p95 -- 42.1 37.3 14.8 3.9 1.4 0.5 100 
* similarity index = inverse of cosine distance between title/abstract of each patent and each publication in the PPS    
Figure A.4 shows the distribution of PPSs by type, where types are defined according to the number of 
patents and publications included in the PPS, by sample. We notice that the more restrictive the sample, 
the higher the percentage of 1-to-1 matches (i.e. the percentage of PPSs that coincides with 
straightforward PPPs). This percentage goes from around 40% in 4Q3 to almost 60% in 2p95. We also 
notice that 1-to-N (1 patent to N publications) is the second most frequent type of PPS, which ranges from 
40% in 4Q3 to 28% in 2p95. N-to-1 and N-to-N PPSs are residual category, which together account in 
between 14% and 16% of all PPSs.  
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 33

Figure A.4 – % distribution of observations, by PPS class and type 

 PPS class: 4q3, 3p90, 2p95 (from less to more restrictive values of the similarity indx) PPS type: 1-to-1, 1-to-N, N-to-1, N-to-N (nr patents –to- nr of publications in the PPS) 
 
Tables A.3 and A.4 show the distribution of the number of patents and publications in the various PPS 
classes. We see once again that the largest majority of the PPSs in the non-restrictive 4q3 class are of the 
1-to-N type, as they include just one patent. But when we move to the more restrictive 3p90 and 2p95 
classes, which we use for our analysis, the 1-to-1 matches prevail. We also notice that PPPs of the N-to-1 
or N-to-N type mostly include no more than 2 patents, for the most restrictive classes (2P95 and 3P90), or 
3 patents, for the least restrictive (4Q3).  
As for the publications, the 1-to-N and N-to-N PPS types rarely include more than 5 publications in the 
most restrictive class (2p95) and 10 publications in the second most restrictive one (3P90), while in the case 
of the least restrictive (4Q3) we observe a substantial number of PPSs with more than 10 publications. 
 Table A.3 Number of patents in the PPS - Frequency distribution 
 Nr of observations (in PPS class) nr of patents  in the PPS pps_2p95 pps_3p90 pps_4q3 
1 483 813 1471 
2 62 109 198 
3 13 23 56 
4  2 15 
5 1 2 8 
6 1  3 
7   3 
8   1 
9  1 2 
10    11 1   12    13  1  14  1 1 
15   2 
16   1 
Total PPSs 561 952 1761 
Total nr of patents 668 1154 2260 
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   Table A.4 Number of publications in the PPS - Frequency distribution 
 Nr of observations (in PPS class) nr of publications  in the PPS pps_2p95 pps_3p90 pps_4q3 
1 363 524 843 
2 96 187 332 
3 44 96 205 
4 24 48 118 
5 10 30 53 
6 6 19 40 
7 4 16 33 
8 3 8 25 
9  2 14 
10 3 1 14 
11-20 5 16 64 
21-50 3 3 13 
51-100  2 6 
100-200   1 Total PPS 561 952 1761 Total nr of publications 1142 2299 5570   
The high percentage of 1-to-1 PPSs, especially in the more restrictive samples, suggests that our algorithm 
can be quite selective when it comes to match publications to patents. At the same time, it suggests that 
including in the sample many PPPs with rather low values of the similiarity index can lead to inflating the 
number of 1-to-N, N-to-1, and N-to-N PPS types, which may hide many false positive matches (matches 
between patents and publications that, in reality, are not instances of double disclosure). 
To further check the quality of data we calculate how often our PPSs end up including patents by academic 
inventors from different countries. Based on the reasonable assumption that such patents most likely 
unrelated one to another, any PPS with more than one countries is very likely to include one or several 
false positive patent-publication matches. The results are reassuring. When considering PPS in the 3p90 
class we have only 4 cases with two countries out of 952 (and no cases with more than two countries); and 
again two cases with two countries out of 561 in the 2p95 class. 
We finally notice that, concerning the technological fields of patents, the PPPs we obtained through our 
text-matching techniques are disproportionately concentrated in Pharmaceuticals & Biotechnology, well 
over and above the distribution of the original patent sample.  
 
A.2 Number of authors and inventors in PPSs: descriptive analysis 
We calculate the difference between the number of inventors and the number of authors in each PPP 
included in the least restrictive PPS class (4Q3), as well as in each PPS, for each class (from the least to the 
most restrictive). In the case of PPPs (and of 1-to-1 PPSs) the difference is simply the difference between 
the number of inventors on the only patent and the number of authors on the only publication in the pair. 
In the case of 1-to-N, N-to-1, and N-to-N PPSs (that is, of PPSs that include more than one PPP) the 
difference is that between the total number of distinct inventors of the patents and the total number of 
distinct authors of the publications in the same PPS. Negative values of the inventors-authors difference 
indicate that, in the PPP or PPS, we have more authors than inventors, as expected. Figure A.5 shows the 
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frequency distribution of values. In the large graph, for readability reasons, we have truncated the values of 
the inventors-authors difference to -100 (no rightward truncation). The smaller graph is the same as the 
large one, but with no truncation. Table A.5 reports the same data, in a more compact way. 
 
Figure A.5 - % distribution of observations, by value of the difference between number of inventors and authors in PPPs and three classes of PPSs 

 
  Table A.5 - % distribution of observations, by value of the difference between number of inventors and authors in PPPs and three classes of PPSs 
 PPPs PPS: 2p95 PPS: 3p90 PPS: 4Q3 
-700,-100 0.2 0.7 0.7 1.2 
-99,-50 0.0 1.8 1.3 1.8 
-49,-10 4.6 17.1 20.7 24.0 
-9,-5 17.8 20.7 21.1 19.0 
-4 7.0 6.2 6.4 6.1 
-3 9.4 7.1 8.0 7.6 
-2 12.6 11.4 8.9 8.0 
-1 13.1 9.3 9.3 8.8 
0 13.0 11.6 9.9 10.3 
+1 8.7 4.6 5.0 5.8 
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+2 5.1 4.3 3.5 2.7 
+3 2.8 1.8 1.6 1.6 
+4 1.5 1.2 1.3 0.8 
+5,+9 3.1 1.8 1.8 1.8 
+10,+49 1.0 0.4 0.5 0.5 

 
We see that the distribution of values leans to the left: there are many more negative cases than positive 
ones, as expected. However, the mode value is zero, even though its frequency comes close to that of the 
lowest negative values (in absolute terms, that is : -1 and -2). For PPPs, we also observe a long tail to the 
left, which is due to the 1-to-N cases in which we have either many publications (N is large) and/or many 
authors per paper (which, in a few limited cases, may be over 50 or even over 100).  
When it comes to PPPs, around 10% of the cases we retained exhibit the same number of inventors and 
authors; around 50% of the cases have more authors than inventors, up to a difference of 9 in absolute 
value; and 13% of the cases have more inventors than authors,up to a difference of 9 in absolute value. The 
remaining 17% of cases are in the tails (absolute difference of 10 or greater), mostly in the left hand one 
(authors>inventors). This distribution is in line with our expectations. 
When considering PPS, and moving from the least to the most restrictive class (which include an 
increasing share of 1-to-N and N-to-N types), we find an increasing percentage of observations in the left 
tail : a little less than 20% in 2p95, more than 23% in 3p90, and 27% in 4Q3. (In the last case we have 
several some observations with difference between the number of inventors and authors well over -200). 
Again, this preliminary evidence suggests to limit the sampling to one of the two most restrictive cases 
(2p90 and 3p90), as the least restrictive one (4Q3) may include too many false matches, as indicated by the 
disproportion between the number of authors and the number of inventors in the set. 
Figure A.6 examines the distribution of values for the inventor-author differences according to the 
technological field of the patents in the PPPs we retained for analysis. Shades of red indicate negative 
values (more authors than inventors), shades of blues positive ones (more inventors than authors), with 
white for null values (same number of authors and inventors). We notice a clear prevalence of negative 
values in three out of four science-based fields: “Instruments”, “Chemicals & Materials”, and “Pharma & 
Biotech” (which exhibits the largest differences, as also found by Fehder et al., 2014). As for the fields with 
fewer connections with science and a marginal presence of academic patents (“Industrial process” and, 
especially, “Mechanical engineering & Transport” and “Consumer Goods”), the prevalence of negative 
values is much less clear, with the extreme case of “Consumer Goods”, in which it is the positive values that 
prevail. This evidence in is line with our expectation to find many more instances of “double disclosures” in 
the science-based technologies, where the inventive activity of academic scientists may be a straightforward 
consequence of their research activity. On the contrary, in more traditional fields, we expect to find several 
academic inventions to stem out of targeted applied research or consultancy, or even extra-academic 
activities. This implies that, in fields where we suspect to have fewer instances of double disclosure, our 
methodology will produce a higher rate of false positives, which may explain the many cases in which the 
number of authors in the PPP is higher than that of inventors. A slightly puzzling result is that for 
“Electrical engineering & Electronics”, which is also science-based, but does not exhibit a clear prevalence 
of negative values. One possible explanation may reside in the different publication strategy followed by 
academics in this field, which target the proceedings of important conferences rather than journals, the 
former being under-represented in WoS and therefore excluded from our search. 
Figure A.7 examines the distribution of values for the inventor-author differences according to the priority 
year of the patents in the PPPs (all PPPs considered). We do not observe any time trend. 
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Figure A.6 % frequency distribution of PPPs by difference between number of inventors and 
authors, and technological fields of patents 

 
 Figure A.7 % frequency distribution of PPPs by difference between number of inventors and authors, and priority year of the patents 
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Figure A.8 reports the frequency distribution of inventor-author differences per PPP varies by country. 
The inventor-author difference is negative in more than 60% of the cases for Belgium, France and Italy, 
60% for the UK and Sweden, and less than 60% for Austria and Spain. But in all cases, we never observe 
the share of negative values to go under 55% (Spain) or over 75% (Italy). While these differences may 
suggest scross-country differences in the way attribution rights are negotiated, they certainly hide a 
composition effect, as each country’s portfolio of academic patents differ in the mix of technologies. Most 
notably, the result for the UK appears influenced by the absence, in our data for that countries, of 
Pharma&Biotech patents, while that for Spain reflects the high share of patents from technology fields 
other than the science-based  ones. 
 
Figure A.8 % frequency distribution of PPPs by difference between number of inventors and authors, and country of the academic inventors 
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A.3 Seniority and gender data: collection and descriptive statistics 
For all authors of papers in the selected PPPs we went back to the WoS and collected all the publications 
by authors with the same surname and initials. We limited the search to the journals relevant for the 
technological fields of the patent in the PPP. We excluded from the search all authors with extremely 
common surnames (such as Smith, Muller, or Park). For all the other authors, we than calculated the year 
of their first publication and their stock of publication in each following year. 
Information on author’s gender could not retrieved as easily. For authors with at least one patent, the full 
first name could be obtained from the patent; for authors without patents we had access only to the initials, 
as derived from WoS. This forced us to substantial manual work, which was limited by the time and budget 
at our disposal. For this reason we decided to limit it to the most reliable PPPs, namely those where the 
paper and the publication exhibit a higher similarity index, mostly falling in the 3p90 and 2p95 PPS 
classes. Even in these sets, however, technical difficulties made it impossible to produce gender information 
for all observations. 
We proceeded as follows. For each author in a PPS we downloaded at least one full paper from WoS and 
collected manually the first name. We matched the latter to the IBM GNR’s library, which provided for 
each of them information on gender. Where possible, ambiguous cases were solved manually, either 
inspecting the publication or patent (if available) associated to the author or, for prolific authors, his/her 
webpage.12 

                                                           
12The IBM Global Name Recognition (IBM-GNR) system is a commercial product that performs various tasks, including the association of first names and surnames to one or (more often) several “countries of association” (CoAs). When fed with either a name or a surname or both, IBM-GNR returns a list of CoAs and two scores of interest, : - “frequency”, which indicates to which percentile of the frequency distribution of names or surnames the name or surname belongs to, for each CoA; - “significance”, which approximates the frequency distribution of the name or surname across all CoA. 
More importantly for us, IBM-GNR also associates each first name to gender, expressed as the probability p that the name is 
masculine (1-p feminine). In most cases, p is either equal to or higher than 90%, or equal/lower than 10%. We treated all these instances as unambiguous masculine or feminine first names. In all other cases, we proceeded to further collection of information and manual inspection of records. Typically, we associated the author to a country, based on affiliation information from his/her publications and the CoAs provided by IBM for the author’s name and surname. We then looked on web resources on the 
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In sum, we retrieved gender  information for 6242 authors, of which 33% turned out to be female. Their 
distribution across technologies and discipline is rather uneven, as reported in table A.6. Observations are 
the couples author-publications in the selected PPPs (for which gender was available); technologies are 
those of the patent in the PPP (all non science-based technologies are grouped under the “Other” label, due 
to low figures). 
We notice that PPSs in Pharmaceuticals & Biotechnologies, besides being the most represented 
technology, is also the one with the largest share of female authors, followed closely by Chemicals & 
Materials. Engineering-based technologies (Electrical Engineering & Electronics as well as the Other 
technologies) all lag behind. As for Instruments, which is science-based but also includes many 
contributions from engineering, is in the middle. The overall distribution mirrors the one for the original 
set of patents, which implies that missing observations are distributed randomly. 
  

                                                                                                                                                                                                 
male/female distribution of first names in the country (the classic example is Andrea, masculine in Italy and Spain and feminine elsewhere). In case of epicene names (such as Yannick in France or Terry in English) we left the information missing. 
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Table A.6 - % distribution of authors/publication couples, by technology of the patent in the PPP and author’s gender (missing observation excluded) 

 
Electrical eng. & Electronics Instruments Chemicals & Materials Pharma & Biotech. Other techn. Total 

Male 1,441 3,080 1,271 6,833 385 13,010 
% 85.06 74.22 68.89 62.11 84.06 67.94 

Female 253 1,070 574 4,169 73 6,139 
% 14.94 25.78 31.11 37.89 15.94 32.06 

Total 1,694 4,150 1,845 11,002 458 19,149 
% 100 100 100 100 100 100 
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APPENDIX B – Exclusion regressions: logit estimates 
Table B.1 – Exclusion regression: Logit estimates (3p90 and 2p95 PPS class) – Odds Ratios 

  3p90   2p95    (1) (2) (3) (4) (5) (6) 
First 0.46*** 0.49***  0.41*** 0.43***    (0.066) (0.079)  (0.075) (0.090)  Last 0.35*** 0.39***  0.34*** 0.38***    (0.042) (0.049)  (0.058) (0.060)  Female  1.47***   1.55***     (0.156)   (0.210)  Female Middle   1.57***   1.55*     (0.256)   (0.355) Male first   0.37***   0.26***     (0.067)   (0.069) Female first   0.75   0.52**     (0.178)   (0.152) Male last   0.34***   0.31***     (0.053)   (0.071) Female last   0.47***   0.38**     (0.138)   (0.160) relative_scholarship 0.14*** 0.15*** 0.22*** 0.14*** 0.15*** 0.24***   (0.023) (0.030) (0.042) (0.026) (0.035) (0.059) most_junior 1.48*** 1.53*** 1.59*** 1.55*** 1.50*** 1.51**   (0.122) (0.152) (0.214) (0.191) (0.189) (0.283) proximity 0.34*** 0.36** 0.57 0.41** 0.36* 0.76   (0.110) (0.154) (0.374) (0.185) (0.210) (0.715) -1 year 1.07 1.14 0.80 1.25 1.14 0.65*   (0.129) (0.139) (0.114) (0.202) (0.194) (0.158) 0 years 0.77** 0.91 0.53*** 0.83 0.90 0.50***   (0.101) (0.165) (0.087) (0.158) (0.197) (0.109) +1 year 0.77 0.86 0.55*** 0.73 0.77 0.45***   (0.134) (0.161) (0.076) (0.174) (0.187) (0.097) +2 years 0.73* 0.71* 0.45*** 0.78 0.72 0.42***   (0.135) (0.133) (0.071) (0.207) (0.180) (0.089) n_authors 1.08*** 1.09*** 1.12*** 1.08*** 1.07*** 1.11***   (0.025) (0.026) (0.020) (0.025) (0.028) (0.030) n_inventors 0.84*** 0.83*** 0.82*** 0.76*** 0.75*** 0.76***   (0.025) (0.027) (0.021) (0.022) (0.029) (0.032) Instruments 1.53** 2.06** 2.39** 1.53* 1.70* 1.70   (0.310) (0.585) (0.883) (0.386) (0.551) (0.673) Chemicals; Materials 1.85*** 2.82*** 3.12*** 2.25*** 2.65*** 2.81**   (0.412) (0.838) (1.181) (0.679) (0.896) (1.174) Pharmaceuticals; Biotech 1.96*** 2.83*** 2.29** 2.14*** 2.60*** 1.85   (0.394) (0.796) (0.837) (0.543) (0.826) (0.731) Other technologies 1.41 2.05* 1.28 1.36 1.25 1.01   (0.383) (0.748) (0.551) (0.407) (0.569) (0.523) Belgium 0.81 0.98 1.09 0.61** 0.64 0.79   (0.115) (0.191) (0.218) (0.138) (0.184) (0.200) Spain 0.70** 0.98 1.02 0.59*** 0.79 0.92   (0.098) (0.182) (0.175) (0.116) (0.208) (0.201) France 0.82 0.93 0.90 0.63** 0.71 0.76   (0.100) (0.147) (0.136) (0.121) (0.173) (0.156) Italy 0.62*** 0.76  0.48*** 0.55**    (0.089) (0.131)  (0.104) (0.154)  Sweden 1.50 1.76* 1.91*** 1.22 1.34 1.57*   (0.383) (0.519) (0.464) (0.369) (0.492) (0.425) UK 0.74 0.56* 0.59* 0.61 0.43** 0.48*   (0.170) (0.172) (0.171) (0.221) (0.183) (0.188) Constant 6.79*** 2.76*** 2.87** 11.03*** 7.53*** 6.54***   (1.840) (1.044) (1.379) (4.400) (3.801) (4.503)         Observations 14,244 9,141 3,872 8,070 5,075 2,109 Pseudo-R2 0.178 0.196 0.204 0.188 0.200 0.200 logL -7323 -4734 -2036 -4062 -2589 -1105   
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Figure B.1 – Predicted probability of exclusion from patents, by author’s position in the by-line and contents proximity of paper and patent  

 As from regression (1), table B.1 (95% confidence intervals) / Other variables at means  
Figure B.2 – Predicted probability of exclusion from patents, by author’s position in the by-line and relative seniority (scholarship)   

 As from regression (1), table B.1 (95% confidence intervals) / Other variables at means 
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Figure B.3 – Predicted probability of exclusion from patents, by author’s gender and relative seniority (scholarship)   

 As from regression (2), table B.1 (95% confidence intervals) / Other variables at means  
Figure B.4 – Predicted probability of exclusion from patents, by author’s position in the by-line and gender  

 As from regression (3), table B.1 (95% confidence intervals) / Other variables at means  
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APPENDIX C - Proof of Proposition 1 

Consider norm 1. For J, the expected discounted payoff in the candidate equilibrium is:  

ߤ ቀோభିூቁ
ଵିఋ + (1 −  (C1)                                                         (ܫ−)(ߤ

For J, the only deviation which is possibly profitable is not joining the team at t=0 (nor in any subsequent  
period) thus getting a payoff 0 (notice that for J staying in the team after a deviation of S is never 
profitable, since he would get a negative payoff instead of 0). J will prefer to join the team iff:  

ߤ ቀோభିூቁ
ଵିఋ + (1 − (ܫ−)(ߤ ≥ 0                                                    (C2) 

i.e. 

 
ߜ ≥ ூିఓோభ

ூିఓூ                                                                             (C3) 

For S, the expected discounted payoff in the candidate equilibrium is: 

ோಿభೄ ା௩
ଵିఋ                                                                                 (C4) 

For S the profitable deviation is to play (S,S) in period 0, leading to the dissolution of the team from t>1 
onwards. In this case, S gets ܴଵௌ +   :S will prefer not to deviate iff .ݒ

ோಿభೄ ା௩
ଵିఋ ≥ ܴଵௌ +  (C5)                                                                  ݒ

i.e. 

 
ߜ ≥ ோభೄିோಿభೄ

ோభೄା௩                                                                           (C6) 

This strategy profile is thus an equilibrium if:  
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ߜ ≥ ݔܽ݉ ൜ூିఓோభ
ூିఓூ , ோభೄିோಿభೄ

ோభೄା௩   ൠ                                                     (C7) 

Consider norm 2. For J, the expected discounted payoff in the candidate equilibrium is:  

ߤ ቀோభାೡ
మିூቁ

ଵିఋ + (1 −  (C8)                                                       (ܫ−)(ߤ

For J, the only deviation which is possibly profitable is not joining the team at t=0 (nor in any subsequent  
period) thus getting a payoff 0. J will prefer to join the team iff:  

ߤ ቀோభାೡ
మିூቁ

ଵିఋ + (1 − (ܫ−)(ߤ ≥ 0                                             (C9) 

i.e. 

 
ߜ ≥ ூିఓ(ோభାೡ

మ)
ூିఓ                                                                      (C10) 

For S, the expected discounted payoff in the candidate equilibrium is: 

ோಿభೄ ାೡ
మ

ଵିఋ                                                                                  (C11) 

For S, the possibly profitable deviation is to play (S,S) in period 0. In this case, S gets ܴଵௌ +  S will prefer .ݒ
not to deviate iff:  

ோಿభೄ ାೡ
మ

ଵିఋ ≥ ܴଵௌ +  (C12)                                                                 ݒ

i.e. 

 
ߜ ≥ ோభೄିோಿభೄ ାೡ

మ
ோభೄା௩                                                                      (C13) 

This strategy profile is thus an equilibrium if:  
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ߜ ≥ ݔܽ݉ ቊூିఓ(ோ భ ାೡ

మ)
ூିఓூ , ோభೄିோಿభೄ ାೡ

మ
ோభೄା௩   ቋ                                       (C14) 

Finally, consider norm 3. For J, the expected discounted payoff in the candidate equilibrium is:  

ߤ ቀೡ
మିூቁ
ଵିఋ + (1 −  (C15)                                                         (ܫ−)(ߤ

For J, the only deviation which is possibly profitable is not joining the team at t=0 (nor in any subsequent  
period) thus getting a payoff 0. J will prefer to join the team iff:  

ߤ ቀೡ
మିூቁ
ଵିఋ + (1 − (ܫ−)(ߤ ≥ 0                                                 (C16) 

i.e. 

 
ߜ ≥ ூିఓೡ

మ
ூିఓூ                                                                       (C17) 

For S, the expected discounted payoff in the candidate equilibrium is ோభೄାೡ
మ

ଵିఋ . For S the profitable deviation is 
to play (S,S) in period 0. In this case, S gets ܴଵௌ +   :S will prefer not to deviate iff .ݒ

ோభೄାೡ
మ

ଵିఋ ≥ ܴଵௌ +  (C18)                                                              ݒ

i.e. 

 
ߜ ≥ ೡ

మ
ோభೄା௩                                                                    (C19) 

This strategy profile is an equilibrium if:  

  
ߜ ≥ ݔܽ݉ ൜ூିఓೡ

మ
ூିఓூ , ೡ

మ
ோభೄା௩   ൠ                                                  (C20) 
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