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1 Introduction

It is the intimate relationship between geometric and economic properties, together with
a reasonable level of abstraction, which represents one of the distinctive marks of general
equilibrium theory. This is particular true for the equilibrium manifold approach.

The equilibrium manifold is defined as the set of pairs of prices and endowments
such that the aggregate excess demand function is equal to zero. Due to the strong
connection between mathematical formalization and equivalent economic properties, the
investigation of its geometric properties has led to several and important contributions
in economic theory, where the standard smooth exchange setup has played the role of
benchmark model which can be powerfully extended to encompass more realistic and
complex contexts.

Since the equilibrium manifold is not a simple collection of data, its shape signif-
icantly matters. This further stimulates the investigation of its geometric properties
and, in particular, those properties which are intrinsic, i.e. which do not depend on the
ambient space (such as, e.g., the Riemannian metric studied by [5]).

In this paper we study the curvature, an important intrinsic differential geometry
concept. We have been inspired by a result by Balasko (see Theorem 2.2) which, roughly
speaking, states that the equilibrium manifold is flat (i.e. it has zero curvature) if there
is uniqueness of equilibrium. A very natural question is whether a zero curvature implies
uniqueness. Due to the difficulty of the computations involved, we have only analyzed the
case with two goods and an arbitrary number of agents, where the equilibrium manifold
is an hypersurface, i.e. it has codimension one with respect to its ambient space. In
our main result, Theorem 4.1, we show that a zero curvature implies uniqueness of
equilibrium. Moreover, as a by-product of our proof, we also show that it is sufficient to
compute the curvature in a measure zero set of the space of the economies in order to have
a global information on the uniqueness. We believe that the curvature issue may deserve
further attention and investigation because it is intimately related to the multiplicity of
equilibria and the geodesic flow and ergodic theory. This could hopefully open original
ways to address the equilibrium selection problem. This paper is organized as follows.
Section 2 recalls the economic setup and Section 3 recalls the standard mathematical
concepts used in Section 4, where our main result is proved.

2 Geometric implications of uniqueness of equilibrium

The economic setup is represented by a pure exchange smooth economy with l goods and
m consumers. By smooth (see [2, Chapter 2]) is meant that consumer i’s preferences, i =
1, 2, . . . ,m, are represented by a smooth utility function ui : Rl → R, where: (1) the first
order derivatives are all strictly positive, and (2) the quadratic form ytD2ui(x)y, where
D2
i ui(x) denotes the Hessian matrix restricted to the tangent plane to the indifference

surface, is negative definite. The set of normalized prices is defined by

S = {p = (p1, . . . pl) ∈ Rn | pj > 0, j = 1, . . . , l, pl = 1}
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and the set Ω = (Rl)m denotes the space of endowments ω = (ω1, . . . , ωm), ωi ∈ Rl. The
problem of maximizing the smooth utility function ui : Rl → R subject to the budget
constraint p ·ωi = wi gives the unique solution fi(p, wi), i.e., consumer’s i demand. The
equilibrium manifold E is the closed set of the pairs (p, ω) ∈ S × Ω, which satisfy the
following equilibrium equations:

m∑
i=1

fi(p, p · ωi) =
m∑
i=1

ωi.

By introducing the following two smooth mappings:

• the map φ : S × Ω→ S × Rm × R(l−1)(m−1) defined by

(p, ω1 . . . , ωm) 7→ (p, p · ω1, . . . , p · ωm, ω̄1, . . . , ω̄m−1),

where ω̄i denotes the first l − 1 components of ωi, for i = 1, . . . ,m− 1;

• the map θ : S × Rm × R(l−1)(m−1) → S × Ω defined by

(p, w1, . . . , wm, ω̄1, . . . , ω̄m−1) 7→ (p, ω̄1, ω
l
1, ω̄2, ω

l
2, . . . , ω̄m−1, ω

l
m−1, ωm)

where ωli = wi−p1ω
1
i−. . .−pl−1ω

l−1
i , for i = 1, . . . ,m−1 and ωm =

∑m
i=1 fi(p, wi)−∑m−1

i=1 ωi;

Balasko shows [2, p.73-74] that the composition mapping φ◦θ is the identity mapping and
that the equilibrium manifold E is the image of the mapping θ. By [2, Lemma 3.2.1] E
is a smooth submanifold of S×Ω, globally diffeomorphic to S×Rm×R(l−1)(m−1) = Rlm,
i.e. φ|E ∼= Rlm.

In order to better understand the geometric structure of E, the following two subsets
of E are introduced: the set of no-trade equilibria T = {(p, ω) ∈ E| fi(p, p · ωi) = ωi, i =
1, . . . ,m} and the fiber associated with (p, w1, . . . , wm) ∈ S × Rm, which is defined as
the set of pairs (p, ω) ∈ S × Ω such that:

• p · ωi = wi for i = 1, . . . ,m;

•
∑

i ωi =
∑

i fi(p, wi).

By defining the two smooth maps f : S ×Rm → S ×Rlm, where f(p, w1, . . . , wm) =
(p, f1(p, w1), . . . , fm(p, wm)), and φFiber : E → S × Rm, where φFiber(p, ω1, . . . , ωm) =
(p, p ·ω1, . . . , p ·ωm), because f(S×Rm) = T ⊂ E and φFiber ◦f is the identity mapping,
by applying [2, Lemma 3.2.1], Balasko shows [2, Proposition 3.3.2] that T is a smooth
submanifold of E diffeomorphic to S × Rm.

By construction, every fiber associated with (p, w1, . . . , wm) is a subset of E which is
the inverse image of (p, w1, . . . , wm) via the mapping φFiber. It is intuitively clear that
while holding (p, w1, . . . , wm) fixed and letting ω varying along the fiber, there are not
any nonlinearities which may arise from the aggregate demand. In fact the fiber is a
linear submanifold of E of dimension (l − 1)(m− 1) [2, Proposition 3.4.2].
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Since every fiber contains only one no-trade equilibrium [2, Proposition 3.4.3], the
equilibrium manifold E can be thought as a disjoint union of fibers parametrized by
the no-trade equilibria T via the mapping φ|E : E → S × Rm × R(l−1)(m−1): for a
fixed (p, w1, . . . , wm) ∈ S × Rm, each fiber is parametrized by ω̄1, . . . , ω̄m−1. By letting
(p, w1, . . . , wm) varing in S × Rm, we obtain the bundle structure of the equilibrium
manifold. Finally, the natural projection π : E → Ω is the smooth map defined by the
restriction to E of the projection pr : S × Ω→ Ω, (p, ω) 7→ ω.
For convenience, we sum up in the following Figure 1 these geometric relationships.

Figure 1: Geometric construction.

The map ρ : P → S × Rm is defined by (x1, . . . , xm) 7→ (g(x), g(x) · x1, . . . , g(x) · xm),
where g(x) = (∂u1

∂x1
, . . . , ∂u1

∂xl
)(x1) is the price supporting the allocation x = (x1, . . . , xm).

The map R associates to (r, u∗1, . . . , u
∗
m−1) the Pareto optimum representing the unique

solution to the problem of maximizing um(xm) subject to
∑

i xi = r and ui(xi) ≥
u∗i , i = 1, 2, . . . ,m − 1. The map θ : S × Rm → Rl × Rm−1 associates to (p, w)
(
∑

i fi(p, wi), u1(f1(p, w1)), . . . , um−1(fm−1(p, wm−1).

If total resources are fixed, the equilibrium manifold is defined as

E(r) = {(p, ω) ∈ S × Ω(r) |
m∑
i=1

fi(p, p · ωi) = r},
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where r ∈ Rl is the vector that represents the total resources of the economy and
Ω(r) = {ω ∈ Rlm |

∑m
i=1 ωi = r}.

Let B(r) = {(p, w1, . . . , wm) ∈ S × Rm|
∑m

i=1 fi(p, wi) = r} be the set of price-
income equilibria (see [2, Definition 5.1.1]). We have that φ(E(r)) = B(r)×R(l−1)(m−1).
B(r) is a submanifold of S × Rm diffeomorphic to Rm−1 [2, Corollary 5.2.4] and the
equilibrium manifold E(r) is a submanifold of S × Ω(r) diffeomorphic to Rl(m−1) [2,
Corollary 5.2.5]. The following result shows the connection between the curvature of
B(r) and the uniqueness of equilibrium.

Theorem 2.1 [2, p. 262 Proposition 7.Ann.1] There is uniqueness of equilibrium for
every economy ω ∈ Ω(r) if and only if the manifold B(r) embedded in S × Rm−1 is
perpendicular to S × (0). The manifold B(r) then becomes equal to {p} × Rm−1.

Notice that a flat B(r) (i.e. zero curvature) does not imply that the equilibrium
manifold has zero curvature. Moreover B(r) is not a submanifold of E(r), since it “lives”
in the dual space of the set of price-income vectors [2, Chapter 7]. Its counterpart, in
the space of economies Ω(r), is the set of Pareto optima, which is diffeomorphic to T , a
submanifold of E(r). Hence there is not apparently any equivalence relationship between
the curvature of the equilibrium manifold and uniqueness of equilibrium. To the best of
our knowledge, the following result is the only known connection.

Theorem 2.2 [2, p. 188 Theorem 7.3.9 part (2)] If for every ω ∈ Ω(r) there is unique-
ness of equilibrium, the equilibrium correspondence is constant: The equilibrium price
vector p associated with ω does not depend on ω.

Therefore, according to this result, if there is uniqueness of equilibrium, the equilibrium
manifold is a plane and, hence, its sectional curvature vanishes. The aim of this paper
is to show that the converse of Theorem 2.2 also holds, if l = 2 (see Theorem 4.1).

3 Mathematical preliminaries

Some economists may not be unacquainted with differential geometry. Even if it is not
possibile to make this paper self contained, we hope that the reader may benefit from
reading this section, where some standard facts of differential geometry are recalled. Our
main reference is [4].

A subset Mk ⊂ Rn is a regular surface of dimension k, k ≤ n, if for every p ∈ M
there exists a neighborhood V of p ∈ M in Rn and a mapping x : U ⊂ Rk → M ∩ V
of an open set U ⊂ Rk onto M ∩ V such that x is a differentiable homeomorphism and
the differential dxq : Rk → Rn is injective for all q ∈ U . If n − k = 1, M is called
hypersurface.

The visual intuition in R3 of the previous definition is that a surface S = M2 can be
seen as the result of glueing together deformed pieces of planes in such a way that for
every point p ∈ S, the tangent plane Tp(S)1 can be defined. The Gaussian curvature

1The vector subspace dxq(R2) ⊂ R3 represented by all tangent vectors to S at x(q) = p.
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at a point x(q) = p ∈ S measures of how much the surface “departs” from its tangent
plane. Since a plane is defined by a point p and normal vector attached to it, the rate
of change of this normal vector provides a measure of how fast the surface departs from
its tangent plane in a neighborhood of p.

To formalize this concept in local coordinates, let x : U ⊂ R2 → S be a parametriza-
tion of a surface S and denote by {xu, xv} the basis of Tp(S) where dxq(e1) = xu,
dxq(ev) = xv and {e1, e2}, is the canonical basis in R2. Since, by the definition of reg-
ular surface, we have that vector product xu ∧ xv 6= 0, we can define for every point
p ∈ x(U) a map N which associates to p the unit normal vector at p, i.e.

N(q) =
xu ∧ xv
|xu ∧ xv|

(q).

N is a differentiable field of unit normal vectors. The regular surface is called orientable
if admits N on its whole surface. The choice of N is called an orientation.

The map N : S → S2 is called the Gauss map. Its differential dNp is a linear
transformation of the tangent space of S (because TN(p)S

2 can be identified with the
parallel plane Tp(S)) and provides the rate of change of how the surface pulls away
from Tp(S) in a neighborhood of p. This measure depends on the direction in which we
move away from p ∈ S. More precisely, let α = x(u(t), v(t)) be a curve in S such that
α(0) = p and w = α′(0). The dot product IIp(w) = − < dNp(w), w > is called the second
fundamental form and its value represents the normal curvature along a direction w at
p. If we restrict ourselves to directions represented by unit vectors, then the continuous
map IIp defined on the unit circle admits a maximum k1 and a minimum k2, k1 ≥ k2,
called the principal curvatures at p, with principal directions e1 and e2, respectively. As
an example, in a plane or in a sphere k1 is equal to k2: all directions are extremals for
the normal curvature.

Since dNp is a self-adjoint operator , i.e. < dNp(w1), w2 >=< w1, dNp(w2) > for
all w1, w2 ∈ Tp(S), by standard results of linear algebra ([3, Appendix to Chapter 3]),
there exists an orthonormal basis {e1, e2} of Tp(S) such that ei and ki, i = 1, 2, are,
respectively, the eigenvectors and eigenvalues of dNp. The determinant of dNp, given by
the product of the principal curvatures, k1k2 is called the Gaussian curvature K(p).

We now write the curvature formula using the coordinate system, i.e. the parametriza-
tion of S. Let w be a vector belonging to Tp(S) which can be thought as a tangent
vector to a curve α(t) = x(u(t), v(t)) such that α(0) = x(u0, v0) = p. Observe that the
natural standard product in R3 naturally induces in Tp(S) a symmetric bilinear form,
called the first fundamental form and denoted by Ip : Tp(S) → R. In the standard
basis {xu, xv}, we have Ip(w) =< w,w >p= Ip(α

′(0) =< xuu
′ + xvv

′, xuu
′ + xvv

′ >=
E(u′)2 + 2Fu′v′ + G(v′)2, where E =< xu, xu >, F =< xu, xv > and G =< xv, xv >.
Hence the associated matrix of Ip is (

E F
F G

)
.

In order to express the matrix of dNp in the basis {xu, xv}, consider the tangent
vectors Nu = dNp(xu) and Nv = dNp(xv). Since Nu and Nv belong to Tp(S), one can
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write Nu = a11xu + a21xv, Nv = a12xu + a22xv and dN(w) = Nuu
′ + Nvv

′, i.e. the
associated matrix (aij) of dNp is given by(

a11 a12

a21 a22

)
.

Finally, we have that IIp(w) = − < dN(w), w >= − < Nuu
′ +Nvv

′, xuu
′ + xvv

′ > .
If we let e = − < Nu, xu >=< N, xuu >, f = − < Nu, xv >=< N, xuv >=< N, xvu =
− < Nv, xu > and g = − < Nv, xv >=< N, xvv >, we can express IIp in the basis
{xu, xv} as the matrix: (

e f
f g

)
.

As a straightforward computation, we get

−f =< Nu, xv >= a11F + a21G

−f =< Nv, xu >= a12E + a22F

−e =< Nu, xu >= a11E + a21F

−g =< Nv, xv >= a12F + a22G

or, in matrix form,

−
(
e f
f g

)
= −

(
a11 a21

a21 a22

)(
E F
F G

)
.

Hence we have that the Gaussian curvature is

K = det(aij) =
eg − f2

EG− F 2
.

The above formula can be rewritten as follows. Recalling that

e =< xuu, N >=< xuu,
xu ∧ xv
|xu ∧ xv|

>=
det(xuu, xu, xv)

|xu ∧ xv|

and, similarly,

f =
det(xuv, xu, xv)

|xu ∧ xv|
and

g =
det(xvv, xu, xv)

|xu ∧ xv|
,

we can write

K =
det(xuu, xu, xv)det(xvv, xu, xv)− det(xuv, xu, xv)2

(||xu||2||xv||2− < xu, xv >2)2
(1)
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3.1 Parametrization and curvature of E(r) for l = m = 2.

We recall that φ(E(r)) = B(r)× R(l−1)(m−1) and the manifold B(r) is diffeomorphic to
{r} × Rm−1 through the map θ. When l = m = 2, E(r) is a surface and

B(r) = {(p, w1, w2) | f1(p, w1)+f2(p, w2) = r)} = {(p, w1) | f1(p, w1)+f2(p, pr−w1) = r}

is globally diffeomorphic to R. Hence , there exists a diffeomorphism

ϕ : R→ B(r), t 7→ ϕ(t) = (p(t), w1(t)).

This diffeomorphism is given by the inverse of the restriction to B(r) of the indirect
utility function

û1 : S × R→ R, û1(p, w1) = u1(f1(p, w1))

of the first consumer. Therefore a parametrization of

E(r) = {(p, ω1
1, ω

2
1) | f1

1 (p, pω1
1 + ω2

1) + f1
2 (p, p(r1 − ω1

1) + r2 − ω2
1) = r1}

is given by:

Φ : R2 → E(r), (t, ω1
1) 7→ (p(t), ω1

1, ω
2
1(t) = w1(t)− p(t)ω1

1).

Set v = ω1
1, β(t) = (p(t), 0, w1(t)), δ(t) = (0, 1,−p(t)) then

Φ(t, v) = β(t) + vδ(t).

The fact that Φ is indeed a parametrization implies that

W = ‖Φt ∧ Φv‖ 6= 0

By applying formula (1) we get the Gaussian curvature K of E(r) with respect to
the metric induced by the Euclidean metric of S × Ω(r):

K(t, v) = −p
′(t)4

W 4
.

Therefore K ≤ 0. Moreover K vanishes if and only if −(p′(t))4 = 0 i.e. p is a constant,
say C. It follows that the map t 7→ w1(t) is a diffeomorphism and hence

E(r) = {(w, v) ∈ R2 |(C, v, w − Cv)}

is the horizontal plane p = C in S×Ω(r), namely a horizontal plane parallel to {0}×Ω(r).
This shows that, in an economy with two agents and two commodities, the zero curvature
of E(r) implies uniqueness of equilibrium. This represents a particular case of our main
result, Theorem 4.1.

Remark 3.1 Observe that the assumption that the Gaussian curvature of a surface be
zero does not imply that the surface is a plane! In fact (see [3, Theorem p. 408]), a
complete surface in R3 with zero Gaussian curvature is a plane or a cylinder where “...
a cylinder is a regular surface S such that through each point p there passes a unique
line R(p) ⊂ S (the generator through p) which satisfies the condition that if q 6= p, then
the lines R(p) and R(q) are parallel or equal” [3, p. 408].

8



3.2 Hypersurfaces

For abstract manifolds M of higher dimensions, the computation of the curvature oper-
ator is more involved but our analysis and computations are quite simplified because we
are considering hypersurfaces. Moreover, for our purposes we will only need the sectional
curvature.

Let M be a submanifold immersed in Rn. Observe that the Euclidean metric on Rn
naturally induces a Riemannian metric on M , by applying to the subspace Tp(M) the
standard inner product of Tp(Rn) = Rn. A smooth vector field Y on M is a smooth map
Y : M → TM , where the tangent bundle ofM is the set TM = {(p, v)| p ∈M, v ∈ TpM}.

In terms of the basis { ∂∂i} associated to the parametrization x : U ⊂ Rk → M , the
vector field Y (p) can be expressed as

Y (p) =
k∑
i=1

ai(p)
∂

∂xi
.

This notation suggests the idea of Y as an operator whose domain is D, the set of
differentiable functions on M . In fact, if f belongs to D, f : M → R, we can write

(Y f)(p) =
k∑
i=1

ai(p)
∂f

∂xi
(p) ,

which means to take the directional derivative ∇f of any smooth function f in the
direction Y (p).

For each p ∈M , Tp(Rn+1) = Tp(M)⊕Tp(M)⊥, a vector v ∈ T (Rn+1) can be splitted
into a tangential component vT ∈ Tp(M) and a normal component vN ∈ Tp(M)⊥. Since
the vector field dY

dt is not necessarily tangent to M , we define the covariant derivative
DY
dt of the tangent vector field Y on M as the projection of dY

dt on Tp(M). Similarly to
what we have done for (Y f) we can define a rate of change of the vector field Y in the
direction of a tangent vector Xp by denoting ∇XpY = (DYdt )t0 along any curve α(t) ∈M
with α(t0) = p and α′ = Xp.

A tangent vector field on M can be locally extended on its ambient space (we will
use the bar notation when we refer to the ambient space). Let { ∂∂i , N1, . . . Nn−k} be the
extended basis of Tp(Rn), where Nj denote the normal vectors for M . Following the
notation above, we have ∇XY = (∇̄X̄ Ȳ )T .
Denote by

B(X,Y ) = ∇̄X̄ Ȳ −∇XY

a local vector field on Rn normal to M . One can show that the map B is bilinear and
symmetric. It follows that the mapping Hη : TpM × TpM → R defined by

Hη(x, y) =< B(x, y), η >, x, y ∈ TpM, η ∈ (TpM)⊥

is a symmetric bilinear form. The second fundamental form of f at p along the normal
vector η is the quadratic form

IIη(x) = Hη(x, x)
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to which it is associated the shape operator, a linear self-adjoint operator Sη : TpM →
TpM , defined by

< Sη(x), y >= Hη(x, y) =< B(x, y), η > .

If N is a local extension of the vector η normal to M , then Sη(x) = −(∇̄xN)T . By the
symmetry of Sη, there exists an orthonormal basis {ei} of Tp(M) with eigenvalues λi,
such that S(ei) = λiei. The ei and λi are called the principal directions and principal
curvatures of the immersion f : M → Rn. Let {x, y} be a basis of σ, a two-dimensional
subspace of Tp(M). The segments of the set of geodesics that start at p and are tangent
to σ determine, in a normal neighborhood of M at p, a dimension-two submanifold S of
M . The Gaussian curvature of S is called the sectional curvature of σ at p. If M is an
hypersurface, the sectional curvature of M is given by

K(ei, ej) = λiλj . (2)

4 Main result

In this section we consider an economy with two goods and an arbitrary number of
consumers. In this case the equilibrium manifold is an hypersurface. We establish a
connection between the uniqueness of equilibrium and the curvature of E(r). More
precisely, we show that the price is unique if and only if E(r) has zero curvature.

Theorem 4.1 Let l = 2. A necessary and sufficient condition for a unique equilibrium
price is that the curvature of E(r) is zero.

Proof: The implication that uniqueness of equilibrium implies that the curvature of
E(r) is zero is proved by Balasko in Theorem 2.2. We need to show the other implication,
which is our main result. Let n be m− 1. The manifold B(r) is globally diffeomorphic
to Rn via a diffeomorphism

ϕ : Rn → B(r), t = (t1, . . . , tn) 7→ (p(t), w1(t), . . . , wn(t)).

By setting αj = ω1
j , a parametrization of E(r) is given by:

Φ : R2n → E(r), (t, α1, . . . , αn) 7→ (p(t), α1, w1(t)− p(t)α1, . . . , αn, wn(t)− p(t)αn).

Setting ptj = ∂p
∂tj
, wjtk =

∂wj

∂tk
, j, k = 1, . . . , n, we get:

Φαj = (0, . . . , 0, 1︸︷︷︸
2j

, −p︸︷︷︸
2j+1

, 0, . . . , 0). (3)

Φtj = (ptj , 0, w1tj − ptjα1, . . . , 0, wntj − ptjαn) (4)

and {Φt1 , . . . ,Φtn ,Φα1 , . . . ,Φαn} is a basis of TxE(r) at x = Φ(t, α1, . . . , αn) ∈ E(r).
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Consider the (n+ 1)× n−Jacobian matrix of the map ϕ

Jϕ =


pt1 . . . ptn
w1t1 . . . w1tn
... . . .

...
wnt1 . . . wntn

 .

and the determinants of its n× n submatrixes

A0 =

 w1t1 . . . w1tn
... . . .

...
wnt1 . . . wntn

 , Aj =



pt1 . . . ptn
w1t1 . . . w1tn
... . . .

...
ˆwjt1 . . . ˆwjtn

... . . .
...

wnt1 . . . wntn


.

where Aj is obtained by deleting the (j + 1)-row from the matrix Jϕ.
By setting

A =

 w1t1 − pt1α1 . . . w1tn − ptnα1
... . . .

...
wnt1 − pt1αn . . . wntn − ptnαn


it is easily seen that

ν(t, ω1
1, . . . , ω

1
n) = (A,−A1p,−A1, A2p,A2, . . . , (−1)jAjp, (−1)jAj)

is a nonvanishing normal vector field of E(r), i.e. ν(t, α1, . . . , αn) ∈ (TxE(r))⊥ at each
x = Φ(t, α1, . . . , αn) ∈ E(r), where, with a slight abuse of notation, we also denote by
A, Aj , j = 1, 2, . . . the determinants of the respective matrices. (The fact that ν does
not vanish follows by the fact that A(t, 0, . . . , 0) = A0 and A2

0 +A2
1 + · · ·+A2

n 6= 0 which
follows by the fact that the rank of ϕ is n for all t ∈ Rn).

Therefore a unit normal vector N = ν
‖ν‖ at the point x = Φ(t, α1, . . . , αn) ∈ E(r) is

given by:

N = B−
1
2 (A,−A1p,−A1, A2p,A2, . . . , (−1)nAnp, (−1)nAn), (5)

where

B = A2 + (1 + p2)
n∑
j=1

A2
j . (6)

Let x0 = Φ(t, 0, 0 . . . , 0) (i.e. for t = t, α1 = · · · = αn = 0) and consider the n + 1-
dimensional subspace Vi ⊂ Tx0E(r), i = 1, . . . n, spanned by the vectors Φα1 , . . . ,Φαn ,Φti ,
where we are denoting with the “bar” the value of Φα1 ,Φαn ,Φti at the point (t, 0, . . . , 0).
Set

ej =
Φαj

‖Φαj‖
=

1√
1 + p2

(0, . . . , 0, 1︸︷︷︸
2j

, −p︸︷︷︸
2j+1

, 0, . . . , 0), j = 1, . . . n. (7)
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and, for fixed i,

ein+1 =
1

µti
(pti ,

p w1ti

1 + p2 ,
w1ti

1 + p2 , . . . ,
p wnti
1 + p2 ,

wnti
1 + p2 ) = Φti +

n∑
j=1

p wjti
1 + p2 Φαj , (8)

where µ2
ti = p2

ti + 1
1+p2

(w2
1ti

+ · · ·+ w2
nti).

Then it is straightforward to verify that e1, . . . , en, e
i
n+1 is a g-orthonormal basis

of Vi with respect to the metric g induced by the Euclidean metric of S × Ω(r). Let
ein+2, . . . , e

i
2n be a g-orthonormal basis for V ⊥i , the g-orthogonal complement of Vi (we

do not need the explicit expression of this basis).
The entries of the 2n× 2n symmetric matrix which represents dNx0 with respect to

the orthonomal basis e1, . . . , en, e
i
n+1, . . . e

i
2n are given by:

N i
αβ := dNx0(eiα) · eiβ = dNx0(eiβ) · eiα, α, β = 1, . . . , 2n.

Notice that

dNx0(ej) = dNx0(
Φαj

‖Φαj‖
) =

dNx0(Φαj )

‖Φαj‖
=

Nαj√
1 + p2

Hence after a straightforward computation one gets, for j = 1, . . . n,

dNx0(ej) = −(−1)jAjB
− 3

2√
1 + p2

(
A

2
0 −B,−A0A1p,−A0A1, . . . , (−1)nA0Anp, (−1)nA0An

)
(9)

It follows by (7) and (9) that

N i
jk = dNx0(ej) · ek = 0, j, k = 1, . . . n. (10)

(notice that, by contruction, N i
jk does not depend on i).

On the other hand, by (8) and (9) we get

N i
j,n+1 = N i

n+1,j = dNx0(ej)·ein+1 =
(−1)jAjB

− 1
2 pti

µti

√
1 + p2

−(−1)jA0AjB
− 3

2

µti

√
1 + p2

[A0pti+
n∑
k=1

(−1)kAkwkti ]

Observe that A0pti +
∑n

k=1(−1)kAkwkti vanishes for all i = 1, . . . , n being the deter-
minant of the (n+ 1)× (n+ 1) matrix

pt1 . . . ptn pti
w1t1 . . . w1tn w1,ti
... . . .

...
...

wnt1 . . . wntn wn,ti

 .

Hence

12



N i
j,n+1 =

(−1)jAjB
− 1

2 pti

µti

√
1 + p2

, i, j = 1, . . . n. (11)

Notice that if the sectional curvature of E(r) (with respect to the metric g induced by
the Euclidean metric of S ×Ω(r)) vanishes then the rank of the matrix {Nαβ}α,β=1,...,2n

is less or equal to 1. If, in particular, the sectional curvature vanishes at x0 then, in
particular, for all i, j = 1, . . . n the 2× 2 matrix(

Njj N i
j,n+1

N i
n+1,j N i

n+1,n+1

)
has zero determinant, i.e., by (10) and (11),

A
2
jp

2
ti

µ2
ti
B(1 + p2)

= 0, i, j = 1, . . . n.

Hence either pti = 0 for all i = 1, . . . , n or Aj = 0 for all j = 1, . . . , n. Since pti and
Aj do not depend on α1, . . . αn, it follows by (5) that in both cases the normal vector
N of E(r) at any point x = Φ(t, α1, . . . , αn) is constant, namely Nx = (1, 0, . . . , 0), and
hence E(r) is an hyperplane in S ×Ω(r) parallel to {0} ×Ω(r). The proof concludes by
combining this result with Theorem 2.2. �

Remark 4.2 Actually a more general result has been proved: namely, it is enough to
have zero curvature at x0 to deduce the uniqueness of equilibrium for every ω in Ω(r).
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