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Abstract

We consider the issue of testing error persistence in spatial panels
with individual heterogeneity. For random effects models, we review con-
ditional Lagrange Multipliers tests from restricted models, and Likelihood
Ratios or Wald tests via estimation of comprehensive models with corre-
lation in space and time. We propose two ad-hoc tests for testing serial
correlation in fixed effects panels, based either on time-demeaning or on
forward orthogonal deviations. The proposed tests can be used under the
RE assumption as well and are computationally less complicated than
their RE counterparts. Both prove reasonably effective in our Montecarlo
simulations.

1 Introduction

Panel data econometrics has been recently described as a "misspecification-test-
free zone" (Banerjee et al., 2010). This is generally not true for spatial panels,
as the spatial econometrics literature has taken the utmost care in testing for
spatial correlation. On the contrary, the applied literature on spatial panels has
largely ignored serial correlation, as it has devoted limited attention to dynamic
models: theoretical advances in either field have spanned few applications up to
date. As Lee and Yu observe, “[ijn empirical applications with spatial panel data,
it seems that investigators tend to limit their focus on some spatial structures
and ignore others, and in addition, no serial correlation is considered” (Lee &
Yu, 2012, p. 1370).

Methodologists have nevertheless considered estimation procedures allowing
for serial error correlation in panel regression models with spatially autocorre-
lated outcomes and/or disturbances and random or fixed individual effects.

Baltagi et al. (2007) have extended the spatial panel framework to serial
correlation in the remainder errors, while Elhorst (2008) has considered simul-
taneous error dependence in space and time. Lee & Yu (2012) proposed a very
general specification including spatial lags, spatially and serially correlated er-
rors together with individual effects. They assessed the biases due to neglecting
serial correlation or some part of the spatial structure through Montecarlo sim-
ulation, and recommended a general to specific strategy.

Whether one approaches the issue of time persistence in spatial panels un-
der the form of serial error correlation, or rather based on the specification of
a dynamic model, testing for serial error correlation as a diagnostic check is



nevertheless relevant in both approaches, as any omitted dynamic would show
up in error persistence. Moreover, very strong serial correlation, either in the
form of an estimated parameter near 1 or of extremely high test statistics, can
signal a nonstationarity problem, suggesting to reconsider the specification in a
broader sense.

The issue of serial error correlation is particularly sensitive in the case of
fixed effects panels, which on grounds of robustness are often the preferred
alternative in many applied fields, as macroeconomics, regional applications or
political science.

In fact, the standard technique for eliminating individual fixed effects, i.e.
time-demeaning the variables, induces artificial serial correlation in the trans-
formed residuals which can combine with the original correlation, if already
present. By contrast, for pooled or random effects panels all three classic
likelihood-based procedures are availeble. In a Lagrange Multipliers (LM) frame-
work, one can use the C.2 test of BSJK (R implementation in package splm).
The marginal/conditional version of the test assuming spatial but no random
effects can be used to test in pooled models (although the C.2 version is still
consistent if there are no random effects, so to stay on the safe side one can still
use it). The comprehensive estimation framework for static panels described in
Millo (2014) allows estimating both the general, encompassing model with both
spatial and serial correlation, hence for likelihood ratio (LR) tests of the restric-
tion of no serial correlation while allowing for spatial and/or random effects,
i.e., for serial correlation testing of either RE or pooled models. Analogously,
from within the encompassing model the significance diagnostics for the autore-
gressive parameter are equivalent to a Wald test for serial correlation.

The main contribution of the paper regards the proposal of a feasible strategy
for testing serial error correlation in the case of fixed effects models, which is
complicated by the “artificial’ serial correlation induced by time-demeaning. In
fact, if the original errors are serially uncorrelated, the transformed ones are
negatively serially correlated with coefficient -1/(T-1). A Wooldridge-type test
of serial correlation can then be based on an estimate of the serial correlation
coefficient of the transformed model errors ):

e if the model is estimated by pooled or RE, testing the restriction ¢¥» = 0

e if the model is estimated by FE, testing ¢ = fﬁ

Another possibility is to apply the alternative orthonormal transformation of
Lee and Yu; the transformed residuals should then remain "white", so that the
latter case reduces to the former.

In the first section of the paper we will set out the general model with
unobserved heterogeneity and both spatially and serially correlated errors. Then
we will review ML estimation of the model under the random effects hypothesis
and describe the transformation approach to estimation in case the unobserved
effects should be treated as fixed. A review of the well-known available tests of
serial correlation for pooled or random effects spatial panels will then be followed
by an outline of the novel strategy we propose for testing serial correlation under
the fixed effects hypothesis. A Montecarlo exercise assessing the properties of
our two proposed tests in small samples will follow.



Table 1: Different model specifications that can be generated as special cases of
the general specification.

p#0 p#0 p=0 p=0
p#0 p=0 p#0 p=0

aé #0 SEMSRRE SEMRE SSRRE RE
o, =0 SEMSR SEM SSR OLS

2 Spatial panels with serial correlation

Following Baltagi et al. (2007), our point of departure is the following panel
data regression model!

yir = X[, 8 + wit, i=1,...,N,t=1,...,T (1)

where y;; is the observation on cross-sectional unit ¢ in time period t, and
Xt is a k x 1 vector of observations on the non-stochastic exogenous regres-
sors. The disturbance vector is the sum of random regional effects and spatially
autocorrelated residuals. In vector form this can be written as

U = 1L+ & and et = pWer + 1. (2)

The remaining disturbance term follows a first-order serially autocorrelated pro-
cess

Vy = ¢Vt_1 + é¢. (3)

ug, ¢, ¥4 and e; are all N x 1 columns vectors, p is the random vector of
i.i.N(0,07) region specific effects; p (|p| < 1) is the spatial autoregressive co-
efficient and ¥ (1| < 1) is the serial autocorrelation coefficient. As usual, W
indicates the N x N matrix of known spatial weights whose diagonal elements
are set to zero. Iy — pW is assumed non-singular. Finally, e;; ~ N(0,02),
vio ~ N(0,02/(1 —?)) and p and ¢ are assumed to be independent.

The disturbance term can also be rewritten, in matrix notation, as

uw= (17 @ IN)p+ (Ir @ B~ )v (4)

where B = Iy — pW, vp is a vector of ones, and I an identity matrix where
T indicates the dimension. The model allows for serial correlation on each
spatial unit over time as well as spatial dependence between spatial units at each
time period. The presence of random effects accounts for possible heterogeneity
across spatial units.

Depending on the restrictions on the parameters one can differently com-
bine error features giving rise to various nested specifications (see Table 1). In
particular, when both ¢ and p are zero but ai is positive, the model reduces
to a classical random effects panel data specification. When p is zero, the re-
sulting model accounts for random effects with serially autocorrelated residuals.

1The extension to a spatially lagged dependent variable is described in Millo (2014), to
which the reader is referred.



On the other hand, when % is zero and p and O’Z are not, the specification re-
duces to a random effects model with spatially autocorrelated residuals. Table 1
summarizes all possible specifications.

2.1 Estimation

We turn now to reviewing how to estimate the spatial panel model with serial
correlation and either random or fixed effects, the results of which will be the
basis for testing serial correlation.

Random effects models with spatial (SAR and/or SEM) correlation and se-
rial correlation in the remainder error can be estimated by maximum likelihood.
If the exogeneity assumption for individual effects does not hold (*fixed effects’
case), then the latter have to be eliminated before estimation. This is usually
accomplished by either differencing or time-averaging. One further transforma-
tion is discussed below. Omnce the fixed effects have been transformed out, a
restricted version of the above model assuming p; = 0Vi can be estimated.

ML estimation of an encompassing model In the present section we
first discuss the estimation approach to the richest specification, i.e. the one
allowing for random effects, serial and spatial correlation. The special case
without random effects will be discussed subsequently.

To derive the expression for the likelihood, Baltagi et al. (2007) use a Prais-
Winsten transformation of the model with random effects and spatial autocor-
relation. Following their simplifying notation, define
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Millo (2014) describes the iterative procedure to obtain the maximum likeli-
hood estimates in the extended model comprising a spatial lag of the dependent
variable. Starting from initial values for p, ¥ and ¢, one can obtain estimates
for 3 and o2 from the first order conditions:

B = (X5 1X) XSy (5)
o) =(y—XB)S™'(y— XB)/NT. (6)

The likelihood can be concentrated and maximized with respect to p, 1) and
¢. The estimated values of p, ¥ and ¢ are then used to update the expression
for ¥~1. These steps are then repeated until convergence. In other words, for a
specific 3 the estimation can be operationalized by a two steps iterative proce-
dure that alternates between GLS (for 8 and ¢2) and concentrated likelihood
(for the remaining parameters) until convergence.

Statistical inference can then be based on the expression of the information
matrix. Millo & Piras (2012); Millo (2014) obtain standard errors for § from
GLS, and employ a numerical Hessian to perform statistical inference on the
error components.

These steps remain valid when the model to be estimated is one of the
reduced forms presented in Table 1. In particular, the specification where ¢ = 0
will be of interest in our case.

The estimate of the comprehensive model can be the basis for either a direct
assessment of the magnitude and significance of the serial correlation coefficient,
or more modestly (as will be the case for fixed effects procedures) for a serial
correlation test.

Estimating the FE model by transformation In this section we review
the general transformation approach to the estimation of panel models with
fixed effects; then its application to spatial panel models.

If the individual effect cannot be assumed independent from the regressors,
fixed effects (FE) methods are in order. The modern approach to the issue,
tracing back to Mundlak (1978) and summarized, among others, in Wooldridge
(2002, 10.2.1), centers on the statistical properties of the individual effects. If
uncorrelated, then individual effects can be considered as a component of the
error term, and treated in a generalized least squares fashion as seen above. If
not, then the latter strategy leads to inconsistency; the individual effects will
have to be estimated or, more frequently, eliminated by first differencing or
time-demeaning the data (see Wooldridge, 2002, 10.5).2. In a spatial setting,
Lee & Yu (2012) give an extensive treatment to which the reader is referred
here.

The well-known time-demeaning, or within transformation, entails subtract-
ing averages over the time dimension, so that the model becomes:

it — ¥ = (Xio — X3) B + (wie — 1) (7)

where 7 and X denote time means of y and X
From a computational viewpoint, according to the framework of Elhorst
(2003), fixed effects estimation of spatial panel models is accomplished as pooled
estimation on time-demeaned data. Hence, it is fully encompassed by the

2A short introduction with the basic references can be found in Baltagi (2008b, 2.3.1)



method outlined in the previous section, but for the fact that individual ef-
fects can now be omitted.

Elhorst’s procedure has long been the standard in applied practice and avail-
able software, but has been questioned by Anselin et al. (2008) because time-
demeaning alters the properties of the joint distribution of errors, introducing
serial dependence: see Lee & Yu (2010b, p.257) for a discussion of the issue, and
Millo & Piras (2012, p.33) for an evaluation if its practical significance through
Montecarlo simulation. As it turns out, the transformation induces bias only
in the estimate of the errors’ variance, while those of the regressors’ coefficients
B and the spatial coefficients (A, p) remain consistent. Hence, the residuals are
still pointwise consistent estimates of the errors.

Nevertheless, their dispersion is biased while ideally one would want to per-
form inference on the basis of an unbiased estimate of both error mean and
variance. To solve the problem, Lee & Yu (2010a, 3.2) suggest either a correc-
tion ex-post or to apply to spatial data a different transformation:

Oy = OXyf + Ouyy (8)
where
r—-i1 __ 1 1 1 1
T T(T-1) /T(T-1) T V/T(T-1) /T(T-1)
T-2 1 _ 1 _ 1
0 Tr-1 (T—1)(T-2) ' V(T-1)(T-2) V(T-1)(T-2)
O = B — 1 — 1
0 0 T=2 U (m-2)(T-3) V(T=2)(T-3)
0 0 0 e 5 —\/3

This orthonormal transformation is well known from the panel data litera-
ture as forward orthogonal deviations (henceforth OD) (see Arellano, 2003, p.
17) and is justified as the GLS transformation to remove MA (1) correlation from
first-differenced data (ibid.). From our viewpoint, it has the desirable character-
istic of not inducing any serial correlation in the transformed errors. Moreover,
as far as 8 is concerned, the estimator resulting from applying OLS to the OD
transformed data gives the same result as the FE one, so that Bop = BrE.

The OD transformation can be employed in the estimation of spatial panel
fixed effects models as an alternative procedure w.r.t. demeaning and then
correcting the variance (see Lee & Yu, 2010a, 3.2). The application to models
with serial correlation is still undocumented and is left for future work; here
we will employ a combination of the serial-spatial estimator outlined above and
the OD transformation as a testing device, based on the fact that if the original
errors are serially incorrelated, then the OD transformed ones must still be.

3 Testing for serial correlation in spatial RE pan-
els
In this section we review existing testing procedures for serial correlation in spa-

tial (SAR and/or SEM) panels with uncorrelated heterogeneity. As it turns out,
all three likelihood-based standard procedures are available: Wald, likelihood




ratio (LR) and Lagrange multiplier (LM) tests; the latter, though, has not been
derived for models containing a spatial lag (SAR).

Spatial panels without individual effects, or with individual idiosyncracies
that comply with the random effects hypothesis, can be estimated in the most
comprehensive of the above specifications and then from here the zero restric-
tion on the autoregressive coefficient can be tested, as in a Wald-type proce-
dure. Alternatively, an asymptotically equivalent procedure can be employed:
estimating the reduced model as well and then Likelihood Ratio (LR) testing
one versus the other. As a last option, the third likelihood-based procedure can
be employed: the Lagrange multiplier (LM) testing procedure, also known as
score test, which is based on verifying whether the score of the likelihood of a
restricted model is significantly different from the zero vector. If not, then the
restriction is not binding w.r.t. the problem at hand and it is thus accepted .
With respect to its asymptotically equivalent siblings, the Likelihood Ratio and
Wald tests, the LM test requires only estimation of the restricted model. In this
section we review the joint J and conditional C.3 tests for serial correlation by
Baltagi et al. (2007). The hypotheses under consideration are:

1. H§ : p = = O'i = 0 under under the alternative that at least one

component is not zero (J)

2. H{ :v =0, assuming p # O,oi > 0: test for serial correlation, allowing
for spatial correlation and random individual effects (C.2)

The joint LM test for testing H{ is given by:

NT? N2T

LM, = mw —4AF 4+ 2TF?* + ——H? (9)

b

where, A = ﬂ/(JT ® IN)Q/’[L/’[L -1, F= ﬂ/(GT (9 IN)’[L/2’L~L/’EL, H= ﬁ/(IT & (W/ +

W)))a/2a' 6, b = tr(W + W')?/2, G is a matrix with bidiagonal elements equal

to one and @ denotes OLS residuals. Under H§, LM} is distributed as x3.
The conditional C.2 test for H? is based on the following statistic, asymp-

totically distributed as x3 under H{:

LMy p, = D)% J55" (10)

where Ji3' is the (3,3) element of the information matrix given in Baltagi
et al. (2007) (equation 3.10);

D) = -~ L2 (2(B'B)) - N)

NI

~92 1 .
+%a’[ (BrGEr) ® (B'B) + — (JrGEr) ® Z
1

+— (BrGJr) ® Z + (JrGJr) ® Z(B'B) "' Z]i (11)

ol

with Z = [T} In + 02(B'B)~'] is the score under the null hypothesis and

4 the vector of residuals under the null, i.e., from ML estimation of the panel

model with individual error components and serial correlation in idiosyncratic
erTors;



9= (=02 +(T-2)(1- ) (12

and b has been defined above. It shall be observed that while the J test only
needs OLS residuals and is therefore computationally very simple, but does not
give any information about which of the three possible effects is actually present,
the more interesting C.3 test needs residuals from a specification which is much
more difficult to compute.

4 Testing for serial correlation in the presence of
fixed effects

Testing for serial correlation in spatial panels with fixed effects is undocumented,
to the best of our knowledge. Yet all devices needed are already established
in the econometrics literature and ready to be combined. The procedures we
propose are based on the general approach of Wooldridge (2002), who suggests
to run an autoregression on the residuals of a fixed effects model and check
whether the relevant coefficient is statistically different from its expected value
under the null hypothesis of no serial correlation. The latter is, depending on
the transformation used for eliminating the fixed effects, either a function of
the time dimension 7' in the case of time-demeaning, or zero if using forward
orthogonal deviations as described below. We propose the application of a
similar principle to spatial panels.

4.1 General serial correlation tests

A general testing procedure for serial correlation in fixed effects (FE), random
effects (RE) and pooled-OLS panel models alike can be based on considerations
in (Wooldridge, 2002, 10.7.2). For the random effects model, he observes that
under the null of homoskedasticity and no serial correlation in the idiosyncratic
errors, the residuals from the quasi-demeaned regression must be spherical as
well. Else, as the individual effects are wiped out in the demeaning, any re-
maining serial correlation must be due to the idiosyncratic component. Hence,
a simple way of testing for serial correlation is to apply a standard serial corre-
lation test to the quasi-demeaned model. The same applies in a pooled model,
w.r.t. the original data.

The FE case is different. It is well-known that if the original model’s er-
rors are uncorrelated then FE residuals are negatively serially correlated, with
cor(li, U —1) = —1/(T — 1) for each t (see Wooldridge, 2002, 10.5.4). This
correlation disappears as T diverges, so this kind of test is readily applicable
to time-demeaned data only for T “sufficiently large”. Baltagi and Li derive a
basically analogous T-asymptotic test for first-order serial correlation in a FE
panel model as a Breusch-Godfrey LM test on within residuals (see Baltagi &
Li, 1995, par. 2.3 and formula 12). They also observe that the test on within
residuals can be used for testing on the RE model, as “the within transformation
[time-demeaning, in our terminology] wipes out the individual effects, whether
fixed or random”, a consideration we will recall in the following. On a related
note, generalizing the Durbin-Watson test to FE models by applying it to fixed
effects residuals is documented in Bhargava et al. (1982).



For the reasons reported above, under the null of no serial correlation in the
errors, the residuals of a FE model must be negatively serially correlated, with
coefficient equal to —1/(T — 1). Wooldridge suggests basing a test for this null
hypothesis on a pooled regression of FE residuals on themselves, lagged one
period:

€t =0+ 061+ Mt

Rejecting the restriction 6 = —1/(T — 1) makes us conclude against the original
null of no serial correlation. A Wooldridge-type test of serial correlation can then
be based on an estimate of the serial correlation coefficient of the transformed
model errors :

e if the model is estimated by pooled or RE, testing the restriction ¢ = 0

e if the model is estimated by FE, testing ¢y = —ﬁ

Another possibility is to apply the alternative orthonormal transformation of

Lee and Yu; the transformed residuals should then remain "white", so that the
latter case reduces to the former.

4.2 Two serial correlation tests for spatial FE panels

By analogy, the problem of testing for serial correlation in the residuals of
spatial panels can be addressed combining the above testing framework with
the comprehensive estimation approach including serial correlation described
in precedence; but obviously omitting the random effects features, so that the
likelihood simplifies to:

L(ﬁﬂ?ﬂ/&ﬂ) = —%27T— glngg + %h’l(l _111}2)

+Tn|B| - 55u'S ™1
and
>t =V, '@ (B'B)

considerably simplifying the numerical estimation procedure, especially as
one does not need to calculate (B’B)~! any more, but also because VJl has
a convenient self-similar representation (see Millo, 2014, 5.1). This model can
be estimated on relatively big samples and the optimization of its likelihood
turns out computationally simpler than that of the spatial random effects model
whose residuals are needed as the basis for the conditional C.2 test of Baltagi
et al. (2007) (see Millo, 2014, Table 2). Hence employing a FE-type test based
on elimination of the individual heterogeneity, although suboptimal under RE,
can turn out to be both safer than the RE-type procedures as the underlying
hypotheses are concerned, and computationally less burdensome.

Two different tests can be performed on the estimates, depending on the way
individual effects have been transformed out.

Wooldridge-type AR test A Wooldridge-type AR(1) test for spatial panels
of either SAR, SEM or SAREM type can be based on testing the derived null
hypothesis Hy : ¢ = fﬁ in the full model estimated on time demeaned data.

The test, which we here label ARpg, will be appropriate for any T, and
particularly for short panels.



Orthogonal-deviation based AR test An equivalent test, henceforth ARop,
can be based on testing the more familiar hypothesis Hy : v = 0 if the data
are transformed through the non-correlation-inducing forward orthogonal de-
viations transformation. As T diverges, the induced correlation in the time-
demeaning case tends to zero and the difference between the two procedures
wanes.

In the following we will ask which one performs better in real-world condi-
tions and provide a first answer through Montecarlo simulation. But first let us
go through a short illustration through a well-known example.

4.3 Illustration

To illustrate the use (and the relevance) of the different tests we will resort to
a well-known dataset which has been recently employed in a number of spatial
econometric studies (Baltagi & Li, 2004; Elhorst, 2005, 2012; Kelejian & Piras,
2011; Debarsy et al., 2012; Vega & Elhorst, 2013; Kelejian & Piras, 2014) and
will therefore be familiar to most researchers.

The Cigarette dataset is taken from Baltagi (2008a)3; the original applica-
tion is in Baltagi & Levin (1992). Further reconsiderations include Baltagi et al.
(2000); Baltagi & Griffin (2001). It contains data for the years 1963-1992 and
46 American states on: real per capita sales of cigarettes per person of smoking
age (i.e., over 14) measured in packs (C), average real retail price per pack (P),
real disposable income per capita (Y') and the minimum price per pack in neigh-
bouring states (Pn). The last variable is included in the original application in
order to proxy for cross-border smuggling (Baltagi, 2008a, p. 156); this could
also be done controlling for spatial effects, as in the above mentioned cases.

Individual (state-specific) effects are included to account for idiosyncratic
characteristics of territory, like the presence of tax-exempt military bases or
indian reservations, the prevalence of a religion that forbids smoking (the Mor-
mons in Utah) or the effect of tourism. Time effects are also included to account
for (USA-wide) policy interventions and warning campaigns. Given their pe-
culiar nature, both kinds of effects will better be assumed fixed; but in the
following we consider both testing under the RE and under the FE hypothesis.

The original application is dynamic, as it contains lagged consumption in
order to control for habit persistence in smoking. Nevertheless, a static version
of the Cigarette model has often been employed:

InCy = a+ BiinPy + BolnYy + uy

and this latter we will use in our case; given the theoretical reasons for persis-
tence, it will be of particular importance to test for serial error correlation.

In the following Table 7, all tests mentioned in the paper are performed on
the static spatial error specification:

Testing the comprehensive SAR+SEM model gives similar results (omitted),
but for the fact that the LM; and LMc o tests cannot be employed any more.

If the random effects hypothesis can be trusted, the left part of the table
can be considered: LM, LR and Wald-type tests and the estimate of . All

3The spatial weights matrix is due to Paul Elhorst; data and weights can be found, respec-
tively, in the R packages Ecdat (Croissant, 2010) and splm (Millo & Piras, 2012).
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Table 2: Serial correlation tests, SEM specification

LM; LMgc, LR Wald ¢ ARop ARpgp

Statistic 12588.9 885.2 2034.7 286.0 0.98 86.6 89.7
Distribution X3 % % z - z z
p-value 0 0 0 0 - 0 0
Computing time 0.67 63.68 113.49 47.84 - 3.19 3.17

likelihood-based tests signal a very strong departure from the null of serial in-
correlation, while z/AJ from estimation of the comprehensive model is very near to
one. The ARop and ARpp tests also reject the null well beyond any conven-
tional significance level.

If the random effects hypothesis is considered dubious, then one can only
look at the results from the ARop and ARpg tests; again, there is little doubt
about high persistence in the error terms.

In any case, the results point to very strong autoregressive behaviour in the
residuals, bordering with unit roots if we believe the RE hypothesis: a static
spatial panel specification assuming timewise-incorrelated errors is inappropri-
ate, and an analysis of stationarity would be advisable.

Lastly, computing times for the ARop and ARpg tests are smaller than
those for their LM, LR and Wald counterparts by an order of magnitude;
although all of them are still feasible on any machine for this - rather moderate
- sample size.

5 Montecarlo experiments

The properties of serial correlation tests in spatial RE models have already been
established by extensive simulations in Baltagi et al. (2007). Here we consider
only our new two procedures for testing under FE. In the Montecarlo experi-
ments, we consider the rejection rates of either test at the 5 percent significance
level. This gives an assessment of the empirical size if the data are simulated
under the null hypothesis of no serial correlation, and of the empirical power of
the test under alternative data generating processes where ¥ # 0.

The simulated idiosyncratic innovations are distributed as a standard Nor-
mal, and the individual effects as N (0, u), so that p is the ratio of error variances.
Along with an intercept term, we consider two regressors: x; is sampled from
a Uniform [-7.5, 7.5], 22 is drawn from a standard Normal. The simulation pa-
rameters are chosen with a target R? of 0.7. The coefficients for the regressors
are set to 0.5 and 10, respectively. Our spatial layout is given by the 48 states of
the continental US. The spatial weighting matrix is a simple binary contiguity
one. We consider two values for the number of time periods, one representative
of a typical “short” panel, the other of macroeconomic panels found in the liter-
ature, and set T' = 4, 15. We allow combinations of two different values for both
p and ¢, namely either zero (no effect) and 0.5, so that next to the usual two
cases of spatial lag (SAR) and spatial error (SEM) we consider both the case
of no spatial correlation and that of combined SAR and SEM processes. We
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Table 3: Empirical size of test for different spatial processes

ARop

o 0 0 1 1
0 0 05 0 05

T A
4 0 0.062 0.061 0.068 0.069
4 0.5 0.064 0.066 0.063 0.061
10 0 0.057 0.052 0.052 0.051
10 0.5 0.045 0.056 0.050 0.060
15 0 0.067 0.052 0.044 0.055
15 0.5 0.041 0.054 0.054 0.051

ARrEg

o, 0 0 1 1
0 0 05 0.5

T A
4 0 0.03 0.024 0.068 0.069
4 0.5 0.04 0.032 0.063 0.061
10 0 0.049 0.057 0.052 0.051
10 0.5 0.037 0.044 0.050 0.060
15 0 0.045 0.045 0.044 0.055
15 0.5 0.038 0.048 0.054 0.051

consider three values for the objective parameter 1: zero, corresponding to no
error persistence, and two positive levels of serial correlation: 0.3 (weak) and
0.8 (strong). For all experiments 1,000 replications are performed.

Simulation results are reported below in Tables 2 to 4 .

Test size under validity of the null is reasonably close to 5% in all exper-
iments, more so when 7' = 15 than in the short panel. Empirical power is
very good for the long panel both for weak (1) = 0.3) and for strong (¢» = 0.8)
error persistence; in the short panel case, power is moderate (near 50 %) for
the OD-based test, while lower for the Wooldridge-type variant. Results are
much the same under either type of spatial dependence, both or none alike; and
under presence or absence of individual effects, testifying how effectively the
procedure controls for spatial features. The ARpp test uniformly dominates
the Wooldridge-type version ARpg over the short sample; for the longer panel,
the results of the former are still slightly better, but in this case performance is
satisfactory for both versions so that either can be safely employed.

6 Conclusions

We address the much neglected issue of testing for serial error correlation in
spatial panels of lag or error type or both, possibly containing individual het-
erogeneity of the random or fixed effects type.

Comprehensive estimators both for the encompassing model and for its re-
strctions have been developed for the random effects case, as well as joint and
conditional Lagrange multiplier tests, so that the zero-restriction of the serial
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Table 4: Empirical size and power

ARop

Ou 0 0 0 0 1 1 1 1
p 0 0 0.5 0.5 0 0 0.5 0.5
A 0 0.5 0 0.5 0 0.5 0 0.5

Ty
4 0 0.062 0.061 0.064 0.066 0.068 0.069 0.063 0.061
4 0.3 0.459 0.453 0.429 0.490 0.442 0.471 0.472 0.460
4 0.8 0.993 0.990 0.996 0.994 0.995 0.991 0.993 0.996
10 0 0.057 0.052 0.045 0.056 0.052 0.0561 0.050 0.060
10 0.3 0.998 0.999 0.997 0.998 0.999 0.999 0.998 0.998
10 0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
15 0 0.067 0.052 0.041 0.0564 0.044 0.055 0.054 0.051
15 0.3 0.997 1.000 0.998 0.999 0.999 0.999 0.998 1.000
15 0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 5: Empirical size and power

Ou 0 0 0 0 1 1 1 1
P 0 0 0.5 0.5 0 0 0.5 0.5
A 0 0.5 0 0.5 0 0.5 0 0.5

T 9
4 04 0.030 0.024 0.040 0.032 0.020 0.034 0.034 0.042
4 0.3 0.276 0.274 0.253 0.272 0.257 0.262 0.271 0.261
4 0.8 0.964 0.956 0.962 0.957 0.965 0.962 0.966 0.961
10 0 0.049 0.057 0.037 0.044 0.039 0.049 0.049 0.038
10 0.3 1.000 0.999 0.998 0.999 1.000 1.000 0.998 0.998
10 0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
15 0 0.045 0.045 0.038 0.048 0.037 0.042 0.046 0.051
15 0.3 0.997 1.000 1.000 0.999 0.999 0.998 0.999 1.000
15 0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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correlation coefficient can be tested by either of the three well-known likelihood-
based procedures: Wald test (corresponding to the significance diagnostics of
the serial correlation coefficient in the full model), likelihood ratio test based on
the difference between the full and restricted models’ log-likelihoods, and La-
grange multiplier test based on the restricted model only, as derived by Baltagi
et al. (2007). We have briefly reviewed them here.

In contrast to this wealth of techniques, for which user-friendly software is
freely available to researchers, the fixed effects case — which is both consid-
ered the most interesting one in spatial applications (see the discussion in the
Introduction) and is also robust (although less efficient) in case the random ef-
fect assumption should hold true — has neither seen practical applications, nor
methodological attention.

We propose two feasible procedures for the fixed effects case, one based on ob-
servations in Wooldridge (2002) and the other on the work of Lee & Yu (2010a).
The former consists in estimating the full spatial model on time-demeaned data
and testing the resulting serial correlation coefficient for departures from the im-
plied negative serial correlation induced by the demeaning transformation; the
latter in employing the forward orthogonal deviations transformation of Arel-
lano (2003) instead of time-demeaning, which maintains the original correlation
properties in transformed residuals, and directly testing the resulting coefficient
for departures from zero.

Elimination of the individual effects through transformation is appropriate,
although statistically suboptimal, even if the RE hypothesis holds; hence our
proposed FE-type tests, unlike the RE ones, can be safely employed in dubious
situations. Moreover, the likelihood optimization procedure they are based upon
is considerably simpler than that of the full model with RE, and has been
proven to work even on relatively big samples (see Millo, 2014, Table 2). The
computational burden from performing the proposed tests is actually smaller
than that of the conditional C.2 test of Baltagi et al. (2007), which requires to
estimate a spatial model with random effects.

A short Montecarlo experiment illustrates the size and power properties of
the two proposed procedures, which turn out satisfactory for both tests when
T > 10 while the OD-based test fares better than the FE-based one in the short
panel case (T = 4).

7 Appendix: Computational details

All the procedures in the paper are available through user-friendly R implemen-
tations, some of which are forthcoming and can be requested to the contact
author. In particular, Baltagi et al. (2007) tests are available as different op-
tions of the function bsjktest in package splm (Millo & Piras, 2012). LR
and Wald tests depend on the estimation of restricted and unrestricted mod-
els through the function spreml as extensively documented in Millo (2014);
the same goes for numerical estimation of the serial correlation coefficient .
Lastly, the ARpp and ARop tests can be performed by combining the Within
and Orthog transformation functions from the general-purpose panel data pack-
age plm (Croissant & Millo, 2008) - the second of which is forthcoming and can
be requested to the contact author - and spreml described above.
Functionality is summarized in Table 7.
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Table 6: Available user-level functionality

LM, LMc.» LR  Wald % ARop ARpg
Function bsjktest bsjktest 1lrtest spreml spreml forthcoming forthcoming
Option test=’J’ test=’C.2’ n.a. n.a. n.a. - -
In package splm splm splm splm splm - -

Table 7: Serial correlation tests, SEM specification

LM; LMc, LR Wald ¢ ARop ARpg

Statistic 12588.9 885.2 2034.7 286.0 0.98 86.6 89.7

Distribution X3 X3 X3 z - z z

p-value 0 0 0 0 - 0 0

Computing time 0.67 63.68 113.49 47.84 - 3.19 3.17
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