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Abstract Multi-layer networks give the chance to represent multiplicity of relations among
financial operators. In particular, such a framework provides the natural environment to de-
pict both the informative diffusion and the transactions phase in separate, though interacting,
network levels. In this paper we present a two-layers order book model that implements the
information spreading on the first layer, which exhibits Self-Organized Criticality (SOC) to de-
scribe herding behavior among traders, and the financial trading on the second one. The model
is based on the relevant role played by the individual imitation in determining trading decisions.
Despite its simplifying assumptions, results of numerical simulations show tailed Probability
Density Functions (PDF) of financial returns and other interesting features typical of real finan-
cial markets.

PACS numbers: 89.65.Gh, 05.65.+b

1 Introduction

Existing models of financial markets are often based on several interactions among interconnected
heterogeneous agents. Trade decisions follow expectations and generally depend on different
behavioral rules of investors. In true markets, several feedback mechanisms determine complexity
of the aggregate behavior and unpredictability of prices. Further, extreme events typically
characterize the dynamics.

The consciousness about the complex nature of aggregate markets is not a novelty among
economists [1–4]. Nonetheless, during the Seventies and the Eighties, the rational expecta-
tions [5,6] theory sustained the microeconomic approach to Macroeconomics that had, unfortu-
nately, prevailed. Our view is that financial markets can be explained and understood only by
means of a different, macroeconomic, approach, which put the core analysis on the relevance of
informative signals and their distribution. We stress that not all the relevant information can
be known by investors. Because of this incomplete information, agents try to look around in
order to find suggestions for possible dynamic evolution of markets. Like in the famous Keyne-
sian metaphor of the “beauty contest”, agents soon discover the ugly truth: one should never
try to predict what will happen, but what markets think that will happen, instead. Everyday
history shows that market crises are not just matter of perfect information described in models
of efficiency [7]: human interactions and individual psychology cannot be ignored, as financial
markets dramatically showed in many situations [8].
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It is possible to implement methods and concepts coming from statistical and theoretical
physics [9–11] in the economic analysis of financial markets, in order to describe several features,
such as agents heterogeneity, psychological and imitative dynamics, emergent phenomena [12–
15]. In this regard, agent-based models of individuals interacting in complex network structures,
with different informative sets and simple behavioral rules have shown a quite strong attitude to
describe complex economic dynamics of many socio-economic systems [16,17], and in particular
of financial markets [18–21]. Financial integration on a global scale is today so extreme that
policy-makers must learn how to set innovative policy designs [22], in a context where the
current “mainstream” economics approach has not yet shown the ability to prevent wild market
fluctuations that frequently occur.

The model here proposed follows well-known agent-based approaches in financial markets
analysis, see in refs. [23] and [24] for comprehensive surveys. In particular, the usual classification
of agents has been adopted, by distinguishing them in two categories: fundamentalists and
chartists. The former are traders with an eye on the fundamental value of assets; thus they
decide whether to buy a share or not, by looking at its current price level and by comparing it
with its fundamental value (which is calculated by considering its dividends, as it will be shown
in what follows). The latter are technical analysts, who decide their strategies by following
trends and graphic dynamics of past prices on charts. Such a differentiation is common in a
very wide range of literature, among which [25–35].

Previous studies highlighted the specific role played by the information spreading in de-
termining actual trading choices [18, 19, 36] and, more generally, by the awareness in consumer
behavior [20]. In a large part of the literature related to financial markets, the imitative behavior
of a trader has often been modeled by means of a switching oscillation from fundamentalists to
chartists or vice versa. Recently, a more realistic kind of imitation has been proposed in [36], so
that the imitation refers only to the trading decision, no matter which group the trader belongs
to. On one hand, this approach may seem more realistic, since it is reasonable to presume that
agents do not necessarily transform their “behavioral root” because of a single trading deci-
sion. On the other, it augments the descriptive ability of the model in exhibiting herding as the
emergent phenomenon deriving from information cascades between agents [37].

Our model relies on the relevant advances in complex networks analysis driven by the recent
developments in the multi-layer approach, see [38,39] for very detailed surveys. The main goal of
the present paper is to provide a simple multi-layer network model for a truly operating financial
order book model. More precisely, two layers will be adopted: (1) the first is the informative
layer, which configures the global environment of social contacts among market participants: it
is built as a small-world network of investors, since this kind of network capture the topological
structure of social relationships; (2) the second is the trading layer, which represents the trad-
ing opportunities for purchases and sales: it is built as a fully connected network, since each
investor, in principle, can trade with each other in the market. Differently from other models
describing herding in financial markets [40, 41], the first layer shows the information dynamics
as a composite pressure, of both global and individual nature, by recalling some features of a
Self-Organized Criticality (SOC) model of earthquakes dynamics [42]; whereas the second layer
adopts an order book mechanism that determines the asset price by the matching between sup-
ply and demand of heterogeneous traders, of any kind, who interact according to information,
imitation and prospective utility. Their orders are placed in the order book and consequently
executed. Different market mechanisms have been studied in the literature dealing with the
market microstructure, such as in [44–49] among others.
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Figure 1: The two-layers configuration of the ML-CFP Model. The upper layer (or informative layer)
is a 2D Small World square lattice with N traders, connected by means of short and long-range links.
The lower layer (or trading layer) is a fully connected network where each trader is connected to all the
others. In both layers, different colors represent different levels of information: the brighter a trader is,
the more informed she is. Initial levels of information are distributed randomly.

The model here presented is based on the following simplified assumptions: first, in the
market there exists just one asset; second, orders are just limit orders; third, orders are of
quantity one. Dividends dynamics is introduced as the main determinant of the fundamental
value of the asset (that, therefore, results to be variable). By considering information and trading
ideally separated, this model combines together the influence of herding dynamics and the orders
matching within a framework that counts on the expressive potential of multilayer networks.
Summarizing, this paper aims to provide a realistic description of the following aspects of real
financial markets: a) separation and interaction between the formation of the informative set of
traders and the trading execution of their orders; b) an endogenously formed price series resulting
from a truly operating order book mechanism for orders placement; c) individual imitation and
herding among agents due to informational cascades. Such a descriptive framework is then used
to test some stabilization policy.

The paper is organized as follows: section 2 contains the model description; section 3 reports
simulation results and their discussion; section 4, presents some conclusions.
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2 The ML-CFP Model

In order to simulate the operation of a financial market, the model here presented mainly extends
the basic network framework contained in [36] by augmenting it with a second layer, devoted
to the order book mechanism. Thus, the order-book-driven Multi-Layer Contagion-Financial-
Pricing model (ML-CFP henceforth) is obtained (see Fig.1). Technically, this kind of multilayer
network is called multiplex, since the nodes (traders) are the same in both the layers, changing
only the meaning of the edges.

In the next subsections, the role of both the two layers will be described in detail. Here we
summarize the info-trading dynamics, which proceeds at each simulation time-step t following
this 2-phases evolution:

I- in the informative layer, according to the link configuration given by the network topology,
agents collect and share information, therefore deciding their status (bidder, asker or
holder) and the (ask or bid) price of their possible order, depending on the global price at
time t and on the herding effect;

II- in the trading layer, investors put their orders in the order book, which provides a sort of
compensation room to execute them, and the next global price

In phase I, all market participants are devoted to gain information about the market and
the unique asset. As it will be described below, information enters the model as a twofold phe-
nomenon, in order to replicate a realistic market setting: from a first (global) point of view, it is
a generalized (exogenous) signal that reaches all agents, even if with different (random) weights;
from a second (individual) point of view, it comes from known people in the social network, no
matter if by means of professional competence or by simple word of mouth transmission. Such
a configuration may, for example, represent real markets where all agents can receive general
(and maybe low-quality) informative signals, while personal contacts, opinions, and persuasive
behaviors of trusted people may suggest personal component of information. Under the influence
of both the informative sources, and following the prescription of their group (fundamentalists
or chartists), agents attempt to form their individual (heterogeneous) expectation for the future
price. Then, according to it, they select their trading status (whether to set an order and to
negotiate, or not) and, in case, the ask or bid price of the order. It is worth to notice that,
when traders have to decide their status and price, the contagion mechanism comes into play, in
order to take into account the chance that the euphoric or pessimistic expectations can generate
information cascades of purchases and sales. In this respect, as explained in subsection 2.1,
one can imagine that each trader is endowed with a sort of confidence tank that is filled by the
accumulation of information coming from the general informative source. When, at a given time
t, an agent - that we call trigger agent - overcomes her threshold, i.e. when she reaches a level
of knowledge that she considers satisfying, she transmit the (individual) information about her
status and price to her neighbors in the network. In turn, the neighbors can overcome their
threshold too: in this case they imitate both the status and price of the first agent and transmit
the same information to their neighbors, and so on. In such a way, the herding avalanche can
develop. At the end of each avalanche, all the traders involved in the herding process operate
in the same way, while the others act independently.

At this point, phase II can start and all the orders are organized in the order book, which
operates the matching for the transactions to be actually done. Then, the new asset price will
be determined as explained in subsection 2.2.
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Figure 2: Informative pressure and contagion cascade.

2.1 The Informative Layer

Let a community of traders Ai (with i = 1, ..., N) be connected among themselves in a Small
World (SW) network [19]. This topology, firstly introduced in [43], is usually adopted in order
to describe realistic communities in social or economical contexts. In particular, we consider
here a two-dimensional regular square lattice with open boundary conditions and an average
degree < k >= 4. See ref. [19] for more details.

As above explained, each trader is exposed to two flows of information: a global one (a) and
an individual one (b), [19, 21,36].

(a) The global informative pressure reaches all investors uniformly at every time-step, from
external sources. Each trader is endowed with a real variable Ii(t) (i = 1, 2, ..., N) that
represents her information at time t. Initially, at t = 0, the informative level of each
trader is set randomly, in such a way that Ii(t) ∈ [0, Ith], where Ith = 1.0 is a threshold
assumed to be the same for all agents. Then, at any time-step t > 0, the information
accumulated by each trader in her awareness tank is increased by a quantity δIi, different
for each agent and randomly extracted within the interval [0, (Ith − Imax(t))]. Such an
accumulation process may lead a given trader Ak, before the other, to exceed her personal
threshold value at a given time t = tav. In this case, that trader becomes active and
transmits her opinion, as an informative signal, to her neighbors;

(b) Such an opinion spreading represents the second (individual) flow of information, since ev-
ery trader may receive signals from her neighbors (who have possibly passed their thresh-
old). If it happens, it may cause, in turn, that also other agents exceed their thresholds
because of this supplementary amount of information, which is additive with regards to
the global one (a). Such a process explains how the informative cascades may generate
herding in the market.

The information transfer happens in the information network according to the following
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simple mechanism [19], analogous to the energy transmission in earthquake dynamics modeled
in networks of terrestrial crust pieces contained in [42]:

Ik > Ith ⇒
{

Ik → 0,
Inn → Inn + α

Nnn
Ik,

(1)

where nn denotes the set of nearest-neighbors of the active agent Ak. Nnn is the number
of direct neighbors, and the parameter α controls the level of dissipation of the information
during the dynamics (α = 1 if there is no dissipation): it is realistic to presume that part of
the information content is lost in transmission, therefore in our simulations we always adopted
α < 1. As a consequence of the received amount of information, it has been said that other
traders may be activated and they may, possibly, pass the threshold level as well. This process is
shown in the three steps depicted in Fig.2: from step (a) to step (c), all the newly active traders
will imitate the status Sk of the first agent and will transmit, in turn, their own signal to their
neighbors following again Eq.1, and so on. In such a way, an informative avalanche will take
place at time tav, producing a contagion cascade of traders, who will share the same behavior
and choice.

2.2 The Trading Layer

In our model we consider an ideal financial market where only one asset exists and where money
has an ancillary function, just for transactions regulation. Let us imagine, first, that the trading
layer is not influenced by the herding avalanches of the informative layer. In this case we could
consider the process of status setting and price formation for an individual agent as independent
from the behavior of the other agents. The traders Ai (with i = 1, ..., N) are endowed, at the
beginning of each simulation, with an equally valued portfolio, composed by the same initial
quantity of money Mi = M (∀i) and the same initial quantity of the unique asset Qi = Q (∀i).
The total wealth Wi of each trader is then defined as: Wi = Mi +Qi · pt, where pt is the global
price of the asset at time t. As we know, two groups of traders exist: fundamentalists and
chartists. At each time-step, traders will behave differently, according to their character :

F- Fundamentalists presume the existence of a fundamental value, FVt, and believe that the
market price of the asset will always tend to it. The fundamental value changes every tf
time-steps following the rule:

FVt+tf = FVt + Dt (2)

where FV0 = 0 and Dt is a random variable extracted from a normal distribution with
zero mean and standard deviation σf . This corresponds to the assumption that dividends
follow a random walk. The fundamental value is then used by each fundamentalist in order
to build a personal opinion about the correct price for the asset, named fundamental price,
pFt , being computed as

pFt = p0 + FVt +Θ (3)

where p0 is the initial global asset price and Θ is randomly chosen in the interval (−θ, θ),
in order to account for the heterogeneity of investors. Thus, fundamentalists form their
expected price for the asset according to

E[pt+1] = pt + ϕ(pFt − pt) + ϵ (4)
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where the parameter ϕ is a sensitivity parameter that describes the expected speed of
convergence to the fundamental price and ϵ is a stochastic noise term, randomly chosen in
the interval (−σ, σ). In order to limit the number of parameters, we let the value of ϕ be
fixed even if, in principle, it could be different for each trader of this group.

C- Chartists decide their behavior according to their inspection of past prices. Therefore,
before defining their expectation for the future, they will analyze the past dynamics of
the asset price series. In particular, they consider the information coming from such an
inspection as a past reference value PRVt, computed at any t by averaging the previous
prices over a time window of length T , different for each chartist and randomly chosen in
the interval (2, Tmax):

PRVt =
1

T

t∑
j=t−T

pj . (5)

Then, the expected price for the next time-step is determined by each chartist as

E[pt+1] = pt +
κ

T
(pt − PRVt) + ϵ (6)

where κ (a constant) is the sensitivity parameter and ϵ is, again, a stochastic noise term
defined as in Eq.4).

In order to choose the status of the traders a sensitivity threshold τ has been introduced in
the model, in such a way that, if the expectations are not sufficiently strong, the trader will
decide to hold, without setting any order. In particular, only if E[pt+1] > pt + τ traders will
expect a rise in the market price and decide to buy the asset, setting their status Si on bidder.
On the other hand, only if E[pt+1] < pt−τ traders will expect a fall in the market price and they
will decide to sell the asset, setting their status on asker. Finally, if pt − τ < E[pt+1] < pt + τ ,
traders will decide to hold on, without doing nothing. Of course, traders who decide to buy
must have a positive amount of money (Mi > 0) and, similarly, those who decide to sell must
have a positive amount of the asset (Qi > 0).

Once the individual status has been decided, each trader sets her order in the book by
choosing the preferred price for the transaction. Both in case of sales and purchases, the price
chosen by each trader for the transcription in the order book (personal bid price for bidders
and personal ask price for askers) is a function of the expectation that inspired the status of the
same trader. Since orders are always of quantity 1, bid (ask) prices are decided by traders by
means of simple price setting rules that describe their willingness to pay (to accept) according
to their expectations, instead of being defined by means of function optimization procedures.
The heterogeneity of traders is embedded in the model by defining feasible intervals from which
each investor can extract her bid/ask price:

I- if the status is bidder, the chosen bid price will be extracted (with uniform probability)
from a range whose minimum and maximum are defined as follows:

min: since it is not convenient for any buyer to set a bid price too low, because no seller
would accept to sell, the lower bound for the bid price setting at time t+ 1 is equal
to the best ask price (i.e. the lowest one) observed at time t;
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max: since the reason why the investor is bidding is that her expected price is higher than
the current one, the upper bound for the bid price setting is exactly that expected
price (but, of course, in case the trader has not enough money, the maximum value
that she can bid is limited to the owned money);

II- if the status is asker, the chosen ask price will be extracted (with uniform probability)
from a range, whose minimum and maximum are defined as follows:

min: since the reason why the trader is selling is that her expected price is lower than the
current one, the lower bound for the ask price setting is the worst scenario that she
infers, i.e. the expected price;

max: since it is not convenient for any seller to set an ask price too high, because no buyer
would accept to buy, the upper bound for the ask price setting in t+1 is the expected
price plus twice the difference between the current price and the expected one.

After status and price setting activities, orders for a “+1” or “−1” quantity are posted
in the book. This is exactly the point where the interaction between the trading layer and
the informative one becomes crucial. Actually, as anticipated in subsection 2.1, in presence
of herding avalanches all the traders involved in the avalanche, regardless of their character
(fundamentalist or chartist), will imitate both the status and the price of the agent who started
the avalanche itself. And this, of course, strongly influences the order book aspect.

Once posted all the orders in the book, both sides (buy and sell orders) are ranked accordingly
with their associated prices. Bid prices are ranked in decreasing order of willingness to pay: in
such a way, the trader who has set the highest bid price (namely the best-bid) will be the
top of the list and will have the priority in transactions. Conversely, ask prices are ranked in
increasing order of willingness to accept: the trader with the lowest willingness to accept (who
sets the so-called best-ask) will be the top of the list and will have the priority in transaction
execution. Then, the matching is done by comparing the best ask and the best bid. The
number of transactions NT that actually does occur between askers (whose total number is Na)
and bidders (whose total number is Nb) strictly depends on such a comparison. Actually, only
if best-bid > best-ask we have NT > 0, i.e. a given number of transactions do occur, depending
on the matching among ask and bid prices present in the order book. After the first transaction,
occurring among traders who posted their own order at the best price, both from the demand
or the supply side, transactions continue following the order in the book (ascending for the ask
list and descending for the bid list) until the bid price is greater than the ask price and all the
transactions are regulated at the ask price. Finally, the new global asset price will be pt+1 = pL,
where pL is the ask price of the last transaction occurred.

3 Simulations results

In this section we present the simulation results of a typical run of the ML-CFP model, analyzing
both its macroscopic and microscopic details, and plotting the final distributions of its main
quantities.

We consider a network of N = 900 traders, equally divided in 450 fundamentalists and 450
chartists. The (typical) initial setup for the values of the control parameters of the model is the
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Figure 3: Top panel: typical time series for the global asset price; in the inset, a detail of the series.
Bottom left panel: normalized returns of the price series. Bottom right panel: probability density
distribution (PDF) of the normalized returns compared with a Gaussian distribution of unitary variance.

following: p0 = 500 (initial price), α = 0.95 (level of conservation of information), σf = 2 (stan-
dard deviation of the normal distribution for the fundamental value FVt), tf = 10 (time incre-
ment for FVt), Θ = 30 (range of variation for the fundamentalists’ heterogeneity), ϕ = 0.5 (sen-
sitivity parameter for fundamentalists), Tmax (maximum extension of the window for chartists),
κ = 2 (sensitivity parameter for chartists), σ = 30 (maximum intensity of the stochastic noise
for the expectation values), τ = 15 (sensitivity threshold for the status setting), M = 40000
(initial quantity of money) and Q = 200 (initial quantity of the asset).

In the top panel of Fig.3 we show a typical time evolution of the global asset price. After
a transient of 5000 time-steps without trading (not visible), need for the system to enter in the
SOC regime (where power-law distributed avalanches can be observed in the informative layer),
agents start to trade and the values of the asset price are plotted for the next 10000 time-steps,
starting from the initial price p0 = 500. In the inset, a detail of the same series is reported.
Sometimes, very strong fluctuations are visible in the price series, due to the effect of herding
avalanches. These fluctuations, of course, affect the volatility of the price, as emerges from the
normalized returns time series, reported in the bottom left panel (normalized returns are defined
as rnormt = (rt − rav)/rstdev, where rt = log(pt+1)− log(pt) are the logaritmic returns while rav
and rstdev are, respectively, their mean and standard deviation calculated over the whole series).
Consequently, the probability density functions (PDF) of normalized returns, plotted in the
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Figure 4: Left column: from top to bottom, final distributions of the asset quantity, money and wealth of
all traders. Central and right columns: the same distributions are plotted separately for fundamentalists
and chartists.

bottom right panel, shows the asymmetric fat tails characteristic of financial markets, symptom
of the presence of extreme events.

On the other hand, the central part of the distribution is not peaked but follows a Nor-
mal shape, as visible from the comparison with a Gaussian curve with zero mean and unitary
variance. This is probably a consequence of the strong approximation adopted in the ML-CFP
model, where only one asset is considered and the orders are limited to one. Under these con-
ditions, the system evidently is able to self-organize, maintaining a dynamical balance between
purchase orders and sales. The latter feature clearly appears looking at the details of the trans-
actions in the trading layer. Actually, the average numbers of askers and bidders calculated
during the whole time period were, respectively, Na = 229.61 and Nb = 220.42. Furthermore,
over an average number of transactions equal to NT = 88.65, the average numbers of buyers and
sellers were, respectively, 52.02 and 52.49 for fundamentalists, and 51.2 and 50.75 for chartists,
indicating a strong average equilibrium among the competing forces in the market.

Such an equilibrium can be also revealed by plotting, in Fig.4, the final distributions of
the asset quantity, money and wealth for all the traders (left column) and, separately, for the
fundamentalists (central column) and chartists (right column). The initial values of the three
quantities, equal for all the traders, are also reported as dashed vertical lines. As one could
expect, the final distributions appear to be widespread around their initial values but, for what
concerns money and asset quantity, the trading dynamics seems to well balance between gains
and losses. The only source of asymmetry is the small difference between the average number
of buyers and sellers that changes its sign for fundamentalists and chartists, leading the former
group to slightly favor purchases and the latter to slightly favor sales. This, in turn, induces
fundamentalists to sell their assets, thus increasing their money, and chartists to buy new assets,
thus decreasing money. But these two variables, together with the fluctuations in the asset price,
evidently compensate in producing a similar final wealth distribution for the two groups.
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The features observed for this typical run are quite robust and remain substantially un-
changed if one varies the relative proportion of fundamentalists and chartists, the initial value
of the asset price or the initial asset quantity and money. On the other hand, they are quite
sensitive with respect to variations in some control parameters, like the sensitivity parameters
for the expectation prices, the sensitivity threshold for the status setting or the maximum inten-
sity of the stochastic noise: in this case, the observed equilibrium between bidders and askers
becomes unstable and, typically, one of the two trading groups, fundamentalists or chartists,
start to buy the asset much more than the other one, thus generating a spiral effect that leads
fundamentalists or chartists to spend all its money thus taking, in fact, out of the market.

4 Conclusions

In this paper we have presented a simple multi-layer order-book model of financial market,
namely the ML-CFP model, with heterogeneous agents. Its realistic framework is fruitfully
coupled with interesting numerical results, which - despite the simplifying assumptions about
assets and orders - adhere to some typical features of real financial markets. The obvious
generalization of this model, achievable by introducing more than one asset or variable orders
quantities, is in progress and will be the subject of further studies, together with a deeper
analysis of stylized facts.
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