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We take school admission mechanisms to the lab to test whether the
manipulable Boston mechanism disadvantages students of lower cogni-
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1 Introduction

The paper studies experimentally how different allocation mechanisms influ-
ence inequality, efficiency and ability segregation across schools.

Protecting applicants who do not strategize well is one of the main argu-
ments of those who advocate in favor of strategy-proof mechanisms in school
choice – e.g., Deferred Acceptance (DA) – and against manipulable ones – e.g.,
Boston (BOS). Pathak and Sönmez [2008] show that if some applicants report
sincerely under BOS while others best respond, sincere applicants will be dis-
advantaged in equilibrium; in contrast DA – where sincere reports are always
optimal – should level the playing field for sincere applicants.1 Moreover, if
the failure to strategize correlates with belonging to an already disadvantaged
group, BOS would selectively discriminate against the weakest students.2 In
particular, we consider the hypothesis that students of lower cognitive abil-
ity are less able to identify optimal strategies under BOS which lets them fare
worse under this mechanism compared to peers of higher ability and results
in ability segregation across schools.

Whilst manipulable mechanisms are challenging for applicants, decisions
whether and how to manipulate may reveal information on cardinal prefer-
ences [Abdulkadiroğlu et al., 2011; Miralles, 2009]. For example under BOS,
only applicants with a particularly strong preference should apply at an over-
demanded school, while applicants who are almost indifferent between over-
and under-demanded schools should apply at the latter. As a consequence,
schools would be more likely to admit students that appreciate it more, which
would increase welfare from a utilitarian perspective.

Since these hypotheses are hard to pin down in the field where prefer-
ences are unobservable, we employ laboratory experiments. Our contribu-
tion is twofold. First, by matching cognitive ability and behavior in a school
choice game, we are able to investigate whether DA levels the playing field
between applicants of different ability. Second, we test whether students are

1The mechanism design approach to school choice has highlighted the drawbacks of ma-
nipulable mechanisms from the very beginning. See the seminal paper by Abdulkadiroğlu
and Sönmez [2003], and the characterization of equilibria under the Boston mechanism in
[Ergin and Sönmez, 2006]. See also Roth and Sotomayor [1992] on the college admission
problem.

2For instance, in his often-cited memo to the Boston School Committee on May 25, 2005,
Superintendent Payzant wrote: “the need to strategize provides an advantage to families who
have the time, resources and knowledge to conduct the necessary research” and “a strategy-
proof algorithm levels the playing field by diminishing the harm done to parents who do not
strategize or do not strategize well”.
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sufficiently sophisticated for the welfare gains of BOS to arise. Hence, we offer
a tentative estimate of the costs and benefits of moving from BOS to DA.

In our setup, we first measure subjects’ cognitive ability using a 36 ques-
tions, non-verbal Raven test before letting them apply for a seat at one of four
schools.3 Subjects play ten school choice games, always under the same mech-
anism – i.e., either BOS or DA – and under two different preference environ-
ments. Induced preferences and cognitive ability are uncorrelated and there is
only one priority class at each school,4 so that in equilibrium the distribution
of subjects by ability should be the same at every school – i.e., ability seg-
regation cannot emerge in the absence of systematic differences in strategic
behavior.

Manipulation under BOS typically takes the form of moving up undersub-
scribed schools in the submitted rank-order list. For instance, the West Zone
Parents Group in Boston advised parents [see, among others, Pathak and Sön-
mez, 2008]:

One school choice strategy is to find a school you like that is
undersubscribed and put it as a top choice, OR, find a school that
you like that is popular and put it as a first choice and find a school
that is less popular for a safe second choice.

The first advised strategy is to manipulate the reported first choice by
listing a less demanded school (skipping-the-top). The second advised strat-
egy is to reveal truthfully the most preferred choice and manipulate the sec-
ond choice by listing a school that is most likely still available in the second
round (skipping-the-middle). Our setup is designed to bring out both manipula-
tions. In equilibrium under BOS, almost all students use skipping-the-middle
strategies in our first preference environment, and a majority of students uses
skipping-the-top strategies in our second preference environment.

Because appropriate manipulation takes these simple forms in our design,
we can clearly identify students that fail at strategizing. They are worse off in
both environments as they enjoy a lower chance of being admitted in round 1
or 2 of BOS; as a result they are over-represented at the worst school. If a failure
to strategize well is associated with a lower cognitive ability, ability segrega-
tion emerges under BOS. However, BOS dominates DA in ex-ante efficiency if
a sufficient number of players strategize appropriately.

3Because ties at over-demanded schools are broken randomly, and cautionary motives are
known to be an important driver of behavior in school choice [e.g. He, 2014], we also elicit
risk preferences.

4Ties are broken according to a centralized lottery.
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Results can be summarized as follows. We find strong support for the
leveling-the-playing-field hypothesis. Under BOS low ability subjects earn
significantly lower payoffs than high ability ones in both preference environ-
ments while differences are smaller and (mostly) not significant under DA.
Low ability students report truthfully more often than high ability ones under
BOS. This is not the only mistake they are more prone to. They also report
truthfully less often under DA, and tend to be more over-cautious. More gen-
erally, high ability subjects’ strategies are more responsive to changes both
in the mechanism and the preference environment. Low ability subjects are
found at particular disadvantage when required to manipulate their second
listed school. We argue this is due to the higher strategic complexity of this
type of manipulation.

As a consequence, substantial ability segregation emerges under BOS, where
low ability students are over-represented at the worst school. In the preference
environment where subjects should skip the middle, the other schools admit
up to 45 percent more high ability students than the worst school. In contrast,
the ability distributions at schools are harmonized under DA.

Overall, average payoffs are close to the equilibrium predictions under DA.
While players fall short of the equilibrium benchmark under BOS, average
payoffs are still significantly higher than under DA in both preference envi-
ronments. Those gains are mostly concentrated in the hands of high ability
subjects. Thus, our results highlight a substantial trade-off between efficiency
and equality in school choice mechanisms.

Starting from Chen and Sönmez [2006], a growing literature has addressed
school choice with the use of laboratory experiments, exploiting the advan-
tage of controlling students’ preferences by design [Calsamiglia et al., 2010;
Chen et al., 2015; Chen and Kesten, 2012; Klijn et al., 2013; Pais and Pintér,
2008]. These papers are mostly interested in comparing truth-telling rates,
and identifying the rules of thumb used under different mechanisms. Feath-
erstone and Niederle [2014] are closer to our work, as they try to ascertain
how close to equilibrium students can get under BOS. First, they show sub-
jects cannot play equilibrium under BOS when this requires manipulation –
mostly because of failures at skipping-the-middle. Second, they demonstrate
truth-telling is often played under BOS in the special case where it can be im-
plemented as an ordinal Bayes Nash equilibrium. They conclude that, in those
cases, BOS may resolve the conflict between equality and efficiency.

Outside the lab, the data in Abdulkadiroğlu et al. [2005] include some hints
that DA would protect unsophisticated parents, but cannot provide direct ev-
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idence.5 Despite this, the paper testifies to the strength of the argument in the
policy process (sure this is the right citation? I don’t see the hints...). More
recently, a number of papers have addressed the empirical difficulty of not
observing students’ preferences. Using data from Barcelona, Calsamiglia and
Güell [2014] find that the ‘safety’ of a school is one of the main determinants of
listing it first. This fact and the presence of naive applicants induces important
inequalities in how school choice affects different households. He [2014] stud-
ies school allocation in Beijing under the Boston Mechanism. His data stems
from a school district of four schools which coincides with our experimental
setup. Using estimated preferences, he finds that safe strategies are played too
often, but finds no evidence that wealthier or more-educated parents are bet-
ter at strategizing. Assuming truthful reports under DA, he finds that a switch
to DA would yield utility losses for most parents.

The paper is organized as follows. Section 2 introduces the school choice
environments. Section 3 presents the experimental design and procedures.
Hypotheses are found in Section 4, and results follow in Section 5. Section 6
concludes.

2 The school choice problem

We consider situations where 16 students i ∈ I compete for seats at one of 4

schools s ∈ S = {A,B,C,D}, with 4 seats each. Students’ preferences are given
by their type ti ∈ T = {1,2,3,4} with four students of each type. Eventually,
each student i is admitted to a school s and receives a payoff pi = p(s,ti) that
depends on both the school s and her own type ti.

We apply to this general set-up two different matching algorithms and two
different preference environments. Students are informed about payoffs and
the rules of the game. We assume players are risk neutral, and discuss the role
of risk aversion separately. To derive equilibrium predictions, we analyse the
game under the assumption of complete information.

In broad strokes, preferences in both environments are such that all stu-
dents would rank schools alphabetically. However, some types receive a bonus-
payoff from admittance to school A, B or C that influences the intensities
of preferences and in some cases changes the preference order over schools.
Hence, we aim to capture both heterogeneity in preferences and a strong cor-

5In particular, many students list below the first choice schools that are in fact unavailable
after the first round of the mechanism.
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relation based on differences in school quality – with D being the worst school.
We choose 4 schools to provide the strategic depth necessary to observe ‘skip-
the-middle’ strategies; we choose schools of size four to limit the influence of
own applications on the pool of all applicants at a particular school.

2.1 Mechanisms

To match students and schools we consider the Boston Mechanism6 – abbre-
viated as BOS – as well as the Deferred Acceptance Mechanism7 – abbreviated
as DA. Under both mechanisms, students report a ranking of schools �i, i.e.
a strict linear order on S. To break ties among applicants, we apply a cen-
tralized lottery that draws a different number li between 1 and 16 for each
student, where each of the 16! lottery draws is equally likely. The mechanisms
proceed as described below.

BOS – Boston Mechanism

ROUND 1. Student apply at the school that they ranked first. If
there are at most 4 applicants at a school, all are admitted. If there
are more applicants, the school admits applicants in order of their
lottery number and up to capacity.

ROUND k > 1. Students not yet admitted apply at the school that
they ranked at the kth position. Schools admit new applicants in
order of their lottery number and up to capacity.

With as many seats as students, each student is admitted to some
school when the algorithm terminates after at most 4 rounds.

DA – Deferred Acceptance Mechanism

ROUND 1. Students apply at the school that they ranked first. Schools
preliminarily accept applicants in the order of their lottery number
and up to capacity. Any remaining applicants are rejected.

ROUND k > 1. Students preliminarily accepted apply again at the
same school. Student rejected in the previous round at a school
they ranked mth on their list, now apply at the school they ranked
at the (m+1)th position. Schools preliminarily accept applicants in
the order of their lottery number and up to capacity. Any remaining
applicants are rejected.

6Also known as Immediate Acceptance Mechanism.
7Also known as Gale-Shapley Mechanism
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With as many seats as students, and each school only rejecting applicants once
it has reached capacity, we arrive at a point where each student is preliminar-
ily accepted – at this point, the mechanism terminates and acceptance becomes
final.

2.2 Preference environment 1

Payoffs for preference environment 1 (henceforth P1) are given in the left panel
of Table 1. Students agree that D is the worst school with an associated payoff
of zero. They also agree in ranking C third, but type 3 students earn a higher
payoff than others at that school. Type 2 students prefer B to A, while all other
students prefer A to B. Students of type 1 earn a higher payoff at A.

Under DA, truth-telling is dominant. Hence, if players play accordingly,
types 1,3 and 4 report A �i B �i C �i D while students of type 2 report B �i

A �i C �i D. The associated average expected payoff is 9.33. Under BOS,
players have incentives to strategize, which yields the following equilibria.

Equilibria BOS-P1.
In every pure strategy Nash equilibrium of the game induced by BOS-P1 :

• 11 students report A�i C�i B,D: all type 1 and 7 out of the 8 type 3 and 4

• 5 students report B�i C�i A,D: all type 2 and 1 out of the 8 type 3 and 4

Under an equilibrium strategy profile, if a student is rejected at her first
choice, the only remaining seats in round 2 are seats at schools C and D.
Hence, it is crucial to manipulate the second choice by ranking C second.

If in equilibrium everyone ranks C second, it does not matter which school
is ranked third. Thus, equilibrium under BOS-P1 is essentially unique – it is
unique up to redundant strategies and the identity of the one player of type 3

or 4 applying at B. Expected average payoff is 9.9.8

The intuition behind this equilibrium is as follows. Since there are at least
four students that like schools A and B best, these schools are filled in the
first round. Moreover, since the payoff at D is zero, everyone rejected at A

or B in round one should apply at C in the second round. Showing that C is
never ranked first in any equilibrium, and establishing who ranks A or B first
requires additional calculation that we refer to Appendix A.

8It is 9.90 if some type 3 applies at B and 9.93 if the fifth player applying at B is of type 4.
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TABLE 1: PAYOFFS IN P1 (LEFT PANEL) AND P2 (RIGHT PANEL)

p(s,ti)
School

A

School
B

School
C

School
D

School
A

School
B

School
C

School
D

Type 1 20 10 6 0 20 11 7 0

Type 2 16 17 6 0 16 15 7 0

Type 3 16 10 8 0 16 11 11 0

Type 4 16 10 6 0 16 11 7 0

Notes: each cell represents the payoff a student of type ti obtains when admitted at school
s in the relevant preference environment.

2.3 Preference environment 2

Payoffs in preference environment 2 (henceforth P2) are given in the right
panel of Table 1. All students agree that A is better than B, and the payoff
from A is highest for students of type 1. Students of types 1, 2, and 4 prefer B

to C, and the payoff from B is highest for students of type 2. Students of type
3 earn a higher payoff at C compared to others, and are indifferent between B

and C. All students prefer C over D.
Under DA, if players apply dominant strategies, types 1,2 and 4 report

A�i B�i C�i D, while students of type 3 report either A�i B�i C�i D or A�i

C�i B�i D. The associated average expected payoff is between 9.25 and 9.58.
Under BOS, players’ incentives to strategize yield the following equilibria:

Equilibria BOS-P2.
In every pure strategy Nash equilibrium of the game induced by BOS-P2 :

• 7 students report A�i B,C,D: all type 1 and three of type 4

• 5 students report B�i A,C,D: all type 2 and one of type 4

• 4 students report C�i A,B,D: all type 3

Under these strategy profiles, the only remaining seats in round two are
seats at school D, so that the reported first choice and hence the decision
on whether to skip-the-top becomes crucial. In equilibrium, more than half of
all players decide to manipulate by listing another than their most preferred
school first. The associated average expected payoff is 10.16. All calculations
establishing the above profiles as the only equilibria are referred to Appendix
A.
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3 Experimental design and procedures

Each session consisted of a test of cognitive ability, a risk elicitation task, and
ten rounds of a school allocation game with subjects in the role of students.
An English version of the experimental instructions, control questionnaires,
and screenshots for all tasks can be found in Appendix B.

3.1 Cognitive ability and risk aversion

Each session started with a computerized version of Raven’s Progressive Ma-
trices test. The Raven test is a leading non-verbal measure of analytic intel-
ligence [Carpenter et al., 1990; Gray and Thompson, 2004], and Raven test
scores are associated with the degree of sophistication in the beauty contest
[Gill and Prowse, 2015], with the performance in Bayesian updating [Charness
et al., 2011], and with more accurate beliefs [Burks et al., 2009]. Each question
of the test asks to identify the missing element that completes a visual pattern
from a list of candidates.9 The Standard Progressive Matrices version of the
Raven test consists of 60 questions split into 5 blocks of increasing difficulty,
labeled A-E, with 12 questions in each. We used blocks C, D and E, for a total
of 36 questions. We gave the subjects 5 minutes to complete each of blocks C
and D, and 8 minutes to complete block E. Within each block, subjects could
move back and forth between the questions, eventually skipping some, and
changing their previous answers. Participants received 0.1 ECU for each cor-
rect answer.

After the Raven test, subjects played the bomb risk elicitation task (BRET)
developed by Crosetto and Filippin [2013]. For that, subjects have to decide
how many out of 100 boxes to collect, one of which contains a bomb.10 The
bomb is placed randomly among the boxes, and subjects are unaware of where
their bomb is located. If a subject does not collect the bomb, he receives 0.1
ECU for each collected box. He receives zero if he collects the bomb. The num-
ber of boxes collected maps into the degree of risk aversion: the more boxes
a subjects collects the less risk averse (or the more risk loving) he is, where
collecting 50 boxes corresponds to risk neutrality. We choose this task because
it is easy to explain and intuitive to perform, features that are particularly de-
sirable in a design that is rather demanding in cognitive terms.

9See Appendix B for an example.
10Boxes are collected sequentially: the player needs to press a ‘Stop’ button to end the

collection of boxes. See Appendix B for a screenshot of the decision screen.
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3.2 Treatments

The school allocation game accords with the environment described in Section
2. Sixteen students, four for each preference type, are allocated to four schools,
according to their submitted lists and a random priority ordering. The treat-
ment variables are the allocation mechanism and the preference environment.
The allocation mechanism can be either DA or BOS, the preference environ-
ment P1 or P2, resulting in four treatments. In each session subjects play five
consecutive rounds of the school choice game under each of the two prefer-
ence environments, for a total of ten rounds, always under the same allocation
mechanism. That is, we vary the allocation mechanism between subjects, and
the preference environment within subjects. We vary the order of P1 and P2
across sessions to control for order effects.

We classify each subject as either of high cognitive ability or of low cog-
nitive ability according to whether his test score is in the top or bottom half
of the distribution of scores in his session.11 Since we want preference types
to be balanced with respect to cognitive ability, we assign two high and two
low subjects to each type. Subject to this constraint, a new preference type is
assigned randomly to each player in every new round.

A random lottery generates a priority ordering in each round. After all
sixteen subjects have submitted their lists, the allocation is computed accord-
ing to the relevant mechanism. Subjects are informed of their assigned school,
their lottery number, and their payoff in ECU in that round.

3.3 Experimental procedures

The computerized experiment was run at the WZB-TU Experimental Lab in
Berlin, in autumn 2015, and involved 192 subjects, distributed over 12 exper-
imental sessions. Sessions took on average 75 minutes. The computerized
program was developed using Z-tree [Fischbacher, 2007]. Table 2 summarizes
sessions’ details. Each subject participated only in one session.

All sessions followed an identical procedure. Subjects were randomly as-
signed to cubicles in the lab. Instructions were read aloud before each task. To
ensure everybody understood the tasks, we conducted a control questionnaire
before the BRET and the school choice game. For the school choice game, this
included finding the allocation in a simple school choice problem, given the

11We break ties using the amount of time used to complete the Raven test. If ties still
remain we break them at random.
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TABLE 2: SESSIONS

Session No. Date Participants Mechanism Environment order

1 September 2015 16 BOS P1-P2
2 September 2015 16 BOS P1-P2
3 September 2015 16 BOS P1-P2
4 September 2015 16 DA P1-P2
5 September 2015 16 DA P1-P2
6 September 2015 16 DA P1-P2
7 November 2015 16 BOS P2-P1
8 November 2015 16 BOS P2-P1
9 November 2015 16 BOS P2-P1

10 November 2015 16 DA P2-P1
11 November 2015 16 DA P2-P1
12 November 2015 16 DA P2-P1

Notes: Mechanism indicates whether BOS or DA were implemented. Environment order in-
dicates whether the five rounds of preference environment 1 were run before (P1-P2) or after
(P2-P1) preference environment 2.

submitted lists and the priority ordering. The tasks would only start after ev-
ery subject had correctly completed the questionnaire. To get subjects used to
the decision environment, we run a trial round of BRET where no ECU could
be earned, before the payoff-relevant one.

At the end of the school choice game, subjects were asked to fill in a ques-
tionnaire. We gathered qualitative information about their strategies, and
their opinions regarding school choice. We also collected data on whether
they had faced the Raven or a similar test before, and on whether they were
used to playing mind puzzles.

Subjects were told they would have been paid according to the ECU earned
in the Raven test, in the BRET and in one round of the school choice game
selected at random by the computer. The corresponding rounds were paid
according to the exchange rate: 1ECU = .70AC. Subjects could earn between 0
and 14 Euros from the school choice game, between 0 and 2.60 Euros from
the Raven test, and between 0 and 7.00 Euros from the BRET. The average
payment, including 5 Euros of show-up fee, was 16.20 Euros.
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4 Hypotheses

As a convention, we label as Truthful the strategy where the reported rank
order list coincides with the true preferences.12 We label Safe-Naive (SN) the
strategy where the reported preferences are manipulated by swapping the or-
der of the two most preferred schools, listing the less popular school first and
the most popular school A second.13 Under Skipping-The-Top (STT) applicants
list their second most preferred school first instead of the most popular school
A and list their third most preferred school second.14 Under Skipping-The-
Middle (STM), an applicant lists her most preferred school first and the third
most preferred school C second.15

As shown in section 2, for BOS-P1 equilibrium predicts that in the first
round there are 11 applicants at school A and 5 applicants at school B. All
students list C second. All but one student play STM. In BOS-P2, equilibrium
predicts that in the first round there are 7 applicants at school A, 5 applicants
at school B and 4 applicants at school C. A majority of players uses SN or
STT. All reports are truthful under DA-P1 and DA-P2. Hypothesis 1 posits that
comparative statics qualitatively match equilibrium predictions.

Hypothesis 1. The fraction of truthful reports is lower under BOS than under DA,
in both P1 and P2. The converse holds for STM in P1, and for SN and STT in P2.

The ex-ante expected payoff in equilibrium – i.e., before types and lottery
numbers are drawn – is between 9.9 and 9.95 in BOS-P1, equal to 9.33 in DA-P1,
equal to 10.87 in BOS-P2, and at most 9.58 in DA-P2.16 BOS increases expected
payoff relative to DA by 6.1%− 6.6% in P1 and by at least 13.5% in P2. The
intuition for this is that efficiency increases when a student of a certain type
is assigned to the school where he earns a higher payoff relative to students
of other types. Strategizing works in this direction, because students gain
priority at the school they rank higher relative to others. We hypothesize BOS

dominates DA in ex-ante efficiency terms.

12For a student of type 3 in P2 who is indifferent between B and C, reporting A�C� B�D

and A� B� C�D are both considered truthful.
13Not applicable to strategies of type 2 in P1. For a student of type 3 in P2, submitting

B�A� C,D or C�A� B,D counts as SN.
14Not applicable to strategies of type 2 in P1. For a student of type 3 in P2, submitting

B,C�A,D counts as STT.
15Not applicable to strategies of type 3 in P2. For a student of type 2 in P1, submitting

B� C�A,D counts as STM.
16The expected payoff in BOS-P1 depends on the selected equilibrium, i.e. on the identity

of the fifth applicant at B. The expected payoff in DA-P2 depends on the report of students of
type 3, who are indifferent between B and C.
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Hypothesis 2. Subjects’ average payoff is higher under BOS than under DA in both
preference environments.

We expect subjects with a lower Raven score (Low) to be less able to iden-
tify optimal strategies than subjects with a higher Raven score (High).17 In
principle, this could be due to either random errors or systematic biases (or
both). We follow Pathak and Sönmez [2008] and hypothesize Low subjects
are naive, i.e., they are biased towards truthful reporting, while High subjects
best respond. Then compared to the equilibria in BOS-P1, we still find A and
B filled in the first round but fewer applicants at C in the second round. This
increases the chances of strategic subjects to be admitted at C should they be
rejected in round one. Hence, with a sufficiently high fraction of naive appli-
cants, strategic subjects will take the risk of applying at their true first choice
in the first round, even if that is the most competitive school A.18 Then, naive
and strategic applicants only differ in whether they rank C second, the latter
deciding to skip-the-middle.

Similarly, in BOS-P2, (some) strategic type 2 and 4 will initially apply at
B so that B is filled in round one – at least as long as there are in total four
strategic students of types 2 and 4.19 With some naive student(s) of type 3,
C will still be available in round 2, so that all strategic players will rank it
second. In consequence, naive and strategic players differ in that the later will
use skip-the-top and skip-the-middle strategies.20

Hypothesis 3. Low subjects are more likely than High subjects to report truthfully
under BOS. High subjects are more likely than Low subjects to play STM in BOS-P1,
STT and STM in BOS-P2.

We note that the second part of Hypothesis 3 may also be true when High
subjects play an equilibrium strategy (see Section 2). This is due to the fact that
appropriate strategizing can take only few simple forms in our context, which
is one of the main advantages of our design. On the other hand, this implies
we cannot test for subjects beliefs on the strategic ability of opponents.21

17Considering that cognitive ability is to a large extent genetically inherited [see, e.g.
Plomin, 1999], and for the sake of simplicity, we consider parents and children as a single
decision maker that applies at schools and attend the school she is assigned to.

18See Appendix A, Naive and strategic players in BOS-P1.
19See Appendix A, Naive and strategic players in BOS-P2.
20Strategic players of type 3 will skip-the-top or submit A �i C �i B �i D which for them

counts as truthful.
21Nevertheless, behavior of High subjects when they best respond to naive Low subjects

is not identical to that in equilibrium, providing us some clues on their awareness of the
strategic ability of the others. Most notably, when High subjects best respond to naive Low
subjects, they rank C second in BOS-P2, while their second choice is irrelevant in equilibrium.
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A bias towards truth-telling puts Low subjects at a disadvantage under
BOS. When Low subjects are naive and High subjects best respond to them,
the expected payoff of a Low subject is 8.58 in BOS-P1 and 6.58 in BOS-P2, the
expected payoff of a High subject is 11.66 in BOS-P1 and 12.27 in BOS-P2. Since
truth-telling is a dominant strategy in DA, DA should level the playing field.

Hypothesis 4. The average payoff for High subjects is larger than for Low subjects
in BOS-P1 and BOS-P2. Average payoffs for Low and High subjects do not differ in
DA-P1 and DA-P2.

Finally, all subjects agree that D is the worst school. Under BOS, if Low sub-
jects are less able to strategize well , they are less able to avoid being assigned
to D. For instance, in the extreme scenario where Low subjects are naive and
High subjects best respond to them, under BOS-P1 in expected terms schools
A and B are balanced, school C admits only High, school D only Low subjects.
Under BOS-P2, school A admits more Low, school C more High, school B only
High and school D only Low subjects. Under DA, if Low subjects are naive, all
schools should be balanced. Moreover, any departure from truth-telling in the
ranking of the first three schools does not translate into a higher probability
of being assigned to D. Thus, even under more general assumptions on the
strategic behavior of Low subjects, as long as they rank D last, they are not
assigned to D with a higher probability than High subjects under DA.

Hypothesis 5. Low subjects are over-represented at school D under BOS, but not
under DA.

5 Results

Table 3 provides an aggregate glimpse of the allocation process. It shows in
which round seats at the different schools are assigned to their final match.
School A is always filled in the first round.22 The same holds for School B,
except for DA-P2. Three out of four seats at school C are no longer available
after round 2 under BOS. More than one third of them are already assigned in
round 1 in BOS-P2.

Around 75 percent of reports are truthful under DA-P1 and DA-P2. The
same figure is 51 percent under BOS-P1 and BOS-P2. School C is ranked sec-
ond 27 (23) percent of the time under BOS-P1 (BOS-P2), only 6 (8) percent under

22First round matches are temporary in DA. However, rejected students have on average
lower lottery numbers, and it is hard for them to win a seat that was assigned to someone
else, especially at over-demanded schools.

13



TABLE 3: SEAT ALLOCATION DYNAMICS

DA-P1 BOS-P1 DA-P2 BOS-P2

School A round 1 94% 100% 100% 100%
round 2 100% – – –

School B round 1 85% 100% 42% 93%
round 2 100% – 100% 100%

School C round 1 12% 16% 25% 36%
round 2 20% 74% 47% 72%

School D round 1 0% 1% 1% 2%
round 2 1% 3% 3% 3%

Notes: the table shows the (cumulative) percentage of seats of each school that are al-
located in the first two rounds of the allocation procedure in the different treatments.

TABLE 4: ACROSS TREATMENT DIFFERENCES

Sample Truthful SN STT STM Exp. Payoff
Z P-val Z P-val Z P-val Z P-val Z P-val

DA vs BOS P1 2.91 .00 -.80 .42 -2.76 .01 -2.88 .00 -1.92 .05
P2 2.81 .00 -2.54 .03 -2.73 .01 -2.19 .03 -2.41 .02

P1 vs P2 DA 1.16 .25 -1.58 .11 -1.94 .05 0.315 .75
BOS -.11 .92 -2.20 .03 -2.20 .03 2.20 .03

Notes: the table reports for each of the listed variables: the Wilkoxon rank-sum test, and corresponding P-
value, on the difference between DA and BOS within each preference environment; the Wilkoxon signed-
rank test for the differences between P1 and P2, within each mechanism. A positive statistic means a
higher value for DA (P1). The statistic is computed using one observation per session. Expected payoff
is computed using a recombinant strategies procedure with 1000 recombinations for each subject in each
period, and an identical number of tie breakers. Bold indicates significance at the .05 level.

DA-P1 (DA-P2). Manipulation of the first listed school account for between
14 and 21 percent of the strategies used under DA-P1, DA-P2, and BOS-P1.
The figure is 42 percent in BOS-P2. Non-parametric tests on differences across
treatments are shown in Table 4. Every test is based on one observation per
session. We find evidence that significantly fewer truthful lists are submitted
in BOS with respect to DA. Under BOS-P1, subject use STM and STT signifi-
cantly more relative to DA-P1. Under BOS-P2 they also employ significantly
more SN strategies relative to DA-P2. When comparing P1 to P2, there are no
significant differences under DA, while P2 induces more SN and STT, and less
STM strategies than P1 under BOS. Thus, while players fall short of the theo-
retical benchmark, all treatments shift behavior in the direction predicted by
equilibrium, supporting Hypothesis 1.
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Result 1. DA induces higher rates of truth-telling relative to BOS. BOS-P1 induces
more STM, BOS-P2 more SN and STT strategies.

Payoffs earned in the experiment depend to a large extent on the random
priorities, and on the strategies used in that particular period by the other
subjects in the session. To compare the payoffs across treatments and subjects
we use a recombinant estimation technique similar to the one employed by
Chen and Sönmez [2006]. The procedure works as follows. Start by picking
the strategy of the first subject in the first period, and match it with fifteen
strategies drawn at random among those used in the first period in all ses-
sions of the same treatment, under the constraint that there are four players
for each type in the resulting virtual game. Given these sixteen strategies,
seats are assigned based on a new random priority ordering. Repeat n times,
always rematching the same strategy, and create n random samples, each with
its own priority ordering, and corresponding allocation. Implement this pro-
cedure for all subjects and all periods. We choose n = 1000. Because subjects’
strategies are not statistically independent within a session – the game is re-
peated – we cannot run parametric tests on the average payoffs earned across
recombinations (as done by Chen and Sönmez [2006]). In the following, we
consider each individual average payoff over recombinations as the expected
payoff of the corresponding subject in that period.23

The empirical average expected payoff is 9.20 under DA-P1, 9.63 under
BOS-P1, 9.58 under DA-P2, and 9.94 under BOS-P2. In equilibrium, the corre-
sponding figures would be (approximately, see Section 4) 9.33, 9.9, 9.58 and
10.87. Subjects are close to equilibrium payoffs under DA, less so under BOS.
The last columns in Table 4 show the efficiency gains of BOS over DA are sig-
nificant in P2, but not in P1.24 A parametric approach to the same question
is taken in Table 5, where we also try to account for the multiple factors that
may influence one’s expected payoff through regression analysis. The depen-
dent variable is the expected payoff obtained from the recombinant estimation
technique. All models are random-effects panel regressions, where standard
errors are clustered at the session level. Models (4) and (5) confirm our previ-
ous findings for P2. Models (1) and (2) detect a significant efficiency gain also
in BOS-P1 relative to DA-P1.25

23While we think this approach is most correct, we note that all of our results hold when
we use the raw payoffs obtained in the experiment.

24Note the P-value for P1 is precisely .05.
25As it should be expected, in (4) and (5) lower risk aversion/higher risk propensity is

associated with higher payoffs.
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TABLE 5: TREATMENT AND COGNITIVE ABILITY: REGRESSION TABLES

Dep. Var.: Expected payoff
P1 P2

(1) (2) (3) (4) (5) (6)

BOS 0.391∗∗∗ 0.427∗∗∗ 0.126 0.305∗∗∗ 0.332∗∗∗ 0.206∗∗∗

(0.133) (0.0969) (0.138) (0.0949) (0.0827) (0.0719)

High 0.550∗∗∗ 0.508∗∗∗ 0.209 0.444∗∗∗ 0.448∗∗∗ 0.323∗∗

(0.153) (0.157) (0.135) (0.0758) (0.103) (0.148)

BOS*High 0.596∗∗ 0.249
(0.235) (0.165)

age 0.0225 0.0193 0.000899 -0.000463
(0.0172) (0.0183) (0.0199) (0.0197)

female -0.408∗∗ -0.402∗∗∗ -0.0251 -0.0224
(0.159) (0.151) (0.107) (0.103)

period 0.0128 0.0128 0.0251 0.0251
(0.0334) (0.0335) (0.0305) (0.0305)

Type 2 1.117∗∗∗ 1.120∗∗∗ -0.200 -0.198
(0.380) (0.379) (0.267) (0.268)

Type 3 -1.052∗∗∗ -1.050∗∗∗ 0.0774 0.0774
(0.114) (0.115) (0.217) (0.218)

Type 4 -1.715∗∗∗ -1.716∗∗∗ -1.033∗∗∗ -1.036∗∗∗

(0.177) (0.178) (0.293) (0.293)

order 0.143 0.136 -0.0383 -0.0412
(0.153) (0.160) (0.155) (0.160)

BRET 0.0160∗∗ 0.0153∗∗ 0.0106∗∗ 0.0103∗∗

(0.00639) (0.00616) (0.00526) (0.00522)

_cons 8.916∗∗∗ 8.082∗∗∗ 8.342∗∗∗ 9.415∗∗∗ 9.056∗∗∗ 9.165∗∗∗

(0.0665) (0.579) (0.637) (0.0675) (0.612) (0.618)

Obs. (groups) 960 (12) 960 (12) 960 (12) 960 (12) 960 (12) 960 (12)

Notes: the dependent variable is computed using recombinant strategies proce-
dure with 1000 recombinations for each subject in each period, and an identical
number of tie breakers. In parentheses we report robust standard errors, clustered
at the session level. ∗,∗∗ ,∗∗∗: statistically significant at the 10%, 5% and 1% level,
respectively.
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FIGURE 1: DISTRIBUTION OF RAVEN SCORES

Result 2. BOS dominates DA in ex-ante efficiency, confirming Hypothesis 2.

We turn to the comparison of High and Low subjects. Figure 1 reports the
distribution of Raven scores and its median.26 For the analysis, we choose to
split the overall sample between High and Low subjects, rather than keep us-
ing the classification adopted to allocate them within each session, because we
observe some differences in the thresholds across sessions. Nevertheless we
use on the whole sample the same criterion adopted within each session: we
break ties in the partial ordering induced by Raven scores using the amount
of time used to complete the test, where faster subjects receive a higher rank.
If ties survive to this procedure, we break them at random. The median hap-
pens to be at a Raven score of 30, where all of the 18 minutes given are used
to complete the test. Subjects that do strictly better than that are classified as
High, others are classified as Low. Figure 2 reports the distribution of choices
in the risk elicitation task. We overimpose the kernel densities for Low and
High subjects. A larger number of High subjects are risk neutral relative to
Low subjects. We do not detect a significant correlation between Raven scores

26We do not observe ceiling effects, something that might be a concern given that we use
the Standard version of Raven progressive matrices.
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FIGURE 2: DISTRIBUTION OF RISK TASK CHOICES

FIGURE 3: PLAYERS’ STRATEGIES - P1
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FIGURE 4: PLAYERS’ STRATEGIES - P2

and risk attitudes.27

Figures 3 and 4 show the distribution of strategies used by High and Low
subjects in each treatment. The truth-telling rate of High subjects is higher
than that of Low subjects under DA, and lower under BOS, in both P1 and P2.
High subjects seem to respond to the treatments as expected: STM is played
by around one third of them in BOS-P1, and SN snd STT are used to a rele-
vant extent only in BOS-P2. Low subjects seem to adjust their strategies only
marginally to the different treatments.

We run a multinomial logit on the strategies used to assess the effect that
being High or Low has in different treatments. We estimate the marginal ef-
fects and test for the significance of differences in marginal effects. Results are
reported in Table 6. The top panel reports differences between High and Low
subjects in each treatment. The bottom panels report the difference between
DA and BOS, in each preference environment, for Low and High subjects sep-
arately. Each cell can be interpreted as a difference in the probability of using
the strategy of the corresponding column. Bold differences are significant at
the 5 percent level. For instance, the probability of being truthful in DA-P2 is
12.6 percentage points higher for a High subject, and this difference is signif-

27Spearman’s rho= .037, P-val= .61.
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TABLE 6: DIFFERENCES IN STRATEGIES

Truth SN STT STM Other

High vs Low

DA-P1 .063 -.059 -.005 .029 -.028
(.072) (.046) (.015) (.017) (.026)

BOS-P1 -.188 -.071 .057 .244 -.043
(.039) (.036) (.045) (.041) (.034)

DA-P2 .126 -.032 -.014 -.040 -.040
(.048) (.024) (.025) (.008) (.014)

BOS-P2 -.171 -.027 .097 .106 -.006
(.050) (.031) (.040) (.026) (.011)

BOS-P1 vs DA-P1
Low -.104 .015 .035 .046 .007

(.040) (.039) (.025) (.033) (.035)

High -.354 .004 .097 .261 -.007
(.057) (.031) (.030) (.039) (.028)

BOS-P2 vs DA-P2
Low -.049 .059 .049 -.030 -.029

(.055) (.040) (.027) (.010) (.017)

High -.345 .064 .116 .146 .004
(.058) (.026) (.043) (.027) (.017)

Notes: each cell in the table can be interpreted as the estimated difference in the prob-
ability of using each strategy. Estimates come from a multinomial logit model. The
top panel shows the difference between High and Low subjects within each treat-
ment. The bottom panels show the difference between DA and BOS for Low and High
subjects. Robust standard errors in parentheses. Bold indicates significance at the .05
level.

icant. Or, High subjects reduce their truth-telling rate by 34.5 points between
DA-P2 and BOS-P2.

The only significant response of Low subjects to the treatment is a reduc-
tion of truthful reports when moving from DA to BOS. This reduction is larger
for High subjects (35-34 versus 5-10 percent). In each environment, High sub-
jects increase their use of the ‘correct’ strategies in BOS, while Low subjects
don’t. As a consequence, High subjects end up playing significantly more
STM and less truth-telling and SN relative to Low subjects under BOS−P1,
and significantly more STT and STM and less truth-telling under BOS-P2. They
are also significantly more truth-telling under DA-P2.

Table 7 presents the same comparisons, though using non-parametric meth-
ods. Since we base the tests on one observation per session, the observations
for Low and High subjects are matched, and we adopt the Wilkoxon signed-
rank (WSR) test. Despite the fact that the tests have relatively low power in
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TABLE 7: DIFFERENCES BETWEEN HIGH AND LOW

Treatment Truthful SN STT STM Exp. Payoff
Z P-val Z P-val Z P-val Z P-val Z P-val

DA-P1 0.84 .40 -1.36 .17 -0.31 .75 1.26 .21 0.94 .35
BOS-P1 -1.78 .07 -1.15 .25 1.15 .25 2.20 .03 2.20 .03

DA-P2 2.20 .03 -1.36 .17 -0.31 .75 -2.20 .03 1.78 .07
BOS-P2 -1.78 .07 -1.36 .17 1.99 .04 1.99 .04 2.20 .03

Notes: the table reports, for each of the listed variables, the Wilkoxon signed-rank test, and
the corresponding P-value, on the difference between High and Low subjects within each
treatment. A positive statistic means a higher value for High subjects. The statistic is com-
puted using one observation per session. Expected payoff is computed using a recombinant
strategies procedure with 1000 recombinations for each subject in each period, and an iden-
tical number of tie breakers. Bold indicates significance at the .05 level.

this case, results are similar to those outlined before.

Result 3. Compared to High subjects, Low subjects are significantly more likely to
report truthfully in BOS. They are significantly less likely to use STM in BOS-P1,
STM and STT in BOS-P2.

Result 3 is in line with Hypotheses 3. Low subjects do not simply suf-
fer from a truth-telling bias. Indeed, they also manipulate too often when
they should report truthfully, as in DA-P2, while in BOS-P1 they appear over-
cautious. Low subjects seem to have a particularly hard time manipulating
their second listed school. This is arguably due to the higher strategic com-
plexity of this operation relative to manipulating the first listed school. For the
latter, reasoning on capacities and others’ first listed schools can be sufficient.
In order to manipulate the second listed school, one also needs to simulate the
first round of the mechanism and its consequences on available seats.

Average payoffs for all treatments are shown in Figure 5. Low and High
subjects earn similar amounts under DA, while High subjects outperform Low
ones under BOS. Since these payoffs depend on a number of random factors,
we test for differences between Low and High subjects using the expected
payoffs obtained through the recombinant strategies technique. A WSR test
finds High subjects earn significantly more than Low ones in BOS and not in
DA, under both preference environments (Table 7).28

Models (3) and (6) in Table 5 also investigate differences between Low and
High subjects, respectively in P1 and P2. The corresponding marginal effects

28Figures 9 and 10 in Appendix C report the average payoff of each strategy for each subject
type.
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FIGURE 5: LOW AND HIGH SUBJECTS’ PAYOFFS

Notes: average payoffs computed for top (High) and bottom (Low) half of the distri-
bution of Raven scores.

for the interaction between mechanism and cognitive ability are reported in
the top panels of Figure 6. The difference in the expected payoff of Low and
High subjects increases in BOS relative to DA, and High subjects earn signifi-
cantly higher expected payoffs than Low ones in BOS, under both preference
environments. In DA-P1 Low and High subjects have similar expected pay-
offs. In P2 High subjects outperform Low ones also in DA. Similarly, the
bottom panels of Figure 6 show the linear relation between Raven score and
predicted expected payoff for each treatment. They are obtained from models
similar to (3) and (6), except they estimate the interaction between the mecha-
nism and the (continuous) Raven scores, rather than the dummy High/Low.29

The predicted expected payoff increases more steeply with the Raven score
under BOS. Indeed the marginal effect of one more Raven point – i.e., the
slope of the depicted lines – is significantly different from zero only under
BOS in both preference environments.

Overall, we show BOS induce larger inequalities between Low and High

29See the full estimates in Appendix C

22



FIGURE 6: MARGINAL EFFECTS

Notes: average payoffs computed for top (High) and bottom (Low) half of the distri-
bution of Raven scores.

subjects. DA tends to equalize their payoffs.30 Thus, our results are in line with
Hypothesis 4, and strongly support the leveling-the-playing-field hypothesis.

Result 4. High subjects earn higher payoffs than Low ones under BOS. Payoff differ-
ences are reduced under DA.

Table 8 shows how many High and Low subjects one is expected to find
at each school. We use the allocations obtained from the recombinant strate-
gies procedure to retrieve the average number of High subjects admitted at
each school.31 If the strategies did not differ across groups, all cells should
be equal to two. Spreads from this value are small under DA. Ability segre-
gation emerges under BOS. In particular, Low subjects are under-represented
at school C and over-represented at school D. In BOS-P1 there are 45 percent

30In model (6), but not in the other estimates, we find Low subjects earn less than High
ones also in DA-P2. On top of being statistically less robust as a result, one could argue that
strategy-induced inequalities are easy to fix under DA, where straightforward advice can be
given to parents.

31While our classification procedure does not guarantee this, in the experiment there were
exactly the same number of High and Low subjects in each treatment.
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TABLE 8: NUMBER OF HIGH SUBJECTS PER SCHOOL

DA-P1 BOS-P1 DA-P2 BOS-P2

School A 2.11 2.11 2.09 1.92
School B 1.97 1.91 2.00 2.05
School C 1.91 2.37 1.94 2.29
School D 2.01 1.63 1.95 1.72

Notes: the table shows the expected average number of High subjects admitted at each
school, given the strategies, in case axactly half of the subjects were High. The aver-
age is computed using a recombinant strategies procedure with 1000 recombinations
for each subject in each period, and an identical number of tie breakers. The average
is weighted to account for the different proportions of High subjects in different treat-
ments.

more High subjects in school C, and 30 percent more in school A, with respect
to school D. In BOS-P2 there are 33 percent more High subjects in school C,
and 20 percent more in school B, with respect to school D. 32

Table 9 reports the difference in the probability that High and Low subjects
have of being admitted at each school, and the corresponding tests of signifi-
cance, based on the marginal effects obtained from a multinomial logit model.
We find no significant differences between High and Low subjects in the prob-
ability of being assigned at any school under DA-P1 and DA-P2. When moving
from DA to BOS, Low subjects become significantly more likely to be assigned
to School D (second and third panel), and are significantly more likely to be
admitted there than High subjects (first panel).

Result 5. Low subjects are over-represented at school D and under-represented at
school C under BOS.

Thus, BOS induce segregation by ability, confirming Hypothesis 5.

6 Conclusions

School choice is a politically sensitive issue. Because education distributes
opportunities, fairness and equality concerns play a central role, and it is of

32Under DA and BOS-P1, High subjects are over-represented in school A. Since Low sub-
jects use safe strategies more often when these are suboptimal, they end up under-represented
at their preferred school. The ’safe bias’ is found to be a major source of losses in empirical
studies [Calsamiglia et al., 2015; He, 2014]. In the experiment it is the main departure from
truth-telling under DA, and the main suboptimal strategy other than truth-telling under BOS,
used around one in six cases when it should not be played in equilibrium.
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TABLE 9: DIFFERENCES IN PROBABILITY OF ASSIGNMENT AT EACH SCHOOL

School A School B School C School D

High vs Low

DA-P1 .006 -.001 -.036 .030
(.055) (.056) (.036) (.016)

BOS-P1 .001 -.011 .102 -.091
(.042) (.046) (.032) (.042)

DA-P2 -.027 -.003 .020 .009
(.046) (.058) (.048) (.032)

BOS-P2 -.006 .011 .076 -.080
(.028) (.046) (.048) (.021)

BOS-P1 vs DA-P1
Low .006 .005 -.077 .066

(.034) (.040) (0.24) (.022)

High .001 -.005 .060 -.056
(.036) (.021) (.025) (.024)

BOS-P2 vs DA-P2
Low -.008 -.002 -.031 .041

(.028) (.039) (.031) (.019)

High .011 .012 .025 -.048
(.027) (.034) (.038) (.022)

Notes: each cell in the table can be interpreted as the estimated difference in the prob-
ability of being admitted at each school. Estimates come from a multinomial logit
model. The top panel shows the difference between High and Low subjects within
each treatment. The bottom panels show the difference between DA and BOS for Low
and High subjects. Robust standard errors in parentheses. Bold indicates significance
at the .05 level.

paramount importance to identify the winners and losers that changes to the
allocation mechanism can make. Our contribution helps achieving this in-
formation, and assessing to which extent does Deferred Acceptance level the
playing field.

We show that students of lower cognitive ability are worse off with re-
spect to high ability ones under the Boston mechanism, because they fail to
manipulate appropriately. This results in ability segregation under the Boston
mechanism. Despite the fact that such segregation can emerge only due to
different strategic behaviors, and not, as it is the case in most field context,
to priority criteria or to correlation between preferences and ability, schools
other than the worst admit up to 45 percent more participants of high cogni-
tive ability relative to the worst school. While our game does not explicitly
include peer-effects, one should keep them in mind in interpreting this result.
The quality of a school is determined to a significant extent by the quality of its
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students [e.g, Henderson et al., 1978], and if worse schools are filled with stu-
dents of low cognitive ability this would further decrease their performance
[see also Calsamiglia et al., 2015; Cantillon, 2013], and depress the educational
prospects of the already disadvantaged.

While these results support the choice of strategy-proof mechanisms, we
also show Boston achieve higher ex-ante efficiency over Deferred Acceptance.
Despite participants, including high ability ones, are not perfect strategizers,
every school admits more students that value it relatively more under Boston.
Thus, overall, our results highlight an important tradeoff between equality
and efficiency in the choice between school allocation mechanisms. They also
pave the way to future investigations of methods that try to resolve this trade-
off, either through the choice of appropriate alternative mechanisms, or by
reducing the strategic ability gap between applicants.
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A Equilibria

Equilibria BOS-P1. We will show that in Preference Environment 1, there is an
essentially unique equilibrium where 11 students report A �i C �i B,D and 5
report B�i C�i A,D. We begin by showing that this profile is an equilibrium.

Consider students of type 1,3 and 4 who initially apply at A. They are ad-
mitted at A with probability 4/11 and rejected with probability 7/11. If rejected,
their conditional probability of acceptance at C is between 4/7 and 4/8: there
are 7 applicants who were rejected at A (and have the same conditional prob-
ability of acceptance at C) and another applicant who was rejected in a less
competitive lottery at B (and therefore has a lower conditional probability of
acceptance at C). The corresponding expected payoffs for type 1,3 and 4 are
bounded from below by 9.18, 8.36 and 7.73, respectively.

If a student of type 1,3 or 4 deviates and applies at B in the first round,
she should again rank C second, as A will be filled in round 1. She is rejected
at B with probability 2/6. In this case, she will compete with at least 7 other
applicants at C in the second round, so that the expected payoffs for type 1,3
and 4 when submitting B�i C�i A,D are bounded from above by 7.66, 8 and
7.66, respectively.33 If she applies at C or D directly in the first round, she will
be accepted and her payoff will be even lower. Hence, there is no profitable
deviation for types 1, 3 and 4.

A student of type 2 applying at B is admitted with probability 4/5. Hence,
her expected payoff is higher than 4/5p(2,B) = 13.6. Deviating and applying at

33Since in the first round she was rejected in the less competitive lottery at B, her condi-
tional probability of acceptance at C is strictly less than 4/8 but in order to check that there is
no profitable deviation, taking 4/8 as an upper bound suffices.
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A in the first round would yield less than 4/12p(2,A)+ 8/12p(2,C) = 9.33 while
applying at C (or even D) in the first round yields at most p(2,C) = 6.

A student of type 3 or 4 applying at B receives an expected payoff higher
than 4/5p(3,B) = 8, since there is a positive probability that she will be admit-
ted to C. Deviating and applying at A yields an expected payoff of at most
4/12(p(3,A)+p(3,C)+p(3,D)) = 8. Similarly, deviating and applying at C in the
first round yields p(4,C)< p(3,C) = 8. Hence, there is no profitable deviation.

This establishes the strategy profile as equilibrium. Next, we show that no
other (pure strategy) equilibrium exists. For that, let us denote the number of
applicants at A, B and C in the first round as #A ,#B and #C, respectively.

Claim 1. In any equilibrium, #A,#B> 4.

Proof of Claim: Assume #A < 4 or #B < 4. Then some type could switch and
apply at her most preferred school and secure her highest possible payoff. ♦

Claim 2. In any equilibrium, #A> #B.

Proof of Claim: Towards a contradiction assume #A < #B. Then, any type 1, 3
or 4 initially applying at B would switch and apply at A instead. Hence, in
equilibrium, #B6 4, so that #A< 4, in contradiction to Claim 1. ♦

Claim 3. In any equilibrium, types 1, 2, an 4 apply at A or B in the first round.

Proof of Claim: Assume otherwise, i.e. consider a type 1, 2 or 4 who applies
at C. She will be admitted to C or D, as A and B are filled in the first round.
Hence, her payoff is at most p(1,C) = p(2,C) = p(4,C) = 6. If #A 6 9, then a
switch to A yields an expected payoff no lower than 4

9+1p(4,A) = 6.4. If on the
other hand #B 6 5, a switch to B yields at least 4

5+1p(4,B) = 6.66. Hence we
have #A= 10, #B= 6 – and no type 1, 2 or 4 applying at C. ♦

Claim 4. In any equilibrium, types 3 apply at A or B in the first round.

Proof of Claim: Assume otherwise, i.e. consider a type 3 who applies at C. Since
no type 1, 2 or 4 applies at C, she is accepted and receives p(3,C) = 8. If #A6 7,
a switch to A�i C�i B,D yields an expected payoff of more than 4

7+1p(3,A) = 8,
as she would be accepted at C with positive probability. If #B6 4, a switch to
B �i C �i A,D yields an expected payoff of more than than 4

4+1p(3,B) = 8, as
she would be accepted at C with positive probability. Hence, we have #A> 8,
#B> 5, so that #C6 3.

If #A = 8, a switch to A �i C �i B,D leaves at least two available seats at C
in round 2 and hence yields at least 4

8+1p(3,A)+ 5
9
2
6p(3,C) = 8.59. Hence, we

have #A> 9, #B> 5, so that #C6 2.
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If #A= 9, a switch to A�i C�i B,D leaves at least three available seats at C
in round 2 and hence yields at least 4

9+1p(3,A)+ 6
10

3
7p(3,C) = 8.46. Hence, we

have #A> 10, #B> 5, so that #C6 1.
Finally, if #A= 10, a switch to A�i C�i B,D leaves four available seats at C

in round 2 and hence yields at least 4
10+1p(3,A)+ 7

11
4
8p(3,C) = 8.36. Hence, we

have #A> 11, #B> 5, so that #C= 0. ♦

Since C is available in round 2 by Claim 3 and 4, while A and B are full, we
know that everyone submits either A�i C�i B,D or B�i C�i A,D. It remains
to quantify and identify the applicants at each school.

Claim 5. In any equilibrium, #A6 11, #B> 5

Proof of Claim: Towards a contradiction assume #A = 12, #B = 4. Any type 3
applying at A would deviate and apply B, as we saw when we established our
candidate profile with #A= 11, #B= 5 as an equilibrium. Any type 2 applying
at A has an even higher incentive to deviate and apply at B. ♦

Claim 6. In any equilibrium, #A> 11, #B6 5

Proof of Claim: Towards a contradiction assume #A6 10, #B> 6. Any type 1,3 or
4 applying at B would deviate and apply at A, as we saw when we established
our candidate profile with #A= 11, #B= 5 as an equilibrium. ♦

Finally, observe that no type 1 applies at B in equilibrium where they
would receive at most 4

5p(1,B) +
1
5
1
8p(4,C) = 8.6 while a switch to A would

yield at least 4
12p(1,A) + 8

12
4
8p(1,C) = 8.66. Similarly, no type 2 applies at A

where she would receive at most 4
11p(2,A)+ 7

11
4
7p(2,C) = 8 while a switch to B

would yield more than 4
6p(2,B) = 11.33. This concludes the characterization of

equilibria in BOS-P1.

Naive and strategic players in BOS-P1. We show that in the presence of naive,
truthtelling players, the remaining strategic, best responding players will all
submit either A�i C�i B,D or B�i C�i A,D – as they would in any pure Nash
equilibrium. Moreover, the presence of naive players increases the incentives
for strategic players to initially apply at the most competitive school relative
to equilibrium. With sufficiently many naives, this yields #A = 12 and #B = 4

(the strategic players of type 2 continue to apply at B). Hence strategic players
will all use skip-the-middle strategies.

First, observe that any #A,#B > 4 as naives always apply at their true first
choice initially and strategic players would switch and apply there as well if
it was underdemanded.
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Next, observe that #A > #B as there are more naives who prefer A and
strategic players of type 1,3,4 would switch to A if #A< #B.

Also, all players will initially apply at either A or B: For naive players
this is by assumption; for strategic players the reasoning behind the proofs of
Claim 3 and 4 goes through unchanged.

Finally, note that naive players will rank either B or A second – neither of
which is available in round two – while strategic players rank C second, as
in any equilibrium. What remains to be quantified is the number of strategic
players who apply at A and B in round one.

Given any number of opponents initially applying at A and B, a strategic
player comparing the expected payoff from A �i C �i B,D and B �i C �i A,D

finds that the presence of naive players increases her chance of being admitted
at C should they be rejected at their reported first choice. Moreover, in all
relevant cases (i.e. where #A > #B), the increase in payoff on A �i C �i B,D

is weakly larger since the probability of being rejected at A in round one is
higher. Thus, the presence of naives increases strategic players’ incentives to
apply at A so that compared to equilibrium we find #A> 11 and #B6 5.

It is easily verified that all stratgic players of type 2 will then submit B �i

C �i A,D. Moreover with two naive players of each type, one finds that all
strategic players of types 1, 3 and 4 submit A�i C�i B,D (see WIDER Paper).

Equilibria BOS-P2. We claim that strategy profiles where all type 1 and three
of type 4 report A�i B,C,D, all type 2 and one of type 4 report B�i A,C,D and
all type 3 report C�i A,B,D are the only pure strategy equilibria.

First, to check that the profile constitutes an equilibrium, consider students
of type 1 and 4 who apply at A in the first round. They are admitted at A with
probability 4/7. If they are rejected at A, they are admitted at D. For a student
of type 1 or 4, this corresponds to an expected payoff of at least 9.14. Deviating
and applying at B in the first round yields 7.33; applying at C yields 5.6. Hence,
there is no profitable deviation.

A student of type 2 or 4 applying at B is admitted with probability 4/5 and
otherwise ends up at D. Hence, her expected payoff is at least 8.8. Deviating
and applying at A in the first round yields 8; applying at C yields 5.6.

Students of type 3 apply at C, are admitted and receive p(3,C) = 11. If all
others rank C second, deviating and applying at A yields at most 1

2 ·p(3,A)+
1
2
1
4 ·p(3,C) = 9.38; applying at B yields at most 4/6 ·p(3,B)+ 2

6
1
5 ·(3,C) = 8.1. Thus

there is no profitable deviation if sufficiently many students rank C second.
Next, we show that there are no other equilibrium profiles.
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Claim 1. In any equilibrium, #A> 4.

Proof of Claim: Assume #A < 4. Any type could switch and apply at A, to be
accepted with probability one and secure her most preferred school. ♦

Claim 2. In any equilibrium, #B> 4.

Proof of Claim: Assume otherwise. Then any student could switch to B and
secure an expected payoff of 15 or 11 respectively. Since no one is willing
to do this, we know that the sum over expected payoffs must be at least 4 ·
15+ 12 · 11 = 192. But the highest possible sum over deterministic payoffs is
4 ·20+4 ·15+4 ·11= 184 – a contradiction. ♦

Claim 3. In any equilibrium, #A> #B.

Proof of Claim: Assume otherwise, i.e. #A< #B in equilibrium. Then any type 1,
3 or 4 who applies at B in the first round would switch and apply at A instead.
Hence, as we are in equilibrium, there can be no type 1, 3 or 4 applying at B.
Then #B6 4, so that #A< 4, in contradiction to Claim 1. ♦

Claim 4. In any equilibrium, types 1, 2, an 4 apply at A or B in the first round.

Proof of Claim: Assume otherwise, i.e. consider a type 1, 2 or 4 who applies at C.
She will be admitted to C or D, as A and B are filled in the first round. Hence,
her payoff is at most p(1,C) = p(2,C) = p(4,C) = 7. If #A 6 8 a switch to A

yields an expected payoff no lower than 4
8+1p(4,A)≈ 7.11. If on the other hand

#B 6 5 a switch to B yields at least 4
5+1p(4,B) ≈ 7.33. Then the only situation

were some type 1, 2 or 4 applies at C would have #A = 9, #B = 6 and #C = 1.
In such an equilibrium, everybody would apply at C in the second round. But
then, a type 3 applying at A would receive at most 4

916+
5
9
3
511 ≈ 10.77 while

a type 3 applying at B is admitted at D with positive probability and hence
receives less than 11. In both cases, she would deviate and apply at C where
she receives p(3,C) = 11 for sure. ♦

Claim 5. In any equilibrium, no students of type 3 apply at B in the first round.

Proof of Claim: Assume otherwise, so that #C < 4. If #B > 4, everyone ranks C

second and no type 3 is willing to apply at B instead of C as she risks being
assigned to D. Hence (by Claim 2) #B = 4. But then, some type 2 applies at A
where #A> 9 and receives at most 11, while applying at B yields at least 12. ♦

Claim 6. In any equilibrium, all students of type 3 apply at C in the first round.
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Proof of Claim: Assume otherwise, so that #C < 4. Then in the second round,
there are available seats at C but not at A or B. Hence, every student that
applies at A will rank C second. Moreover, if #B > 4, every student applying
at B will also rank C second.

If #C= 3 there is one available seat at C in round two and #A> 7; a student
of type 3 who initially applies at A, receives less than 4

7 ·16+
3
7
1
3 ·11≈ 10.71 and

would prefer to apply at C to receive p(3,C) = 11 for sure.
If #C = 2 there are two remaining seats at C in round two. If #A = #B = 7,

a type 3 initially applying at A receives at most 4
7 · 16+

3
7
2
6 · 11 ≈ 10.71. If on

the other hand #A > 8, she is admitted at A with probability of at most 1
2 and

admitted at D with probability of at least 1
4 = P(li > 13). Hence her expected

payoff is at most 10.75. In either case, she would deviate and apply at C.
If #C < 2 then #A > 8. Hence, as we just saw, no student of type 3 would

initially apply at A but rather deviate and apply at C. ♦

Claim 7. In any equilibrium, at least 7 students apply at A in the first round.

Proof of Claim: By Claim 3, 4 and 6, #A > 6 > #B. Towards a contradiction,
assume #A = 6 = #B. Then some type 1 or 4 applies at B and receives 4

6 · 11 ≈
7.33. A switch to A would yield at least 4

7 ·16≈ 9.14. ♦

Claim 8. In any equilibrium, 7 students apply at A in the first round.

Proof of Claim: By Claim 7, #A> 7. Towards a contradiction, assume #A> 8 so
that #B = 4. Then some type 2 or 4 applies at A, and receives at most 4

816 = 8.
A switch to B would yield at least 4

5 ·11= 8.8. ♦

To summarize, we now know that #A = 7, #B= 5 and #C = 4. It remains to
show that all type 1 apply at A and all type 2 apply at B. Towards a contradic-
tion, assume there is a type 1 who applies at B. There she receives 4

5 ·11= 8.8 If
she deviates and applies at A, she would receive 4

820 = 10. Similarly, a type 2
applying at A would receive 4

716≈ 9.1 while deviating and applying at B yield
4
615= 10. This concludes the characterization of equilibria in BOS-P2.

Naive and strategic players in BOS-P2. First note, that since everyone’s
favourite school is A, we have #A > 4. We claim that if at least 4 of the 8

players of type 2 and 4 are strategic, B will also be filled in round 1. Assume
otherwise, i.e. #B < 4. With A filled in round one, all but the following four
strategies are dominated: A�i B�i ..., A�i C�i ..., B�i C�i ... and C�i B�i ....
The last strategy may only be played by students of type 3 – all others prefer
to apply at B initially to earn either 15 or 11.
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Then #A > 9 and A admits – in expected terms – at most 4
9 · 4 students of

type 1, so that the average expected payoff is at most

1

16

(
4

9
·4 ·20+ 5

9
·4 ·16+4 ·15+4 ·11

)
= 10.944.

Hence, a strategic student of type 4 will not submit A�i B�i ...: her expected
payoff would have to be weakly higher than 11 (she could get into B for sure)
and this payoff would also be the minimum expected payoff for the naive ap-
plicants, contradicting an average expected payoff of 10.944. Similarly, strate-
gic players of type 2 will not submit A �i B �i ... – this would require their
payoff from this strategy to be at least 15 and hence every naive player’s pay-
off from this strategy to be higher than 11.

Finally, if #A = 9 we have #C > 3 so that neither types 2 or 4 would submit
A �i C �i ... as it would earn them 4

9 · 16 < 11. If #A > 10 the payoff is at most
4
10 · 16+

6
10 · 7 < 11. Hence, all strategic players of type 2 and 4 would apply at

B initially contradicting #B < 4.

B Experimental materials

Instructions

Welcome to this experiment in decision-making. You will receive 5 Euros as a
show-up fee. Please, read carefully these instructions. The amount of money
you earn depends on the decisions you and other participants make. In this
experiment, on top of the show-up fee, you can earn between 0 and 26.30
Euro. In the experiment you will earn ECU (Experimental Currency Units).
At the end of the experiment we will convert the ECU you have earned into
Euro according to the rate: 1 ECU = 0.7 EURO. You will be paid your earnings
privately and confidentially after the experiment. Throughout the experiment
you are not allowed to communicate with other participants in any way. If
you have a question please raise your hand. One of us will come to your desk
to answer it.

TASK 1

On the sheet of paper on your desk you see a puzzle: a matrix with 8 graphic
elements and an empty slot. There are eight possible numbered elements that
could fill the empty slot. Only one is correct. Your task is to identify the
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element that correctly solves the puzzle. You choose the element you want by
typing the corresponding number and pressing OK.

You will face 36 such puzzles, divided in three blocks of 12 puzzles each.
Within each block, you can move back and forth through puzzles even with-
out solving them, and change the answers you have given before. You have
five minutes to complete blocks 1 and 2, and eight minutes to complete block
3. For each puzzle you correctly solve you earn 0.1 ECU. You will be informed
about your score and earnings at the end of the experiment.

FIGURE 7: SCREENSHOT OF A QUESTION IN THE RAVEN TEST

TASK 2

On the sheet of paper on your desk you see a field composed of 100 numbered
boxes. You earn 0.1 ECU for every box that is collected. Every second a box is
collected, starting from the top-left corner. Once collected, the box disappears
from the screen and your earnings are updated accordingly. At any moment
you can see the amount earned up to that point.
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Such earnings are only potential, however, because behind one of these
boxes hides a time bomb that destroys everything that has been collected.

You do not know where this time bomb lies. You only know that the time
bomb can be in any place with equal probability: the computer will randomly
determine the number of the box containing the time bomb. Moreover, even
if you collect the time bomb, you will not know it until the end of the experi-
ment.

Your task is to choose when to stop the collecting process. You do so by
hitting ’Stop’ at any time.

If you happen to have collected the box where the time bomb is located,
you will earn zero. If the time bomb is located in a box that you did not collect
you will earn the amount of money accumulated when hitting ’Stop’. We will
start with a practice round. After that, the paying experiment starts.

FIGURE 8: SCREENSHOT OF THE BOMB RISK ELICITATION TASK

TASK 3
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In this part of the experiment, we model a procedure to allocate seats at schools
to students. Each student has to submit an application form to apply for a seat
at a school. You and the other participants take the role of students. An as-
signment procedure that we will explain in detail below, decides, based on
the application forms submitted by you and the other 15 participants, who
receives a seat at which school.

There are 10 Rounds, in which you will apply anew for a seat at a school.
All rounds are independent: where you are admitted, depends only on the
application forms submitted in this round. Your chances in the current round
are not influenced by your own decisions or the decisions of other partici-
pants in previous rounds. At the end of the experiment, one round is selected
randomly. Your payoff for Task 3 depends on the school that you have been
admitted to in that round.

Earnings: rounds 1-5
In each round, you and the remaining 15 participants apply for one of 16 seats.
These are distributed over 4 schools – A, B, C, D – where each school has 4
seats. The earnings of a student admitted at a school depends on his type.
There are 4 types of students – 1, 2, 3, 4 – with 4 students of each type. The
type of a participant will be randomly drawn in each round. The earnings
of a student, depending on his type and the school the he is admitted to, are
summarized in the table below.

ECU for a seat at school A B C D

Type 1 20 10 6 0
Type 2 16 17 6 0
Type 3 16 10 8 0
Type 4 16 10 6 0

You can read the table as follows: in a round where you are a student of
type 2 and are admitted at school C you earn 6 ECU - if this round is chosen to
be paid out, this amount will be converted to Euros and paid out at the end of
the experiment. In the same way, a student of type 3 that is admitted at school
A receives a payoff of 16 ECU.

The payoffs above remain unchanged for the first 5 rounds. In rounds 6-10,
there is different payoffs table, which you will see on the screen.

Available decisions
In each round, you have to submit an application form. To do so, you have
to fill in under ‘first choice’, ‘second choice’, ‘third choice’ and ‘fourth choice’
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the name of the respective school: ‘A’,‘B’,‘C’ or ‘D’. This ranking determines
the order with which your applications are sent to the schools, and, through
the procedure outlined below, the school you are assigned to. You are free
to choose the order in which you rank schools. When you are done, confirm
your list by clicking ‘submit’.

The assignment procedure [DA]
Once all application forms have been submitted, each student draws a lottery
number from 1 to 16: each number is drawn once. Each student has the same
chances. For the assignment, students with a lower lottery number receive
preferential treatment over students with a higher lottery number.

The assignment of participants to available seats works as follows:

phase 1:
- Application by students. Each student applies at the school that he ranked
as first choice on his application form.
- Admission. If at most 4 students apply at a school, all of them are prelimi-
narily accepted. If more students apply at a school than the school has seats,
the school preliminarily accepts the 4 students with the lowest lottery number.
Applicants that do not receive a seat are permanently rejected at the respective
school.

phase 2:
- Application by students. Every student, who has been accepted prelimi-
narily in round 1, still applies at the respective school. Every student that
was rejected permanently in round 1, applies at the school that is next on his
application form.
- Admission. Each school preliminarily accepts the 4 applicants with the low-
est lottery number. If there are less than 4 applicants, the school preliminarily
accepts all applicants. Applicants that do not receive a seat are permanently
rejected at the respective school.

phase 3:
- Application by students. Every student, who has been accepted prelimi-
narily in round 2, still applies at the respective school. Every student that
was rejected permanently in round 2, applies at the school that is next on his
application form.
- Admission. Each school preliminarily accepts the 4 applicants with the low-
est lottery number. If there are less than 4 applicants, the school preliminarily
accepts all applicants. Applicants that do not receive a seat are permanently
rejected at the respective school.
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(. . . )

The procedure continues according to these rules. The procedure ends, once
a phase is reached where every applicant is preliminarily accepted. In this
moment, preliminary acceptance becomes permanent acceptance.

After every round you are informed about your lottery number and about
the school where you received a seat. Then, the next round starts.

The assignment procedure [BOS]
Once all application forms have been submitted, each student draws a lottery
number from 1 to 16: each number is drawn once. Each student has the same
chances. For the assignment, students with a lower lottery number receive
preferential treatment over students with a higher lottery number.

The assignment of participants to available seats works as follows:

phase 1:
- Application by students. Each student applies at the school that he ranked
as first choice on his application form.
- Admission. If at most 4 students listed a school as first choice, all of them
receive a seat at that school. If more students listed a school as first choice,
than the school has seats, the seats at that school are given to the students
with the lowest lottery numbers. Students, who receive a seat in phase 1 are
admitted for good; for them, the assignment procedure is over. Applicants
that do not receive a seat move to the next phase.

phase 2:
- Application by students. Every student, who has not been assigned a seat
in phase 1, applies at the school that he ranked as second choice on his appli-
cation form.
- Admission. If in the second phase there are at most as many applicants
as free seats at the school, all of them receive a seat at the school. If there
are more applicants than free seats, the remaining free seats are given to the
students with the lowest lottery numbers. If there are no free seats left, no
applicant receives a seat at the school. Students, who receive a seat in phase 2
are admitted for good; for them, the assignment procedure is over. Applicants
that do not receive a seat move to the next phase.

phase 3:
- Application by students. Every student, who has not been assigned a seat
in phases 1 and 2, applies at the school that he ranked as third choice on his
application form.
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- Admission. If in the third phase, there are at most as many applicants as free
seats at the school, everyone receives a seat at the school. If there are more
applicants in the third phase than free seats, the remaining free seats are given
to the students with the lowest lottery number. If there are no free seats left, no
applicant receives a seat at the school. Students, who receive a seat in phase 3
are admitted for good; for them, the assignment procedure is over. Applicants
that do not receive a seat move to the next phase.

phase 4:
- Application by students. Every student, who has not been assigned a seat
in phases 1, 2 and 3, applies at the school that he ranked as fourth choice on
his application form.
- Admission. Since there are 16 applicants and 16 seats, there are as many free
seats in phase 4 as applicants. Everyone receives a seat.

After every round you are informed about your lottery number and about
the school where you received a seat. Then the next round starts.

Example [DA]

To illustrate the procedure described above, we consider an example. In this
example, there are 8 students and 4 schools – V, W, X, Y – with 2 seats each to
be assigned. Each Student draws a lottery number between 1 and 8.

student Lottery
number

First
choice

Second
choice

Third
choice

Fourth
choice

1 7 W V Y X
2 5 V W X Y
3 2 X V Y W
4 8 V X Y W
5 1 V Y W X
6 3 X W Y V
7 6 X W Y V
8 4 V Y X W

phase 1:
- Student number 1 applies at his first choice, school W. Since he is the only
applicant there for two seats, he is preliminarily accepted.
- Students number 2, 4, 5 and 8 apply at school V, that has only two seats avail-
able. The students with the two lowest lottery numbers (Students number 5
and 8) are preliminarily accepted at school V. Students number 2 and 4 receive
no seat in this phase.
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- Students number 3, 6 and 7 apply at school X, that also has two available
seats. Since there are more applicants than available seats, students with the
lowest lottery numbers (student number 3 and 6) are preliminarily accepted
at X. Student number 7 receives no seat in this phase.
- Students number 1, 3, 5, 6 and 8 have been preliminarily accepted. Students
number 2, 4 and 7 have received no seat in this phase. The procedure moves
to the next phase.
phase 2:
- Student number 2, 4 & 7 have no seat yet and apply at their second choice.
- Students number 2 and 7 apply at school W. Together with student number
1 who was preliminarily accepted there, there are now three applicants for
two available seats. The school preliminarily accepts the applicants with the
lowest lottery number (students number 2 and 7). Student 1, receives no seat
in this phase.
- Student number 4 applies at school X. There, there are now three applicants,
students number 3, 4, and 6, and only two seats. The school preliminarily
accepts students number 3 and 6. Student number 4 receives no seat in this
phase.
- Students number 1 and 4 have received no seat in this phase. The procedure
moves to the next phase.
phase 3:
- Student number 1 applies at his second choice, school V. Together with the
preliminarily accepted students number 5 and 8, there are now three appli-
cants for two available seats. The school preliminarily accepts the applicants
with the lowest lottery number, students number 5 and 8. Student 1 receives
no seat in this phase.
- Student number 4 has been rejected twice and now applies at his third choice,
school Y. There he is the only applicant and he is preliminarily accepted.
- Students number 1 has received no seat in this phase. The procedure moves
to the next phase.
phase 4:
- Student number 1 applies at his third choice, school Y. Together with the
preliminarily accepted student number 4, there are now two applicants for
two available seats. The school accepts both.
- All Students have a preliminary acceptance at the end of the phase. The
procedure stops; preliminary acceptances become permanent acceptances.

We arrive at the following assignment:
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Student number 1 2 3 4 5 6 7 8

school Y W X Y V X W V

We start with a short quiz and an example. Then we begin with round 1.

Example [BOS]

To illustrate the procedure described above, we consider an example. In this
example, there are 8 students and 4 schools – V, W, X, Y – with 2 seats each to
be assigned. Each Student draws a lottery number between 1 and 8.

student Lottery
number

First
choice

Second
choice

Third
choice

Fourth
choice

1 7 W V Y X
2 5 V W X Y
3 2 X V Y W
4 8 V X Y W
5 1 V Y W X
6 3 X W Y V
7 6 X W Y V
8 4 V Y X W

phase 1:
- Student number 1 applies at his first choice, school W. Since he is the only
applicant there for two seats, he is accepted.
- Students number 2, 4, 5 and 8 apply at school V, that has only 2 seats avail-
able. The students with the two lowest lottery numbers (Student number 5
and 8) are accepted at school A. Students number 2 and 4 receive no seat in
this phase.
- Students number 3, 6 and 7 apply at school X, that also has two available
seats. Since there are more applicants than available seats, students with the
lowest lottery numbers (students number 3 and 6) are accepted at X. Student
number 7 receives no seat in this phase.
- The assignment procedure ends for students number 1, 3, 5, 6, and 8, who all
received a seat at a school. Students number 2, 4 and 7 have received no seat
in this phase and move to the next phase.

phase 2:
- Students number 2, 4 & 7 have no seat yet and apply at their second choice.
- Students number 2 and 7 apply at school W, where there is one free seat avail-
able. This is assigned to the student with the lowest lottery number (student
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number 2).
- Student number 4 applies at school X. There, there are no free seats.
- Students number 4 and 7 have received no seat in this phase and move to the
next phase.

phase 3:
- Students number 4 and 7 apply at their third choice school, school Y, and are
admitted, as school D has two free seats available. With this, the assignment
procedure ends.

We arrive at the following assignment:

Student number 1 2 3 4 5 6 7 8

school W W X Y V X Y V

We start with a short quiz and an example. Then we begin with round 1.

C Additional figures and results

Figures 9 - 10 show the expected average payoff of each strategy for each stu-
dent type in each treatment. Truthful reports pay the highest payoffs in DA.
In BOS-P1 STM is the best strategy. Manipulation of the first listed school – i.e.,
the ‘safe’ strategies SN and STT – are instead rather taxing. In BOS-P2, STM
pays the highest payoffs for types 1 and 4, while STT is the best strategy for
type 2, while type 3 is almost indifferent between STT and truthful reporting.

Table 10 reports regressions, where the dependent variable is the expected
payoff as derived from the recombinant strategies technique. Instead of us-
ing the dummy classification into Low and High types, it uses as a regressor
the Raven score. The marginal effects reported in Figure 6 are obtained from
models (3) and (6).

Section 2 provides detailed hypotheses on the strategies of students of dif-
ferent types. In particular we now how many applicants of each district we
should observe at each school in the first round of the allocation process. Ta-
ble 11 compares these prediction with actual data. On aggregate, comparative
statics across treatments are always in the predicted direction: overall, there
are more applicants at school A under DA than under BOS. Students who
are expected to list their true first choice most often do so. Subjects of type 3
and 4 tend to over-manipulate their first choice in P1, and in particular under
Boston. Students of type 3 in BOS-P2 seems the furthest from the equilibrium
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FIGURE 9: AVERAGE PAYOFF OF EACH STRATEGY, BY PLAYER TYPE - P1

FIGURE 10: AVERAGE PAYOFF OF EACH STRATEGY, BY PLAYER TYPE - P2
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prediction: they do not grab the full advantage of listing school C first and
are almost as likely to list, instead, school A and school B first. Similarly, too
many students, in particular of type 4, apply at school B first in BOS-P1.
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TABLE 10: TREATMENT AND COGNITIVE ABILITY: REGRESSION TABLES (CONTINUOUS

RAVEN SCORE)

Dep. Var.: Expected payoff
P1 P2

(1) (2) (3) (4) (5) (6)

BOS 0.416∗∗∗ -0.560 -0.569 0.325∗∗∗ -0.539 -0.0898
(0.133) (0.679) (0.480) (0.0982) (0.714) (0.569)

Raven 0.0281∗∗ 0.00715 0.00716 0.0225 0.00400 0.0136
(0.0134) (0.0213) (0.0131) (0.0136) (0.0192) (0.0174)

BOS*Raven 0.0335 0.0348∗∗ 0.0296 0.0150
(0.0259) (0.0166) (0.0245) (0.0208)

age 0.0166 -0.00342
(0.0162) (0.0193)

female -0.478∗∗∗ -0.0878
(0.157) (0.100)

period 0.0128 0.0251
(0.0335) (0.0305)

2.mydistrict 1.122∗∗∗ -0.201
(0.380) (0.266)

3.mydistrict -1.057∗∗∗ 0.0774
(0.114) (0.218)

4.mydistrict -1.714∗∗∗ -1.027∗∗∗

(0.173) (0.293)

order 0.170∗∗∗ -0.197
(0.0573) (0.105)

choicebret 0.0151∗∗ 0.0103
(0.00695) (0.00557)

_cons 8.363∗∗∗ 8.980∗∗∗ 8.363∗∗∗ 8.973∗∗∗ 9.519∗∗∗ 9.165∗∗∗

(0.380) (0.596) (0.882) (0.395) (0.542) (0.744)

Obs. (groups) 960 (12) 960 (12) 960 (12) 960 (12) 960 (12) 960 (12)

Notes: the dependent variable is computed using recombinant strategies proce-
dure with 1000 recombinations for each subject in each period, and an identical
number of tie breakers. In parentheses we report robust standard errors, clus-
tered at the session level. ∗,∗∗ ,∗∗∗: statistically significant at the 10%, 5% and 1%
level, respectively.
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