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Abstract. Two distinct specifications of single peakedness as currently met in the relevant

literature are singled out and discussed. Then, it is shown that, under both of those specifications,

a voting rule as defined on a bounded distributive lattice is strategy-proof on the set of all profiles

of single peaked total preorders if and only if it can be represented as an iterated median of

projections and constants, or equivalently as the behaviour of a certain median tree-automaton.

The equivalence of individual and coalitional strategy-proofness that is known to hold for single

peaked domains in bounded linear orders fails in such a general setting. A related impossibility

result on anonymous coalitionally strategy-proof voting rules is also obtained. Some implications

of the foregoing results concerning the recently proposed ‘majority judgment’method are spelled

out and discussed.
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1. Introduction

A good decision on an issue of social concern such as location of a public facility or choice of

tax rates has to rely on some information that is typically private and disperse among the relevant

stakeholders. In many cases, voting by a suitable committee is one of the most practical means to

elicit and amalgamate such information, and produce the final decision. Since part of the relevant

information is private, however, voters may attempt to manipulate the outcome by misrepresenting

that information (say, their most preferred outcome), and they are likely to do that if the voting

rule allows for profitable individual manipulations. Now, that manipulative behaviour may easily

result in ineffi cient outcomes, especially if enacted by several uncoordinated voters. Furthermore,

the perceived availability of profitable manipulations may encourage diversion of voters’resources

to gather private information concerning other voters. Thus, in order to prevent such possibly

wasteful manipulative activities a voting rule should be reputedly strategy-proof, namely immune

to advantageous individual manipulations. If, moreover, voters have access to cheap communication

facilities allowing them to coordinate their voting strategies, then they can engage in coalitional

manipulations as well. Therefore, in that case a voting rule should also be reputedly coalitionally

strategy-proof, namely immune to jointly profitable manipulations on the part of coalitions of

voters.
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Those observations raise the following general identification issues:

(i) what are (if any) the strategy-proof voting rules on the relevant preference domain?

(ii) which of them (if any) are also coalitionally strategy-proof?

Of course, several alternative domains may be taken into consideration, and some of them have

been thoroughly analysed in the aftermath of the Gibbard-Satterthwaite impossibility theorem.1

The present paper addresses the foregoing issues mainly focussing on an important class of single

peaked2 domains of total preorders in bounded distributive lattices,3 namely the domains denoted

here as unimodal and locally strictly unimodal (to be defined below). A characterization of the

entire class of strategy-proof voting rules on the full unimodal and locally strictly unimodal domains

in bounded distributive lattices will be provided, generalizing or extending virtually all previously

known results of that kind. Quite remarkably, the simple majority rule or extended median (that

is well-known to be strategy-proof and coalitionally strategy-proof on both unimodal and locally

strictly unimodal domains in bounded chains) is confirmed to belong to the strategy-proof class even

in the present wider setting. On the other hand, it will also be shown that in a very large class of

bounded distributive lattices that are not linear orders, and under minimal neutrality4 requirements,

no anonymous voting rule is coalitionally strategy-proof on the foregoing domains.

Single peaked preferences arise in a natural way whenever each agent’s representation of the

outcome space is endowed with some ‘natural’ternary betweenness relation establishing for any two

outcomes x, y whether an arbitrary outcome z lies between x and y or not: indeed, single peaked

total preorders are those total preorders with a unique best outcome that respect -are consistent

with- such betweenness relation.

However, such a broad description of single peakedness is in fact compatible with several distinct

specifications of the domain of single peaked preference relations.

At least two salient issues require further preliminary clarification, namely:

(a) is the relevant betweenness relation agent-invariant (hence unique) or agent-dependent, and

(b) what is precisely meant by ‘consistency of preferences with the relevant betweenness rela-

tions’?

Concerning the first issue, the present paper follows the tradition that can be traced back at least

to Black (1948) and was largely taken for granted in the early social choice theoretic literature: the

relevant betweenness relation is required to be agent-invariant hence unique across voters, modeling

a representation of the outcome structure that is entirely shared by all the involved parties.

1The Gibbard-Satterthwaite theorem establishes that if there exist at least three distinct outcomes such that

all preference rankings of them are admissible for each voter then dictatorships are the only strategy-proof social

choice functions that can select all of those three outcomes.
2‘Single peakedness’will be used as a general non-technical term that admits of several specifications.
3A distributive lattice is a partially ordered set such that any two elements x and y admit a least upper bound

or join x∨y and a greatest lower bound or meet x∧y that mutually ‘distribute’on each other i.e. interact much like
set-theoretic union and intersection. Clearly, the join and meet of any finite set of elements are also well-defined.

4A voting rule is neutral with respect to a certain pair of outcomes when it treats them in an unbiased manner.
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Concerning the second issue, we focus on the two main variants encountered in the literature

on single peakedness, namely:

(1) the ‘compromise’-view of betweenness-consistency for preferences: if an outcome is inter-

mediate between two outcomes x and y then it is to be regarded as a ‘compromise’between those

two locally ‘extreme’ outcomes and as such is not strictly worse than both x and y. Such a

‘compromise’-view can also be given a ‘proximity’-interpretation, relying on a suitable metric in-

duced by the underlying lattice. That notion of betweenness-consistency is in fact, arguably, the

most ‘natural’and appropriate one whenever the outcome set is a distributive lattice;

(2) an alternative ‘top proximity’-view of betweenness-consistency for preferences: if an outcome

is intermediate between the top outcome and another outcome y and distinct from the latter, it is

also closer than y to the top outcome and therefore strictly better than y. It turns out, however,

that such a notion of ‘top proximity’-when employed in a distributive lattice that is not a chain,

and defined through a suitable latticial metric (as discussed below under Remark 1)- generates a

somewhat spurious notion of local single-peakedness allowing for the existence of many local peaks

(more on this point below).

For the sake of convenience we shall denote as unimodal (locally strictly unimodal, respectively)

precisely those preference profiles of total preorders that are single peaked under specification (1)

((2), respectively) of betweenness-consistency. Indeed, most contributions in the literature on

single peakedness and strategy-proofness of voting rules and social choice functions focus exactly

on unimodal or locally strictly unimodal preference profiles as defined above.

In a pioneering paper, Moulin (1980) characterizes the class of all strategy-proof voting rules

(or, equivalently, ‘top-only’social choice functions) on the domain of all total preorders that are

unimodal with respect to the ‘natural’betweenness relation of a bounded linearly ordered outcome

set. In fact, he shows that such strategy-proof voting rules are precisely those based on the median

as applied to voters’choices possibly augmented with a certain set of fixed outcomes aptly dubbed

‘phantom vote(r)s’by Border and Jordan (1983). Moreover, in the foregoing work Moulin points

out that those voting rules are also coalitionally strategy-proof.

In a remarkable subsequent contribution, Danilov (1994) provides a similar median-based char-

acterization of strategy-proof voting rules on the domain of all linear preference orders that are

unimodal with respect to the ‘natural’betweenness relation of a (bounded) undirected tree, and

establishes equivalence of individual and coalitional strategy-proofness on that domain.

Now, (bounded) linear orders or chains model a wide array of collective decision and voting

problems, including location of a facility on a line or choice of a tax or an exchange rate. More-

over, (bounded) trees enable a study of facility location problems in a considerably larger class of

networks. However, consider the following list of aggregation problems:

• Multipart grading
(a) Student grading: consider a committee of professors grading students of a certain class

through the ordinal scale A, B, C, F(fail);
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(b)Wine grading: consider a jury panel of experts grading a set of wines according to several

dimensions (say aroma, aspect, flavor) through the ordinal scale Excellent, Very Good, Good, Pass-

able, Inadequate, Mediocre, Bad (that is the ordinal grading scale for Sensorial Analysis Tasting

used until recently for (Still) Wine Judging Competitions by U.I.OE an international group of

oenological associations (see Balinski and Laraki (2010), p.153).

Of course, other examples of multipart grading problems arise in several sport competitions.

• Panel selection of a multidimensional poverty threshold
Consider a committee of experts which is required to recommend a poverty threshold concerning

a multidimensional resource/achievement space: each dimension is represented by an ordinal scale,

and thresholds will consist of a list of minimal values, one for each dimension. The proposal of

each expert may consist of a single (multidimensional) threshold, or even of a list of alternative

non-comparable thresholds.

• Behavioral preference aggregation
It is well-known from actual choice data that revealed preferences frequently violate transitiv-

ity and other ‘consistency’requirements. Suppose then that an arbitrary ‘model-free’profile of

individual preferences as embodied in choice data (i.e. multivalued choice functions, one for each

relevant agent) is to be aggregated to obtain a unique multivalued choice function.

The outcomes of the foregoing aggregation problems are respectively score profiles, (multidimen-

sional) poverty threshold systems, (multivalued) choice functions. The resulting outcome spaces

can be ordered in a natural way through the ‘dominance’partial orders induced by component

orders (in the first two examples) or by set-inclusion (in the third example), but are clearly not

linear orders themselves: e.g. a certain score profile is larger than another if each student gets

a higher score in the former, and a choice function is larger than another if for each feasible set

its choice set is a superset of the choice set of the latter, but there exist pairs of non-comparable

score profiles or choice functions. However, all of those ordered outcome spaces share with linear

orders the important feature of being distributive lattices as defined above (see Note 2: many other

relevant examples of such outcome spaces will be presented and discussed in some detail in Section

2 below).

Moreover, a very natural betweenness relation which is available in any lattice provides a natural

generalization of the standard betweenness relation of a linear order : just declare z to lie between

x and y if z is larger than -or equal to- the meet of x and y (written x ∧ y) and smaller than
-or equal to- the join of x and y (written x ∨ y).5 Hence, both unimodal and locally strictly

unimodal preference domains of total preorders can be easily defined for all (bounded) distributive

lattices with respect to the standard latticial betweenness, namely: a total preference preorder on

5That is, for instance, the notion of betweenness underlying ‘intermediate preferences’as introduced by Grand-

mont (1978) and recently reconsidered by Bossert and Sprumont (2014) in their study of strategy-proof preference

aggregation rules. That is also the betweenness relation underlying the ‘top proximity’-based interpretation of single

peakedness used by Barberà, Gul and Stacchetti (1993) who rely on the L1-metric (or ‘taxi-cab’metric).
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a distributive lattice is unimodal if it has a unique maximum and is ‘compromise’-consistent (‘top

proximity-consistent’, respectively) with the latticial betweenness relation.

No characterizations of strategy-proof voting rules on single peaked domains in general (possibly

infinite) bounded distributive lattices other than chains or products of chains are available in the

extant literature. In particular, the equivalence issue concerning strategy-proofness and coalitional

strategy-proofness of voting rules on single peaked domains has never been addressed before in the

foregoing latticial setting.

But then, what about strategy-proof voting rules on unimodal (or locally strictly unimodal) do-

mains in arbitrary bounded distributive lattices? Are they median-representable? When do they

also enjoy equivalence of individual and coalitional strategy-proofness?

The present paper aims at filling this significant gap in the literature and provides a study

of strategy-proofness and unimodality in general bounded distributive lattices. A median-based

characterization of strategy-proof voting rules on unimodal and locally strictly unimodal domains

in bounded distributive lattices is established by introducing median tree-automata representations

of voting rules. It is a remarkable feature of our characterization that it unifies (generalizing or ex-

tending, and bringing together) several notions, approaches and results from the extant literature,

namely:

• The characterization contributed by the present paper generalizes Moulin’s original char-
acterization of strategy-proof voting rules on unimodal domains in bounded chains to both

(full) unimodal and locally strictly unimodal domains in all bounded distributive lattices,

obtaining a lattice-polynomial representation which is a dual -and equivalent- version of

that produced by the former author for his special case of bounded linear orders or chains

(Moulin (1980)).

• Our characterization also highlights the equivalence of that lattice-polynomial representa-
tion to another and new representation of strategy-proof voting rules on unimodal domains

as the behaviour maps of certain median tree-automata acting on suitably labelled finite

trees. That tree-automata-theoretic representation essentially amounts to a streamlining

and extension of the approach pioneered by Danilov (1994) in his remarkable characteriza-

tion of strategy-proof voting rules on unimodal domains of linear orders in bounded trees

via an interval-monotonicity property. Thus, our tree-automata-theoretic representation

of strategy-proof voting rules on single peaked domains also clarifies the exact relation-

ship between Moulin’s and Danilov’s characterizations offering a common framework which

subsumes both of them (see Note 18 below for more details on that specific point).

• The lattice-polynomial representation mentioned above is in turn a generalization of ‘latticial-
federation consensus functions’or, equivalently, of ‘generalized committee voting rules’as

introduced respectively, and independently, by Monjardet (1990) in his path-breaking con-

tribution to (non-strategic) aggregation problems in (semi-)latticial structures, and by
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Barberá, Sonnenschein and Zhou (1991) in their well-known study of strategy-proof voting

mechanisms on separable preference domains in finite Boolean lattices.6

• Finally, it is also proved that the equivalence between strategy-proofness and coalitional
strategy-proofness - that is known to hold for both unimodal and locally strictly unimodal

domains in bounded linear orders and for unimodal domains of linear orders in bounded

trees- fails for both unimodal and locally strictly unimodal domains in bounded distribu-

tive lattices that are not linear orders,7 hence even in outcome spaces with a well-defined

(and unique) median operation (Theorem 2). An impossibility theorem concerning coali-

tional strategy-proofness on the full unimodal and locally strictly unimodal domains for

anonymous voting rules satisfying very weak local sovereignty and neutrality requirements

(Theorem 3) is also provided. Thus, in particular, Theorem 3 establishes that the former

equivalence may fail in bounded distributive lattices even for non-sovereign voting rules.8

Finally, the main results of the present work can shed some light on the nature and scope of

the ‘majority judgment’approach as recently advocated by Balinski and Laraki (2010). ‘Major-

ity judgment’ amounts to adopting a common ordinal scale to grade alternatives and selecting

(one of) the best alternatives according to the median score profile. That voting method (‘social

grading function’in Balinski-Laraki terminology) has been well received and widely acclaimed as

a major breakthrough that eventually circumvents the legion of bewildering impossibility theo-

rems on preference aggregation. We maintain that our results provide a qualified support to that

view, contributing a perspective that offers both a clearcut explanation of the distinctive power of

‘majority judgment’and a neat identification of its limitations along the following lines.

First, establishing a common ordinal (finite) grading scale makes the outcome space a (bounded)

distributive lattice. It follows that a natural median operation is immediately available and simple

majority voting on grade profiles is also well-defined. Generally speaking, simple majority voting

on grade profiles is not strategy-proof. However, if voter’s preferences on grade profiles are single

peaked then simple majority voting on grade profiles turns out to be strategy-proof (see our

Theorem 1). On the other hand, even for single peaked domains simple majority voting on grade

profiles is not coalitionally strategy-proof (see our Theorem 3).

The remainder of the paper is organized as follows. The next section describes several remarkable

examples of bounded distributive lattices that occur in some well-known aggregation problems.

Section 3 introduces the notation and definitions and includes the main results of the paper on

6A Boolean lattice is a bounded distributive lattice with upper bound 1 and lower bound 0 such that each

element x has a complement x′ satisfying both x ∨ x′ = 1 and x ∧ x′ = 0.
7Vannucci (2012) provides a general incidence-geometric argument to explain that equivalence-failure.
8Indeed, Nehring and Puppe (2007 (b)) prove that the only effi cient and strategy-proof voting rules on certain

‘rich’ subdomains of locally strictly unimodal domains of linear orders in finite Boolean lattices or m-hypercubes

2m with m ≥ 3 are (weakly) dictatorial. Notice, however, that such preference domain is incomparable to our

unimodal domain and (weakly) effi cient voting rules and social choice functions are in particular sovereign: thus,

Nehring and Puppe’s result pertains to a class of rules which is utterly non-comparable to the class of voting rules

covered by Theorem 3 of the present work.
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the structure of the strategy-proof voting rules for full unimodal and locally strictly unimodal

domains of total preorders in arbitrary bounded distributive lattices. In Section 4 the main results

of the present work are discussed in some detail with reference to a simple example concerning

the Boolean square. Section 5 includes a detailed discussion of some related literature and offers

some concluding remarks. Appendix 1 collects all the proofs. Appendix 2 is devoted to a detailed

presentation of the basic notions on tree automata used in the paper.

2. What kind(s) of single peakedness and why bounded distributive lattices?

Thus, our analysis shall be focussed on strategy-proof voting rules for both unimodal and locally

strictly unimodal preference profiles in bounded distributive lattices as informally defined in the

Introduction. Therefore, the model to be introduced below applies under the following conditions:

(1) the outcome set is a partially ordered set X = (X,6) with a top and a bottom, and such

that the (binary) least-upper bound ∨ and greatest-lower bound ∧ as induced by 6 satisfy the

distributive identity x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for any x, y, z ∈ X;
(2) all voters are prepared to assess outcomes according to the latticial ternary betweenness

relation of X denoted BX : namely, outcome z lies between outcomes x and y if and only if

x ∧ y 6 z 6 x ∨ y ;
(3) the preferences of all voters are consistent with the latticial betweenness relation in one of

the two following senses: (i) (unimodality) any outcome z that lies between outcomes x and y is

to be regarded as a ‘compromise’between its relative extrema x and y and is therefore not strictly

worse than each one of the latter; (ii) (locally strict unimodality) any outcome z that lies between

top outcome x and outcome y and is distinct from y is to be regarded as ‘closer’to the top outcome

than y and is therefore strictly better than y.

Observe that when specialized to the particular case of a bounded chain, conditions (1)-(2)-(3(i))

(or (1)-(2)-(3(ii))) are a list of plausible requirements to be met in order to justify single peaked

domains in the standard version pioneered by Black (1948). Indeed, the foregoing conditions -

especially (1)-(2)-(3(i))- arguably provide the ‘right’ extension of the notion of a single peaked

preference profile for distributive lattices as illustrated in the simple example concerning Boolean

squares as discussed below. Of course, even if condition (1) obtains, conditions (2) and/or (3)

may or may not hold depending on the problem under scrutiny. But it is at least conceivable that

there are interesting cases where conditions (1)-(2) and either (3(i)) or (3(ii)) are jointly satisfied,

and when that is the case, focusing on the full unimodal (or locally strictly unimodal) preference

domain of a bounded distributive lattice as defined in the present work seems to be fully justified,

indeed somewhat compelling.

In order to fully appreciate the remarkably wide scope and relevance of the proposed setting

let us consider just a few prominent classes of examples of bounded distributive lattices of special

interest, namely:
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Example 1: Committee decision on multidimensional binary issues: aggregation of

points on a finite Boolean hypercube.

Let 2k be the set of points of a finite k-dimensional Boolean hypercube and ≤ the standard

componentwise order. Then, take the X =
(
2k,≤

)
. When considering an abstract location problem

on that discrete cube such as committee-selection of the appropriate profile of binary criteria to

be satisfied by candidates in order to qualify for a certain position: here, one has to face the issue

of aggregating the alternative proposals (namely points of 2k) advanced by members of a panel

committee.

Example 2: Merging graded assessments, and computing reputations: aggregation

of graded evaluations.

Let Λ=(L,≤) denote a (bounded) linearly ordered set of grades, X a (finite) population of

candidates to be evaluated, and N a (finite) population of evaluators. Then, denote by LX the set

of all possible gradings of X, by 6 the point-wise partial order induced by ≤, and take X =(LX ,6).

This is indeed the formal setting recently proposed by Balinski and Laraki (2010) in order to

advance their case for majority judgment. It may be considered for aggregating grades achieved by

a population of students in different subjects, assessments of wines according to several alternative

graded criteria or the graded performances of participants in a multi-trial competition. A particular

case of special interest is provided by the definition of reputation systems, both off-line and on-line.

Indeed, by taking L ⊆ Z (or L ⊆ Q) with the natural order of the integers (or the rationals), and
N = X, a point of LN denotes the approval/citation profile of an author (or the on-line feedback

profile of a web-node), and a reputation system is an aggregation function f : (LN )N → LN .

Example 3: Committee selection of location on a multidimensional box: aggregation

of points in a product of bounded subsets of the extended real line.

Let R∗ = R∪{−∞,+∞} denote the extended real line, ≤∗the component-wise extended natural

order on Rm∗ , Yi ⊆ R∗ for each i = 1, ...,m, and x, y ∈
m∏
i=1

Yi with x ≤∗ y. Then, take X =(X,6)

with X =

{
z ∈

m∏
i=1

Yi : x ≤∗ z ≤∗ y
}
and 6=≤∗|X (recall that a product of distributive lattices is

a distributive lattice under the component-wise order). This is the setting of Barberà, Gul and

Stacchetti (1993) study of strategy-proofness on locally strictly unimodal domains. If m = 1,

(X 6) reduces to a bounded chain, which gives the original standard setting of the literature on

strategy-proofness on single peaked domains, including the seminal work of Moulin (1980) on the

characterization of strategy-proof voting rules on unimodal domains in a bounded real chain, where

X =(R∗,≤∗). Notice that the present example essentially includes Examples 1 and 2 as special
cases.

Example 4: Merging judgments with their implications: aggregation of order filters

over a partially ordered set.

Let Y =(Y,6) denote a finite partially ordered set. An order filter of Y is a set F ⊆ Y such

that for all y, z ∈ Y , z ∈ F whenever y ∈ F and y 6 z. Denote by FY the set of all order filters
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of Y, and take X =(FY ,⊆). Order filters may variously arise in several aggregation problems,

including judgment aggregation problems with implication-constrained agendas. Thus, in the latter

case Y denotes a collection of propositions (namely, sets of logically equivalent sentences) and 6
denotes the relevant implication or consequence relation between propositions. In that connection,

a judgment amounts to a deductively closed set of propositions, namely an order filter of Y, and
establishing a consensus judgment reduces to aggregating order filters of Y.

Example 5: Merging proposals for multidimensional poverty thresholds: aggrega-

tion of order ideals over a partially ordered set.

An order ideal of a partially ordered set Y = (Y,6) is a set I ⊆ Y such that for all y, z ∈ Y ,
z ∈ I whenever y ∈ I and z 6 y. Denote by IY the set of all order ideals of Y, and take X =(IY ,⊆).

Order ideals are also relevant to several aggregation problems, including choice of a (system of)

threshold(s) in multidimensional poverty analysis: a list of relevant binary attributes is considered,

and different thresholds namely combinations of minimal deprivations are proposed by qualified

experts and/or political representatives to identify the poor. Each threshold corresponds to an

order ideal, hence amalgamating the advanced proposals amounts to aggregating order ideals.

Example 6: Election of a representative body and committee selection of the target

of an ‘atomic’package bid in a combinatorial auction: aggregation of subsets of a fixed

set.

Let Y be a set of items, P(Y ) its power set and Σ ⊆ P(Y ) a field of sets (namely Σ is nonempty

and such that {A ∩B,A ∪B,X rA} ⊆ Σ for any A,B ∈ Σ). Then, take X =(Σ,⊆). This kind

of domain arises in a most natural way in a few cases including combinatorial social choice prob-

lems, i.e. social choice issues concerning mutually compatible objects (e.g. selection by committee

decision of a representative body, or of the target of an admissible package bid in a combinatorial

auction namely the item-subset to bid for: in the latter case, Σ denotes the set of admissible pack-

ages as fixed by the auction mechanism designer with a view to keep communication complexity

under some acceptable threshold).

Example 7: Committee selection of a portfolio of basic derivative assets: aggregation

of points in a bounded Riesz space.

Let s : [0, 1]→ R+ be a continuous non-negative real-valued function denoting a limited-liability

state-dependent stock with state-space [0, 1], and b : [0, 1]→ R+ a constant function denoting the

relevant bond; if s([0, 1]) = [α, β] then ordered linear space (X = C[α, β],6), the set of continuous

real-valued functions on [α, β] endowed with the component-wise natural order, denotes the space

of all continuous options on s. It turns out that (C[α, β],6) is in fact a Riesz space namely it is

also a (distributive) lattice: moreover, it is bounded with constant functions f� and f� as bottom

and top elements, respectively. In particular, the latticial operations ∨ and ∧ of (C[α, β],6) enable

convenient representations of both call options on s and put options on s at any striking price p as

(s−pb)∨0 and (pb−s)∨0, respectively, and it can be shown that each continuous option in C[α, β]

can be represented as a portfolio of call options (see e.g. Brown and Ross (1991)). Thus, under
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the foregoing stipulations a committee selection of a continuous option on a stock (or equivalently

of a portfolio of call options on that stock) amounts to an aggregation of points in bounded Riesz

space X =(C[α, β],6).

Example 8: General revealed preference aggregation: aggregation of choice func-

tions on a fixed set.

Let Y be a set of items, and P(Y ) its power set. A (full-domain) choice function on Y is a

function f : P(Y ) → P(Y ) such that f(A) ⊆ A for each A ⊆ Y . Now, denote by CY the set of

all choice functions on Y , and for any f, g ∈ CY posit f 6′ g if and only if f(A) ⊆ g(A) for all

A ⊆ Y . Then, take X =(CY ,6′), where the constant empty-valued choice function is the bottom
and the identity choice function is the top. The aggregation of the choice functions in CY may

be regarded as a natural generalization of the classic problem of preference aggregation in social

welfare analysis if preferences are taken to summarize choice behaviour and the usual ‘consistency’

requirements related to acyclicity properties are relaxed. Indeed, the issue here is the elicitation

and aggregation of complete lists of recommendations concerning local choice behaviour from a

population of experts and/or stakeholders.

Example 9: Merging databases of binary (dis)similarity coeffi cients: aggregation of

dissimilarity and tolerance relations on a fixed set.

Let Y a set of items: a dissimilarity (or orthogonality) relation on Y is an irreflexive and

symmetric binary relation D on Y i.e. D ⊆ Y × Y is such that (i) (y, y) /∈ D for all y ∈ Y

and (ii) (y, z) ∈ D implies (z, y) ∈ D for all y, z ∈ Y . Denote by DY the set of all dissimilarity

relations on Y , and take X =(DY ,⊆); a tolerance (or similarity) relation on Y is a reflexive and

symmetric binary relation D on Y i.e. D ⊆ Y × Y is such that (i) (y, y) ∈ D for all y ∈ Y and (ii)

(y, z) ∈ D implies (z, y) ∈ D for all y, z ∈ Y . Denote by TY the set of all tolerance relations on Y ,
and take X =(TY ,⊆). Dissimilarity and tolerance relations are among the basic inputs of several

algorithmic classification procedures in computational biology and linguistics: if many (binary)

dissimilarity databases from several distinct sources are available, one may wish to aggregate them

to produce a unique consensus database.

It is worth noticing here that Examples 1,2,3 have been explicitly addressed in the extant

literature on strategy-proofness in single peaked domains. Some relevant facts concerning Examples

4 and 5 follow from the results on strategy-proofness in finite median spaces due to Nehring and

Puppe (2007 (a,b)). To the best of our knowledge, no results are available on strategy-proof voting

rules in single peaked domains related to the Examples 6,7,8,9.

The foregoing set of examples is of course not meant to be an exhaustive list, and some of

them may well refer to comparatively more uncommon or hypothetical decision problems than

others. Moreover, manipulability issues may be less prominent in some of those problems than in

others. However, that list provides in our view a quite representative sample of the wide array of

interesting aggregation problems to which our results on strategy-proof voting rules in bounded

distributive lattices do indeed apply.
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3. Model and results

Let N = {1, ..., n} denote the finite population of voters, and X =(X,6) the partially ordered

set of alternative outcomes (i.e. 6 is a reflexive, transitive and antisymmetric binary relation

on X). We suppose |N | ≥ 3 in order to avoid tedious qualifications, and denote as x||y any
pair of 6-incomparable outcomes, where |·| denotes the cardinality of a set. Let us also assume
that X = (X,6) is a distributive lattice namely both the least-upper-bound (l.u.b.) ∧ and the
greatest-lower-bound (g.l.b.) ∨ of any x, y ∈ X as induced by 6 are well-defined binay operations on
X, and for all x, y, z ∈ X, x∧(y∨z) = (x∧y)∨(x∧z) (or, equivalently, x∨(y∧z) = (x∨y)∧(x∨z)).9

In particular, X = (X,6) is a linear order or chain if [x 6 y or y 6 x] holds for all x, y ∈ X
(recall that, as it is easily checked, a chain does indeed satisfy the distributive identity above).

A join irreducible element of X is any j ∈ X such that j 6= ∧X and for any Y ⊆ X if j = ∨Y
then j ∈ Y . The set of all join irreducible elements of X is denoted JX . An atom of a lower

bounded X is any 6-minimal x ∈ X r {⊥}. The set of all atoms of X is denoted AX : clearly,

AX ⊆ JX . Moreover, a (distributive) lattice X is said to be lower (upper) bounded if there

exists ⊥ ∈ X (> ∈ X) such that ⊥ 6 x (x 6 >) for all x ∈ X, and bounded if it is both

lower bounded and upper bounded. A bounded distributive lattice (X,6) is Boolean if for each

x ∈ X there exists a complement namely an x′ ∈ X such that x ∨ x′ = > and x ∧ x′ = ⊥. A
ternary betweenness relation BX =

{
(x, z, y) ∈ X3 : x ∧ y 6 z 6 x ∨ y

}
is defined on X , and

x, y ∈ X, [x, y] = {z ∈ X : x ∧ y 6 z 6 x ∨ y} is the interval induced by x and y : therefore, for

any x, y, z ∈ X, z ∈ [x, y] if and only if (x, z, y) ∈ BX (also written BX (x, z, y)).10

It is a remarkable fact that a ternary operation called median is well-defined on an arbitrary

distributive lattice.

Definition 1. The median on X is the ternary operation µ : X3 → X defined as follows: for all

x, y, z ∈ X,
µ(x, y, z) = (x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z).

Notice that, due to commutativity and associativity of ∧ and ∨ the median µ as defined above
is invariant under permutations of its arguments or symmetric, namely for any x1, x2, x3 ∈ X and

any permutation σ : {1, 2, 3} −→ {1, 2, 3}, µ(x�(1), x�(2), x�(3)) = µ(x1, x2, x3).11

9Notice that thanks to associativity of ∨ and ∧ the l.u.b. and the g.l.b. of any finite Y ⊆ X are also well-defined

and denoted by ∨Y and ∧Y , respectively; if Y is infinite ∨Y and ∧Y may or may not be well-defined.
10The ensuing analysis could be pursued by replacing entirely betweenness relations with intervals (see Vannucci

(2012) for such an approach in a more general setting).
11It should be recalled here that Birkhoff and Kiss (1947) also provide a general characterization of the median

in a (bounded) distributive lattice through the following axioms for an arbitrary ternary operation m on a set A :

m(i) there exist 0, 1 ∈ A such that m(0, a, 1) = a for all a ∈ A;
m(ii) m(a, b, a) = a for all a, b ∈ A:
m(iii) m(a, b, c) = m(b, a, c) = m(b, c, a) for all a, b, c ∈ A;
m(iv) m(m(a, b, c), d, e) = m(m(a, d, e), b,m(c, d, e)) for all a, b, c, d, e ∈ A.
An alternative characterization of the latticial median is provided by Sholander (1954(a)).



12 ERNESTO SAVAGLIO\ AND STEFANO VANNUCCI‡,

Remark 1. Notice that a natural median-based betweenness relation B�X ⊆ X3 can be defined

on X by the following rule: for any x, y, z ∈ X, (x, z, y) ∈ B�X iff µ(x, y, z) = z. But it is easily

shown that in fact B�X = BX (see Birkhoff and Kiss (1947), Theorem 1). Moreover, if the relevant

distributive lattice (X,6) is metric namely it is endowed with a positive valuation i.e. a function

v : X → R such that v(x ∨ y) = v(x) + v(y) − v(x ∧ y) and v(x) < v(y) whenever x < y, then

it can be shown that BX =
{

(x, y, z) ∈ X3 : dv(x, z) = dv(x, y) + dv(y, z)
}
, where dv is the metric

induced by v as defined by the rule dv(x, y) = v(x ∨ y)− v(x ∧ y) (see Glivenko (1936), Theorem

V). Thus BX (x, y, z) holds precisely when y lies on a dv-geodesics or dv-shortest path joining x and

z. That fact suggests the possibility to provide BX with a straightforward metric representation

whenever deemed appropriate, and highlights the focal role of BX and of the median operation for

any plausible proximity relation respecting the latticial structure of X .

A few remarkable basic properties of BX are listed below:

Claim 1. The latticial betweenness relation BX satisfies the following conditions:

(i) symmetry: for all x, y, z ∈ X, if BX (x, z, y) then BX (y, z, x);

(ii) closure (or reflexivity): for all x, y ∈ X, BX (x, x, y) and BX (x, y, y);

(iii) idempotence: for all x, y ∈ X, BX (x, y, x) only if y = x;

(iv) convexity (or transitivity): for all x, y, z, u, v ∈ X, if BX (x, u, y), BX (x, v, y) and BX (u, z, v)

then BX (x, z, y);

(v) antisymmetry: for all x, y, z ∈ X, if BX (x, y, z) and BX (y, x, z) then x = y.

Now, consider the set TX of all topped total preorders on X (i.e. connected, reflexive, and

transitive binary relations having a unique maximum in X). For any <∈ TX , top(<) denotes the

unique maximum of < (while � and ∼ denote the asymmetric and symmetric components of <,
respectively).

Definition 2. A topped total preorder <∈ TX is unimodal (with respect to BX ) if and only if,

for each x, y, z ∈ X, z ∈ [x, y] implies that either z < x or z < y (or both).

As mentioned above, the rationale underlying single peakedness as unimodality may be plainly

described as follows: an unimodal total preference preorder respects betweenness BX in that it

never regards an intermediate or compromise outcome as strictly worse than both of its ‘extreme’-

generators.

An alternative notion of single peakedness has also been widely adopted in the literature under

several labels including ‘generalized single peakedness’(see e.g. Nehring and Puppe (2007 (a,b)

among others). It will be relabeled here ‘locally strict unimodality’ for the sake of convenience,

and may be formulated as follows in the present setting:

Definition 3. A topped total preorder <∈ TX (with top outcome x∗) is locally strictly unimodal
(with respect to BX ) if and only if, for each y, z ∈ X, z ∈ [x∗, y]r {y} implies z � y.

Remark 2. It is worth noticing here that in the extant literature unimodality and locally

strict unimodality are not always firmly distinguished as they should be. For instance, in a very



STRATEGY-PROOFNESS AND SINGLE PEAKEDNESS 13

interesting and widely cited paper Nehring and Puppe (2007 (b), p.135) quote Moulin (1980) as a

contribution on ‘generalized single peaked’(i.e. locally strictly unimodal) preferences in the case of

a line (but see also Barberà, Gul and Stacchetti (1993) who identify single peakedness and locally

strict unimodality, suggesting that this is precisely the notion underlying Moulin’s work). Now,

Moulin’s definition, once reformulated in terms of preferences (as opposed to utilities, as in the

original Moulin (1980), p. 439) amounts to the following requirement: ‘If a is the top outcome

or peak on the line (X,6) then a � x < y if a < x 6 y or y 6 x < a’. Notice however that

this condition is only consistent with unimodality as opposed to locally strict unimodality. To see

this just consider X = {a, x, y} with a < x < y, and total preorder < such that a � x ∼ y: by

construction, < is certainly consistent with Moulin’s condition, and it is in fact unimodal but not
at all locally strictly unimodal (or ‘generalized single peaked’).

By definition, existence of unimodal total preorders with the respect to latticial betweenness

BX on a lattice X = (X,6) is clearly not an issue: for any x ∈ X, the total preorder with x as its
unique top outcome and y ∼ z for any other y, z ∈ X is by construction unimodal. On the other

hand, existence of locally strictly unimodal total preorders with respect to BX requires a more

detailed argument that relies on some specific properties of BX as combined with the following

notions of Suzumura-consistency (henceforth, S-consistency) and non-trivial total extension of a

binary relation:

Definition 4. (a) A binary relation < on X is S-consistent whenever for all x, y ∈ X, if for some
positive integer k there exist z1, ..., zk ∈ X such that x < z1, zk < y and zh < zh+1, h = 1, ..., k− 1

then not y � x;

(b) A binary relation <′ is a non-trivial extension of binary relation < on X if for all

x, y ∈ X: (i) x < y entails x <′ y; (ii) x � y entails x �′ y.

The former notions are mutually related thanks to a generalization of Szpilrajn’ theorem on

ordering extensions due to Suzumura, namely:

Suzumura’s Theorem (see e.g. Bossert and Suzumura (2010), Theorem 2.8) A binary relation

< on a set X admits a total preorder as a non-trivial extension if and only if it is S-consistent.

It turns out that the following claim can be quite easily established:

Claim 2. Let X =(X,6) be a (bounded) distributive lattice, BX its (latticial) betweenness

relation as defined above, x ∈ X and �x the binary relation on X defined as follows: for all

x, y, z ∈ X, y �x z if and only if BX (x, y, z) and y 6= z (i.e. y ∈ [x, z]r {z}). Then �x admits a
non-trivial extension <∗x which is a locally strictly unimodal total preorder on X with respect to

BX .

Let UX ⊆ TX denote the set of all unimodal total preorders (with respect to BX ), and UNX the

set of all N -profiles of unimodal total preorders or full unimodal domain (with respect to BX ).

Similarly, SX ⊆ TX is the set of all locally strictly unimodal total preorders (with respect to BX ),



14 ERNESTO SAVAGLIO\ AND STEFANO VANNUCCI‡,

and SNX denotes the set of all N -profiles of locally strictly unimodal total preorders or full locally

strictly unimodal domain (with respect to BX ).

A voting rule for (N,X) is a function f : XN → X. For any profile (Yi)i∈N (where Yi ⊆ X

for all i ∈ N) a restricted voting rule for (N,X) is a function f : Πi∈NYi → X. The following

properties of a voting rule will play a crucial role in the ensuing analysis:

Definition 5. A voting rule f : Πi∈NYi → X is BX -monotonic if and only if for all xN =

(xj)j∈N ∈ Y N , i ∈ N and x′i ∈ Y : f(xN ) ∈ [xi, f(x′i, xNr{i})].

Definition 6. For any i ∈ N , let Di ⊆ UX such that top(<) ∈ Yi for all <∈ Di. Then,

f : Πi∈NYi → X is (individually) strategy-proof on Πi∈NDi ⊆ UNX if and only if, for all

xN ∈ Πi∈NYi , i ∈ N and x′ ∈ Yi, and for all < = (<j)j∈N ∈ Πi∈NDi, f(top(<i), xNr{i}) <i
f(x′, xNr{i}).

Definition 7. For any i ∈ N , let Di ⊆ UX such that top(<) ∈ Yi for all <∈ Di. Then, f :

Πi∈NYi → X is coalitionally strategy-proof on Πi∈NDi ⊆ UNX if and only if for all xN ∈
Πi∈NYi , C ⊆ N and x′C ∈ Πi∈CYi, and for all < = (<j)j∈N ∈ Πi∈NDi, there exists i ∈ C such

that f(xN ) <i f(x′C , xNrC).

The following properties of voting rules will also be considered in the ensuing analysis.

A voting rule f : Πi∈NYi → X is (weakly) effi cient if and only if for all (<j)j∈N ∈ Πi∈NDi ⊆
UNX and y ∈ X, y /∈ f((top(<j)j∈N )) if there exists x ∈ X such that x �j y for all j ∈ N ,

anonymous if f((xj)j∈N )) = f((x�(j))j∈N )) for all xN ∈ XN and all permutations σ : N → N ,

locally JI-neutral on Y ⊆ X if f((τ jk(xi))i∈N ) = τ jk(f((xi)i∈N )) for all yN ∈ Y N and

j, k ∈ JX ∩ Y (where τ jk : Y → Y is the elementary permutation of Y such that τ jk(j) = k,

τ jk(k) = j and τ jk(x) = x for any x 6= j, k), locally sovereign on Y ⊆ X if for all z ∈ Y there

exists yN ∈ Y N such that f(yN ) = z, and locally idempotent on Y ⊆ X if f(yN ) = z for each

yN ∈ Y N such that yi = z for all i ∈ N .
A generalized committee in N is a set of coalitions C ⊆ P(N) such that T ∈ C if T ⊆ N and

S ⊆ T for some S ∈ C ( a committee in N being a non-empty generalized committee in N which

does not include the empty coalition)12.

A generalized committee voting rule is a function f : Πi∈NYi → X such that, for some

fixed generalized committee C ⊆ P(N) and for all yN ∈ Πi∈NYi, f(yN ) = ∨S∈C(∧i∈Sxi).
A generalized weak committee voting rule is a function f : Πi∈NYi → X such that, for

some fixed generalized committee C ⊆ P(N) and some fixed family {zS : zS ∈ X}S∈C , and for all
yN ∈ Πi∈NYi, f(yN ) = ∨S∈C((∧i∈Sxi) ∧ yS).

Two notable classes of strategy-proof voting rules are the projections (or dictatorial rules)

πi : Y N → X, i ∈ N where for all yN ∈ Y N , πi(yN ) = yi, and the constant rules fx : Y N → X,

12Thus, a generalized committee is just an order filter of the partially ordered set (P(N),⊆) of coalitions of N .
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x ∈ X where for all yN ∈ Y N , fx(yN ) = x. It is also easily checked that both dictatorial and

constant rules are BX -monotonic.13

The representation of BX -monotonic voting rules as behaviour maps of certain tree automata

acting on suitably labelled trees will play a key role in the present paper. In that connection, a

few supplementary definitions are to be introduced here concerning precisely certain tree automata

and their behaviour (see Adámek and Trnková (1990) for a thorough treatment of tree automata).

A Σ-tree automaton is a general model of a mechanism that can perform certain operations

on its ‘internal’state space, and produce certain observable outputs, reacting to certain inputs it is

equipped to detect and act upon once it is suitably prepared to do so, or initialized. The operations

a tree automaton is able to perform are algebraic or finitary (i.e. each of them applies to some fixed

finite number of arguments, its ‘arity’), and are recorded together with their respective ‘arities’by

the automaton’s type, denoted Σ. The inputs of a tree automaton of a certain type Σ are finite

trees with some terminal nodes labelled by variables of a certain set I that have to be initialized,

whereas all the other terminal nodes are labelled by (symbols of) operations as recorded by type

Σ (such trees are also denoted here as finite (Σ, I)-trees). The initialization of the automaton

assigns one specific state to every variable of I and so makes it possible for the automaton to

start its action on any suitable tree-input. A tree-input dictates the admissible (and mutually

equivalent) sequences of operations to be performed by the automaton as it inspects its nodes

moving backward from the terminal nodes. The final outcome of that sequence of operations

or run of the initialized tree automaton produces as an end-result the state which is computed

performing the operation labelled by the initial node or root of the tree as applied to the outcomes

of its previous computations. The output function then works as an ‘effector’that transforms the

final state thus obtained into an observable output. The behaviour of a Σ-tree automaton denotes

precisely the rule that transforms each (Σ, I)-tree-input into a certain observable output through

the process just described (see Appendix 3 for a formal definition of Σ-tree automata and all the

relevant details).

Actually, we shall be concerned with latticial median -or l-median- tree automata. A (non-

initial) l-median tree automaton A�=(X, {ds}s∈� , Y, h) -also denoted as Σ�-tree automaton-

is a (non-initial) Σ-tree automaton with Σ = Σ� comprising a unique ternary operation symbol

s� denoting the median operation µ of a distributive lattice14 X = (X,6) and a set of nullary

operation symbols corresponding to some of the terminal nodes of the labelled trees to be computed

by the automaton, namely Σ� = ({s�} ∪ S0, α) with α : {s�} ∪ S0 → Z+ such that α(s�) = 3,

α(s) = 0 for each s ∈ S0 and dsµ = µ . Given our present focus on a fixed population N of agents

of size n = |N | we may conveniently take S0 such that |S0| = 2+2n: the elements of S0 correspond

to 0, 1 (standing, respectively, for the bottom and top elements of the lattice) and to 2n ‘phantom

votes’, one for each coalition. We can also posit Y = X and h = id i.e. we take states to be

13Indeed, for all xN = (xj)j∈N ∈ Y N , i ∈ N and x′i ∈ Y : f(xN ) = xi ∈ [xi, f(x′i, xNr{i})] if f is the i-th

projection, and f(xN ) = f(x′i, xNr{i}) ∈ [xi, f(x′i, xNr{i})] if f is a constant function.
14Namely, a ternary operation on X satisfying Birkhoff-Kiss axioms m(i)-m(ii)-m(iii)-m(iv) (see Note 11 above).
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observable hence we can identify state and output spaces: it follows that in the ensuing analysis

we may safely identify, with a slight abuse of language, the (non-initial) Σ�-tree automaton A�
and a Σ�-algebra on X. An initial Σ�-tree automaton AI;�� amounts to a Σ�-tree automaton as

supplemented with an initialization λ : I → X i.e. an interpretation in X of variables in I: here, we

take |I| = n, and the initialization λ models a particular ballot profile. Therefore, AI;�� embodies

an interpretation in X of all terminal nodes of any finite labelled (Σ�, I)-tree T and is ready to

compute an output of T in X -the behaviour of A� at T -as given by the value AI;�� (T ) of its run

map at T . Thus, the behaviour of median Σ�-tree automaton A� at any finite labelled (Σ�, I)-tree

T is the outcome of a nested sequence of medians µ(........µ(µ(u, xi, z), xi, µ(u′, xi, z
′)).......) starting

with medians of projections xi of xN , i = 1, ..., n and the 2n elements of S0 ⊆ X as dictated by T

in the following manner. Terminal nodes of paths of maximum length l come by construction in

2n−1 triples that share an immediate predecessor labelled by s� i.e. the symbol of the (latticial)

median operation. The nodes of any such triple are labelled by xn and two distinct elements of S0.

For any k ≤ l − 1, the terminal nodes of paths of length l − k are labelled by xn−k (the example
below provides a very simple illustration with n = 3).

Example 10. Let X = (X,6) be a distributive lattice with bottom and top elements denoted

by ⊥ and >, respectively, and f : X3 → X the voting rule for ({1, 2, 3} , X) defined as follows:

for any x = (x1, x2, x3) ∈ X3,

f(xN ) = µ(µ(µ(f(⊥,⊥,⊥), x3, f(⊥,⊥,>)), x2, µ(f(⊥,>,⊥), x3, f(⊥,>,>))),

x1, µ(µ(f(>,⊥,⊥), x3, f(>,⊥,>)), x2, µ(f(>,>,⊥), x3, f(>,>,>)))) .

Then, f is l-median tree-automata representable: to see this, just consider for any x = (x1, x2, x3) ∈
X3 the corresponding labelled tree (see Figure 1).

Figure 1

Thus, we say that a voting rule is representable by a (finitary) l-median tree automaton-or l-

median tree-automata representable (l-MTAR) - if it can be regarded as the behaviour of
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some median Σ-tree automaton A� as properly initialized and acting on suitably labelled trees.
That is made precise by the following:

Definition 8. (l-median tree-automata representable (l-MTAR) voting rules) Let X =

(X,6) be a bounded distributive lattice. Then, a voting rule f : XN −→ X is l-median tree-

automata representable (l-MTAR) if there exists a Σ�-tree automaton A� such that for any
xN ∈ XN and any finite labelled (Σ�, I)-tree T there is a corresponding initial Σ�-tree automaton

AI;�� with f(xN ) = AI;�� (T ).

We are now ready to state the main result of this paper concerning the characterization of

strategy-proof voting rules on unimodal profiles. Our characterization result relies on the following

three lemmas.

The first lemma simply establishes the equivalence between BX -monotonicity with respect to an

arbitrary distributive lattice X and strategy-proofness on the corresponding full unimodal domain
UNX .

Lemma 1. Let X = (X,6) be a distributive lattice, and f : XN → X a voting rule for (N,X).

Then, the following statements are equivalent:

(i) f is BX -monotonic;

(ii) f is strategy-proof on UNX ;

(iii) f is strategy-proof on SNX .

Remark 3. Lemma 1 above extends Lemma 1 of Danilov (1994) (concerning linear orders

in a tree that are unimodal with respect to tree-betweenness). It also extends Proposition 3.2 of

Nehring and Puppe (2007 (a)) (concerning locally strictly unimodal domains in a finite distributive

-actually, Boolean-lattice) since it holds for both the (full) unimodal and the (full) locally strictly

unimodal domain in any distributive lattice (including infinite and non-boolean ones). However,

strictly speaking, Lemma 1 is not a generalization of Nehring and Puppe’s result since the latter

concerns all social choice functions (not just voting rules), and any ‘rich’locally strictly unimodal

subdomain.

Observe that a restricted voting rule may be strategy-proof on its restricted unimodal domain

while being not monotonic (i.e. the implications from (ii) or (iii) to (i) of the previous lemma do

not hold in general for restricted voting rules).

To see this, consider the following example, adapted from Barberà, Berga and Moreno (2010),

and slightly simplified: takeX = {a, b, c, d} with a, b, c, dmutually distinct, ∆X = {(x, x) : x ∈ X},

6∗= {(a, b), (a, c), (a, d), (b, c), (b, d), (d, c)} ∪∆X ,

i.e. X ∗ = (X,6∗) is the 4-chain.

Then, posit <= (a � b � c ∼ d)

<′= (d �′ b �′ c ∼′ a)

<′′= (a �′′ b �′′ c �′′ d)
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<′′′= (d �′′′ b �′′′ c �′′′ a)

D = {<,<′}, D′ = {<′′,<′′′}, Y = {a, d} and define f ′ : Y 2 ×XNr{1;2} → X by the following

rule: for all xNr{1;2} ∈ XNr{1;2},

f ′(a, a, xNr{1;2}) = a, f ′(d, d, xNr{1;2}) = d,

f ′(a, d, xNr{1;2}) = b, f ′(d, a, xNr{1;2}) = c.

First, observe that both < and <′ are in UNX , i.e. are unimodal, while <′′and <′′′ are locally
strictly unimodal: indeed, top(<) = top(<′′) = a, top(<′) = top(<′′′) = d and it is immediately

seen that:

BX =

{
(a, b, c), (a, b, d), (a, d, c), (b, d, c),

(c, b, a), (d, b, a), (c, d, a), (c, d, b)

}
∪
{

(x, y, z) ∈ X3 : x = y or z = y
}
.

But then, since {(b, c), (b, d), (d, c)}∪∆X is a subrelation of < and {(b, c), (b, a), (d, a), (d, c)}∪∆X

is a subrelation of <′, it follows that unimodality of < and <′with respect to BX holds. Moreover,
f ′ is by construction strategy-proof on D2 × UNr{1;2}X (and on (D′)2 × SNr{1;2}X ) : to check this,

notice that 1 and 2 are the only non-dummy voters, and for all xNr{1;2} ∈ XNr{1;2},

f ′(a, a, xNr{1;2}) < f ′(d, a, xNr{1;2}), f ′(a, d, xNr{1;2}) < f ′(d, d, xNr{1;2}),
f ′(a, a, xNr{1;2}) < f ′(a, d, xNr{1;2}), f ′(d, a, xNr{1;2}) < f ′(d, d, xNr{1;2}),

and similarly

f ′(d, a, xNr{1;2}) <
′
f ′(a, a, xNr{1;2}), f ′(d, d, xNr{1;2}) <′ f ′(a, d, xNr{1;2}),

f ′(a, d, xNr{1;2}) <′ f ′(a, a, xNr{1;2}), f ′(d, d, xNr{1;2}) <′ f ′(d, a, xNr{1;2}),
whence strategy-proofness of f ′ on D2×UNr{1;2}X follows (strategy proofness on (D′)2×SNr{1;2}X

follows from the same argument by replacing <′′and <′′′for < and <′, respectively).
However, observe that f ′(d, a, xNr{1;2}) = c /∈ [d, a] = [d, f ′(a, a, xNr{1;2})] hence f ′ is not

BX -monotonic.

The next lemma ensures that in an arbitrary distributive lattice the median operation as applied

to voting rules does preserve BX -monotonicity.

Lemma 2. Let X = (X,6) be a distributive lattice, and f : XN → X, g : XN → X, h :

XN → X voting rules that are BX -monotonic. Then µ(f, g, h) : XN → X (where µ(f, g, h)(xN ) =

µ(f(xN ), g(xN ), h(xN )) for all xN ∈ XN ) is also BX -monotonic.

Finally, the next lemma - that only concerns bounded distributive lattices - provides a canonical

median-based representation of all monotonic voting rules hence - in view of Lemma 1 above - of

all strategy-proof voting rules on the corresponding full unimodal domain. That lemma relies on

the notion of a tree automaton as defined above.

Lemma 3. Let X = (X,6) be a bounded distributive lattice and f : XN → X a BX -monotonic

voting rule. Then, f is l-median tree-automata representable (l-MTAR).

The main implications of the foregoing lemmas are indeed summarized by the following:



STRATEGY-PROOFNESS AND SINGLE PEAKEDNESS 19

Theorem 1. Let X = (X,6) be a bounded distributive lattice, BX its latticial betweenness relation,

and f : XN → X a voting rule for (N,X). Then, the following statements are equivalent:

(i) f is BX -monotonic;

(ii) f is strategy-proof on UNX ;

(iii) f is strategy-proof on SNX ;

(iv) f is l-MTAR;

(v) f is a generalized weak committee voting rule.

Remark 4. Notice that Theorem 1 generalizes Moulin’s characterization of strategy-proof

voting rules on (full) unimodal domains in bounded chains to arbitrary bounded distributive lat-

tices. Thus, it also offers a direct extension to all bounded distributive lattices of Moulin’s original

lattice-polynomial representation of strategy-proof voting rules to be contrasted with the alter-

native characterization via families of ‘left-coalition systems’ on (full) locally strictly unimodal

domains in products of bounded chains due to Barberà, Gul and Stacchetti (1993), which re-

lies heavily on the product-structure of the underlying lattices. In particular, Theorem 1 implies

strategy-proofness of the simple majority voting rule on unimodal domains (with an odd popu-

lation of voters), since it can be quite easily shown that the former is BX -monotonic (see e.g.

Monjardet (1990) for a formal definition and study of the simple majority or extended median rule

in a latticial framework). It follows that in an arbitrary bounded distributive lattice there exist

voting rules - such as the simple majority rule - that jointly satisfy anonymity (i.e. symmetric

treatment of voters), neutrality (i.e. symmetric treatment of outcomes), idempotence (i.e. faithful

respect of unanimity of votes) and strategy-proofness on the full unimodal domain.

It can also be established, however, that strategy-proofness and coalitional strategy-proofness

of a voting rule are not equivalent on unimodal domains in bounded distributive lattices. This is

made precise by the following:

Theorem 2. Let X = (X,6) be a bounded distributive lattice. Then the following holds:

(i) if |X| ≥ 4 then there exists a sublattice Y = (Y,6Y ) of X (with |Y | ≥ 4), subdomains

D ⊆ UX and D′ ⊆ SX , and a restricted voting rule f ′ : Y 2 ×XNr{1;2} → X that is strategy-proof

on D2×UNr{1;2}X and on (D′)2×SNr{1;2}X but not coalitionally strategy-proof on D2×UNr{1;2}X or

on (D′)2 × SNr{1;2}X ;

(ii) if |X| ≥ 4 and X is not a linear order then there exists a sublattice Y = (Y,6Y ) of X
(with |Y | ≥ 4) and a voting rule f ′ : Y N → Y that is strategy-proof on UNY and on SNY but not

coalitionally strategy-proof on UNY or on SNY .

Notice that if f : XN → X is strategy-proof on UNX and |X| ≤ 3 then f is also coalitionally

strategy-proof on UNX : that implication follows from a straightforward adaptation of the proof of

Theorem 1 of Barberà, Berga and Moreno (2010) to voting rules as combined with Proposition 1

of the same paper.

Moreover, as a further straightforward consequence of Theorem 2 (and of a few previously known

results), we have the following:
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Corollary 1. Let X = (X,6) be a bounded distributive lattice. Then the following statements are

equivalent:

(i) for each sublattice Y = (Y,6|Y ) of X and each voting rule f : Y N → Y , f is strategy-proof

on UNY (on on SNY , respectively) if and only if it is also coalitionally strategy-proof on U
N
Y (on on

UNY , respectively);

(ii) X = (X,6) is a linear order.

Thus, we have here a remarkable characterization of bounded linear orders as the only bounded

distributive lattices where equivalence of individual and coalitional strategy-proofness of voting rules

on full unimodal domains holds.

Indeed, the failure of equivalence between simple and coalitional strategy-proofness pointed out

by Theorem 2 is readily extended to an impossibility result concerning availability of anonymous

and idempotent coalitionally strategy-proof voting rules for full unimodal domains(and locally

strictly unimodal domains) in a very general class of bounded distributive lattices, even if (full)

neutrality is dropped. That is made precise by the following:

Theorem 3. Let X = (X,6) be a bounded distributive lattice with at least two distinct atoms

x, z ∈ X and Y = (Y,6Y ) the sublattice of X induced by the restriction of 6 to Y = {0, x, z, x ∨ z}.
Then, there is no anonymous voting rule f : XN → X which is locally sovereign and locally JI-

neutral on Y , and coalitionally strategy-proof on UNX , or on SNX .

Thus, in sharp contrast to what happens in chains, no anonymous coalitionally strategy-proof

voting rules are available on standard full unimodal or locally strictly unimodal domains in bounded

distributive lattices with at least two atoms, including Boolean k-hypercubes with k > 1, even if

an extended median-based aggregation rule is well-defined, and (weak) effi ciency or even (full)

sovereignty are not required at all.

4. A simple example: single peakedness and strategy-proofness in the Boolean

square

Consider a five-member committee N = {1, 2, 3, 4, 5} facing a decision problem concerning the

formal requirements for candidates to fill a certain top corporate position. The committee is

to decide whether (1) Mild -or Strict, i.e. more specific and demanding- formal qualifications

and/or (2) Medium -or High- seniority are to be required of candidates. The outcome set is

then {(Mild,Medium), (Mild,High), (Strict,Medium), (Strict,High)}: denoting both Mild and
Medium by 0 and both Strict and High by 1 the outcome set can be represented by the Boolean

square 22 = ({0, 1, x, y} ,6) where 0 = (0, 0) denotes the bottom element, 1 = (1, 1) denotes the
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top element, while x = (1, 0) and y = (0, 1) are not comparable (see Figure 2)

Figure 2

The latticial betweenness relation of 22 as defined by the rule [(a, c, b) ∈ B22 iff a ∧ b 6 c 6 a ∨ b]
-where ∧ and ∨ denote, respectively, the meet and join of 22- is

B22 =


(0, x, 1), (0, y, 1), (0, 0, 1), (0, 1, 1), (1, x, 0), (1, y, 0), (1, 0, 0), (1, 1, 0),

(x, 0, y), (x, 1, y), (x, x, y), (x, y, y), (y, 0, x), (y, 1, x), (y, x, x), (y, y, x),

(0, 0, x), (0, x, x), (x, 0, 0), (x, x, 0), (0, 0, y), (0, y, y), (y, 0, 0), (y, y, 0),

(x, x, 1), (x, 1, 1), (1, x, x), (1, 1, x), (y, y, 1), (y, 1, 1), (1, y, y), (1, 1, y)

 .

An unimodal total preorder for 22 is a total preorder < on {0, 1, x, y} with a unique maximum
that ‘respects’B22 , namely such that for any (a, c, b) ∈ B22 either c < a or c < b (or both). Then,
if the complement of any element a is denoted a′, it is easily checked that the unimodal total

preorders on 22 are precisely three for each possible choice of the top outcome a ∈ {0, x, y, 1} =

{a, a′, b, b′} (hence twelve altogether), namely <1≡ (a �1 b �1 b
′ ∼1 a

′), <2≡ (a �2 b
′ �2 b ∼2 a

′),

<3≡ (a �3 b ∼3 b
′ ∼3 a

′).

Indeed, the essential feature of an unimodal total preorder on B22 is simply the following: it

must be the case that no second-best is both a complement of the first-best and strictly better than

some other outcome.

A voting rule f is B22-monotonic if -for any agent i and any profile z−i of the other agents’

votes- i’s vote for u ensures an outcome f(u, z−i) that lies between u and f(v, z−i) for any choice

of v in {0, 1, x, y}.
The extended median or simple majority rule µ∗ : {0, 1, x, y}5 → {0, 1, x, y} is defined as follows:

for any (a1, a2, a3, a4, a5) ∈ {0, x, y, 1}5, µ∗(a1, a2, a3, a4, a5) = ∨T⊆N;|T |≥3(∧i∈Tai).
Since projections fi(a1, a2, a3, a4, a5) = ai , i = 1, ..., 5 are obviously B22 -monotonic, and as

shown below (see Lemma 2) the median preserves B22-monotonicity, it follows that the median

µ : {0, 1, x, y}3 → {0, 1, x, y} as defined by the rule µ(a, b, c) = (a∧ b)∨ (b∧ c)∨ (a∧ c) is also B22-
monotonic. (It can also be easily checked that on the Boolean square the median is also effi cient,

since no outcome with zero votes can be selected by µ: that property, however, fails in higher

dimensional Boolean hypercubes).

Now, it turns out that both the join and the meet of any (a, b) ∈ {0, x, y, 1}2 (and therefore
the join and the meet of any finite subset of {0, x, y, 1}) are representable as the median (iterated
median, respectively) of two projections and one constant, namely a∨b = (a∧b)∨(b∧1)∨(a∧1) =

µ(a, b, 1) and a ∧ b = (a ∧ b) ∨ (b ∧ 0) ∨ (a ∧ 0) = µ(a, b, 0).
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Since constants (when regarded as constant functions) are obviously B22-monotonic, it also

follows (from the B22-monotonicity preservation property of the median as mentioned above) that

joins and meets of any finite subset of {0, x, y, 1} may be reduced to iterated medians of projections
and constants, and are therefore also B22-monotonic. The same argument applies in particular to

the extended median or simple majority rule µ∗ to conclude that µ∗ is B22-monotonic (with n = 5

voters a direct check is of course still manageable, but the computation starts to become quite long

and tedious).

Thus, since Theorem 1 implies that the strategy-proof voting rules for (N, {0, x, y, 1}) on the
full unimodal domain of total preorders in the Boolean square are precisely the B22-monotonic

functions on {0, x, y, 1}N , it follows that µ∗ itself is in fact strategy-proof on that unimodal domain
(along with all the B22-monotonic functions on {0, x, y, 1}5). Next, consider the following profile
of total preorders: <1=<2≡ (x � 1 � 0 ∼ y), <3=<4≡ (y � 1 � 0 ∼ x), <5≡ (0 � x � y ∼ 1).

That profile is obviously unimodal with respect to B22 (see the definition above) since no second-

best outcome is a complement of its first-best, and it is easily checked that µ∗(x, x, y, y, 0) = 0,

whereas µ∗(1, 1, 1, 1, 0) = 1.

It follows that coalition {1, 2, 3, 4} can successfully manipulate µ∗ at that preference profile,
namely the simple majority rule is not coalitionally strategy-proof on the full unimodal domain

with respect to the latticial betweenness relation B22 (Theorem 2 shows that such a situation always

occurs whenever the underlying bounded distributive lattice is not a chain). And all of the above

can be generalized to an impossibility result: no anonymous voting rule enjoying a modicum of

neutrality/sovereignty is coalitionally strategy-proof on unimodal domains in bounded distributive

lattices that -like finite Boolean lattices (or hypercubes) 2m, m ≥ 2, and unlike chains- have at

least two distinct atoms i.e. two elements that cover the bottom element (this is the content of

Theorem 3).

To the the best of the authors’ knowledge, none of those results on the Boolean square is

available in the previous literature on strategy-proofness and unimodality, and the same holds

for counterparts of them under other notions of single peakedness. Partial results implying or

suggesting some counterparts of Theorems 2 and 3 for finite Boolean lattices 2m, m ≥ 3 under

the ‘top proximity’-based notion of single peakedness are indeed available (including results on

separable preferences, that are usually not presented as an instance of a single peaked domain but

can be, as shown below): see e.g. Nehring and Puppe (2007(a),(b)), and Barberá, Sonnenschein

and Zhou (1991). It should be stressed again, however, that such results -while interesting and

valuable by themselves- are independent and at least in one respect narrower than those presented

in the present work. That is so because the former not only ignore at all the unimodal case, but

even in the locally strict unimodal case fail to cover -as opposed to Theorems 2 and 3 above- infinite

lattices and the Boolean square (i.e. the finite Boolean case with m = 2). Furthermore, it should

be stressed that locally strict unimodality is somewhat at odds with a latticial outcome set. That

is so because it relies on a notion of ‘top-proximity’-based betweenness-consistency that cannot be
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backed by any metric consistent with standard latticial betweenness relations without allowing for

multiple local peaks.

In order to clarify those statements, it is worth reviewing here the sort of betweenness relations

underlying such alternative notions of single peakedness.

The most widely used alternative version of single peakedness encountered in the extant litera-

ture requires that (i) there exist a unique maximum or best outcome, and (ii) any outcome x that

lies between the best outcome and another outcome y distinct from x itself should also be strictly

better than y (see e.g. Barberà, Gul and Stacchetti (1993), and Nehring and Puppe (2007 (a,b)).

It is easily checked that under such notion of single peakedness (labeled ‘general single peakedness’

in Nehring and Puppe (2007 (b)) and ‘locally strict unimodality’ in the present paper) as applied

to (the relevant part of) latticial betweenness, single peaked total preorders on 22 are -again- three

for each possible choice of the top outcome a ∈ {0, x, y, 1} = {a, a′, b, b′} (hence twelve altogether),
namely <′1≡ (a �′1 b �1 b

′ �′1 a′), <′2≡ (a �′2 b′ �′2 b �′2 a′), <′3≡ (a �′3 b ∼′3 b′ �′3 a′).
Thus, as it is immediately checked, unimodal and locally strict unimodal total preorders com-

prise two disjoint sets.

Indeed, under locally strict unimodality, it is still possible to claim that every single voter’s

preferences are ‘consistent’with the same betweenness relation, namely the latticial betweenness

B22 . However, the implied ‘consistency’ is formulated in such a way that only certain parts of

B22 play an active role in shaping preferences, and distinct parts of it play such an active role for

agents having distinct top outcomes. In particular, and most remarkably, for each locally strictly

unimodal total preorder < on 22 with top outcome a both b � a′ and b′ � a′ hold, while of

course (b, a′, b′) ∈ B22 : therefore, when applied to B22 in its entirety, locally strictly unimodal

total preorders actually admit two local peaks. That fact strongly suggests that if locally strictly

unimodal total preorders are to be regarded as single peaked with respect to some betweenness

relation on 22, then claiming that role for the entire latticial betweenness B22 , while being of course

a legitimate stipulation is arguably somewhat far-fetched. A far more natural and appropriate

choice for that role would be apparently its proper subrelation Ba22 = B22 r {(b, a, b′), (b′, a, b)}.
Observe, however, that such an approach would result in a ‘non-classic’notion of single peakedness

that makes reference to several preference-dependent hence, generally speaking, agent-dependent

betweenness relations (one for each possible best outcome).

To be sure, there is still another possibility to anchor all locally strictly unimodal total preorders

to a common betweenness relation: that would entail choosing another proper subrelation of B22 ,

namely B∗22 = B22 r {(x, 1, y), (y, 1, x), (x, 0, y), (y, 0, x)} as the relevant betweenness relation.
Notice that B∗22 is in fact the natural betweenness relation of 2

2 when regarded not as a (Boolean)

lattice, but just as a partially ordered set : thus, outcome b is declared to lie between a and c if

and only if either a 6 b 6 c or c 6 b 6 a hold (the hallmark of order betweenness is that no

third outcome lies between two incomparable elements). That move would enlarge the set of locally

strictly unimodal total preorders, collapsing locally strict unimodality to uniqueness of the best

outcome whenever the best outcome is either x or y: in that case, we would end up with a notion
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of single peakedness for total preorders that relies on a unique shared betweenness relation but is

itself essentially preference-dependent anyway. In any case, that choice of the relevant betweenness

would be at variance with a full fledged treatment of outcome set 22 as a (distributive) lattice. It

would result in a considerable relaxation of single peakednees restrictions, and a strengthening of

the relevant notion of monotonicity, to the effect of rendering the median function not monotonic.15

Separable preferences on 22 (a notion due to Barberá, Sonnenschein and Zhou (1991) who define

it for arbitrary finite Boolean lattices) are best introduced by regarding 22 as the power set of a

two-item set {x, y} with x and y denoting singletons {x} and {y}, and the empty set ∅ and {x, y}
itself standing for 0 and 1, respectively. Any item a ∈ {x, y} is either ‘good’ or ‘bad’: it is
good if {a} � ∅ and bad if ∅ � {a}. The set of all good items of a total preorder < on 22 is

denoted by G(<). A total preorder < on 22 is separable if for any A ⊆ {x, y} and a ∈ {x, y}rA,
A ∪ {a} � A if and only if a ∈ G(<). Clearly, for any separable total preorder < on 22, G(<)

is the unique maximum of <. Resuming now for the sake of comparisons the standard notation
used in the former discussion, the separable total preorders are three for each possible choice of

the best outcome (that is, recall, the set of all good items), namely <′′1≡ (a �′′1 b �′′1 b′ �′′1 a′),
<′′2≡ (a �′′2 b′ �′′2 b �′′2 a′), <′′3≡ (a �′′3 b ∼′′3 b′ �′′3 a′), where a denotes the set of all good items, a′

is the complement of a, and b′ is the complement of b.

Notice that on 22 separable preferences are isomorphic to locally strictly unimodal preferences.16

Thus, separable preferences are just locally strictly unimodal preferences on finite Boolean lattices

in disguise. It follows that the same observations made on the latter also apply to separable pref-

erences: precisely as locally strictly unimodal preferences, separable preferences can be regarded

as single peaked either with respect to multiple, agent-dependent betweenness relations or with

respect to a common betweenness relation. In both cases, however, the betweenness relations in-

volved and playing an active role depend on preferences, are distinct from latticial betweenness B22

and, arguably, do disregard in relevant ways the latticial structure of the outcome set.

5. Related literature and concluding remarks

The main results of the present paper may be summarized as follows:

(i) Theorem 1 provides a characterization in terms of iterated medians of projections and con-

stants of the class of strategy-proof voting rules on (full) unimodal domains and locally strictly

unimodal domains in all bounded distributive lattices: thus, combining a version of the original

Moulin’s lattice-polynomial representation with a suitable generalization of ideas and techniques

proposed by Danilov (1994) through an explicit reliance on tree automata, it extends in significant

ways both Moulin (1980) and Danilov (1994) (which only concern unimodal domains in bounded

chains and in bounded trees, respectively), and Barberà, Gul and Stacchetti (1993) and Nehring

15To see this, consider for instance (x, y, 1) and (y, y, 1). Clearly, µ(x, y, 1) = 1 , µ(y, y, 1) = y and not B∗
22

(x, 1, y)

hence µ is not B∗
22
-monotonic, and no B∗

22
-counterpart of Theorem 1 above applies to it.

16The argument can be extended to arbitrary Boolean hypercubes 2m, m ≥ 2.
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and Puppe (2007 (a),(b)) (which only concern locally strictly unimodal domains in finite products

of bounded chains and in finite distributive lattices, respectively).

(ii) Theorem 2 establishes that equivalence between (individual) strategy-proofness and coali-

tional strategy-proofness on both full unimodal and full locally strictly unimodal domains holds

precisely in bounded linear orders, and fails in bounded distributive lattices that are not linear

orders: it complements the opposite results obtained by Moulin (1980) and Danilov (1994) for

full unimodal domains in bounded chains and trees and by Barberà, Berga and Moreno (2010)

for locally strictly unimodal domains in bounded chains, and extends previous results obtained by

Barberà, Sonnenschein and Zhou (1991) and Nehring and Puppe (2007 (a),(b)) for locally strictly

unimodal domains in certain finite distributive lattices.

(iii) Theorem 3 establishes -for bounded distributive lattices with at least two atoms- the

impossibility of anonymous coalitional strategy-proof voting rules with even a minimal amount of

local sovereignty and local neutrality on full unimodal domains: it also extends to a large subclass

of non-sovereign voting rules for full unimodal and locally strictly unimodal domains in a much

larger class of bounded distributive lattices some previous results mainly due to Barberà, Gul and

Stacchetti (1993) and Nehring and Puppe (2007 (a), (b)) concerning voting rules for locally strictly

unimodal domains in certain finite or product distributive lattices (indeed, a distributive lattice

with two or more atoms need not be a product lattice, or finite).

In order to properly appreciate the significance of the foregoing result a few key contributions

from the early literature on related issues are to be discussed in some detail.

The seminal paper by Moulin (see Moulin (1980)) provides an explicit characterization in terms

of ‘extended medians’of the class of all strategy-proof voting rules on the domain of all profiles

of total preorders that are unimodal with respect to a fixed bounded linear order.17 Furthermore,

Moulin (1980) establishes the equivalence of strategy-proofness and coalitional strategy-proofness

for all voting rules on such full unimodal domains. Clearly, Moulin’s result does not apply to the

Boolean square. Moreover, its proof cannot be extended to the latter.

In fact, Moulin’s proof relies heavily on the following property of medians in bounded linear

orders that does not hold for medians in general bounded distributive lattices: given an odd popu-

lation of n = 2k+ 1 voters, for any (xi)i=1;:::;n ∈ XN the (extended) median µ∗(x1, ..., xn) i.e. the

(iterated) median µ(x2k, µ(x2(k−1), µ(..(µ(x1, x2, x3))..), x2k−1), x2k+1) is such that:

(5.1) min(|{i ∈ N : xi ≤ µ∗(x1, ..., xn)}| , |{i ∈ N : µ∗(x1, ..., xn) ≤ xi}|) ≥ k + 1.

However, take n = 3 (hence k + 1 = 2) and consider the Boolean square 22.

Clearly µ∗(1, x, y) = µ(1, x, y) = 1, hence at (x1, x2, x3) = (1, x, y), |{i ∈ N : xi ≤ µ∗(1, x, y)}| =
3, but |{i ∈ N : µ∗(1, x, y) ≤ xi}| = 1, and 5.1 fails.

17To be sure, Moulin proves the characterization result mentioned above for a restricted unimodal domain where

voters are not allowed to regard the maximum or the minimum of the chain as their unique optimum. But Moulin’s

proof can be adapted to the full unimodal domain.
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In a similar vein, Danilov (1994) provides a characterization in terms of (iterated) medians of the

class of strategy-proof voting rules on the domain of all unimodal linear orders (i.e. antisymmetric

total preorders) when X is the vertex set of an undirected (bounded) tree (see also Danilov and

Sotskov (2002) for further discussion of this topic, and Demange (1982) for an early study of

majority-like voting rules on domains of unimodal linear orders in undirected trees).18 Moreover,

Danilov (1994) also shows that strategy-proofness and coalitional strategy-proofness of voting

rules on unimodal profiles of linear preference orders in undirected bounded trees are equivalent

properties. But in fact, it can be shown that Danilov’s proofs can be readily extended to the

wider full domain of unimodal total preference preorders (arguing along the lines of the first part

of the proof of Lemma 1 above), and to the case of an underlying bounded linearly ordered set of

alternatives.

However, the key step of Danilov’s proof relies on the following property shared by intervals of

linear orders and of undirected trees, namely:

(5.2) for all x, y, v, z ∈ X such that x 6= y, if x ∈ [y, v] and y ∈ [x, z] then x ∈ [v, z].

Notice however that 5.2 does not hold for (latticial) intervals of arbitrary bounded distributive

lattices. To see this, consider again precisely the Boolean square 22 and notice that e.g. bx
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voting rules for certain proximity-based single peaked domains in certain distributive lattices and

provide partial counterparts to our results on coalitional manipulability of median-based rules.

Thus, the existence of sovereign strategy-proof voting rules for Euclidean single peaked domains

that are not coalitionally strategy-proof is well-established for ‘top proximity’-based single peaked

profiles in Euclidean m-dimensional spaces with m ≥ 2 (see e.g. Border and Jordan (1983), Peters,

van der Stel and Storcken (1992), Peremans, Peters, van der Stel and Storcken (1997), Bordes,

Laffond and Le Breton (2012)). Furthermore, Euclidean spaces are (unbounded) Riesz spaces i.e.

are endowed with a natural (unbounded) distributive latticial structure. Notice however that the

betweenness relation induced by the Euclidean metric is distinct from the latticial betweenness

relation and in fact no well-behaved median operation is available in an m-dimensional Euclidean

space with m ≥ 2.

In their influential contribution, Barberà, Gul and Stacchetti (1993) identify single peakedness

and locally strict unimodality and offer an alternative characterization of strategy-proof voting

rules on (full) locally strictly unimodal domains in (finite) products of bounded chains endowed

with the L1-metric 20: their characterization relies on generalized median voter schemes i.e. on

representations of voting rules via families of outcome/dimension-specific generalized committees

denoting winning coalitions. While that work mainly focusses on the finite case, it can be readily

extended to finite products of arbitrary bounded chains (but see also Balinski and Laraki (2010)

in that connection). However, it relies heavily on the product structure of the underlying lattices.

Building upon some remarkable earlier contributions including Barberà, Gul and Stacchetti

(1993) and Barberà, Massò and Neme (1997), and also focusing on locally strict unimodality (un-

der the label ‘generalized single peakedness’), Nehring and Puppe (2007(a)) offer a comprehensive

study and an ‘issue-by-issue voting-by-committees’-based characterization of sovereign (i.e. sur-

jective) strategy-proof voting rules on rich domains of so-called locally strictly unimodal linear

orders in certain finite median interval spaces21 as induced by suitably defined ‘property spaces’.

In particular, Nehring and Puppe (2007 (a), (b)) provide valuable results on locally strict uni-

modality and strategy-proofness in finite median spaces, and (finite) distributive lattices are a

prominent instance of (finite) median spaces. However, due to their choice of linear preference

domains as combined with their (locally) strict notion of unimodality, it turns out that their re-

sults are in fact irrelevant for the case of unimodality in finite distributive lattices other than finite

chains. Furthermore, Nehring and Puppe (2007 (b)) prove that the only effi cient and strategy-

proof voting rules on ‘rich’domains of locally strictly unimodal profiles of linear orders in finite

Boolean m-hypercubes with m ≥ 3 are weakly dictatorial. Notice, however, that effi cient voting

rules are in particular sovereign hence that result is not in any case an impossibility result for

20Namely, dL1 (x, y) = Σi|xi − yi| for all x, y ∈ X. The L1-metric is consistent with latticial betweenness in

the sense explained in Remark 1 above. Barberà, Gul and Stacchetti (1993) also provides a characterization of

strategy-proof social choice functions with range given by a product of sub-chains.
21A median interval space amounts to a set with a ternary betweenness relation such that for any triple of

elements there exists precisely one element which lies between each pair in the triple.
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non-sovereign anonymous and coalitionally strategy-proof voting rules. It should also be stressed

that the main result in Nehring, Puppe (2007 (b)) does entail equivalence-failure for simple and

coalitional strategy-proofness in Boolean k-hypercubes for k ≥ 3 but it refers to a domain of locally

strictly unimodal linear orders that is distinct -and in fact disjoint in any Boolean hypercube- from

the domain of all unimodal total preorders which is the focus of the present work. Moreover, even

on the locally strictly unimodal domain the foregoing result does not apply to the Boolean square,

while our Theorem 2 covers the full unimodal domain in both infinite bounded distributive lattices

and arbitrary Boolean hypercubes, including of course the Boolean square 22.

Another recent paper (Chatterji, Sanver and Sen (2013)) provides a characterization of those

‘strongly-path-connected’domains of linear orders that ensure existence of anonymous and idempo-

tent strategy-proof social choice functions for a voter population of even size: such characterization

relies on a new, generalized notion of single-peakedness for linear orders denoted as ‘semi-single-

peakedness’(requiring essentially that the outcome set can be endowed with a tree structure such

that locally strict unimodality as defined above holds within a certain threshold-distance from

the top outcome). However, the domain of (all) unimodal linear orders on the Boolean square is

-as observed above- empty hence it is trivially not strongly path-connected. Thus, the unimodal

domain is definitely beyond the scope of the Chatterji-Sanver-Sen characterization.

Barberà, Berga and Moreno (2010) addresses the general issue of equivalence between simple and

coalitional strategy-proofness and consider locally strictly unimodal domains of total preorders.22

They establish that a property they newly introduce and label ‘Sequential Inclusion’provides a

general suffi cient condition ensuring equivalence of individual and coalitional strategy-proofness,

and show that locally strictly unimodal domains of total preorders as defined on a linear order

(X,6) do satisfy it. Specifically, for each preference profile (<i)i∈N Sequential Inclusion relies

on a family of binary relations < (S((<i)i∈N , y, z)) as parameterized by ordered pairs (y, z) of

outcomes and defined on S((<i)i∈N , y, z), the set of voters that strictly prefer y to z at (<i)i∈N :
in particular, voter pair (i, j) is in < (S((<i)i∈N , y, z)) if and only if i and j are in S((<i)i∈N , y, z)
and {x ∈ X : z <i x} ⊆ {x ∈ X : z �j x}. Of course any such < (S((<i)i∈N , y, z)) is reflexive:
Sequential Inclusion requires that all of them be also connected and acyclic. Indirect Sequential

Inclusion is satisfied by a profile (<i)i∈N if either (<i)i∈N itself satisfy Sequential Inclusion or for
each pair (y, z) of outcomes there exists a profile (<′i: i ∈ S((<i)i∈N , y, z)) such that: (i) y �′i z
for each i ∈ S((<i)i∈N , y, z), (ii) z �′i x for each i ∈ S((<i)i∈N , y, z) and each outcome x 6= z

such that z <i x, and (iii) < (S((<′i: i ∈ S((<i)i∈N , y, z))) is connected and acyclic. A preference
domain is then said to satisfy Sequential Inclusion (Indirect Sequential Inclusion) if each preference

profile in that domain does satisfy it.23

22It should be noticed, however, that locally strict unimodality in a bounded linear order reduces to unimodality

when total preorders are in fact antisymmetric i.e. linear orders: details are available from the authors upon request.
23Moreover, it turns out that in a full single peaked setting Indirect Sequential Inclusion is a generalization of a

similar ‘richness’condition singled out by Le Breton and Zaporozhets (2009).
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Thus, the Barberà-Berga-Moreno result mentioned above extends to locally strictly unimodal

domains Moulin’s equivalence between individual and coalitional strategy-proofness on unimodal

domains in bounded chains (see also Danilov and Sotskov (2002) and Le Breton and Zaporozhets

(2009) in that connection). Notice, incidentally, that the Barberà-Berga-Moreno argument for such

an equivalence result cannot be extended to domains of unimodal total preorders even in bounded

chains.24

Finally, it should also be noticed that some of the results of the present paper - notably, Lemma

1 - can be easily reproduced in a more general setting e.g. in any median algebra (see Isbell (1980),

Bandelt and Hedlíková (1983)). It remains to be seen which of the other results, if any, can also be

lifted to the latter environment. This is however best left as a possible topic for future research.

6. Appendix 1: Proofs

Proof of Claim 1. (i) If BX (x, z, y) then x ∧ y 6 z 6 x ∨ y . Since by definition x ∧ y = y ∧ x and
x ∨ y = y ∨ x it obviously follows y ∧ x 6 z 6 y ∨ x hence BX (y, z, x) also holds.

(ii) Since by definition x ∧ y 6 x 6 x ∨ y and x ∧ y 6 y 6 x ∨ y hold for any x, y ∈ X, both
BX (x, x, y) and BX (x, y, y) hold.

(iii) If BX (x, y, x) then x = x ∧ x 6 y 6 x ∨ x = x hence y = x.

(iv) If BX (x, u, y), BX (x, v, y) and BX (u, z, v) then x ∧ y 6 u 6 x ∨ y , x ∧ y 6 v 6 x ∨ y and
u ∧ v 6 z 6 u ∨ v.
Thus, by definition of ∧ and ∨, x∧y 6 u∧v 6 x∨y (that implies x∧y 6 z) and x∧y 6 u∨v 6 x∨y

(that implies z 6 x ∨ y). It follows that BX (x, z, y) as required;

(v) If BX (x, y, z) and BX (y, x, z) then x ∧ z 6 y 6 x ∨ z and y ∧ z 6 x 6 y ∨ z hence
x = x ∨ (y ∧ z) = (x ∧ (y ∨ z)) ∨ (y ∧ z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) =

(x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z) = (y ∧ (x ∨ z)) ∨ (x ∧ z) = y ∨ (x ∧ z) = y. �

Proof of Claim 2. First, notice that �xis, as suggested by notation, asymmetric: indeed, suppose
not i.e. y �x z and z �x y for some y, z ∈ X. Then, in particular y ∈ [x, z] and z ∈ [x, y]

hence y = z by antisymmetry of BX as established above, a contradiction. Next, observe that

�xis S-consistent: to check this, assume that on the contrary there exist y, z, z1, ..., zk such that

y ∈ [x, z1]r {z1} , z1 ∈ [x, z2]r {z2} , ..., zk−1 ∈ [x, zk]r {zk} , zk ∈ [x, z]r {z} and z ∈ [x, y]r {y} .
Then, in particular,

BX (x, y, z1), BX (x, z1, z2), BX (x, z2, z3), ....., BX (x, zk−1, zk), BX (x, zk, z), BX (x, z, y).

It follows, by closure and convexity of BX ,

[x, y] ⊆ [x, z1] ⊆ [x, z2] ⊆ ... ⊆ [x, zk] ⊆ [x, z] ⊆ [x, y]

hence [x, y] = [x, z].

24Indeed, take a four-element linear order ({x, y, w, z} ,6) such that x < y < z < w, consider total preorders on

X such that x �1 y �1 w ∼1 z and z �2 y �1 w ∼1 x : it can be quite easily shown that those two total preorders

are unimodal -though of course not strictly unimodal- and violate the ‘Sequential Inclusion’property. Furthermore,

it can be quite easily checked that the foregoing preference profile also fails to satisfy Indirect Sequential Inclusion

(more details on all of the above are available from the authors upon request).
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Therefore,

BX (x, z, y) and BX (x, y, z), hence by symmetry BX (y, z, x) and BX (z, y, x) and by antisymme-

try y = z, a contradiction since z ∈ [x, y]r {y}: hence, S-consistency of �x is established.
It follows that Suzumura’s Theorem applies and �xadmits a non-trivial extension <∗xthat is

a total preorder. Moreover, since �xis asymmetric, �x⊆�∗xhence by construction <∗xis locally
strictly unimodal as required. �

Proof of Lemma 1. (i) ⇒ (ii) Let f be BX -monotonic with respect to X . Now, consider any
< = (<j)j∈N ∈ UNX and any i ∈ N . By definition of BX -monotonicity f(top(<i), xNr{i}) ∈
[top(<i), f(xi, xNr{i})] for all xNr{i} ∈ XNr{i} and xi ∈ X. But then, since clearly
top(<i) <i f(top(<i), xNr{i}), either f(top(<i), xNr{i}) = top(<i) or f(top(<i), xNr{i}) <i

f(xi, xNr{i}) by unimodality of <i. Hence, f(top(<i), xNr{i}) <i f(xi, xNr{i}) in any case. It

follows that f is indeed strategy-proof on UNX .

(ii) ⇒ (i) Let us assume that f : XN → X is not BX -monotonic: thus, there exist i ∈ N ,

x′i ∈ X and xN = (xi)i∈N ∈ XN such that f(xN ) /∈ [xi, f(x′i, xNr{i})]. Then, consider the total

preorder <∗ on X defined as follows: xi = top(<∗) and for all y, z ∈ Xr{xi}, y <∗ z if and only if
(i) {y, z} ⊆ [xi, f(x′i, xNr{i})]r{xi} or (ii) y ∈ [xi, f(x′i, xNr{i})]r{xi} and z /∈ [xi, f(x′i, xNr{i})]

or (iii) y /∈ [xi, f(x′i, xNr{i})] and z /∈ [xi, f(x′i, xNr{i})]. Clearly, by construction <∗consists of
three indifference classes with {xi}, [xi, f(x′i, xNr{i})] r {xi} and X r [xi, f(x′i, xNr{i})] as top,

medium and bottom indifference classes, respectively. Now, observe that <∗∈ UX . To check this
statement, take any y, z, v ∈ X such that y 6= z and v ∈ [y, z] (if y = z then v = y = z and there is

in fact nothing to prove). If {y, z} ⊆ [xi, f(x′i, xNr{i})] then BX (xi, v, f(x′i, xNr{i}) by convexity

of BX , i.e. v ∈ [xi, f(x′i, xNr{i})]. v by construction xi ∧ f(x′i, xNr{i}) 6 y ∧ z 6 v 6 y ∨ z 6
xi ∨ f(x′i, xNr{i}), i.e. v ∈ [xi, f(x′i, xNr{i})]. Assume without loss of generality that y 6= xi: it

follows that v <∗ y by definition of <∗. If on the contrary {y, z}∩(Xr[xi, f(x′i, xNr{i})]) 6= ∅ then
clearly by definition of <∗there exists w ∈ {y, z} such that v <∗ w. Thus, <∗∈ UX as claimed. Also,
by assumption f(xN ) ∈ X r [xi, f(x′i, xNr{i})] whence by construction f(x′i, xNr{i}) �∗ f(xN ).

But then, f is not strategy-proof on UNX .

(i) ⇒ (iii) Again, let f be BX -monotonic with respect to X . Now, consider any < = (<j
)j∈N ∈ SNX and any i ∈ N . By definition of BX -monotonicity f(top(<i), xNr{i}) ∈ [top(<i
), f(xi, xNr{i})] for all xNr{i} ∈ XNr{i} and xi ∈ X. But then, either f(top(<i), xNr{i}) =

f(xi, xNr{i}) or f(top(<i), xNr{i}) �i f(xi, xNr{i}) by locally strict unimodality of <i. Hence,
f(top(<i), xNr{i}) <i f(xi, xNr{i}) in any case. It follows that f is indeed strategy-proof on SNX .

(iii) ⇒ (i) Let us assume that f : XN → X is not BX -monotonic: thus, there exist i ∈ N ,

x′i ∈ X and xN = (xi)i∈N ∈ XN such that f(xN ) /∈ [xi, f(x′i, xNr{i})]. Then, consider a binary

relation

�′on X defined by the following clauses (α) xi = top(�′) i.e. xi �′ y for all y ∈ X r {xi};
(β) if {y, z} ⊆ [xi, f(x′i, xNr{i})] r {xi} then y �′ z if and only if z ∈ [xi, y] r {y}; (γ) if
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y ∈ [xi, f(x′i, xNr{i})] r {xi} and z /∈ [xi, f(x′i, xNr{i})] then y �′ z ; (δ) if {y, z} ⊆ X r
[xi, f(x′i, xNr{i})] then y �′ z if and only if z ∈ [xi, y]r {y}.
Then, observe that �′ ∩

{
[xi, f(x′i, xNr{i})]

}2
and �′ ∩

{
X r [xi, f(x′i, xNr{i})]

}2
amount to

the restrictions of�xi as defined above (see Claim 2) to [xi, f(x′i, xNr{i})] andXr[xi, f(x′i, xNr{i})],

respectively, hence by Claim 2 are S-consistent and therefore admits non-trivial extensions to

total preorders <′1 and <′2 on their respective disjoint domains. It follows that <′=<′1 ⊕ <′2
as defined by the rule x <′ y if and only if (x <′1 y, x <′2 y or x ∈ [xi, f(x′i, xNr{i})] and

y ∈ X r [xi, f(x′i, xNr{i})]) is a total preorder on X. Moreover, <′is locally strictly unimodal
by construction i.e. <′∈ SNX . Also, by assumption f(xN ) ∈ X r [xi, f(x′i, xNr{i})] whence by

construction f(x′i, xNr{i}) �′ f(xN ). But then, f is not strategy-proof on SNX . �

Proof of Lemma 2. Take any xN ∈ XN . By definition of BX -monotonicity, it suffi ces to show that

for any i ∈ N and x′i ∈ X, µ(f, g, h)(xN ) ∈ [xi, µ(f, g, h)(x′i, xNr{i})]. Indeed, by monotonicity

of f, g, h with respect to X , f(xN ) ∈ [xi, f(x′i, xNr{i})], g(xN ) ∈ [xi, g(x′i, xNr{i})], and h(xN ) ∈
[xi, h(x′i, xNr{i})].

A change of variables is in order here for the sake of convenience, namely xf = f(xN ),

x′f = f(x′i, xNr{i}), xg = g(xN ), x′g = g(x′i, xNr{i}), xh = h(xN ), x′h = h(x′i, xNr{i}), whence

µ(f, g, h)(xN ) = µ(xf , xg, xh), and µ(f, g, h)(x′i, xNr{i}) = µ(x′f , x
′
g, x
′
h). Thus, xi ∧ x′l 6 xl 6

xi ∨ x′l, l = f, g, h, by hypothesis, while the thesis amounts to xi ∧ µ(x′f , x
′
g, x
′
h) 6 µ(xf , xg, xh) 6

xi ∨ µ(x′f , x
′
g, x
′
h). Now, µ(x′f , x

′
g, x
′
h) = (x′f ∧ x′g) ∨ (x′g ∧ x′h) ∨ (x′f ∧ x′h) hence by distributivity

and the basic latticial identities we get:

xi ∧ ((x′f ∧ x′g) ∨ (x′g ∧ x′h) ∨ (x′f ∧ x′h))

= (xi ∧ (x′f ∧ x′g)) ∨ (xi ∧ (x′g ∧ x′h)) ∨ (xi ∧ (x′f ∧ x′h))

= ((xi ∧ x′f ) ∧ (xi ∧ x′g)) ∨ ((xi ∧ x′g) ∧ (xi ∧ x′h)) ∨ ((xi ∧ x′f ) ∧ (xi ∧ x′h)).

However, by hypothesis, distributivity and the basic latticial identities again:

((xi ∧ x′f ) ∧ (xi ∧ x′g)) ∨ ((xi ∧ x′g) ∧ (xi ∧ x′h)) ∨ ((xi ∧ x′f ) ∧ (xi ∧ x′h))

6 (xf ∧ xg) ∨ (xg ∧ xh) ∨ (xf ∧ xh) = µ(xf , xg, xh)

6 ((xi ∨ x′f ) ∧ (xi ∨ x′g)) ∨ ((xi ∨ x′g) ∧ (xi ∨ x′h)) ∨ ((xi ∨ x′f ) ∧ (xi ∨ x′h))

= (xi ∨ (x′f ∧ x′g)) ∨ (xi ∨ (x′g ∧ x′h)) ∨ (xi ∨ (x′f ∧ x′h))

= xi ∨ ((x′f ∧ x′g) ∨ (x′g ∧ x′h) ∨ (x′f ∧ x′h)) = xi ∨ µ(x′f , x
′
g, x
′
h)

as required. �

Proof of Lemma 3. Take any xNr{1} ∈ XNr{1} and consider fxNr{1} : X → X as defined by the

rule fxNr{1}(x1) = f(x1, xNr{1}) for all x1 ∈ X. Thus, by definition fxNr{1} is BX -monotonic

with respect to (X,6), i.e. fxNr{1}(x) ∈ [x, fxNr{1}(y)], namely

x ∧ fxNr{1}(y) 6 fxNr{1}(x) 6 x ∨ fxNr{1}(y) for any x, y ∈ X.
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i.e. fxNr{1,2} is the fourth term of the nested sequence of medians that provides the run of the

median tree-automaton AI;��
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it follows that coalition {1, 2} can manipulate the outcome at (<i)i∈N namely f ′ is not coalitionally
strategy-proof on D2×UNr{1;2}X . Strategy-proofness (and failure of coalitional strategy-proofness)

of f ′ on (D′)2 × SNr{1;2}X is proved in a similar way by replacing < and <′ with <′′ and <′′′,
respectively.

(ii) Let us assume without loss of generality that |X| = 4 and let X = {a, b, c, d} and ∆X =

{(x, x) : x ∈ X}. Next, define 6∗∗= {(a, b), (a, c), (a, d), (b, d), (c, d)} ∪∆X .

It is easily checked that X ∗∗ = (X,6∗∗) is the Boolean lattice 22 with a = >, d = ⊥.
Now, define the family {f(x∗)}x∗∈{⊥;>}N as follows: for all xNr{1;2} ∈ {⊥,>}

Nr{1;2}

f(a, a, xNr{1;2}) = a, f(d, d, xNr{1;2}) = d, f(a, d, xNr{1;2}) = b, f(d, a, xNr{1;2}) = c.

Then, consider the nested sequence of medians that provides the run of the median tree-

automaton AI;�� as initialized with ballot profile xN and applied to the finite (Σ�, I)-tree T =

T (xN ,{f(x∗)}x∗∈{⊥;>}N ) with terminal nodes suitably labelled by projections of xN and elements

of {f(x∗)}x∗∈{⊥;>}N as defined above (notice that f is by construction an extension to XN of

f ′ as mentioned above under part (i) of the present proof). A few simple if tedious calculations

immediately establish that for all

xNr{1;2} ∈ XNr{1;2}:

f(a, c, xNr{1;2}) = f(b, a, xNr{1;2}) = f(b, c, xNr{1;2}) = a,

f(b, b, xNr{1;2}) = f(a, b, xNr{1;2}) = f(b, d, xNr{1;2}) = b,

f(c, c, xNr{1;2}) = f(c, a, xNr{1;2}) = f(d, c, xNr{1;2}) = c,

f(c, d, xNr{1;2}) = f(d, c, xNr{1;2}) = f(c, b, xNr{1;2}) = d.

By construction, and in view of Lemma 3 above, f is BX∗∗ - monotonic. Therefore, by Lemma 1,

f is also strategy-proof on UNX∗∗ .

Now, take

< = {(a, b), (a, c), (a, d), (b, c), (b, d), (c, d), (d, c)} ∪∆X ,

< ′
= {(d, b), (d, c), (d, a), (b, c), (b, a), (c, a), (a, c)} ∪∆X ,

as defined in Remark 2 above.

First, observe that both < and <′are in UNX∗∗ , i.e. are unimodal with respect to X ∗∗: indeed,
top(<) = a, top(<′) = d and it is immediately seen that

BX (X, 6 ∗∗) =

{
(a, b, d), (a, c, d), (b, a, c), (b, d, c), (d, b, a),

(d, c, a), (c, a, b), (c, d, b)

}
∪

∪
{

(x, y, z) ∈ X3 : x = y or z = y
}
.

But then, since {(b, d), (c, d), (a, b), (d, c)}∪∆X is a subrelation of < and {(b, a), (c, a), (a, c), (d, c)}∪
∆X is a subrelation of <′, it follows that < and <′are also unimodal with respect to X ∗∗. Now,
take any preference profile (<i)i∈N such that <1=<′ and <2=<, hence top(<1) = d, top(<2) =

a. Then, for any xNr{1;2} ∈ XNr{1;2}, both f(a, d, xNr{1;2}) �1 f(top(<1), top(<2), xNr{1;2})
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and f(a, d, xNr{1;2}) �2 f(top(<1), top(<2), xNr{1;2}): it follows that, again, coalition {1, 2} can
manipulate the outcome at (<i)i∈N namely f is not coalitionally strategy-proof.

Again, strategy-proofness and failure of coalitional strategy-proofness of f on SNX∗∗ follows from

the very same argument, by positing <1=<′′ and <2=<′′′. �

Proof of Corollary 1. (i) =⇒ (ii) It follows immediately from Theorem 2 (ii) above;

(ii) =⇒ (i) For the case concerning UNY , the statement follows from a straightforward extension

and adaptation of the proof of Proposition 4 of Danilov (1994) concerning voting rules on unimodal

domains of linear orders in undirected bounded trees (details available from the authors upon

request), and is indeed already stated without explicit proof in Moulin (1980). As far as SNY is

concerned, the statement follows e.g. from Theorem 2 and Proposition 3 of Barberà, Berga and

Moreno (2010). �

Proof of Theorem 3. Let us assume that on the contrary there exists a voting rule f : XN → X

which is anonymous, locally JI-neutral on Y , locally sovereign on Y , and coalitionally strategy-

proof on UNX (on SNX , respectively). By Theorem 1, it follows that there exists an order filter F
of (P(N),⊆) such that

f(xN ) = ∨S∈F ((∧i∈Sxi) ∧ y∗S) for all xN ∈ XN .

To begin with, observe that coalitional strategy-proofness and local sovereignty on Y jointly

imply local idempotence on Y (indeed, suppose there exists u ∈ Y , u 6= f(uN ); of course, by local

sovereignty there exists xN ∈ XN such that f(xN ) = u. But then f is coalitionally manipulable

at any preference profile (<i)i∈N ∈ UNX ((<i)i∈N ∈ SNX , respectively) such that top(<i) = u for

all i ∈ N , a contradiction).
Next, for any u ∈ Y denote by Su the set of all minimal coalitions T ∈ F such that u 6

f(uT , wNrT ) for all wNrT ∈ XNrT . By local idempotence of f on Y , Su 6= ∅. By anonymity of
f , |T | = |T ′| = nu for all T, T ′ ∈ Su, and y∗S = y∗S′ = y∗s for any S, S

′ ∈ F such that |S| = |S′| = s.

Moreover, since by Theorem 1 coalitional strategy-proofness entails in particular BX -monotonicity,

it also follows -by definition of BX -monotonicity- that for any i ∈ N r T
u = u ∧ f(uT , wNrT ) 6 f((uT∪{i}, wNr(T∪{i})) 6 u ∨ f(uT , wNrT )

whence, by repeated application of that argument

u 6 f(uT
′
, wNrT

′
) for any T ′ ⊆ N such that |T ′| ≥ nu.

Also, by local JI-neutrality on Y of f , nx = nz = q.

Four cases are to be distinguished according to the sign of (q − n/2) and the parity of n.

(α): Let us first suppose that q ≤ n/2.
Then, in order to address the unimodal case consider the following triple of preference relations:

<∗:= [x �∗ 0 �∗ x ∨ z ∼∗ z ∼∗ w for all w ∈ X r Y ],

<∗∗:= [z �∗∗ 0 �∗∗ x ∨ z ∼∗∗ x ∼∗∗ w for all w ∈ X r Y ],

<∗∗∗:= [0 �∗∗∗ x ∼∗∗∗ z ∼∗∗∗ x ∨ z ∼∗∗∗ w for all w ∈ X r Y ].

Notice that by construction such preferences are unimodal with respect to X , i.e. {<∗,<∗∗,<∗∗∗} ⊆
UNX .
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Two subcases are distinguished according to the parity of n, namely

(i) n = 2k + 1 for some positive integer k, and (ii) n = 2k for some positive integer k.

If (α(i)) obtains then take preference profile

<[O] = ((<∗i )i∈{1;:::;k}, (<∗∗i )i∈{k+1;:::;2k},<∗∗∗2k+1)

and compute f(yN ) = ∨S∈F ((∧i∈Syi) ∧ y∗s )

where yN = top(<[O]) i.e. yi = x for all i ∈ {1, ..., k}, yi = z for all i ∈ {k + 1, ..., 2n}, and
y2k+1 = 0.

By construction, f(yN ) is the l.u.b. of a nonempty family T of terms belonging to some of the
following jointly exhaustive, partially overlapping classes:

T1 = {∧j∈Jvj : J is a finite set J and there exists j ∈ J such that vj = 0} ,
T2 = {∧j∈Jvj : J is a finite set J and there exist j, h ∈ J such that vj = x and vh = z} ,
T3 = {∧j∈Jvj : J is a finite set and there exists J ′ ⊆ J such that |J ′| ≥ q and vj = x for all j ∈ J ′} ,
T4 = {∧j∈Jvj : J is a finite set and there exists J ′ ⊆ J such that |J ′| ≥ q and vj = z for all j ∈ J ′}.
Moreover, t = ∧j∈Jvj = 0 for all t ∈ T1 ∪ T2 hence, by construction, T3 ∩ T 6= ∅ 6= T4 ∩ T . On

the other hand, t3 > x and t4 > z for any t3 ∈ T3 and t4 ∈ T4.

It follows that f(yN ) > x ∨ z.
If (α(ii)) obtains then take preference profile

<[E] = ((<∗i )i∈{1;:::;k}, (<∗∗i )i∈{k+1;:::;2k}),

and compute f(y′N ) = ∨S∈F ((∧i∈Sy′i) ∧ y∗s ),

where y′N = top(<[E]) i.e. y′i = x for all i ∈ {1, ..., k}, and y′i = z for all i ∈ {k + 1, ..., 2n},
Again, f(y′N ) is the l.u.b. of a nonempty family T of terms belonging to some of the following

jointly exhaustive, partially overlapping classes:

T ′1 = {∧j∈Jvj : J is a finite set J and there exist j, h ∈ J such that vj = x and vh = z} ,
T ′2 = {∧j∈Jvj : J is a finite set and there exists J ′ ⊆ J such that |J ′| ≥ q and vj = x for all j ∈ J ′} ,
T ′3 = {∧j∈Jvj : J is a finite set and there exists J ′ ⊆ J such that |J ′| ≥ q and vj = z for all j ∈ J ′}.
Moreover, t = ∧j∈Jvj = 0 for all t ∈ T ′1 hence, by construction, T ′2 ∩ T 6= ∅ 6= T ′3 ∩ T . On the

other hand, t2 > x and t3 > z for any t2 ∈ T ′2 and t3 ∈ T ′3.
It follows, again, that f(y′N ) > x ∨ z.
Now, take uN ∈ XN with ui = 0 for all i ∈ N : by local idempotence, f(uN ) = 0.

Thus, if n = 2k+1, f((ui = 0)i∈Nr{2k+1}, y2k+1 = 0) = f(uN ) �i f(yN ) for all i ∈ Nr{2k + 1}.
Similarly, if n = 2k, then f(uN ) �i f(yN ) for all i ∈ N . Hence, f is coalitionally manipulable at

unimodal preference profile<[O] (at unimodal preference profile<[E], respectively), a contradiction.

The locally strictly unimodal case can be addressed precisely by the same argument, provided

preference profile (<∗,<∗∗,<∗∗∗) is replaced by any locally strictly unimodal preference profile
(<′,<′′,<′′′) such that
<′:= [x �′ 0 �′ x ∨ z �′ z � w for all w ∈ X r Y ],

<′′:= [z �′′ 0 �′′ x ∨ z �′′ x �′′ w for all w ∈ X r Y ],

<′′′:= [0 �′′′ x �′′′ z �′′′ x ∨ z �′′′ w for all w ∈ X r Y ].

(β) Let us now assume that, on the contrary, q > (n/2).



STRATEGY-PROOFNESS AND SINGLE PEAKEDNESS 37

Then, consider the following triple of preference relations:

<◦:= [x �◦ x ∨ z �◦ 0 ∼◦ z ∼◦ w for all w ∈ X r Y ],

<◦◦:= [z �◦◦ x ∨ z �◦◦ 0 ∼◦◦ x ∼◦◦ w for all w ∈ X r Y ],

<◦◦◦:= [0 �◦◦◦ x ∼◦◦◦ z ∼◦◦◦ x ∨ z ∼◦◦◦ w for all w ∈ X r Y ].

Notice that by construction such preferences are unimodal with respect to X , i.e. {<◦,<◦◦,<′} ⊆
UX .

Two subcases are distinguished again according to the parity of n, namely

(i) n = 2k + 1 for some positive integer k, and (ii) n = 2k for some positive integer k.

If (β(i)) obtains, then take preference profile

<◦[O] = ((<◦i )i∈{1;:::;k}, (<◦◦i )i∈{k+1;:::;2k},<◦◦◦n )

and compute f(wN ) = ∨S∈F ((∧i∈Swi) ∧ y∗s )

where wN = top(<◦[O]) i.e. wi = x for all i ∈ {1, ..., k}, wi = z for all i ∈ {k + 1, ..., 2k}, and
wn = 0.

By construction, f(wN ) is the l.u.b. of a nonempty family T of terms belonging to some of the
following jointly exhaustive, partially overlapping classes:

T1 = {∧j∈Jvj : J is a finite set J and there exists j ∈ J such that v j = 0} ,
T2 = {∧j∈Jvj : J is a finite set J and there exist j, h ∈ J such that vj = x and vh = z} ,

T3 =

{
∧j∈Jvj : J is a finite set and there exists

a nonempty J ′ ⊆ J such that |J ′| ≤ k < q and vj = x for all j ∈ J ′

}
,

T4 =

{
∧j∈Jvj : J is a finite set and there exists

a nonempty J ′ ⊆ J such that |J ′| ≤ k < q and vj = z for all j ∈ J ′

}
.

Notice that, again, t = ∧j∈Jvj = 0 for all t ∈ T1∪T2 . Moreover, by construction, t = ∧j∈Jvj < x

for all t ∈ T3 and t = ∧j∈Jvj < z for all t ∈ T4. Since both x and y are atoms of X , it follows that
t = ∧j∈Jvj = 0 for all t ∈ T3∪ T4 whence f(wN ) = 0.

If (β(ii)) obtains then take preference profile

<◦[E] = ((<◦i )i∈{1;:::;k}, (<◦◦i )i∈{k+1;:::;2k−1},<◦◦◦n ),

and compute f(w′N ) = ∨S∈F ((∧i∈Sw′i) ∧ y∗s ),

where w′N = top(<′[E]) i.e. w
′
i = x for all i ∈ {1, ..., k}, w′i = z for all i ∈ {k + 1, ..., 2k − 1}, and

w′n = 0.

Again, f(w′N ) is the l.u.b. of a nonempty family T of terms belonging to some of the following
jointly exhaustive, partially overlapping classes:

T ′1 = {∧j∈Jvj : J is a finite set J and there exists j ∈ J such that vj = 0} ,

T ′2 =

{
∧j∈Jvj : J is a finite set J and there exist

j, h ∈ J such that vj = x and vh = z

}
,

T ′3 =

{
∧j∈Jvj : J is a finite set and there exists

a nonempty J ′ ⊆ J such that |J ′| < q and vj = x for all j ∈ J ′

}
,

T ′4 =

{
∧j∈Jvj : J is a finite set and there exists

a nonempty J ′ ⊆ J such that |J ′| < q and vj = z for all j ∈ J ′

}
.
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Notice that t = ∧j∈Jvj = 0 for all t ∈ T ′1, and for all t ∈ T ′2 as well since x ∧ z = 0. Moreover,

since f(w′N ) = ∨S∈F ((∧i∈Sw′i) ∧ y∗s ), it also follows that t = ∧j∈Jvj < x for all t ∈ T ′3 ∩ T and
t = ∧j∈Jvj < z for all t ∈ T ′4 ∩ T . On the other hand, t2 > x and t3 > z for any t2 ∈ T ′2 and
t3 ∈ T ′3.
It follows, again, that f(w′N ) = 0.

Now, take u′N ∈ XN with u′i = x ∨ z for all i ∈ {1, ..., n− 1} = N r {n}, and u′n = 0. By

construction,

f(u′N ) = ∨S∈F ((∧i∈Su′i) ∧ y∗s )

is the l.u.b. of a nonempty family T of terms belonging to some of the following jointly exhaus-
tive, partially overlapping classes:

T ′′1 = {∧j∈Jvj : J is a finite set J and there exists j ∈ J such that v j = 0} ,

T ′′2 =

{
∧j∈Jvj : J is a finite set and there exists

a nonempty J ′ ⊆ J such that |J ′| < q and vj = x ∨ z for all j ∈ J ′

}
,

T ′′3 =

{
∧j∈Jvj : J is a finite set and there exists

J ′ ⊆ J such that |J ′| ≥ q and vj = x ∨ z for all j ∈ J ′

}
.

Observe that t = ∧j∈Jvj = 0 for all t ∈ T ′′1 . Moreover, by definition of f and q, both y∗s′ < x

and y∗s′ < z for all s′ < q, hence t = ∧j∈Jvj = 0 for all t ∈ T ′′2 as well. Furthermore, T ′′3 ∩ T 6= ∅
and , by definition of f and q, it must be the case that for all s ≥ q, both x 6 y∗s and z 6 y∗s hold.
Therefore, x ∨ z 6 y∗s . It follows that f(u′N ) = x ∨ z.
Thus, if n = 2k + 1, f(u′N ) �i f(wN ) for all i ∈ N r {n}.
Similarly, if n = 2k, then f(u′N ) �i f(w′N ) for all i ∈ N r {n}.
Hence, f is coalitionally manipulable at unimodal preference profile <◦[O] ∈ UNX (at unimodal

preference profile <◦[E] ∈ UNX , respectively), a contradiction again, and the proof is complete.
The locally strictly unimodal case can be addressed precisely by the same argument, provided

preference profile (<∗,<∗∗,<∗∗∗) is replaced by any locally strictly unimodal preference profile
(<+,<++,<+++) such that

<+:= [x �+ x ∨ z �+ 0 �+ z �+ w for all w ∈ X r Y ],

<++:= [z �++ x ∨ z �++ 0 �++ x �++ w for all w ∈ X r Y ],

<+++:= [0 �+++ x �+++ z �+++ x ∨ z �+++ w for all w ∈ X r Y ]. �

7. Appendix 2: Tree automata

Tree automata are a powerful generalization of the more widely known sequential automata (see

chpt. 2 of Adámek and Trnková (1990) for a thorough treatment of tree automata in a categorial

framework).

A finitary type is a pair Σ = (S, α) where S is a set (whose members denote operation symbols)

and α ∈ NS is a function mapping S into natural numbers which specifies for each s ∈ S the
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corresponding (finitary) ‘arity’α(s) ∈ N of the corresponding operation.25 A Σ-algebra is a pair

A = (X, {fs}s∈S) where X is a set and, for each s ∈ Σ, fs : X�(s) → X is an α(s)-ary operation on

X. For any pair of Σ-algebras A = (X, {fs}s∈S), B = (X ′, {f ′s}s∈S) a homomorphism of A into

B is an operation-preserving function ϕ : X → X ′, namely for each s ∈ S and x1, ..., x�(s) ∈ X,
f ′s(ϕ(x1), ..., ϕ(x�(s))) = ϕ(fs(x1, ..., xs)).

A non-initial Σ-tree automaton is a quadruple A =(Q, {ds}s∈S , Y, h) where Q is a set, the set

of states, ds : Q�(s) → Q is α(s)-ary operation on Q for any s ∈ S , Y is a set, the output

alphabet, and h : Q −→ Y is the output function: thus, A amounts to a Σ-algebra (Q, {ds}s∈S)

supplemented with an output alphabet and an output function modeling the ‘external’effects or

observable behaviour of the former.

A (initial) Σ-tree automaton is a sixtuple AI;� = (Q, {ds}s∈S , Y, h, I, λ) where

A = (Q, {ds}s∈S , Y, h) is a non-initial Σ-tree automaton, I is a set, the set of variables, and

λ : I → Q is the initialization function.

For any set I of variables, a finite labelled (Σ, I)-tree is a triple T = (P,6, p0) such that: (i)

P ⊆ Σ ∪ I is the finite set of nodes, (ii) ≤ is a partial order on P with the tree property namely

for any p ∈ P the set p ↓= {q ∈ P : q ≤ p} of ≤-predecessors of p is linearly ordered i.e. is a chain,
(iii) p0 ∈ P is the root of T i.e. the minimum of (P,≤), (iv) for any p ∈ P if p ∈ I or p = s for

some s ∈ S such that α(s) = 0 then p is ≤-maximal (or a terminal node of T ); (v) for any p ∈ P
if p = s ∈ Σ then p is the lower cover (or immediate ≤-predecessor) of precisely α(s) nodes.

Observe that any p ∈ P induces a finite labelled (Σ, I)-tree (p ↑,6|p↑, p), the sub-(Σ, I)-tree of

T with root p (where p ↑= {q ∈ P : p ≤ q}). In particular, each terminal node p may be identified
with a degenerate one-node finite labelled (Σ, I)-tree Tp = ({p} ,=, p).
The AI;�-initialized version of a finite labelled (Σ, I)-tree T , denoted by T (AI;�), is obtained

from T by substituting state λ(p) ∈ Q for each variable p ∈ P ∩ I.
The set of all finite labelled (Σ, I)-trees is denoted TI and can be naturally endowed with the

structure of a Σ-algebra by positing for any s ∈ S, ψs : T �(s)
I −→ TI defined as follows: for each

T1, ..., T�(s) ∈ TI ,
ψs(T1, ..., T�(s)) is the finite labelled (Σ, I)-tree having s as its root, immediately followed by

trees T1, ..., T�(s) themselves. Observe that each z ∈ I can be identified with a trivial one-node
tree tz in TI .
Moreover, it can be easily checked that (TI , {ψs}s∈S) is in fact the free Σ-algebra generated by

I, namely for each Σ-algebra (Q, {ds}s∈S) and for each function λ : I → Q there exists a unique

homomorphism ρ : TI → Q of (TI , {ψs}s∈S) into (Q, {ds}s∈S) extending λ to the entire set TI of
finite labelled (Σ, I)-trees.

A Σ-tree automaton AI;� = (Q, {ds}s∈S , Y, h, I, λ) acts on a finite labelled (Σ, I)-tree T by

initializing it through λ, computing the value at T (AI;�) of the run map of AI;� i.e. the unique

25The degree m = m(Σ) of finitary type Σ is the largest ‘arity’of an operation denoted by one of its symbols

i.e. m(Σ) = ∨s∈Sα(s) (if such ‘arities’are unbounded posit m(Σ) = ω where ω = |N|). As usual, m is identified

here with the set of all natural numbers smaller than m, starting with 0.
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homomorphism ρ : TI → Q of (TI , {ψs}s∈S) into (Q, {ds}s∈S) extending λ, and taking h(ρ(

T (AI;�)) as the output of Σ-tree automaton AI;� when applied to finite labelled (Σ, I)-tree T .

Hence, the action of AI;� on TI is summarized by the behaviour map of AI;�, namely AI;� =

h ◦ ρ : TI → Y .

That computation, namely AI;�(T ) can also be described as a finite nested sequence (T (i) =

(P (i),≤(i), p
(i)
0 )i=0;:::k) of finite labelled Σ-trees denoting the steps of a backward induction algo-

rithm, namely

(i) T (0) = T , T (1) = T (AI;�), T (k) = Tq = ({q} ,=, q) for some q ∈ Q, and
(ii) for any i = 1, ..., k−1, P (i+1) ⊆ P (i), ≤(i+1)=≤(i) ∩(P (i+1)×P (i+1)), and T (i+1) is obtained

from T (i) by replacing a non-terminal node labelled by some operation symbol s ∈ S (having only
terminal nodes labelled q1, ..., q�(s) as immediate ≤-successors) with a new terminal node labelled
with state δs(q1, ..., q�(s)).

Notice, however, that since those trees amount to sub-(Σ, I)-trees of T and can therefore be

identified with their roots, it follows that AI;�(T ) = h(dp0(...(ds(q1, ..., q�(s))...)) where s = p

is the immediate 6-predecessor of some terminal node, q1 = λ(z1), ..., q�(s) = λ(z�(s)) for some

z1, ..., z�(s) ∈ I, namely AI;�(T ) -the behaviour of AI;� at T - can also be equivalently written as
the output-value of the outcome of a nested sequence of Σ-operations dictated by T and applied

to λ(I) that detail the computation steps of the run map of AI;� at T .
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