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Abstract

In a stochastic exchange economy where, due to beliefs’ heterogeneity,
agents engage in speculative trade, I investigate the Market Selection Hy-
pothesis that speculation rewards the agent with the most accurate beliefs.
Assuming that agents have Epstein-Zin preferences and that markets are
complete, I derive sufficient conditions for agents’ survival in terms of saving
and portfolio decisions, and show that the Market Selection Hypothesis fails
generically. Beliefs heterogeneity may persist in the long-run or speculation
may cause the agent with the most accurate beliefs to vanish. Failures occur
because agents’ portfolio returns depend not only on beliefs accuracy but
also on risk preferences, through the comparison with the optimal growth
portfolio. The latter plays no role in CRRA economies because, due to the
interdependence of relative risk aversion and intertemporal elasticity of sub-
stitution, portfolio returns not related to beliefs accuracy are compensated
by the component of saving induced by speculation.
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1 Introduction

The dominant academic view of financial markets is that they facilitate hedging
and risk diversification. Indeed, benchmark equilibrium models of asset pricing,
such as Lucas’ model and the CAPM, characterize the relation between assets’
equilibrium returns and agents’ characteristics under the assumption that hedging
and risk diversification are the only motives for holding risky assets.

A complementary view is that trade also occurs due to agents’ disagreement
about assets’ return distributions. In fact, also in standard asset market models,
agents’ beliefs heterogeneity make them willing to hold risky positions different
from those they would have held under pure hedging. These positions are specu-
lative, in that they include a bet on the future dynamics of assets’ fundamentals.

Although speculative incentives are certainly present in financial markets, a
widespread position of financial economists is that speculation cannot have long-
run consequences, and thus its investigation cannot help to characterize assets’
returns in equilibrium. As suggested by the Market Selection Hypothesis (MSH)
of Friedman (1953) applied to financial markets, investors with accurate beliefs
should earn superior returns by ’betting’” against those with inaccurate beliefs and
thus drive them out of the market. Indeed, if markets are complete, each agent
trades to allocate his future consumption on the path which he believes as more
likely. In equilibrium, everything else being equal, the agent whose beliefs assign
the highest likelihood to paths that are actually realized should hold everything
in the long run. The argument, rigorously established by Sandroni (2000) and
Blume and Easley (2006), shows that speculation validates the MSH: investors
with inaccurate beliefs are driven out of the market, leaving no room for further
speculation, and bringing prices close to their fundamental values.!

Despite the importance of the result, the exact role of portfolio and saving deci-
sions for its validity is still unclear. In bounded economies where agents maximize

!'Note, however, that under specific assumptions on agents’ preferences, vanishing traders may
have a price and/or portfolio impact, see Kogan et al. (2006, 2009) and Cvitani¢ and Malamud
(2011).



a time separable expected utility, Sandroni (2000) and Blume and Easley (2006)
show that an agent’s long-run consumption share is determined by a survival index
that depends both on beliefs accuracy and discount factors. For log-economies be-
liefs accuracy corresponds to portfolio expected log-returns and the discount factor
is a saving rate, but other preferences lead to different optimal saving and portfolio
decisions, and thus to different speculative positions. However, the survival index
and long-run outcomes remain the same.?

In this paper, by studying saving and portfolio decisions under beliefs het-
erogeneity, I show that there exists economies where speculation, by failing to
support the MSH, has asset pricing implications also for the long-run. I consider
a discrete-time exchange economy with a complete asset market, and assume that
agents have heterogeneous beliefs and maximize (possibly heterogeneous) Epstein-
Zin recursive utilities. Although Epstein-Zin preferences are not key for my results,
they are flexible enough to disentangle intertemporal and intra-states consumption
decisions. Moreover, under some restrictions, they allow for a characterization of
optimal saving and portfolio decisions in equilibrium, so that sufficient conditions
for agents’ survival based upon them can be established.?*

I find that selection of agents’ speculative portfolios does not work as the
MSH suggests. In betting against each-others, both beliefs and preferences play
a role, causing average returns of a portfolio derived under correct beliefs not
to be necessarily higher that those of a portfolio derived under incorrect beliefs.
Portfolios are not the only determinants of long run survival. Saving plays also a
big role, and I show that it may or may not correct for the underporfomance of a
portfolio derived under accurate beliefs. When it doesn’t, MSH failures occur. For
example, there exists two-agent Epstein-Zin economy where, with full probability:

F1 both agents survive and have a positive consumption share in the long-run;

F2 either the agent with the most accurate (even correct) beliefs vanishes or he
dominates;

F3 the agent with the most accurate (even correct) beliefs vanishes.

Under F1, which typically occurs when agents’ Relative Risk Aversion (RRA) coef-
ficient is larger than 1, speculation is both a short-run and a long-run phenomenon.

2Yan (2008) finds similar results in an unbounded economy with Constant Relative Risk
Aversion (CRRA) agents where the survival index depends also on the coefficient of RRA.

3The restriction on the economy parameters limits the choice of risk aversion and intertempo-
ral substitution coefficients. Despite this limitation, the considered parametrizations are sufficient
to show that the MSH fails and to shed light on the role played by saving and portfolio decisions.
As surveyed in the next section, Borovicka (2015) finds similar results in a related continuous
time economy for a different parameter restriction.

4The formal definitions of an agent survival, vanishing, and dominance, as well as of beliefs
accuracy, are given in Section 2.



Beliefs heterogeneity is persistent and state prices keep fluctuating between agents’
evaluations. The result could help explaining stock market anomalies, as suggested
in Hong and Stein (2007).

Under F3 (F2), the market does not (may not) select for the most accurate be-
liefs. Nevertheless, a single agent is rewarded in the long-run, and determines asset
prices. The relative importance of portfolio and saving decisions, which is relevant
for how long-run outcome are achieved, depends both on agents’ preferences and
beliefs. Failure to reward the most accurate trader may occur in economies where
all agents hold the same portfolio, so that only saving is relevant, as well as in
economies where the saving decision is homogeneous across agents, so that only
portfolios matter.

The reason why speculation may fail to validate the MSH, and even allow for
long-run heterogeneity, is as follows. In Section 3, I show that, given that each
agent consumption follows a multiplicative process, the dynamics of consump-
tion shares depends on two key quantities: the ratio between the current value of
next period consumption and current consumption, which I call the intertemporal
substitution rate, and the expected log return of the speculative portfolio that
allocates next period consumption among the different states. When an agent’s
portfolio is not log-optimal (RRA coefficient not 1), his speculative returns de-
pend both on the accuracy of his beliefs and, through his risk preferences, on the
comparison between his portfolio and the log-optimal portfolio computed under
his beliefs. It is this second term that makes MSH failures of the type F1 — F3
possible. The term is positive when beliefs and RRA preferences are such that,
at the prevailing market prices, the chosen portfolio is closer to the log-optimal
portfolio derived under correct beliefs than the log-optimal portfolio derived under
the agent beliefs.® In such cases it is as if the agent is using a log-optimal portfolio
and has ’effective’ beliefs that are more accurate than his original beliefs. Effective
beliefs can also be less accurate than the original beliefs, making this term of the
expected log-return negative. Saving plays also a role in that the comparison of
agents’ intertemporal substitution rates may or may not compensate for the ac-
curacy of effective beliefs. For example CRRA economies are special because, due
to the interdependence of RRA and intertemporal elasticity of substitution (IES),
the difference of accuracy between beliefs and effective beliefs is compensated by
the saving component due to speculation.

To shed light on the role of portfolio returns for market selection purposes,
in Section 4.1, I concentrate on cases where only portfolio decisions matter for
agents’ relative performance.® When all agents have log-optimal portfolios, the

5The log-optimal portfolio derived using correct beliefs is the portfolio with maximal growth,
see Kelly (1956) and the literature surveyed in Section 1.1.
6This amounts to assume that all agents employ the same saving decision in equilibrium. The



comparison of their returns depends only on beliefs accuracy. The presence of
agents with inaccurate beliefs implies that the agent with the most accurate beliefs
has positive expected log-returns in every period. By speculating, he wins enough
bets to eventually gain all the aggregate endowment. Outside of the log framework,
however, effective beliefs accuracy and beliefs accuracy differ. Moreover, effective
beliefs accuracy depends on assets’ equilibrium returns. As a result, given two
agents, it can happen that an agent’s effective beliefs are the most accurate when
the returns are set by the other agent, and the other way round. In this case
speculation does not support the dominance of the agent with the most accurate
beliefs but the outcome is long-run heterogeneity. Alternatively, it could occur
that an agent has the most accurate effective beliefs for all possible equilibrium
asset returns, even when his beliefs are inaccurate. Depending on all agents’ risk
preferences and beliefs, all types F1 — F3 of MSH failures might occur.

For a more general characterization of the relative consumption dynamics, the
comparison of intertemporal substitution rates, related to saving behavior, plays
also an important role. Differentiated saving may or may not counterbalance
the performance of speculative portfolios. In Sections 4.2-4.3, I study how both
saving and portfolio decisions matter for long-run outcomes. MSH failures, in par-
ticular long-run heterogeneity, remain possible. CRRA economies are instead a
special case in that, due to the interdependence of risk and intertemporal prefer-
ences, there exists an exact compensation between the over or under saving due
to uncertainty and the difference of accuracy between beliefs and effective beliefs.
Generically, only one agent holds the aggregate endowment in the long-run. An
agent with accurate beliefs may still vanish, failure of type F3, but neither long-run
heterogeneity, F1, nor path dependency, F2, is possible.

The role of saving is confirmed in Section 4.4, where I analyze Epstein-Zin
economies where agents’ beliefs and risk preferences are such that everybody holds
the market portfolio in equilibrium. I derive the intuitive result that the agent
who sets the lowest interest rate when alone in the market dominates in the long-
run. Beliefs, together with discount factors and IES coefficients, still play a role
for long-run outcomes but only because, through the saving under uncertainty
channel, they determine saving rates. The accuracy of beliefs is instead irrelevant
because, given that all agents hold the same portfolio in equilibrium, the relative
consumption equilibrium dynamics is deterministic. The truth plays no role. As
in CRRA economies, only MSH failures of type F3 are possible.

The rest of the paper is organized as follow. In Section 2, I describe the
economy. In Section 3, I show that long-run outcomes depend on the compari-
son of intertemporal substitution rates and portfolio expected log-returns. The
main findings are in Section 4, where I analyze the MSH in (some) Epstein-Zin

latter occurs when the IES parameter is one and discount factors are homogeneous.



economies. In Section 5, I give simple examples and illustrate why results still
hold beyond the case of Epstein-Zin preferences with i.i.d. aggregate endowment
and beliefs considered here. Section 6 contains the conclusions. Appendixes A-C
collect the proofs. In the next section I discuss the relation between my results
and the literature.

1.1 Related Literature

Investors speculate when they take long and/or short positions that they would
have not otherwise taken if they had agreed on the underlying state process.” A
number of contributions investigate the effect of speculation on asset prices and
the volume of trade (see e.g Varian, 1985, 1989; Harris and Raviv, 1993; Kandel
and Pearson, 1995) or the relation between speculation and financial innovations
(see e.g. Zapatero, 1998; Brock et al., 2009; Simsek, 2013). For example, Simsek
(2013) studies a two-period economy with mean-variance optimizing agents and
decomposes their portfolio risk as the sum the variance that remains after hedging
and the variance due to speculation. The key result is that the speculative variance
always increases when new assets are introduced. Here, I am instead interested in
whether speculation can have long-run consequences. Indeed one could argue that
financial innovation is needed to enable accurate traders to dominate by specu-
lating against inaccurate traders. In this case, speculation would have short-run
but not long-run effects (at least in a closed economy). My work shows instead
that, also in the idealized framework of complete markets and general (intertempo-
ral) equilibrium, speculation may have long-run consequences: disagreement may
persist or the trader with accurate beliefs may vanish.

The relation between speculation and the MSH for financial economies has
received increasing attention at least since the works of DeLong et al. (1990, 1991)
and Blume and Easley (1992). DeLong et al. (1991) investigate whether noise
traders, i.e. traders with inaccurate beliefs, might survive or even dominate against
rational traders by bearing more risk. The answer is positive but the analysis is
based on a partial equilibrium model. Blume and Easley (1992) study the same
question in a model where asset prices are set in equilibrium by all traders. They
investigate a sequence of temporary equilibria where agents save at a constant rate
and can use Arrow securities to transfer wealth across states. Controlling for the
saving rate, they find that when the trader with the most accurate beliefs purchases
a log-optimal portfolio, he gains all the wealth in the long run and brings asset
prices to reflect his beliefs. The result provides a support for the growth optimal

"The term speculation is also refereed to the purchase of an asset for the purpose of re-selling
it at a higher price to those who value it more, see Harrison and Kreps (1978) for a formal model.
See also Morris (1996) and Scheinkman and Xiong (2003).



Kelly rule (Kelly, 1956) in equilibrium models. However, when the trader with
the most accurate beliefs does not use the log-optimal rule, Blume and Easley are
able to construct examples in which this trader vanishes.®

Subsequent work by Sandroni (2000) and by Blume and Easley (2006) extend
the analysis to general equilibrium models with endogenous saving. Under the
assumption that markets are complete, that the aggregate endowment is bounded,
and that agents maximize an expected time-separable utility, the MSH holds: pro-
vided that all traders discount future utility at the same rate, only the trader
with the most accurate beliefs dominates. The market does not select against
traders whose portfolios are not log-optimal, provided that their beliefs are accu-
rate. Dominance of inaccurate beliefs, a failure of type F3, can still occur but
it depends on discounting future utility too much. Results are derived from the
comparison of a survival index that takes into account discount factors and beliefs
accuracy. The role of saving and portfolio positions is not explicit ed.

A related contribution is Yan (2008), where the MSH is investigated in a
continuous-time economy where the aggregate endowment follows a Brownian mo-
tion and agents have CRRA preferences. Agents agree on the volatility of the
aggregate endowment process but disagree on its drift. The findings by Sandroni
(2000) and Blume and Easley (2006) are confirmed, provided that the survival
index takes also into account the RRA coefficient. When the economy is growing,
the agent with the lowest RRA coefficient (the highest TES) has, all else equal, a
higher survival index and thus dominates in the long-run. Also here the role of
speculation is not evident from the survival index.”

By finding a failure of the MSH even in a general equilibrium framework, my
results reconcile the findings of the earlier studies by DeLong et al. (1991) and
Blume and Easley (1992) with those of the later literature. Traders with inaccu-
rate beliefs might survive or even dominate in equilibrium, and saving does not
always offset this result. The following quote from DeLong et al. (1991) nicely sum-
marizes my findings: noise traders (agents with inaccurate beliefs) survive when
“misperceptions make them unwittingly hold portfolio closer to those that would
be held by investors with log-utility” -and correct beliefs- (p. 3). In particular, I
find that whether a noise trader survives, dominates, or vanishes depends, other
than on all agents’ saving rate, also on a trade-off between misperceptions and risk
attitudes. Moreover, I show that full dominance can occur only in market with

8Blume and Easley (1992) work in an i.i.d. economy with Arrow securities. The studies sur-
veyed in Evstigneev et al. (2009) propose a generalization of the Kelly rule for more complicated
asset structures.

90ther studies by Mailath and Sandroni (2003), Sandroni (2005),Jouini and Napp (2006,
2007), Cvitanié¢ et al. (2012), Muraviev (2013), and Massari (2014), consider related cases. The
main conclusion still holds, only failures of the type of F3 are possible.



aggregate risk, confirming a finding of Blume and Easley (1992) (Th. 5.4).1°

For CRRA economies, I confirm the results of Sandroni (2000), Blume and
Easley (2006) and Yan (2008): neither failures of type F1 nor F2 can occur
generically. Moreover, contrary to the previous literature, I decompose the survival
index in its fundamental components and I clarify how both portfolio returns and
intertemporal substitution rates depends on agents’ preferences and beliefs. This
decomposition sheds light on the trade-off between saving and portfolio decisions
and it is thus helpful for pinning down the reason for an agent dominance or
survival.l!

In analyzing the MSH in Epstein-Zin economies, this paper is closely related to
Borovicka (2015). He investigates the MSH in continuous-time exchange economies
with two agents having homogeneous Epstein-Zin preferences. My results, in par-
ticular that failures of the type F1 — F3 are possible and generic, confirm his
findings.!? Discrete time economies allow for more freedom in the modeling of the
economy and could be more amenable for applications. Moreover, my approach
clarifies that Epstein-Zin preferences are not key for the result. MSH failures
F1 — F3 can occur whenever, for at least one trader, the component of expected
log-returns that is not related to beliefs accuracy does not match the saving com-
ponent due to speculation.

Within the market selection literature, there are other studies that find long-
run beliefs heterogeneity. Beker and Chattopadhyay (2010) focus on two-agent
economies with incomplete markets. Guerdjikova and Sciubba (2015) study economies
where investors are ambiguity averse. Bottazzi and Dindo (2014) and Bottazzi
et al. (2015) extend the temporary equilibrium analysis of Blume and Easley (1992)
to general asset structures, short-lived and long-lived respectively, and possibly in-
complete markets.

0Under no aggregate risk, a trader with correct beliefs has also correct effective beliefs in the
limit when he consumes most of the endowment and sets assets’ returns. This holds regardless of
his preferences. Thus, noise traders can never dominate almost surely. The classical distinction
between no aggregate risk versus aggregate risk economies is important also for market selection
purposes.

HSandroni (2000) and Blume and Easley (2006) work with time general expected time-
separable utilities. Despite the fact that I concentrate on the special case of CRRA preferences,
in Appendix B I discuss when the same link between saving and portfolio decisions holds more
in general.

12Borovicka derives market-selection outcomes for a larger region of parameters than I do here.
Whether his approach is possible also in discrete-time economies and in economies with more
than two agents is still an open issue. Note also that there exists parametrizations that I consider
and Borovicka excludes.



2 The Economy

In this section, I introduce the exchange economy and show how, in presence of
heterogeneous agents, it is possible to characterize the dynamics of equilibrium
consumption and state prices directly from agents’ intertemporal substitution and
portfolio decisions. The application to economies where agents have Epstein-Zin
preferences is in Section 2.1.

Time begins at date ¢ = 0 and it is indexed by t € Ny = {0,1,2,...}.
§ = {1,2,...,S} is the set of states of the world, 2% is its power set, and ¥ =
X208 is the set of paths 0. s, € 8§ denotes the state realized at date ¢ and
o = (S0, 81,...,5) € X the partial history till period ¢. To each partial history
there corresponds a node of the uncertainty tree. C'(oy) is the cylinder set with
base oy, C(0y) = {0 € ¥|o = (0y,...)} and F; the o-algebra generated by the
cylinders, F; = o ({C(0y) Vo, € £,}). F is the o-algebra generated by the union of
F, F = o (UF:). By construction {F;} is a filtration. P is a probability measure
on (X, {F:}) and (X, {F:}, P) is the probability space on which I construct every-
thing. All random variables are adapted to the filtration {F;} and z;(o;) may be
used in place of z;(c). The dependence on a sequence o, or on a partial history
0y, is typically not explicited.

The economy contains [ traders and a single consumption good. Trader ¢ €
J = {1,2,...,I} consumption in period ¢ on path o is ci(c). A consumption
plan is a stochastic process {¢;} and each trader 7 is endowed with the particular
consumption plan {e!}. The aggregate endowment is {e;} and for all ¢, s, and oy
the growth rate of the economy is

6t+1(0t+1>

h = )
(o) when o441 = (04, 9)

gS,t(Ut) =

For all t and oy, I denote with ¢, the date t vector of de-trended growth rates

~ gs t
o st 1
It = oxp Ep[log gi] @

I assume that the growth process is i.i.d..

Assumption 2.1. For allt € Ny, s € 8, and 0, € ¥4, gs1 = gs and P(C(or)) =
Hthl P,, for a measure P = (Py,...,Pg) on (8,2°).

With an abuse of notation, I use P to denote both the measure on (3, {F};) and
on (8,2%). As discussed in Section 5, the assumption is without loss of generality
for market selection purposes in that MSH failures can also be obtained with more
complicated growth processes.

Each agent objective is to maximize a certain utility of his consumption stream.
Agents may transfer their initial endowment across time and states by trading



assets in a complete market. In evaluating consumption streams {c!} agent ¢ uses
subjective beliefs Q', a probability measure on (X, {F}). I shall assume that all
agents believe that the world is i.i.d., that beliefs are absolute continue with respect
to each other and the truth, and that beliefs are heterogeneous among agents.

Assumption 2.2. For all agents i € J, beliefs Q‘i on (8,2%) are constant and
Q. >0< Py >0, for all s in 8. Moreover, Q' # Q’ for all i and j in J.

As with Assumption 2.1, the i.i.d. part of Assumption 2.2 is without loss of
generality: as long as agents’ disagreement persists in the long-run, MSH failures
can be shown to occur also with more complicated beliefs. The absolute continuity
assumption is instead needed for the existence of an equilibrium, see Appendix A.3.

Other than assuming that the market is complete I do not further specify its
structure.!® Asset prices are determined in equilibrium. I postpone the charac-
terization of agents’ consumption and asset demand and just assume for now that
there exists a no-arbitrage equilibrium where all agents’ consumption plans are
strictly positive.!* The notation for state prices mimic the one for conditional
probabilities: for 7 > 0, g5, is the price of a unit of the consumption good
after partial history oy, relative to one unit of consumption in date ¢. Due to the
no-arbitrage condition state prices satisfy:

_ qo'z+7—,0
q0t+7— N .
qUt,O

Using the vector of one-period states prices, ¢;, one obtains the interest rate from
t to t+ 1, ry, and the corresponding discount rate d;. Risk neutral probabilities
(normalized state prices) are QY = 7,¢;.

In order to characterize equilibrium consumption plans, I use agents’ portfolio
and saving decisions as follows. Consider agent i equilibrium consumption {ct}
in two subsequent periods t and ¢ + 1. Since for each agent ¢ consumption is an
adapted process, for every t and every history o; there exists a scalar 6! > 0 and

3Date t = 0 trading does not require agents to hold rational prices expectations but it amounts
to trade infinite assets in the initial period. Sequential trading of short- or long-lived assets makes
the opposite assumptions. Depending on the chosen asset structure, relevant assumptions on the
budget constraint should be taken to guarantee the existence of an equilibrium. In particular,
under date ¢t = 0 trading no bankruptcy is allowed. Under sequential trading no bankruptcy and
no Ponzi schemes are allowed, see also Araujo and Sandroni (1999).

4When the aggregate endowment is growing I also assume that agents are discounting the
future enough so that their equilibrium value function is finite. See also Assumption A.l in
Appendix A.
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a vector af € AY such that!®

5 i ZSGS qs,tciﬂ (01, 5)
t(o-t) - Ci(O't) )
t

(2)

e .S
agiloy) = 95141 (91, 9) . forallses.

Zs/es qS’,tCi-H (Uta 3,)

The scalar 6! is the ratio between date ¢ value of next period contingent con-
sumption and date ¢ consumption, agent ¢ intertemporal substitution decision in
a stochastic context, and it is thus related to how much agent i saves. The vector
al is agent ¢ allocation decision across states, only for consumption in period ¢ +1,
and it is thus related to agent i portfolio decision.'® The equilibrium value of
agents’ intertemporal substitution rates and portfolios is determined by a set of
Euler equations. We postpone to the next section the exact specification of both
0 and « for some specific parametrizations of Epstein-Zin economies.

Given the sequence of decisions {a!} and {6/}, the dynamics of consumption
is thus

Xt i o;

i i st i

Cip1(or, 8) = 6—=c}(0r) = 5——00,5(%) : (3)
s,t t st

If the former is valid for all ¢ € J; we can also use it to characterize market clearing

prices. Aggregating (3) over all the agents and dividing by the total consumption

in date ¢t we find for each s

5! al,
— _t ) 7 4
gs Zzej: 5t Qg,t ¢t(0t) ) ( )

where ¢! = ci/el is the relative consumption of agent i. The former can be re-
written as follows in order to highlights the relation between normalized state
prices and agents’ portfolios.

First of all note that since ai € A® for all agents, (4) can be used to find the
economy discount rate, which depends on agents’ intertemporal substitution rates,

3 A
0 -
icI ZS/ES gs' Qs’,t

15The fact that both 6/ and a! are positive follows from showing that consumption is positive
in equilibrium.

16qi and 6! can be interpreted as the one-period portfolio and saving decisions. The expressions
of the full portfolio and saving rule & and 6! are given in Appendix A.1.

oy = (5)
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Discount rates can then be used with relative consumption and intertemporal
substitution rates to find the portfolio impact of each agent. Define

o b
L s 00 QU

forall 1€7, (6)

so that by construction ¢} € Al and the normalized value of the supply of Arrow
security corresponding to state s:

Qg,t er+1(0t, 8) o S,t 9s

Zsfes Q(s)’,t €t+1 (Ut: Sl) B Zs/es Qg’,t gs’ ‘

The market clearing condition (4) can be rewritten as

1,(Q7) =

L(Q) =) al,¢, forall se8. (7)

1€

State prices are such that the aggregate portfolio, the convex combination of each
agent’s portfolio, equates the (normalized value of the) aggregate supply. Impor-
tantly, portfolio impacts depend, other than on relative consumption, also on the
ratio of between intertemporal substitution rates and discount factors, see (6).
The system of equations (3) and (5-7) for all t € Ny and o, € ¥; characterizes
agents’ relative consumption and state prices on an equilibrium path. Thus, an
equilibrium allocation and supporting prices can be computed iteratively if

C1 we know that an equilibrium exists and is interior;

C2 for all ¢, o, one-period optimal portfolio and substitution decisions of all
agents can be recovered from quantities (state prices, agents’ beliefs and
consumption) known in oy;

C3 the initial equilibrium relative consumption distribution {¢} for all: € J} is
known.

As it is shown in Appendix A and in the next section, conditions C1-C2 do hold
when agents’ intertemporal substitution rates and portfolios come from the max-
imization of specific parametrizations of an Epstein-Zin recursive utility. Regard-
ing condition C3, note that long-run properties can be characterized even when it
does not hold. In fact, provided long-run outcomes of (3) and (5-7) are identified
for every initial consumption distribution, also equilibrium long-run outcomes are
characterized.

12



2.1 Epstein-Zin Economies

I assume that agents use assets to transfer consumption across time and states
in order to maximize a recursive utility of the Epstein-Zin type, see e.g. Epstein
and Zin (1989). In particular I assume that, for all i € J, agent i with beliefs Q'
maximizes a utility U* that has a recursive structure of the type

Ui = (a_ﬁi)cz—m 5 (Berl(UE)') ) SN ®

B* € (0,1) is the discount factor; 4* € (0,00) is the coefficient of Relative Risk
Aversion (RRA); p' € (0,00) is the inverse of the coefficient of Intertemporal
Elasticity of Substitution (IES) on a deterministic consumption path. The utility
is defined also for 4* = 1 and p' = 1 by taking the appropriate limits, see also
Epstein and Zin (1989).

Parameters shall be chosen such that the utility of the aggregate endowment is
finite, implying that to the recursive formulation there corresponds an utility over
consumption streams, see Assumption A.1 in Appendix A.3.!” In these cases one
can use the FEuler equations to characterize (interior) equilibrium allocation as a
function of market prices, see Appendix A.2. For generic values of the discount
factor 3¢, the IES coefficient p’, and the RRA coefficient ¢, Euler equations in-
volving subsequent time periods are coupled, so that the intertemporal and saving
decision depends on all future state prices and beliefs , violating C2. However, as
I show in Proposition A.1 in Appendix A, under specific preferences parametriza-
tions C2 is met in that optimal decisions can be recovered from contemporaneous
prices and beliefs.!®

For agent 4, in date ¢ and history o; one finds:

i g " i\ - i
0 = O (5_) (Z(Qs/)W (ng,t)l ”’) J (9)
t
s'eS
i (O0 Yo
oL, = Q)7 ls’t) — forallse§. (10)

i \Zi (0 V1=
Zs/es< i/)v ( s’,t) v
Portfolio decisions a; depend on beliefs, relative state prices, and the RRA coeffi-
cient. Intertemporal rates of substitution ¢; depend also on market discount rates,

17"For example, when the aggregate endowment is growing, a sufficient condition is that p’ > 1
or that p’ < 1 and agent i discounts future expected utility fast enough.

18The special cases are: p' = 1; 4% and Q' such that agent 7 holds the market portfolio in
equilibrium; the CRRA limit of 4* = p’. Despite many parameter specifications are left out,
these cases are enough to show that the MSH fails and to shed light on the role of saving and
portfolio decisions for market selection purposes.
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the TES coefficient, and the discount factor. Viewed as a function of market prices,
we can define the Epstein-Zin intertemporal substitution rule, (-, -; 3%, p°,7*, Q)
such that 6! = 0(dy, QY; 4%, p°, 7", Q"), and the Epstein-Zin portfolio rule, a(-; 7%, Q")
such that of, = a,(QY; 7%, Q") for all s € 8. The dependence of intertemporal sub-
stitution rule on beliefs and normalized state prices represents a saving under
uncertainty component in that it would not be present if the economy were deter-
ministic, i.e. if g, = ¢ for all s and if agents shared the same beliefs, Q° = Q for
all i € 3. The portfolio rule is particularly simple when v = 1, leading to o = Q".
Agent i "bets his beliefs’ as in the CRRA log-case (7 = p = 1). For this reason we
shall call this portfolio rule the log-optimal one also outside the CRRA framework.
Using rules, the market equilibrium condition (7) implicitly set date-t-history-
o0, state prices depending on the date-t-history-o; consumption distribution. Through-
out this work, I shall use the system of equations (3-7), with rules (9, ) for all i € J,
in order to characterize long-run consumption distributions and prices iteratively.

3 Market Selection

I am interested in studying whether, in terms of consumption, an agent survives,
vanishes, or dominates. Since aggregate consumption can be unbounded or con-
verge to zero, I focus on the relative consumption ¢,. Consistently with the liter-
ature I define:

Definition 3.1. Agent i survives on o if limsup,_, ¢.(c) > 0, he vanishes when
limy o0 @4(0) = 0, he dominates when lim;_,., ¢i(o) = 1.

I shall show that intertemporal substitution rates and portfolio expected log-
returns can be used to give sufficient conditions for an agent to vanish, survive, or
dominate P-a.s.. The general idea is as follows.

Since the consumption dynamics (3) is a multiplicative process, the log-consumption
follows an additive process. The same holds for agents’ relative log-consumption
dynamics. Defining zzj = log% one has

271 (011) = 27 (00) + €001 (0141) (11)
whose innovation is
i ; O‘it
€11 (0¢41) = log 5 + log QT’ when o4y = (0y,s), forall seS§.
t s,t

The first (deterministic) part of the innovation is the difference of agents’ log-
substitution rates. It is intuitive that the agent who postpones consumption is
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better equipped of long-run survival. To interpret the contribution of portfolio
decisions let us compute the return of the portfolio . From (3) one finds

i Ct+1(0t78) o Oés,t _ 1 as,t

st T ; - — 0
ZS’GS qslytcff—&-l (Utv S/) Qs,t 5t st

Denoting the relative entropy of ) with respect to P, also Kullback-Leibler diver-

gence, as
Z P, log

seS

agent ¢ expected log-return in date ¢ is
Ellog Ti\fﬂ] = logr: + IP(Q?) - Ip(ai) :

The expected log-return in excess of the log risk-free rate is thus

= Ip(Q)) — Ip(ov). (12)

In view of his role for the market selection, I denote y!, as agent ¢ growth premium
in period t.
The drift of the relative log-consumption dynamics can thus be written as

(5‘ ‘
+ = pf - (13)

[€t+1‘3rt] = (5]

The second component is the difference of agents’ growth premia. Denoting ,ui’j =
pi — g, from the formula for growth premia (12) one finds:

i’ = Ip(od) — Ip(af) .

The difference of growth premia amounts to the comparison of the relative ‘dis-
tance’ between agents’ portfolio decisions and P, the optimal growth portfolio
(log-optimal portfolio derived under the truth).

In the rest of the paper we rely on the aggregate effect of intertemporal substitu-
tion rates and growth premia to characterize whether an agent survives, dominates,
or vanishes. Define each agent ¢ generalized survival index in node o, as

ki = log 8} — Ip(al) (14)
the conditional drift of the relative consumption process is just

[6t+1|?t] = ki . (15)
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If agent ¢ has an higher survival index than agent j, the drift of the relative
consumption process is in his favor and thus he gains, in expectation, consumption.
This is similar to the approach that has been followed by most of the literature,
where survival indexes are derived from the Euler equation of the Pareto optimal
allocation problem. I shall show how the difference of the various proposed survival
indexes can be derived from the difference of generalized survival indexes k as in
(15).

The advantage of expliciting survival indexes in terms of substitution rates and
growth premia is that one can appraise their relative importance in determining
survival. As we shall see, depending on preferences and beliefs, there are economies
where only growth premia (and thus portfolio decisions) matters for long-run out-
comes and economies where only substitution rates (and thus saving decisions)
play a role. A feature of Epstein-Zin preferences is that the ordering of survival
indexes in each node might depend on prevailing market conditions. As a result
different agents might be rewarded (by the combination of saving and portfolios)
under different sets of market prices.

Two sets of results shall be derived from the difference of agents’ survival in-
dexes in (15). Using the Law of Large Numbers for martingales differences, one can
state necessary or sufficient conditions in terms of survival indexes time averages.
This is the approach proposed by Sandroni (2000) (see e.g. his Proposition 3).
However, since substitution rates and growth premia depend on equilibrium prices
and discount factors, these conditions can be evaluated analytically only under
special assumptions. One example is homogeneous CRRA economies, where the
trade-off between saving and portfolio decisions does not depend on market clear-
ing price, see e.g. Proposition 4.2. The alternative is to analyze economies with
two agents (or two group of agents) and compute substitution rates and growth
premia in the limit of one agent (group) consuming all the endowment. Sufficient
conditions for survival, vanishing, or dominance depend on these limits, see e.g.
Proposition 4.1 or the results in Bottazzi and Dindo (2014). An advantage of this
approach is that these limits can be evaluated analytically.

4 Selection in Epstein-Zin Economies

By assuming that agents maximize Epstein-Zin preferences we can consider ex-
change economies where, in equilibrium,

i) all agents use the same intertemporal substitution rate but hold different
portfolios -so that logg—gz = 0 for all ¢ and oy, but, generically, ui’j #0;

ii) agents’ intertemporal and risk preferences are tight together -so that logg—g
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,ui’j are inter-dependent;

iii) all agents hold the market portfolio but use different intertemporal substi-

tution rates -so that ui’j = 0 for all £ and oy, but, generically, logg—g # 0.
t

Given 7), we can analyze the property of long-run consumption dynamics when
only growth premia matters. This is the content of Section 4.1. MSH failures
F1 — F3 are generic. Due to ii), we can show that in CRRA economies there
exists a trade off between the difference of growth premia and log substitution
rates. As a result only failures of the type F3 are possible and are due to the
saving component. This is the content of Section 4.2. In Section 4.3, we show
that selection still leads to all failures F1 — F3 when intertemporal substitution
rates are not homogeneous across agents but we are outside the CRRA framework.
Given i), we can move to analyze market selection when only saving behavior
matter, see Section 4.4. Again, only failures of type F3 occur. Despite beliefs
heterogeneity matter for long-run outcomes, the relative consumption dynamics is
deterministic and the truth has no role in these economies.

4.1 Selection of Portfolios

When all agents have the same IES parameter p° = 1 and discount rate ' = 3,
agents choose the same intertemporal substitution rate in equilibrium: 6/ =
for all 7, t and o;. As a result market selection outcomes are determined only by
portfolio decisions and the comparison of generalized survival indexes as in (15) is
a comparison of growth premia:!®

ki — k= (16)

When i is the representative agent (homogeneous preferences and beliefs econ-
omy), date ¢t normalized state prices and market discount factors are given by

0 _ _ aig”
stli = o=y, foralls,

Zres A Oy . (17)
&l = =pPe” Ep[logg] Zses Qsds * _ fe~ Frllogd

1 — —
Zses Q5 s v ZSGS Qs,tgs

where ¢ is the vector of de-trended growth rates as in (1). Date ¢ equilibrium
saving and portfolio decisions are

i Al
% for all S,
' s Qlr 3, (18)

YWhen the IES parameter pj is one, the one-period decisions & and a! coincide with the "full’
saving and portfolio decisions d; and &y, see also Appendix A.

Oéi,t|i =
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Equilibrium discount rates, normalized state prices, and portfolio decisions are
particularly simple when there is no aggregate risk, gs = g for all s € §, leading to
and Q) = ail; = Q' and 8,]; = 8/g.

Under heterogeneous beliefs and, possibly, RRA coefficients, equilibrium mar-
ket discount rates and normalized state prices do instead depend on the contempo-
raneous consumption distribution. A simplification of (7) occurs because all agents
are saving at the same rate. Saving-adjusted weights ¢ and relative consumption
weights ¢ coincides so that normalized asset prices solve

Ls( g,t) = Zai,t(QO)Qﬁ for alls € 8,
i€d
while the market discount factor is
66— Ep(log g]

= 0 -
ZSGS Qs,t Js

The long-run consumption dynamics is determined only by portfolio decisions and
thus depends only on the comparison of agents’ growth premia. It is instructive
to consider the well-known case of a log-economy, v = v = 1 for all agents, first.

(St:

Log-Optimal Portfolios The relative consumption dynamics is particularly
simple when v = 1, as each agent "bets’ his own beliefs. The difference of agent ¢
and agent j growth premia is determined only by beliefs accuracy:

p? = Ip(Q7) — Ip(Q). (19)

If agent ¢ has more accurate beliefs, then he has a larger growth premium in every
period. The dynamics of the log consumption ratio of ¢ and j in (11) has positive
drift, agent ¢ dominates while agent j vanishes. Moreover since the agent with
most accurate beliefs dominates against any other agent, then he also dominates
against all of them in a I-agent economy. In a log-economy speculation enables
the agent with the most accurate beliefs to play a favorable game of chance in
every period.?’. The result is well known. For equilibrium economies it goes back
at least to Blume and Easley (1992).%!

20Favorable refers here to having positive expected log-returns rather than positive expected
returns

2IThe result is straightforward when beliefs are i.i.d.. It is more subtle to establish when
beliefs are not uniformly bounded away from each-others, for example when more agents learn
the correct probabilities but with different speed of convergence. See also Sandroni (2000), Blume
and Easley (2006), and Massari (2014).
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Non Log-optimal Portfolios When an agent ¢ portfolio rule is not log-optimal,
portfolio choices do not correspond to beliefs. It is still convenient to evaluate
agents’ portfolios through the lenses of the log-optimal agent and growth premia
can be rewritten as

= [Ip(Q°) — Ip(Q")] + [1p(Q") — Ip(ey)] -

The first part is the return of the log-optimal agent with same beliefs Q?, and it
is thus related to the accuracy of beliefs. The second part of the growth premium
measures instead weather the agent is better-off or worse-off, in terms of expected
log-returns, by using a non-log optimal rules «; rather than the log-optimal rule
derived using his beliefs. Equivalently it measures the difference in accuracy of
beliefs @Q° and effective beliefs a!. If agent i beliefs are correct, this second part
is negative since ¢ would have been better off by using a log-optimal portfolio.
Effective beliefs are less accurate. However, when agent ¢ beliefs are not correct,
effective beliefs could be more accurate than beliefs. Equivalently, the portfolio
decision could be ’closer’ to the optimal growth portfolio than the log-optimal
portfolio under incorrect beliefs Q’, and thus give a positive contribution. I name
this component the Non-Log-Optimality (NLO) compensation and denote it with
v;. The difference of growth premia of i« and j can thus be re-written in terms of
the relative accuracy of beliefs and of the difference of NLO contributions.

p? =1Ip(Q7) = Ip(Q") + 17 (20)
All results in the paper are essentially due to the role of these NLO terms. Here,
since each agent takes the same saving decisions, (16-20) imply that the difference
of survival indexes does not only depend on relative beliefs accuracy but also on
the difference of NLO compensations.

The sign of (20) determines agents’ relative performance. Although I assume
that beliefs are exogenous, NLO terms depend on equilibrium prices. It turns out
that it is sufficient to characterize the relative portfolio performance at the prices
set by each agent to establish if on agent survives, vanishes, or dominates. In the
limit of agent ¢ having all the consumption, from (10) and (17) one finds

. 1—~d
V’L’j’i = 7

(Ip(Q7) — Ip(Q")) + AY); (21)
where ‘ )
s Q)P Q)
ZSES QZ 7

Adding the contribution due to beliefs relative accuracy, the difference of general-
ized survival indexes when agent ¢ dominates is can be written as

ki = K|y = p™)i = g (Ip(Q7) — Ip(Q")) + A,

A%, =1o (22)
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Even if agent i has correct beliefs, Q' = P, A%|; could still be so negative to
imply a higher portfolio expected log-return for agent j at the prices determined
by agent i. The same holds for p*’|; which can be found by interchanging the role
of agent ¢ and j above and using that p*/|; = —p?*|;. Not only p™?|; can still be
negative even if ¢ has correct beliefs but, also, the signs of u*’|; and p™7|; can be
different. The following proposition show that it is sufficient to characterize both
signs to determine the outcome of the long-run consumption dynamics. I state the
result by comparing the relative accuracy of beliefs with A%/ |; and A%7|;.

Proposition 4.1. Under the Assumptions 2.1, 2.2, A.1, consider the equilibrium
paths of an economy with two agents, i and j, maximizing an Epstein-Zin utility
with p* = p? =1 and B = 37 = .

o) If o | | .
VAN < Ip(Q7) = 1p(Q") < =77 A5,
then k'|; — k7|; > 0, k'|; — k7|; < 0, and both agents survive P-almost surely.

w) If o | o
=AY <Ip(Q') — Ip(Q") <~"A;,
then k'|; — k7|; < 0, k'|; — k?|; > 0, and there exists two sets Tt and T~ with
P(ITtUT™) =1 such that agent i dominates on o when o € I'" and agent j
dominates on o when o € I'™.

i) If
Ip(Q%) = Ip(QY) > 7*A|; and Ip(Q’) — Ip(Q") > —'AY];,

then k'|; — K7|; > 0, k*|; — k7|, > 0, and agent i dominates P-almost surely.
Likewise, if both reversed inequalities hold, so that k'|; — k?|; < 0 and k'|; —
k7|; <0, then agent j dominates P-almost surely.

For a given relative beliefs accuracy, the endogenous component of the NLO
term can be such that both agents survive, meaning that disagreement is persis-
tent; both dominate, but on different path; or only one agent dominates, but not
necessarily the one with most accurate beliefs. Assume trader ¢ has less accurate
beliefs than trader j. The reason behind the survival, or even dominance, of a
trader ¢ is that his NLO compensation can be larger than the corresponding com-
pensation of agent j. Stated in different terms, the accuracy of effective beliefs,
which depend also on preferences and equilibrium prices, can overturn the compo-
nent of the growth premium given by the accuracy of beliefs. Overall, agent ¢ could
hold a portfolio closer to the growth optimal portfolio than the portfolio held by
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agent 7. It is enough to check for the above to happen at the prices set by either
agent consuming all the endowment in one period to say whether ¢+ dominates on
almost all path, survives on almost all path, or dominates on a set of paths with
positive measure. I provide a graphical representation of all possible outcomes in
Section 5.

A restriction on the possible long-run dynamics occurs when agents have ho-
mogeneous risk preferences . The following corollary relies on the fact that under
no-aggregate risk, or with aggregate risk and S = 2, the difference of NLO com-
pensations can be ordered.?> When v > 1, agent i cannot have a higher NLO term
at the prices determined by j than he has at his prices, thus excluding that both
agents dominate on different path. When v < 1, agent ¢ cannot have a higher
NLO term at the prices he determines than he has at the prices determined by 7,
thus excluding that both agents survive and that beliefs disagreement is persistent.
The following corollary proves the statement.

Corollary 4.1. Under the assumption of Proposition 4.1, assume ' = ~/ = 7,
no aggregate risk, or aggregate risk but S = 2. If v > 1, then only cases i) and ii7)
are possible. If instead v < 1, then only cases ii) and iii) are possible. If otherwise
v =1, and Ip(Q?) # Ip(Q7), only case iii) is possible.

In homogeneous risk aversion economies, for all ~, either agent could dominate
almost surely. However, survival of both agents can only occur when they have
less risky portfolio than log-optimal ones. On the contrary, path dependency can
only occur when agents hold more risky portfolio than log-optimal ones. More risk
averse portfolios with incorrect beliefs tend to be close to log-optimal portfolios
with correct beliefs at the prices set by the other agent, thus leading to accurate
effective beliefs. On the contrary, less risk averse portfolios with incorrect beliefs
tend to do the opposite and be very far from the log-optimal portfolio with correct
beliefs at the prices set by the other agent, thus leading to less accurate effective
beliefs. Beliefs heterogeneity is persistent in the first case and transient in the
second.

Finally, the next corollary is another application of Proposition 4.1 that ad-
dresses the fate of an agent with correct beliefs.

Corollary 4.2. Under the assumption of Proposition 4.1, assume that agent i has
correct beliefs, Q' = P.

i) If agent i has v = 1, then he dominates P-almost surely

i) If the economy has no aggregate risk, then either i dominates P-almost surely
or case i1) of Proposition 4.1 can occur.

22The case of S = 2, a binomial tree economy, is the one exploited in the examples of Section 5.
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ii1) Otherwise, any of the cases of Proposition 4.1 can occur.

Since the log-optimal portfolio derived under correct beliefs guarantees the
highest growth-premium for all prices, an agent who use this portfolio dominates
almost surely.?> When instead the agent with correct beliefs does not use the log-
optimal rule, anything can happen. Not only can he vanish, but there are also cases
where he is not the only survivor and beliefs heterogeneity is persistent. However,
agents’ co-existence can never occur when there is no-aggregate risk. The reason
is that in such an economy, if agent ¢ has correct beliefs the equilibrium portfolio
he holds in the limit of having all the consumption is also log-optimal (both imply
fair pricing under no aggreate risk), leading to correct effective beliefs of|; = P.
As a result p*’|; is always positive and by having a higher growth premium at
the returns he sets, both long-run heterogeneity and almost sure vanishing never
occur.

4.2 Selection in CRRA Economies

I turn to analyze the outcome of selection when agents not only hold different
portfolios but also differ in how they transfer consumption intertemporally. I start
with CRRA economies, for which it is known that only one agent dominates gener-
ically, see Sandroni (2000) and Blume and Easley (2006) for bounded economies
and Yan (2008) for unbounded economies. I illustrate how all their results emerge
in terms of substitution and portfolio decisions, and how they can be generalized.

Throughout this section I assume that for all i € J the RRA coefficient v* and
the IES coefficient p coincide, leading to substitution and portfolio decisions that
are optimal for a CRRA agent with RRA coefficient ~*.

When agent i is the representative agent (homogeneous preferences and beliefs),
the joint solution of (7) and (9-10) leads to

L
QLgs

ioAa—Y

Zs/es Qs/ 9gr

. ; . ; —+% Ep[log g]
. — pi,—"Epllogg ia—yt _ PeT TPIO8Y
675‘1 - 56 [ }ZSESQS s - 0 At "
Zsest,tgs

% 7, foralls,

(23)

23The result is well known at least since Kelly (1956). It was first extended to economies where
prices are set in equilibrium by Theorem 5.1 of Blume and Easley (1992). See also the discussion
after Proposition 1 in Sandroni (2000).

24When p = 1 the economy is equivalent to one where saving is exogenously fixed to 3 and
portfolio are chosen myopically. With this respect the possibility that an agent with correct
beliefs vanishes P-almost surely in economies with aggregate risk is equivalent to Theorem 5.4
of Blume and Easley (1992). All other MSH failures are new.
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Agent i equilibrium saving and portfolio decisions are

5l = pBlel Ep[logglz QZ Gl

= —Z Ql(gf 71 —, foralls. (24)
s'es 19

%
Oé’l

The situation is different when agents have heterogeneous beliefs. I consider
economies with homogeneous preferences first.

4.2.1 Homogeneous v

When agents have heterogeneous beliefs and discount factors, but have the same
RRA coefficient, the difference of agent ¢ and agent j NLO terms computed at the
generic set of prices Q) is

e s QD QL)
> QL (@)

As we have shown in the previous section, for a given relative beliefs accuracy there
could be prices for which agent ¢ has higher growth premium and prices where the
opposite occurs. Preferences play a role. (The result applies also here since, for a
given v, CRRA portfolio decisions and Epstein-Zin portfolio decisions coincide.)

Given the difference of generalized survival indexes in (15), in order to establish
long-run outcomes we should complement the analysis of portfolio decisions with
the analysis of saving. Give the CRRA intertemporal substitution rules in (9), the
log-ratio of agent i to agent j substitution rate is

(! % % 0 \1-
logﬁ:llogﬁ—+l ZSES(Q );( st)

a > ees(QD7(QR)"

Other than by the discount factor and IES coefficient 1/7, the comparison of
agents’ substitution rates ratio depends also on beliefs Q°, Q’ and normalized
state prices Q°. This last terms reflect how agents adjust their saving in speculative
markets. As a function of QY,

2= =

2| 2

i = (152) (@) - 12(@9) +1

=] 2=

3@ Q)

s€8

has a maximum of 1 in Q" when v > 1 and a minimum of 1 in Q° when v < 1.
When v < 1 an agent postpones consumption from one period to the next whenever
normalized state prices do not coincides with his beliefs. The opposite occurs when
v > 1.
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Importantly, the comparison of the saving under uncertainty terms depends on
normalized state prices and individual beliefs through a term that matches exactly
the price dependent part of the NLO term. Given that the two terms off-set each
others, the difference of generalized survival indexes is determined, for all ¢ and
oy, only by (exogenously given) discount factors and beliefs:

i 1 g j i
b = 5 (085 + 10(@) - 10@))
CRRA economies with homogeneous preferences behave, as market selection is
concerned, as log-economies: controlling for discount factors only beliefs accuracy
matters.

It is explained why the comparison of generalized survival indexes can be given
in terms of the survival index defined in Blume and Easley (2006),

Ko = log 8 — Ip(Q).

In fact, although k; and kgp differ, it is the sign of k! — ki that matters and, as we
have just showed, this sign is equal to the sign of k%, — k:é  for all ¢ and o;. Note
however that the RRA coefficient still matters for the relative consumption dy-
namics in that it determines the speed of convergence.?> We recover the following
result:26:27

Proposition 4.2. Under the Assumptions 2.1, 2.2, A.1, consider the equilibrium
paths of a CRRA economy with I agents where v* =~ for all i € J. If there exists
an agent, say v, such that

kop > khy forallj #1,

then for all t, oy, ki — k{ >0 for all j # i, and agent i dominates P-almost surely.
In particular, if agent v is the only agent with correct beliefs, Q" = P, and if he
has 3° > (37 for all j # i, then he dominates P-almost surely.

If the agent with most accurate beliefs has also the largest discount factors, then
dominates. Note, however, that the dominance is due by the aggregate effect of
saving and portfolio decision. Whereas in log-economies, the agent with the most

25Note that the speed of convergence has direct effects on long-run survival in large economies,
see Massari (2014)

26See Section 3.1 of Blume and Easley (2006) for the same result in an economy with bounded
aggregate endowment. The result holds also when the aggregate endowment is not bounded and
the growth process is i.i.d., as shown by Yan (2008).

2"When discount factors and beliefs are such that survival indexes are equal results are more
subtle, see Blume and Easley (2009). These cases are however non-generic.
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accurate beliefs dominates due to his portfolio, in non-log economies portfolios
may not always reward the agent with most accurate beliefs. Whether growth
premia favor the agent with the most correct beliefs depends on both beliefs and
risk preferences of all the other agents, as we have pointed out in Section 4.1.
Dominance still occur but the differentiated saving is crucial to the result. In
other words, despite log-economies and CRRA non-log economies are equivalent
in terms of the long-run outcome of the relative consumption process, economically
how those long-run outcomes are achieved is rather different.?®

Note also that the same result of Proposition 4.2 can be established also for
more general aggregate endowment processes, such as unbounded economy with
non i.i.d. growth. In fact, despite the growth process influences both equilibrium
growth premia and log substitution rates, through normalized state prices Q°, we
have just shown that its impact drops out in their sum.

4.2.2 Heterogeneous 7

When preferences are heterogeneous the difference of log substitution rates and
log-optimality premia depends on state prices and, thus, on agents’ consumption
distribution. However, it is still possible to characterize the long-run dynamics
based only on (exogenous) agents’ characteristics by computing the relative ef-
fect of saving and portfolio decisions in the limit of one agent having most of
consumption in one period.

As in Section 4.1, I concentrate on two-agent economies, and denote agents
with ¢ and j. In the limit of agent ¢ having all of the consumption the difference
of portfolio log-optimality premia coincides with (21). The rate of intertemporal
substitution is instead given by

7\ RO i

As with homogeneous preferences, the price dependent component of the NLO

terms in (22) and the saving component that incorporates beliefs heterogeneity
cancel out. As a result

=0l = 2 (log 5y 4 1o(@) ~ 10(@) + (0 =) Exliogg]) . (20
J
In particular, asymptotic drifts depend on beliefs onnly through their accuracy. In

this case, however, the drift depends also on the expected log growth rate of the
economy. Defining the modified survival index

ky =log 8" — Ip(Q') — 7' Ep[log g] (27)

28The result could be useful when asset markets are incomplete.

i i + AP I
0 <5_6(7j—7i)Ep[10gg}) v AZSES QS 9s 7 . (25)
D ses(QL
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one obtains
4 . 1 . , , e ,
Bli— W= = (K — k) and Ky = k)5 = = (K — )
Y 'yl

The modified survival index, which is the equivalent to the one established by Yan
(2008) for continuous-time economies, takes into account discount factors, beliefs,
and IES/RRA coefficients 7. The latter matters for survival when Ep[logg] # 0
because it influences an agent’s substitution rate, as it is evident from (25). When
Ep[log g] is positive, a large IES (low ~) denotes a high propensity to transfer
consumption to future dates and it is thus advantageous for survival.

Similarly to Proposition 4.1 it is only the ’asymptotic’ drift that matters, so that
the relative size of the modified survival index ky determines if an agent dominates
or vanishes.?? Generically, no long-run heterogeneity of beliefs is possible.?°

Proposition 4.3. Under the Assumptions 2.1, 2.2, A.1, consider the equilibrium
paths of a CRRA economy with two agents, i and j. If

' j
by > ks,

then k'|; — k7]; > 0, k'|; — k?|; > 0, and agent i dominates. In particular, if agent
j has correct beliefs and agent i has non correct beliefs but
i B’ J_ i
Ip(Q") < log 77 + (7" =~") Ep[log g],

then agent j vanishes.

As with homogeneous preferences economies, the derivation of the survival
index clarifies the relative importance of portfolio and saving decisions. As with
Proposition 4.2, the proposition can be generalized for economies where the growth
process is not i.i.d.. In this case the survival index becomes time dependent and
the relative importance of having a lower IES or having accurate beliefs changes
over time. For example, provided discounts rate are equal, only one of the two
factors matters for survival in the limit cases of Ep[log ¢(t)] converging to zero or
diverging (provided the equilibrium is still well defined).

I appendix B I discuss the applicability of these results to other expected time-
separable utilities.

29Als0 in these cases however, preferences, in particular those of the negligible agent, still
matter the speed of convergence.

30Previous works establish the result also in I-agent economies, see Sandroni (2000), Blume
and Easley (2006), Yan (2008), or even in economies with a continuous of agents, see Massari
(2014).
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4.3 CRRA and (IES=1, RRA# 1) Economies

In an economy where not all agents have CRRA preferences, the effects of saving
under uncertainty and NLO compensation terms should not cancel out. As a result
all MSH failures F1 — F3 should be possible. I show that this is indeed the case
by studying an economy with a CRRA agent, agent i, and an Epstein-Zin agent
with IES 1, agent j. For this purpose I shall exploit the results from the previous
section and compare agent 7 to a CRRA investors with same RRA coefficient and
beliefs, an investor that would hold the same one period portfolio «, but who uses
a different substitution rule. The portfolio analysis is thus the same as for CRRA
economies, implying that v*/|; is as in (21), and we can focus the attention on
changes in substitution rates.

For this purpose one needs to distinguish the case of agent i, the CRRA agent,
dominating from the case of agent j, the Epstein-Zin agent, dominating. When
agent ¢ dominates, he sets the market discount rate. Agent j differs from a corre-
sponding CRRA agent with IES = 1/47 in that his substitution rate is §’|; = 3
instead of

SUCRRA|, — (39)7 (8)' 7 Q)T Q) T (28)

SES

which is obtained from (9) with p/ = 47 and market discount factor J set by agent
i. As a consequence ’ '

9, = giticrRa) O GORRD,
5] K3 3 /8]

CRRA)|. and using the difference of survival indexes found for the

Expliciting 6U-
CRRA case one finds

; , 1, 1 X L i1 By
bl = 250 ) (1 5 o 1o (@) (@) 0 0

sES

The relative performance of agent ¢ and 7 is not only governed by the differences
of ky survival indexes, as in the CRRA case. Provided «/ # 1, otherwise we would
be back in a CRRA economy, there is an extra term, due to saving, that matters
for the survival of agent j. Even when agent ¢ has a higher modified survival
index than agent 7, the ordering of generalized survival indexes might be different.
In fact agent j can still survive provided he postpone consumption more than he
would have done as a CRRA agent with ITES = 1/47. The above equation gives
the precise trade-off.

The other case of interest is when the Epstein-Zin agent, j, dominates. With
respect to a CRRA economy there are two differences. As when ¢ dominates,
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agent j saves at a different rate then if he had a CRRA substitution rule with
IES = 1/+7. Now, however, also agent i substitutes at a different rate because
the equilibrium interest rate imposed by agent j is not as in the corresponding
CRRA economy. As a result:

0 _ §i(.CRRA) | o' |5 §UCRIA) ’(j,CRRA)

GERRA) il (jCRRA) 691 ’

5 li

After some simplifications,

5 . o 5t
§|j = §PUCRRD | orRa) (Z Qg W) :

s€S8

Exploiting what we know for CRRA economies the difference of generalized sur-
vival indexes becomes

Fly = W)y = (K~ k) + S log Y Ql gl (30)
v v s€S
The ordering of survival indexes ky is not enough to determine long-run outcomes.
There is an extra term due to the fact that the Epstein-Zin agent has not TES =
1/47, so that both the amount he saves and the discount rate he imposes differ
from the corresponding CRRA economy.

Based on the sign of (29) and (30) it is still possible to characterize long run
outcomes along the lines of Proposition 4.1. I particular I shall concentrate on
the case when both agents survive, so that beliefs heterogeneity is persistent and
consumption keeps fluctuating. For simplicity, I assume that the economy has a
constant aggregate endowment, g, = 1 for all s € 8. When agent j dominates,
he sets as the same equilibrium discount factor 6, = 7 as a CRRA agent with
IES = 1/47, and also saves at the same rate 3. As a result agents’ relative

performance can be given in terms of survival indexes as in a CRRA economy and
(30) becomes

i j L j
k |j - kj‘j = ?(kBE - kJBE)

However, when agent ¢ dominates, agent j substitutes differently than he would
have done under CRRA preferences with TES = 1/47, as can be seen from (29)
with g, = 1 for all s. Survival of both agents is established in the next corollary.

Corollary 4.3. Under the Assumptions 2.1, 2.2, A.1, consider the equilibrium
paths of a two-agent exchange economy, with a CRRA agent, i, and an Epstein-
Zin agent with [ES =1, 7, and assume that the aggregate endowment is constant.
If
) . ) Bj ) A gL
0 < Kz =k < (7 = 1)log 5 — 7 log > Q)7 (Q)
seS
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then k'|; — k7]; > 0, k'|; — k?|; < 0, and both agents survive P-almost surely.

Provided beliefs are heterogeneous, the last term of the inequality is positive
when 37 > 3% and 4/ > 1, so that TES =1 > 1/47. The result confirms that it
is the differentiated saving of the Epstein-Zin agent j with respect to the corre-
sponding CRRA agent that, in not balancing exactly the term coming from the
portfolio NLO term, might keep him alive even when his modified survival index
is lower than that of agent i.

4.4 Selection of Intertemporal Substitution Rates

In Section 4.1, we have seen that speculation that results only in different port-
folios could generate MSH failures. Here I address the opposite issue, that is,
whether saving under uncertainty could lead to market selection failures when
growth premia do not play a role.

In order to answer this question, I investigate the outcome of market selection
when all agents hold the same portfolio in equilibrium (the market portfolio) so
that only saving matters. It turns out that the constraint imposed by the equal
portfolio requirement, see Assumption 4.1 below, is such that the ‘ordering’ of
substitution rates is stable. An intuitive result holds: the agent who fixes the
highest market discount rate when alone in the market is also the one who saves
the most for all possible equilibrium prices, and thus dominates in the long run.

Agents hold the same portfolio when they agree on normalized prices, or

P
QOZQS—Q;/. forall s € §, (31)

S )

2ves Qv 9o

for all € J. The condition can always be met in the sense that, given a set
of normalized state prices Q°, for any RRA coefficient v there exists beliefs Q,
namely

Qg™
ZS’GS QS 9;72
such that (31) holds. We can thus assume

Q. = for all s € 8,

Assumption 4.1. There exists a vector Q € Ai such that for all i € J beliefs Q'
and RRA coefficients ~* satisfy

i A
%:QS foralls €. (32)
ses s g
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If the aggregate endowment were not risky, or if it were risky but all agents had
the same risk preferences 7, each agent holding the market portfolio would only
occur under homogeneous beliefs. However the combination of a risky aggregate
endowment and heterogeneous risk preferences is such that agents could still hold
the same portfolio in equilibrium even when they have heterogeneous beliefs. The
case is non-generic, perturbing the belief of an agent would break (32), but it serves
the purpose of analyzing selection of substitution rates in stochastic economies.

When all agents hold the same portfolio long-run outcomes are only determined
by the comparison of their substitution rates in (9). When the initial allocation is
such that each agent i starts with a fraction ¢’ of the aggregate endowment, agents
exchange claims on the aggregate endowment to transfer their consumption across
dates. Agents with a long position are saving more than agents with a short
position and are thus gaining consumption in relative terms. No other asset is
traded.

The next proposition establishes that whether an agent has a long or short
position can be established by comparing the discount rate that they would set
when alone in the market. Whether an agent dominates or vanishes thus depends
on the comparison of these single-agent economy rates. At this purpose I derive
d;, the equilibrium rate when i is the representative agent. Simple computations
lead to

y'=p'

b, = pree'Frlioss (Z Qig;“> (Z Qigi—“> o (33)

SES seS

The role of the IES coefficient p’ in setting discount rates stands out.

Proposition 4.4. Under the Assumptions 2.2, 4.1, A.1, consider the equilibrium
paths of an economy with I agents maximizing Epstein-Zin preferences.

i) if for all j # i

5|z > (S|] R
then for all t, oy, and P, k! — kf > 0 for all j # i, and i dominates on all
<
it) if there exist a j # 1 such that
6‘1 < 5‘j7

then for all t, oy, and P, ki — ki < 0, and i vanishes on all o € X.

The proof relies on showing that for each pair of agents i and j, the ordering
of market discount rates ¢|; and d|; implies a stable ordering of substitution rates
6¢ and 4! for all equilibrium discount factors ;.
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It is important to note that although beliefs do matter, in that through the
saving under uncertainty channel they induce higher or lower substitution rates,
the truth does not matter in these economies. Agents transfer consumption only
across time and not across states. The relative consumption dynamics is deter-
ministic and sufficient conditions i) and i) imply a stable order of survival indexes
for all measures P.3! Dominance and vanishing hold on every path o.

Proposition 4.4 establishes only sufficient conditions in that it could happen
that two agents define the same maximal discount rate in equilibrium, yet save
differently. These situations are even less generic than Assumption 4.1.

Proposition 4.4 can be combined with Proposition 4.3 in the case of CRRA
preferences, ¢ = p' for all i € J. Under Assumption 4.1, modified survival indexes
ky reflect only a differentiated saving behavior and dominance occurs universally,
the truth has no role. Indeed, although the survival index ky seems to depend on
P, the constraint imposed on beliefs by (32) is such that survival indexes computed
under different P are all equal. The agent with the highest survival index dominates
on all path o € X.

Proposition 4.5. Under the Assumptions 2.1, 2.2, 4.1, A.1, consider the equilib-
rium paths of a CRRA economy. Survival indezes {k,, i € I} do not depend on
the truth P. The agent with the highest survival index ky dominates on all o € 3.

The comparison of rates d|; is also particularly simple in an Epstein-Zin econ-
omy without aggregate risk leading to the following corollary.

Corollary 4.4. Under the assumptions of Proposition 4.4, assume further that
there is no aggregate risk, gs = g for all s € 8. If for all j # 1

Big™ > pig=
then ¢ dominates on all o € 3.

Under no aggregate risk, the saving economy ’survival index’ d|; can be sim-
plified to #7g~"", which expresses the trade off between discount factors and IES
coefficient. As in deterministic economies, controlling for discount factors, when
g > 1 the agent with highest IES (lowest p) dominates. The opposite result holds
when g < 1.

Under aggregate risk, although the comparison of equilibrium discount factors
can still be simplified due to Assumption 4.1, its implication for preferences, dis-
count factors, and beliefs is not straightforward. The following Corollary analyzes
‘growing’ 2-agent economies.

31 As long as agents’ beliefs are i.i.d. and all hold the market portfolio, i.e. Assumptions 2.2 and
4.1 respectively, Assumption 2.1 can be relaxed and the statement holds for any P on (2, {F}).
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Corollary 4.5. Under the assumptions of Proposition 4.4, consider only two
agents, i and j, with 3° = 7 and p* < 1 < p/. If logEq[g] + Ep[logg] > 0,
then agent i dominates surely.

Controlling for discount factors, in an growing economies where risk neutral
market beliefs are not too pessimistic, having a IES larger than 1 is sufficient for
dominating against an agent with IES lower than 1, irrespectively of risk prefer-
ences.

5 Examples

In this section I shall consider simple illustrative examples for a two-state economy,
S = 2. The advantage of working with only two states is that equilibrium substi-
tution rates, portfolios, and state prices have a convenient graphical representation
in a 2 dimensional plot. Due to the normalizations only the first component of
normalized state prices needs to be tracked, the same holds for portfolios. Drop-
ping time indexes to simplify the notation, Q is the normalized price of state 1,
Q" the probability assigned from agent i to the realization of state 1, 6°(5, Q") the
intertemporla substitution rule and o/(Q") the portfolio that allocates next period
consumption.

We concentrate on portfolio rules first. Figure 1 illustrates two examples of
portfolio rules, showing how normalized equilibrium prices are determined by their
aggregation. In the left panel, there is no aggregate risk. In the right panel, there
is aggregate risk. In both cases, according to the market equilibrium equation (7),
the equilibrium price Q° is found at the intersection of the convex combination of
rules o/ (Q°), i = 1,2, with the first component of the normalized supply, 1(Q°).
In a dynamic economy weights (¢, 1 — ¢) are given both by relative consumption
and substitution rates, as in (7).

On the same plot one can also visualize the stability conditions. For this
purpose we shall assume that the two states are equally likely, P = (1/2,1/2).
The advantage is that the relative entropy Ip((Q)) becomes symmetric around its
minimum Q = 1/2, Ip(Q) = Ip(1 — Q). As a result portfolio premia can be
evaluated using the euclidean distance of their first components: given o', o/ €
(0,1), Ip(«) ; Ip() if and only if |a® — 1/2| z lad —1/2|.32

In Figure 2, I add a graphical representation of growth premia and of their
decomposition:

ph=1Ip(Q") — Ip(e’(Q") = [1p(Q°) — Ip(Q)] + V.

32If P # (1/2,1/2) one should simply re-scale the vertical axis to compare left’ and 'right’
portfolio deviations from the truth.
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Figure 1: Market equilibrium with CRRA rules. In homogeneous (heterogeneous)
economies clearing prices are determined by the intersection of a rule (a convex
combination of rules) with the normalized supply. Left panel: no-aggregate risk.
Right panel: aggregate risk, g1 = 2¢-.

In the panel the solution of a*(Q") = Q" is equal to agent i belief Q’. The horizontal
line P represent the true probability that state 1 is realized. The vertical euclidean
distance between the two horizontal lines P and Q is proportional to /p(Q). The
full expected return p' computed at a price Q" can thus be visualized as the
difference of the distances of ¢ = 0.3 and a’(q) from P. When, as in the plot,
a'(q) is further than ¢, the growth premium is negative. Although beliefs are more
accurate than prices, Ip(q) — Ip(Q) > 0, by non using log-optimal portfolio agent
i has a negative NLO term, the difference of the distances of Q" and a’(q) from P.
Effective beliefs are less accurate than beliefs. As we shall see also the opposite
might occur.

This graphical analysis can be used to illustrate the finding of Corollary 4.1.
The left panel of Figure 3 shows an example where agents are more risk adverse
than the log agent, 7' =47 > 1, and S = 2. Assume that agent ¢ beliefs are more
accurate than agent j beliefs. If both agents had log-optimal portfolios then agent
7 would have positive expected log-returns in every period. However by using less
risky portfolios each agent receives a particularly high NLO term when state prices
coincide with the other agent belief. As a result, notwithstanding that agent ¢ has
less accurate beliefs, there exist state prices where agent ¢ has a higher expected
log-return, and the other-way round. The right panel of Figure 3 shows the same
example where 7* = 7/ < 1. In this case each agent receives a particularly low
NLO compensation term when prices are close to the beliefs of the other agent.
As a result there exist state prices where agent ¢ has a lower expected log-return.

In Epstein-Zin economies where agents have the same p = 1 and the same
B, only growth premia matter for survival. Portfolios as in the left panels are
associated to long-run heterogeneity whereas portfolios as in the right panel are
associated to dominance depending on the initial conditions, case i) and i) of
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Figure 2: Expected log-returns decomposition when ¢; = 0.3.
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Figure 3: Comparison of growth premia in a market without aggregate risk and
two agents with the same RRA coefficient v and heterogeneous beliefs. Left panel:
v > 1. Right panel: v < 1.

Proposition 4.1 respectively. The figure clarifies that both cases are generic: by
locally perturbing preferences or beliefs long-run outcomes do not change.

In Figure 4, I illustrate the finding of Corollary 4.2 on the three possible failures
of the MSH. In the left panel v > 1, in the right panel v < 1. In both examples
there exists one agent with correct beliefs, and both no-aggregate and aggregate
risk cases can be visualized. Only a couple of agents, the one who knows the truth
and one among 7, 7, and k, should be considered at a time.

When v > 1, knowing the truth leads to dominance under no aggregate risk,
but might lead to dominance (against k), survival of both (against j), or even
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Figure 4: Comparison of growth premia in a market with and without aggregate
risk when one agent has correct beliefs. Only two agents at a time, i.e. two
portfolio rules, should be considered. Left panel: v > 1. Right panel: v < 1.

vanishing (against ¢), under aggregate risk. The plot confirms that results found in
DeLong et al. (1991) are valid also in a general equilibrium model. When agents’
RRA is higher than v = 1, a noise trader with optimistic beliefs might have a
portfolio that is closer to the log-optimal portfolio derived under the truth than
the portfolio derived using correct beliefs. When optimism is mild (as for agent j)
the latter observation holds for all possible equilibrium prices and the optimistic
trader dominates. When the optimism is strong (as for agent ¢) there are prices
where it is the agent with correct beliefs that has a higher growth premium. Since
each agent has a higher growth premium at the prices set by the other agent,
both survive. Trading never settles and state prices keep fluctuating between the
evaluation of the rational trade and that of the noise trader. An equilibrium path
of normalized state prices and of relative consumption shares is shown in Figure 5.
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Figure 5: Equilibrium path of state s = 1 normalized prices (left panel) and
agents’ relative consumption shares (right panel) when g; = 2gy, p* = p* = 1,

Bl=p=pe€(0,1),7 =9"=2Q =P =(1/2,1/2), Q* = (4/5,1/5).

When v < 1 long-run heterogeneity never occurs. Under no-aggregate risk

35



either the rational trader dominates almost surely (against i) or he dominates
only for some initial conditions but vanishes for others (against 7 and k). Under
aggregate risk, both outcomes are still possible (against i and k respectively) but
the rational agent might even vanish (against j). The result extends Theorem 5.4
of Blume and Easley (1992) in that long-run heterogeneity is possible and, even
under no aggregate risk, the rational trader might vanish depending on the initial
conditions.

As explained in Section 4.2, despite in CRRA economies the relative size
of portfolios growth premia is exactly as just discussed for these Epstein-Zin
economies, the component of intertemporal substitution rates that incorporates
beliefs heterogeneity compensates for the inaccuracy of effective beliefs. In the left
panel of Figure 6, I plot the ratio between the intertemporal rate of substitution of
the agent with correct beliefs and the intertemporal rate of substitution of agent 4
as in the left panel of Figure 4. In the right panel of the same figure I consider agent
k of the right panel of Figure 4 instead of agent i. In both cases the ratio is plotted
for the interval of state 1 normalized prices that are possible in the corresponding
economy. In the left panel both agents have RRA higher than 1. The agent with
correct beliefs saves always more than the agent with incorrect beliefs, especially
more at the prices he sets, Q° = 0.2, thus counter-balancing the bad performance
of his portfolio there. The same happens when both agents have RRA lower than
1. In this case however the agent with correct beliefs saves more than the other
agents at the prices set by the other agent, Q° ~ 0.23, counter-balancing the bad
performance of his portfolio in this price range. In both cases the combined effect
of saving and portfolio is such that the agent with accurate beliefs dominates. In
both cases saving is crucial. Only the decomposition of the generalized survival
index in terms of saving and portfolio contributions can shed light on this point.

6p/0;
6p/6x

L L L L L L L L L
026 028 03 032 034 036 038 04 042
Q°

Figure 6: Ratio of intertemporal substitution rates of the agent with correct beliefs
and agent 7 (left panel) or agent k (right panel) as a function of state 1 normalized
prices. Left panel: both agents have v = p = 2. Right panel: both agents have
v=p=0.4.
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5.1 Generalizations

All the above examples are in two-agent economies. When more than two agents
are trading in the same market there is no conceptual difficulty, growth premia
and substitution rates are still determining long-run outcomes. The limitation is
technical in that growth premia need to be evaluated in the limit of one group of
agents consuming all the aggregate endowment, and in these limits state prices
depend on all remaining agents’ consumption distribution. Sufficient conditions
similar to those of Proposition 4.1 can still be established but are far from being
tight.?® In Figure 7, I present three examples of three-agent economies. In the
left panel, under no-aggregate risk, agent i survives against the combination (7, k),
because the growth premium of ¢ is larger than the growth premium of (¢, k) for all
prices determined by (i, k). However, agent ¢ does not dominate. Under aggregate
risk, instead, agent ¢ dominates. In the right panel, agent ¢ vanishes.

The same weakening of the sufficient conditions applies also to non i.i.d. economies.
When the growth rate g follows a generic process, or when beliefs are not i.i.d., equi-
librium prices computed under the assumption that an agent, or a group of agents,
consumes the aggregate endowment become a random variable. Growth premia
should thus be compared for all the relevant possible histories of the process. Only
when inequalities hold in all these cases, they are sufficient to characterize long-run
outcomes.
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Figure 7: Three-agent economies. Left panel: agent ¢ survives but does not dom-
inate under no-aggregate risk, and dominates under aggregate risk. Right panel:
agent ¢ vanishes.

Finally note that the same approach used in this paper can be extended beyond
Epstein-Zin economies whenever an equilibrium path of prices and consumption
distribution can be shown to exist, and date t one-period portfolio and substitution

331 do not have an explicit proposition for I-agent economies, the interested reader can refer
to Bottazzi et al. (2015).
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rules depend on information up to t. The system of equations (3) and (5-7) can
be used to characterize consumption and state prices in the long-run, and thus to
address the MSH.

Consider for example a temporary equilibrium model of sequential trading
where agents are not assumed to have rational expectations on future prices. Each
agent decides how much wealth to save and how to allocate the saved wealth to
the purchase of Arrow securities by using (adapted) rules 6! and @i that depend
only on the information available till time ¢. If future prices are involved, the
expectation should be computed given the information up to ¢. One period saving
and portfolio rules 6! and a!, can be easily derived from the wealth dynamics as

. 5 Si A
5= 1% el — (w9

- (1=}, (01,9))a
L= o St forall s € 8.
st S ves (-0 (o))l <

(34)

One period substitution and portfolio rules also depend only on the information up
to period t. Two-agent economies where one agent maximizes a CRRA utility and
the other agent uses a behavioral rule of this sort can be thus analyzed. Whether
an agent vanishes, survives, or dominates is determined the by comparison of
generalized survival indexes given by log substitution rates and growth premia.

6 Conclusion

This paper shows that in dynamic stochastic exchange economies where agents
have heterogeneous beliefs and maximize Epstein-Zin preferences, speculation does
not support the Market Selection Hypothesis. The result is established by charac-
terizing long-run outcomes of agents’ relative consumption process in terms of the
comparison of agents’ log substitution rates and portfolio growth premia.

In the special case of log-economies, provided discount factors are equal, port-
folio growth premia depend only on beliefs accuracy. Portfolio speculative returns
favor the agent with correct beliefs. However, outside the log-utility framework,
the growth premium depends both on beliefs accuracy and on the comparison
of an agent’s portfolio choice with the corresponding log-optimal portfolio. This
last term, named the Non-Log-Optimality (NLO) contribution, leads to generic
failures of Market Selection Hypothesis. In an economy where all agents use the
same intertemporal substitution rates, three types of failures are identified: mul-
tiple agents survive a.s., leading to heterogeneity of beliefs also in the long run;
the agent with accurate beliefs vanishes on some paths and dominates on others;
the agent with accurate beliefs vanishes a.s.. The failures are shown to be ro-
bust to cases where agents use different intertemporal substitution rates. CRRA
economies are instead special because, due to interdependence of intertemporal and
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risk preferences, the response to beliefs heterogeneity incorprated in intertempo-
ral substitution rates and NLO terms compensate each-others. The only long-run
outcome is the dominance of a unique agent, so that the only possible MSH failure
is the vanishing of the agent with most accurate beliefs. However, also in CRRA
economies, the relative importance for long/run survival of saving and portfolio
decisions depends on all agents’ preferences and beliefs.
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A General Equilibrium with Epstein-Zin Agents

A.1 Saving and portfolio decisions

Saving and portfolio decisions, 0! and &! respectively, can be computed starting
from intertemporal substitution rates and one-period portfolio decisions, ! and a!
respectively. Agent ¢ wealth after history o, is

i i
Wy = ¢ + E Aoy 7.t CoaT >
T>0,0¢+T

where 0,1 takes values in ¥, r(0y), the subset of 3,7 whose elements have a
common history ;. Iterating the consumption dynamics (3) in the expression for
w! above one finds

wy(or) = cy(or) | 1+ 6¢(or) + (o) Z H5t+r Otir) gy, pr—1(Otar—1)

T>0 Ot4+T T= 1
Agent i date t saving decision, & such that ¢! = w?(1 — §?), is thus

S i 1+ ZT>O Ot4+T H 5;+T étJrT,t-i—T—l
t ; .
1 + 6Z + 5Z ZT>O OtyT H 5%+T 7:S't+7,t+‘l' 1
Finiteness of total wealth and positiveness of consumption guarantee that &/ €
(0,1). B
From the saving decision §{ and the consumption dynamics (3) it is possible to
derive the wealth dynamics

(35)

wi, =0 —tw! on (0y,5), (36)
s,t
where the portfolio decision ai € AY is
di(0r) 1—6i()
0;(01) 1 =0y, (0¢, 5)
Using the expression for 6! in (35) it is possible to explicit the portfolio decision
@' in terms of one-period portfolios and substitution rates:

A (or) = oy, (o) (37)

, . T ,
1+ 6;41(01,8) + 0414 (04, ) ZT>O Cip14T Il- 6;+T<Jt+7)aét+7—,t+7'fl(Ut‘i’T*l)

T
1+ 2:7'>07 Ott+r H 5t+7’(0-t+7> st+7,t+7——1(0-t+’r—1)

where, for every s, o, 1.1 takes values in ¥ 1,.7((0,8)) C Xir1ar-
Although full and one-period decisions differ, there exists a limit under which
they coincide. The following result characterizes when it is the case.

O45,1‘/ = as,t

)
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Lemma A.1. If in equilibrium agent i intertemporal substitution rates are history-
independent (deterministic),

§i(ay) = 6i(a})  for all t oy, 0,

then
oy = oy
If, moreover, intertemporal substitution rates are time-independent,

o =0y, =0" forall t,

then

5i— g
Proof. Provided intertemporal substitution rates are history-idependent, i.e. de-
terministic, the ratio

5i(0r) 1 —10i(ay)

0i(0e) 1 = 0f,1 (0, )

on the left hand side of (37) is one for all s € 8, proving the first part of the
Lemma. If substitution rates are also stationary, the sum of the geometric series
of compounded rates can be computed leading to d! = ¢°. O

A.2 Portfolio and saving decisions under Epstein-Zin pref-
erences

In agent agent ¢ maximizes a recursive utility of the type (8) one can use the
first order conditions, see e.g. Epstein and Zin (1991), to characterize equilibrium
allocation and prices. In terms of saving and portfolio decisions one finds

il—v" . pt="

Lot (8l TP (Al
%(51)1_; <t s7t> ( sﬁ) =1 forall st 0. (38)
qut q&t q$,t

Unless we are in the CRRA case, 7* = p, the full portfolio @} enters in the first
order condition. Since @! depends on all future one-period substitution and port-
folio decisions, all first order conditions are coupled. However when Lemma A.1
applies, @i and a! coincide so that (38) can be solved to find one-period optimal
decisions in terms of beliefs, preferences, and market prices.

We have the following
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Proposition A.1. If in equilibrium agent v intertemporal substitution rates are
history-independent, then for all t and oy, it holds

2 1=p
T

i B! ” iy —\
0 = 0 <5_> <23(Qs/)W (Q(s)/,t)l ”) ) (39)
t
s'eS
i (00 Vo
ozi,’t = (@) (Qsr) —, s=1,...,5. (40)

P\ :
2wes(Qu) Q)
Moreover, @i = ai.

Proof. The result follows from the application of Lemma A.1, which allows to use
ai in place of @}, and from the direct solution of (38) in terms of o} and 6;. [

When substitution rates are history-independent both substitution and portfo-
lio decisions depend only on contemporaneous market prices and rates, as in an ex-
pected utility framework. The functions 6°(-,-) and o’(-) such that 6! = 6'(d;, QY)
and of = o'(Q)) are, respectively, the intertemporal substitution rule and one-
period portfolio rule of agent .

Although the proposition does not say when equilibria are such that the one-
period substitution decision coming from these rules is history, or time, indepen-
dent, one can judge directly from the functional form in (39). This is the content of
the next two corollaries. The first illustrates the well-known case of simple saving
rules when the IES parameter is 1.

Corollary A.1. If agent i has p' = 1, then for all t and all o, 0! = & = 3 and
ay = ap = a'(Q).
Proof. Other than from direct substitution of p = 1 in (39), the result can be

established starting from the Euler equation of the recursive formulation limit, see
Epstein and Zin (1991). O

The corollary applies also when growth rates are not i.i.d.. Instead the next
result applies only when the economy is i.i.d., both in beliefs and growth rates, see
Assumptions 2.1-2.2.

Corollary A.2. In an economy where Assumptions 2.1-2.2 hold, if all agents hold
the market portfolio, then for all t and o, agent i one-period substitution decisions

are as in (39) with
Q! Q"
gyt:(g;ﬁ,) (ZQT) . s=1,....5. (41)

s'es
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Proof. Under Assumptions 2.1-2.2 beliefs and growth rates are i.i.d. so that, when
all agents hold the market portfolio, state prices as well as one-period portfolio
decisions do not depend on time and states. One-period substitution rules still
depend on time, through the market discount rate, but do no depend on partial
histories as the dynamics of discount rates is deterministic. As a result Lemma A.1
applies and Proposition A.1 holds. n

A.3 General equilibrium

Given an economy with a set J of Epstein-Zin agents, consumption paths {ct}
for all 4, normalized states prices {Q}, and market discount rates {6,} generated
by (3-7) with rules as in (39-40) are an equilibrium of the exchange economy for
a given initial allocation {c{ for alli} provided that: 7) an interior equilibrium is
shown to exist, otherwise the system (3-7) might have no solutions; ii) agents value
function are finite in equilibrium, so that recursive preferences are well defined and
Euler equations are sufficient, see also Epstein and Zin (1989) and Ma (1993).

Regarding i), under time-0 trading the existence of an equilibrium follows from
Peleg and Yaari (1970), provided the recursive formulation of utility gives a well de-
fine utility over consumption streams and provided strict desirability holds. Both
require finiteness of the value functions, that is 7). Since Epstein-Zin preferences
are dynamically consistent, as long as markets are (dynamically) complete and an
equilibrium exists, time-0 trading and sequential trading achieve the same equilib-
rium allocations. Depending on the chosen asset structure, different assumptions
on the budget constraint are necessary to guarantee the existence of an equilib-
rium: under date ¢ = 0 trading no bankruptcy is allowed, under sequential trading
no bankruptcy and no Ponzi schemes are allowed, see also Araujo and Sandroni
(1999). When an equilibrium exists, it must be interior: agents consumption is
positive on all paths o due to the fact that for every ¢ consumption in ¢ and ex-
pected value of date ¢t 4 1 utility are evaluated via a CES aggregator with a finite
elasticity of substitution equal to 1/p. As a result, it is never optimal to have
zero consumption. Regarding ii) a sufficient condition is that each agent value
function is finite when he consumes all the aggregate endowment along the paths
of maximal and minimal growth, that is, assuming that there is no uncertainty in
the economy. To see why, name s* the state of maximal growth and s~ the state
of minimal growth. Agent ¢ utility on the path {ef} = {eo, gseo, g%€0, - ..}, with s
either s* or s—, can be easily computed from (8) as

Up = ((1 —B) ieo (ﬁ'gi“’i)t) o

t=0
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The time zero utility is finite provided that
ﬁig;_pi <1 s=s"5" (42)

Note also that since the path of maximum and minimum growth are certain, and
no agent consumes all the aggregate endowment, then

{ei} <{a} <{e"}

(inequalities for sequences are valid component by component). Adding that pref-
erences are monotone, the latter implies

Up({ci}) € (00, 00)

for all the feasible allocations {c!}, provided that agent i preferences satisfy the
bound (42).

The argument is concluded by assuming that for each agent ¢ € J discount
factors 8" and IES coefficients p’ are such that both inequalities (42) hold. We
have the following.

Assumption A.1. For every agents i € J, the discount factor B° and the IES
parameter p' are such that (42) in both the mazimum and minimum growth state.

Finally, I have not excluded the possibility that multiple equilibria exist. As
long as each equilibrium obeys (3-7), the market selection results derived from
growth premia and intertemporal rates of substitutions apply.

B Time-separability beyond the CRRA case

Sandroni (2000) and Blume and Easley (2006) show that discount factors and
beliefs determine long-run survival for all economies where preferences are repre-
sented by an expected time-separable utility with Bernoulli utility u(c) satisfy-
ing v'(c) > 0, u’(c) < 0, and lim._,ou/(c) = 400, provided that the aggregate
endowment is bounded from above and from below. Does the the same trade-
off between portfolio log-returns and log substitution ratios hold also when w is
not of the CRRA type? Under the same assumptions on u, the marginal utility
fi(c*) = du'(c?) /dc' is a strictly decreasing positive function unbounded from above
with well defined inverse f; !(-). Solving the Euler equations leads to the following
portfolio and substitution rule:

0 0
0f = D ges St (%&fz (Ci)) Qct/t ;

i (Fe )
57 :
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Although it is difficult to use the former to characterize long-run consumption, it is
evident that the two are related. Moreover, given the decomposition of a portfolio
growth premium, f; determines only the NLO term. As with CRRA preference,
in order for the asymptotic relative 'ranking’ not to depend on normalized state
prices, NLO terms and differences of log substitution rates should compensate
each-other.

C Proofs of Section 4

Proof of Proposition 4.1 Given a filtered probability space (P, >, ¥) and a real
process z; defined on (X, ), adapted to the filtration {S;}, Bottazzi and Dindo
(2015) prove the following theorems, which rely on the Martingale Convergence
Theorem and owe to Lamperti (1960).

Theorem C.1. Consider a finite increments process x; with |xyy — x| < B P-
a.s.. If there exist M > B and € > 0 such that, P-a.s., E[x|xy = 2,3 < —€
for all x > M and E [xy1]xy = 2,3 > x + € for all v < —M, then there exists a
real interval L = (a,b) such that for anyt it is Prob{xy € L for somet >t} = 1.

Theorem C.2. Consider a finite increments process x; with |xyy1 — x| < B P-
a.s.. and such that for all t Prob{z;1 — xy > 7|8} > v for some v > 0. If there
exist M > B and € > 0 such that, P-a.s., E x|z, = 2,3 > x4€ for allx > M
and E [z |z =y, Sy > x+€ for all x < —M, then Prob {lim;_,,.x; = +o00} = 1.

Theorem C.3. Consider a finite increments process x, with |z, 1—x;| < B P-a.s..

and such that for allt Prob {xyy1 — xp > v|S} > v and Prob {11 — xy < =[S} >

v for some~y > 0. If there exist M > B and ¢ > 0 such that, P-a.s., E [z 1|2, = 2,3y >
x+e€ for allz > M and E[zyq|zy = 9,3y < x — € for all x < —M, then there
exists two sets of initial conditions, I't and T'~ with TT UT~ = R, such that
limy_, o1y = +00 if 19 € I'" and limy_,oox; = —00 if 79 € '~

Statement ¢) of the Proposition follows from Theorem C.1, provided we prove
that the log consumption ratio x; = ZZ] has finite increments B. In fact, by
continuity of the conditional drift3*, there exists an M > B such that the drift
hypothesis of Theorem C.1 are satisfied when the limit of the drift is positive for
z — —oo and negative for 2z — +oo. The latter follows from by the assumed
inequality on relative beliefs accuracy and NLO terms, as explained in the text
above the proposition. Using the same argument statements i) and i) follow

34The continuity of the conditional drift follows from the continuity CRRA rules o! and of
seen as a function of z, which in turn follows from the existence of continuous maps gs(¢?) in
the neighborhood of ¢! = 1 and ¢* = 0 (due to the local uniqueness of homogeneous economy
equilibria).
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from Theorem C.2 and Theorem C.3, respectively, provided we prove that the log
consumption ratio z;” has finite increments and a finite probability to jump of at
least a given step. This is the content of the following lemma.

Lemma C.1. Under the assumption of Proposition 4.1 the log relative consump-
tion process zé’j = x; has finite increments, that is, there exists a B > 0 such
that

|zi1 — 2] < B P —almost surely.

Moreover if one of the sufficient conditions i) to iii) hold the process has a finite
probability of jumping of at least a given step, that is, there exists a v > 0 such
that

Prob{z;1 —x; > 7|84} >~ and Prob{xy —xy < =S} > 7.
Proof. The process zéj = z; has innovation

i

CYs<qt)
i (qr)

6?,14—1 = log on (oy,s),

where « are as in (10) with ¢ = Q;. For each s and ¢, equilibrium prices ¢, are
in the interval (min{q’, ¢'}, max{q’, ¢'}), where ¢' (¢/) is the vector of state prices
when agent i () dominates. Name Q = x5 [min{¢/, ¢'}, max{q’, ¢'}]. Regarding

the finite increment requirement, note that for each s there exists a maximum
innovation given by
€, = max {

Choosing B > max{es,s € 8} suffices for the requirement. Turning to the exis-
tence of 7, such that jumps of at least v occur with probability at least 7, note
that if ¢/ = ¢/ for all s then ¢ = ¢* = ¢/ for all t and, from the market clearing
equation (7) o’(q,) = o/(q,) for all t. Tt follows that not only ¢’ = 0 for all ¢ but
also p? = 0 for all t so that none of the drift conditions i) to ii) can be satisfied.
As a result we exclude that ¢* # ¢’ and equilibrium prices ¢ belong to the interior
of ©2. To conclude the proof note that in equilibrium there are no arbitrages, as a

result for all ¢ and ¢; € Q there exists at least an s and an s’ such that

log Oé; (Qt>
s (g

forq € Q} .

e;]t >0 and ei’,{t <0
(Otherwise the zero-price portfolio a'(q;) — a?(q;), or o?(q;) — a*(q;), would be an

arbitrage). For every ¢ € Q let et(¢) the maximum of such jumps (the upper
envelope of €;5(q) for all s) and € (¢) the lowest of such jumps. The two functions
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are continuous in ¢ and {2 is compact so they have a maximum and a minimum.
Moreover, since by the non arbitrage argument €™ (¢) > 0 and ¢ (¢) < 0, the
minimum of € (q) is positive, €7~ > 0, and the maximum of € (¢) is negative,
et < 0. Choosing

v =min{e" ", e T|,Ps s € 8}

finishes the proof. O

Proof of Corollary 4.1 Under no-aggregate risk, e;; = e for all s € § and
t € Ng. Computing the difference v"7|; — v7|; with rules as in (10) , gives

. . L1 inl—1 it 11
VM) =] =log Y (Q)7(Q)' 77 +log Y (Q)(Q)' 7.
sES 5€8
For z in the simplex A®, the function
1 1
Fla:Q) =) () (Q'
sES

is convex with a minimum equal to 1 in x = Q when ~ € (0, 1), it is concave with
a maximum equal to 1 in z = Q when v € (1,00). As a result, when v > 1,
pd|; > pt|; so that

> 0=y > 0.

Y]
I

When v € (0,1) pu™|; < p*|; so that

i< 0= pM|; <0.

pt
The two sign implications together with Proposition 4.1 prove the statement.

Consider now the aggregate risk case with S = 2. Since both state prices
and beliefs belong to the simplex, growth premia can be seen as a function of
one variable only. Focusing on state s = 1, e.g. the state with highest aggregate
endowment growth, name ¢ € (0,1) the state price and Q°,Q’ € (0,1) agents
beliefs, w.lo.g. Q’ < Q. A CRRA portfolio rule (10) is thus a real function
a(q;Q) : (0,1) x (0,1) — (0,1). The function is increasing in ¢ when v € (1, 00)
and decreasing when v € (0,1). It is always increasing in Q. Denote ¢' as the
state price that clears the market when ¢ is the representative agent. From (17)
when S =2 ]

i Q'
q

o) (z)

and similarly for ¢. Since g; > g and Q' > Q’, then ¢’ > ¢/ for all v € (0, 00).
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When v > 1, B B
p) > 0= p); >0

proves the statement together with Proposition 4.1. Since a(q; Q) is increasing in

o(¢) <a'(¢?) and o(¢") < a'(q').

Moreover since a(q; Q) is increasing also in ¢
o (¢’) <o’(¢') and o'(¢’) < a'(q).

Growth premia depend of relative entropies of the form Ip(«). The function Ip(x)
is defined on (0, 1), is convex, and has a minimum equal to zero in z = P. Assume
by absurd that x/|; > 0 and p*/|; < 0, then in must hold that

o’(¢') < P <a'(¢)

as all the other cases would result in a different signs combinations. Since P <
a'(¢’) and o'(¢’) < a'(q") then

Ip(a'(q") > Ip(a’(q)).
ph7]; > 0 instead implies

Ip(c?(q")) > Ip(a'(d"))
and p™|; < 0 implies o o

Ip(e(q’)) > Ip(a’ ("))
The last three inequalities imply

Ip(e?(q")) > Ip(a’(¢"))

which is absurd given the fact that P > a?(¢") > o/ (¢’).
The proof is similar for v € (0,1). Now it is

P < 0= pt); <0

that proves the statement together with Proposition 4.1. «a(g; Q) is still increasing
in Q but it is now decreasing in ¢

o’(¢’) > o’(¢") and a'(¢)) > a'(q).
Assume by absurd that p*/|; < 0 and p*/|; > 0, then it must hold that
o'(q') < P <a(¢)
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Since P > a'(¢') and o'(¢’) > a'(q") then

Ip(a'(¢’)) > Ip(a’(d")).

1 |; < 0 instead implies

Ip(a'(q") > Ir(a/(q") ,

and p™7]; > 0 implies o o
Ip(e?(¢’)) > Ip(a’(q’))
The last three inequalities imply

Ip(e/ (¢)) > Ip((q"))

which is absurd given the fact that P < o?(¢7) < o (¢’).

Proof of Corollary 4.2 Since when agent ¢ has 4* = 1 and correct beliefs his
growth premium is maximum for all equilibrium returns, then both p*/|; and p*|;
are positive and statement i) follows from case iii) of Proposition 4.1. Regarding
i1) since under no aggregate risk normalized state prices are equal to beliefs in the
limit of an agent consuming all the aggregate endowment, irrespectively from his
risk preferences, then an agent with correct beliefs has a maximal growth premium
when he dominates. It follows that if i has correct beliefs, then p7|; > 0. Applying
Proposition 4.1 either case i) or #ii), with him dominating P-almost surely, are
possible. Regarding the statement iii) of the corollary, examples of preferences
and beliefs such an agent with correct beliefs dominates, vanishes, or survives are
given in Section 5 Figure 4.

Proof of Proposition 4.2 Given two agents i and j, w.lo.g. kb > Ky, 50
that

y y 1, _
Ele1|Fes.t. 57 = 2] = ;( B — kpg) >0

for every log consumption ratio z € (—o0,400). The implication for the limit
of 27 follows from the Law of Large Numbers for uncorrelated random variables,
see also the Proposition 1 of Sandroni (2000) for a similar application. Since the
process {Z;} with N N

Zy= ! — Ble|F, )

is a uncorrelated martingale then
T
Zt:l Z

lim

=0 P-almost surely .
T—o0
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Together with the fact that

T -
Ele;” |F,_ 1, . ,

lim 2= Bl |F ] =—(k'—k’) >0 P-almost surely,

T—o00 T Y

the latter implies

lim 2%/ = +o0.

T—o0
Note that equilibrium prices, and thus whether there are more than only agent ¢
and j in the economy do not matter for the result. Finally if k* > k7 for all j # 4,
then each j vanishes against 7. Then also all agents (but i) vanish against 1,

J
lim sup M = limsup —— =0,
t—o0 (b% t—o00 Qﬁ%

so that ¢ dominates. When only i has correct beliefs, provided 3¢ > /7 for all
j # i, then also k' > k7 for all j # i and the same result follows.

Note at last that although the relative log-consumption dynamics depends,
through market equilibrium prices, on the growth process g; its drift does not. It
follows that the same result holds for any growth process g; (provide the economic
equilibrium is well defined).

Proof of Proposition 4.3 The relative consumption process {ZZ’ } has inno-
vation e;]t +1- As shown in the main text the relative size of the survival indexes
Ky determines the sign of E[e;?,|F; s.t. 2,7 = z] in the limit of = — +oo. The
proof follows by applying Theorem C.2 along the same line of the proof of Propo-
sition 4.1.

In particular, we have to show that ¢) when both limit conditional drifts are
positive there exists a v > 0 such that Prob{ei’_{l > v} > 7 and, vice-versa, when
limits conditional drifts are negative there exists a v > 0 such that Prob{ei’il <
—7} > ~; di) there exists a B such that Prob{|¢/,| < B} = 1.

To prove i), for every s define

N
F Q)T 5
fs(QS) = Est+1 = IOg %qs’ﬂ K
(87 Q)7
as the innovation when both i and j use CRRA saving and portfolio rules. When
i dominates ¢, = ¢t = 3°Q’ ¢g;7" and

; 1 B Q! i~
s(q) = —1 —= gl
)= 55108 (5 )
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Likewise when j dominates
N L (BIQLY iy
fs(q}) = — log <—J) 97"
v 87 Q
Since fs(q%) and f,(¢?) differ only for a constant of proportionality they are either
both positive or both are negative. Note also that f(¢s) is monotone, either

increasing or decreasing depending on the relative size of ¢ and ~7. All this
together and the fact that ¢, € (¢, ¢’) (w.l.o.g. ¢\ < ¢) implies that

filas) > min{fs(q,), fi(ql)}. forall g, € (q5,¢). (43)

When the process is such that

lim E[ei’iﬁfﬂ st.z? =2 >0

z—Foo

then there exists at least one s such that fs(¢’) > 0 and f,(¢') > 0. By (43)

filas) > min{fi(q,), fi(al)}-
for all ¢, € (¢, ¢’). Naming v = min{min{ f,(¢}), fs(¢?)}, Ps s € 8} proves that

Prob{e;?, > 7} > 7.

When the conditional drift is negative at the borders, the proof follows the same

lines with v = min{| max{f;(q;), fs(¢})}|. Ps s € 8} .
To prove ii) we need to show that there exists a B such that

|fs(gs)| < B

for every s. Given the properties of f; exploited to prove point 7) it also

| fs(gs)| < max{| fs(q)], [ fs(@)]}-
Choosing B > max{|fs(¢")|, |fs(¢?), s € 8} proves the result.

Proof of Corollary 4.3 The corollary follows from the application of Theo-
rem C.1. The theorem has two hypothesis: that the log relative consumption
process has finite increments, and that the drift at 0o points to the center. This
second hypothesis holds provided parameters are as specified, as it is proved in
the main text immediately before the Corollary. I turn to show that also the
finite increment hypothesis holds. Name ¢* and §|; the normalized state price vec-
tor and market discount rate set by agent ¢ when he consumes all the aggregate
endowment. In a two-agent economy state prices are in the interior of the set
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Q, = Xses [min{q¢’, ¢}, max{¢/, ¢'}] and market discount rate in the interior of
Qs = [min{d|;, d|; }, max{d|;, |;}]. Given the continuity of one-period substitution
and portfolio rules of both agents, for each s there exists a maximum innovation

given by
N (T
67 (8, q)erd(q)
Choosing B > max{e;, s € 8} suffices for the requirement.

log frqEQq,cSEQ(;}.

Proof of Proposition 4.4 Under Assumption 4.1 all agents ¢ € J hold the
market portfolio so that af = o for all i and j. As a result for any couple (i, j)
the log relative consumption dynamics z;” derived from (3) is deterministic and

has innovation equal to
- 5i
e, = log - y :

Substitution rates are given by (9). Market rates ¢; are set by

i
ZZZE;Qthsgs ' o

where Q" is the set of normalized state price that supports all agents holding the
market portfolio. Defining for each agent 7

(St:

,yz . l—pz

i (51)”% z: g anl-%)
k= 7 7 ,
ESES Qg s ( (Qs) (Qs) )

ses

which does not depend on time given that beliefs and market equilibrium prices
are 1.i.d., equation (44) becomes

=30 (1) we= S

€] i€J

where f* is defined appropriately. Since p* > 0 for all i, each function f? is
decreasing in §;. Moreover it holds f(d];) = 1, where §|; is the interest rate set by
1 when he has all the aggregate endowment:

l—pi

Ol = =—————— 71.
e (ZQ )

It follows that for each ¢




As a result, for each ¢
0 € (min{0|;, i € I}, max{d|;, i € T}).
Moreover for each ¢t and j
F(g) < max{d|;i € T}
if §|; < max{d|;i € J}, and
F(g) > max{d|;i € T}

if 0|; = max{d|;i € J}. Since by construction 8§; = d,f(d;) we have proved that if
i defines the maximal rate d|;, then his substitution rate is higher than that of all
other agents and dominates. Dominance is sure because the dynamics of market
discount rates and substitution rates is deterministic. As a result, the same relative
consumption dynamics occurs for all path o. In the same way, if 7 does not define
the maximum rate d|;, then he vanishes.

Proof of Proposition 4.5 The result follows by noticing that under Assump-
tion 4.1

i =y , i _,Wi
Qos" _ 2wes e’ ¢y e

1957 Vs Quay”
so that survival indexes ky do not depend on P, and by applying Proposition 4.4.

Proof of Corollary 4.4 Under no aggregate risk, Assumption 4.1 implies that
foralli,j € Q' = Q' = Q". From simple computation it holds

< ﬁl J—pt <
5|Z;5|]<:>—gp p;l
The above and Proposition 4.4 prove the statement.

Proof of Corollary 4.5 Under Assumption 4.1, beliefs and normalized state
prices are such that when 3* = 3/

i

i (01~ e
% Qg (zses@gl Q) 1)7j -
Lo (SCeest@) (@) 5)
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As a function of beliefs Q
1—p

(Z@s)i@;’fi) h

seS

has a stationary point in Q = Q° where it is equal to one. Moreover it is convex
when p € (0,1) and concave when p > 1. It follows that, provided ) __¢ Q%g, > 1,
p' <1< p’ implies that the ratio d|;/d|; > 1. Applying Proposition 4.4 concludes
the proof.
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