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Abstract

The present paper studies the relationship between R&D investment and firm productivity

growth by explicitly accounting for non-linearities in the R&D-productivity relationship. We

employ a two step estimation approach, and match two firm-level panel data sets for the OECD

countries, which allows us to relax the linearity assumption of the canonical Griliches (1979)

knowledge capital model. Our results suggest that: (i) R&D investment increases firm produc-

tivity with an average elasticity of 0.15; (ii) the impact of R&D investment on firm productivity

is differential at different levels of R&D intensity – the productivity elasticity ranges from -0.02

for low levels of R&D intensity to 0.33 for high levels of R&D intensity; (iii) the relationship

between R&D expenditures and productivity growth is non-linear, and only after a certain crit-

ical mass of knowledge is accumulated, the productivity growth is significantly positive; (iv)

there are important inter-sectoral differences with respect to R&D investment and firm produc-

tivity – high-tech sectors’ firms not only invest more in R&D, but also achieve more in terms of

productivity gains connected with research activities.
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1 Introduction

The present paper studies the relationship between R&D investment and firm productivity growth

by explicitly accounting for non-linearities in the R&D-productivity relationship. Our main contri-

bution to the sizeable existing literature on R&D-productivity relationship lies in providing evidence

that and how the relationship between innovation and productivity growth is non-linear. On the

one hand, our results are within the range of previous empirical evidence. On the other hand, they

provide a more precise explanation for differences in previous econometric results.

Since the seminal work of Griliches (1958), the R&D-productivity question has increasingly

become a topic of inquiry, and the following research on R&D investment and firm productivity has

produced a sizeable amount of theoretical and empirical literature. Generally, both the theoretical

models have assigned a substantial role to R&D as an important engine of productivity growth

(Griliches, 1973; Terleckyj, 1974), and the empirical literature has confirmed that a significant

share of variation in the observed productivity across firms can be explained by differences in R&D

expenditures (Hall et al., 2010).

In the theoretical literature, there is a general consensus that R&D activities play a decisive role

in fostering productivity growth. This relation has been first formalised by Griliches (1973) and

Terleckyj (1974) and had widely been accepted since. Theoretical literature also recognises that, in

addition to appropriable part, any innovative activity has also an information component that is

almost completely non-appropriable and costless to acquire, an idea dating back to Marshall (1920);

Nelson (1959); Arrow (1962). While being considered as one of the most obvious characteristic

features of R&D (Leahy and Neary, 2007), the formalisation of this idea in a general equilibrium

setup, though, came relatively recently, splitting research activities into an appropriable and non-

appropriable knowledge, as for example in Goulder and Schneider (1999) in the context of climate

studies or Diao et al. (1999) based on a theory of endogenous growth, based on the extension of

product varieties (Romer, 1990; Grossman and Helpman, 1991; Aghion and Howitt, 1992; Jones,

1995). In the present study we focus specifically on the appropriable knowledge.

Whereas the general finding that firm investment in R&D is an important source of productivity

growth is well established in the theoretical literature, in the empirical literature there is consider-

ably less agreement on the magnitude of R&D contribution. Firm level studies have estimated the

size of productivity elasticity associated with R&D investment ranging from 0.01 to 0.32, and the

rate of return to R&D investment between 8.0 and 170.0 percent (see Mairesse and Sassenou, 1991;

Griliches, 2000; Mairesse and Mohnen, 2001, for surveys). In addition, the often lacking robustness

and statistical significance of the estimates challenges the conclusiveness of these empirical results
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(Mairesse and Sassenou, 1991; Czarnitzki et al., 2009; Luintel et al., 2010).1

The wide amplitude of the estimated R&D impact on firm productivity in light of the often

lacking robustness and significance is, however, of little help to policy makers and R&D performers.

Depending on whether a 1% increase in R&D investment boosts firm productivity by 0.01% or by

0.32% has very different implications for firm investment strategy. Similarly, depending on whether

one Euro investment in R&D increases firm output by 0.08 or by 1.70 Euro has very different policy

implications for innovators. In addition, both policy makers and innovators are more interested in

specific issues, such as, how a particular level of R&D investment would affect productivity in a

particular sector at a particular level of technological intensity.

In order to improve precision of the R&D-productivity estimates, while reducing the confidence

interval, studies have attempted to control for inter-sectoral firm heterogeneity. Usually, firm-level

studies find that R&D investment makes larger impact on firm productivity in high-tech sectors

than in low-tech sectors. Griliches and Mairesse (1983) and Cuneo and Mairesse (1984) were

among the first who controlled for inter-sectoral differences in R&D investment on firm productivity.

Estimating firm-level production functions they found that the impact of R&D on firm productivity

was significantly higher for science-based firms (elasticity 0.20) than for other sectors’ firms (0.10).

Verspagen (1995) studied the impact of R&D on productivity growth by employing a reduced-

form production function estimator and sector-level data on value added, employment, capital

expenditure and R&D investment for OECD countries, and found that R&D activities have a

positive impact on firm output only in high-tech sectors, whereas in medium- and low-tech sectors

no significant effect was found. Harhoff (1998) used the direct production function approach of

Hall and Mairesse (1995) to analyse the impact of R&D on labour productivity in manufacturing

firms, by employing panel data for 443 German manufacturing firms over the 1977-1989 period,

and found that the effect of R&D was considerably higher for high-tech firms than for firms in

other sectors. Kwon and Inui (2003) used the same estimation strategy to analyse the impact of

R&D on labour productivity in manufacturing firms using a sample of 3,830 Japanese firms over

the 1995-1998 period, and found a significant impact of R&D on labour productivity. In addition,

high-tech firms showed systematically higher and more significant impact than medium and low-

tech firms. Tsai and Wang (2004) used a stratified sample of 156 large Taiwanese companies over

the 1994 to 2000 period, and found that R&D investment had a positive and significant impact

on firm productivity growth (elasticity 0.18), whereas the impact was considerably higher for high-

1Surveying firm level studies on R&D impact Mairesse and Sassenou (1991) concluded that it is rather difficult to
be sure whether differences between the econometric analyses concerning the relationship between R&D and economic
performance of firms are real or a result, for example, of differences in the period, industries or countries considered,
or simply the reflection of peculiarities of the individual studies.
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tech firms (0.30) compared to firms in medium- and low-tech sectors (0.07). Employing the same

Scoreboard data as in the present study, Ortega-Argiles et al. (2010) examined top R&D investors

in EU and concluded that the positive impact of R&D on firm productivity increases from low-tech

through medium-high to high-tech sectors. Also Kumbhakar et al. (2010) employed the Scoreboard

data and studied the impact of corporate R&D activities (measured by knowledge stocks) on firm

performance (measured by labour productivity). They found that the overall elasticity ranged from

0.09 to 0.13, whereby the coefficient increased steadily from low-tech to medium-high and high-tech

sectors (0.05 - 0.07 in low-tech sectors, and 0.16 - 0.18 in high-tech sectors).

In order to control for non-linearities in productivity’s response to R&D investment, more recent

studies find that, due to complementarities, economies of scale in the accumulation of knowledge

and obsolescence of some of the previously acquired knowledge, the current and past investments

in R&D do not have to increase firm productivity linearly (Doraszelski and Jaumandreu, 2013).

According to Furman et al. (2002), the productivity of R&D investment may be sensitive to the level

of technological intensity (R&D investment in the past) in two opposite ways. On the one hand,

due to the so-called “standing on shoulders” effect, prior R&D investment can increase current

productivity. On the other hand, due to the so-called “fishing out” effect, prior R&D investment

may have discovered ideas which are the easiest to find, making the discovery of new ideas and

hence a further increase in productivity more difficult. Interactions between the two forces may

result in non-linear R&D-productivity relationship.

Empirically, a critical mass of existing knowledge is found to be an important cause of non-

linearities in the R&D impact on firm productivity (Geroski, 1998; Gonzalez and Jaumandreu,

1998). Geroski (1998) reports that most of the analysed firms show no increasing returns to in-

novative activity until a certain threshold of knowledge has been accumulated. Gonzalez and

Jaumandreu (1998) analyse 2000 Spanish manufacturing companies for the 1990-1995 period and

find that the R&D thresholds range across industries roughly between 0.2 and 0.5 of the median per-

forming firm’s R&D intensity. Bogliacino (2010) finds important non-linearities in the employment

response to R&D investment. However, due to constraints of the employed estimation approach,

Bogliacino (2010) can capture non-linear effects only via a square term of R&D inserted as an

additional explanatory variable. Hence, he is not able to recover the entire underlying functional

relationship between R&D investment and firm productivity.

In the present study we follow these lines of the recent research and attempt to estimate the

impact of R&D on firm productivity growth by explicitly accounting for non-linearities in the R&D-

productivity relationship. We attempt to answer two questions: how R&D investment affects firm
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productivity at different levels of technological intensity, and what are the inter-sectoral productiv-

ity differences with respect to productivity effects of R&D investment. These questions are highly

relevant for both R&D performers and policy makers, though none of them has been answered in

a satisfactory way in the literature yet.

In order to relax the linearity assumption of the standard knowledge capital framework of

Griliches (1979), we employ a two-step estimation approach. In the first step, in order to retrieve

firm productivity, we estimate firm-level production functions. We employ the structural production

function estimator of Doraszelski and Jaumandreu (2013), which relaxes both the linearity and

homogeneity assumptions of the canonical Griliches (1979) knowledge capital model. Instead of

constructing a stock of knowledge capital under the above mentioned linearity assumptions, which

is usually used to estimate the impact of R&D investment on firm productivity, Doraszelski and

Jaumandreu (2013) consider firm productivity as unobservable to the econometrician. In this way,

the linearity assumption of the R&D process can be relaxed, because we do not need to construct

the stock of knowledge capital.

In the second step, we employ the generalised propensity score (GPS) approach of Hirano

and Imbens (2004) to estimate the impact of R&D on firm productivity.2 In the context of the

present study, two important advantages of the GPS estimator are the ability to capture potential

non-linearities in the relationship between R&D expenditure and firm productivity, and eliminate

selection bias arising due to a non-random assignment (choice) of treatment (R&D) intensity across

firms by conditioning on observed firms’ characteristics. Following Hirano and Imbens (2004),

we estimate the relationship between R&D and productivity by means of OLS using a flexible

parametric approach. In this way, potential non-linearities between the variables of interest can

be captured. Hence, no specific functional form for the R&D-productivity relationship needs to be

imposed a priori. Generalising the unconfoundness assumption underlying the binary treatment

propensity score method, Hirano and Imbens (2004) introduce a weak unconfoundness assumption

stating that after controlling for observed firm characteristics, firms’ choice of treatment intensity

can be considered as good as random, i.e. independent of the potential outcomes.

In particular, the most significant contribution of Rosenbaum and Rubin (1983) was to show

that all the information about firm’s decision to undertake treatment in case of binary outcomes,

that allows drawing comparison among treated and untreated units, can be condensed in one

scalar, called the propensity score, indicating a propensity or probability of a firm to receive a

treatment given its characteristics. Hence, conditioning on a single variables (propensity score)

2Other studies employing the propensity score approach in the context of R&D and firm productivity include e.g.
Chang and Robin (2008); Czarnitzki et al. (2011); Sissoko (2011).
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rather on the whole multitude of relevant firm’s characteristics solves a problem of the “curse of

dimensionality”. This result of Rosenbaum and Rubin (1983) was extended to the case of continuous

treatment in Hirano and Imbens (2004) by introducing the generalised propensity score, indicating

the propensity of a firm to choose a given level of treatment conditional on its characteristics.

Hence, the appealing feature of a propensity score based method is that it allows to identify the

treatment effect in a parsimonious way. Having said that, it is also necessary to mention that the

propensity score methodology is often referred to as a “data-hungry” approach, in that it requires

that all important characteristics influencing the selection process to be accounted for; failure to

do so, results in biased estimates of the treatment effect.

Based on the assumptions underlying the GPS method, it is possible to construct a dose-

response function and its derivatives capturing average and marginal treatment effects as a function

of different levels of treatment intensity. This allows us to recover the full functional relationship

between R&D investment and firm productivity, which is not possible in the standard knowledge

capital approach.

In the empirical analysis we match two firm-level panel data sets: the EU industrial R&D

investment Scoreboard data and the Orbis world wide company information from the Bureau

van Dijk Electronic Publishing (BvDEP). The merged panel we employ in the empirical analyses

contains 1129 companies from the OECD countries covering the 2006-2007 period. The panel

structure of the employed micro data and the richness of the available variables (see Section 3)

allow us to answer both questions: the impact of R&D investment on firm productivity at different

levels of technological intensity, and inter-sectoral productivity differences of R&D investment.3

Our results suggest that: (i) R&D investment increases firm productivity with an average elas-

ticity of 0.15; (ii) the impact of R&D investment on firm productivity varies with the levels of R&D

intensity – the productivity elasticity ranges from -0.02 for very low levels of R&D intensity to 0.33

for high levels of R&D intensity; (iii) the relationship between R&D expenditures and productivity

growth is non-linear, and only after a certain critical mass of knowledge is accumulated, the produc-

tivity growth becomes significantly positive; (iv) there are important inter-sectoral differences with

respect to R&D investment and firm productivity – firms in high-tech sectors not only invest more

in R&D, but also achieve more in terms of productivity gains connected with research activities.

These results allow us to better interpret the wide distribution of estimates reported in previous

studies, and to derive more specific policy conclusions.

The paper is structured as follows: the econometric strategy is explained in Section 2, the

3The definition of high-tech, medium-high-tech, medium-low-tech and low-tech sectors follows the OECD classifi-
cation of industrial sectors, according to their technological intensity.
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description of the data set used in the empirical analysis is given in Section 3, the results are

presented in Section 4, and the final section concludes.

2 Econometric strategy

2.1 The traditional knowledge capital approach

Usually, the relationship between R&D investment and firm productivity has been studied in the

knowledge capital framework of Griliches (1979), where production function (usually a standard

Cobb-Douglas function) is augmented by an input, which represents the efforts made by the firm

to increase the knowledge capital. The knowledge capital is calculated from the accumulation of

(depreciated) R&D/innovation expenditures over time. Estimating the impact of the knowledge

capital yields an estimate of the impact of innovation on multi-factor productivity (factor pro-

ductivity, once the contribution of all the other factors is taken into account) (Kancs and Ciaian,

2011).

Despite of its convenience in empirical implementation, the knowledge capital framework of

Griliches (1979) has been found to have important drawbacks, such as linear R&D-productivity

relationship and deterministic innovation process. As noted by Griliches (2000), both assumptions

have been rejected in recent firm level empirical studies. Conceptually, it is impossible to estimate

a differential impact of R&D investment on firm productivity at different levels of technological

intensity if a linear R&D-productivity relationship is imposed. In addition, the point estimates

of studies based on the knowledge capital framework of Griliches (1979) do not allow to provide

detailed answers to specific questions about R&D impact on firm productivity.

2.2 A two step approach

In the present study we employ a two step estimation approach, which allows us to relax the linearity

assumption of the Griliches (1979) knowledge capital model. In the first step, we estimate firm-

level production functions by employing the structural production function estimator of Doraszelski

and Jaumandreu (2013). In the second step, we employ the generalised propensity score (GPS)

approach of Hirano and Imbens (2004) to estimate the impact of R&D on firm productivity.

2.2.1 Firm productivity

In order to retrieve a measure of productivity for each firm, we follow the traditional approach in

the literature (see Eberhardt and Helmers (2010), Van Beveren (2012) for surveys) and estimate
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firm level production functions. As usual, we assume that firm’s production function takes a Cobb-

Douglas form.4 Output, yit, of firm i in period t (in logarithmic form) can be expressed as:5

yit = β0 + βkkit + βllit + βmmit + ωit + eit (1)

where β0 measures the mean efficiency level across firms and over time; kit, lit and mit are inputs of

capital, labour and materials in natural logarithms, respectively. Following Olley and Pakes (1996)

and Levinsohn and Petrin (2003), we assume that firms choose static (variable) inputs labour, lit,

and material, mit, such as to maximise short-run profits. Capital input, kit, is the only dynamic

(fixed) input among the conventional factors of production and its amount in period t is determined

by investment in period t − 1. Error term, eit, is mean zero random shock, which is uncorrelated

over time and across firms. The firm does not know the value of eit, when it makes its decisions

at time t. Productivity, ωit, is known to firm i in period t, but not observable to researchers, and

therefore must be estimated.

We follow Doraszelski and Jaumandreu (2013), who extend the dynamic firm investment model

by allowing for uncertainties and non-linearities in the R&D process. They assume a controlled

first-order Markov process with transition probabilities P (ωit|ωit−1, rit−1), according to which firm

productivity in period t is determined by productivity in period t − 1, and R&D expenditure in

period t− 1:

ωit = E [ωit|ωit−1, rit−1] + ξit

= g (ωit−1, rit−1) + ξit. (2)

According to the controlled Markov law of motion (2),6 the actual productivity, ωit, of firm i

in period t is composed of expected productivity, g (ωit−1, rit−1), and unpredictable productivity

innovation, ξit. The conditional expectation function g (·) depends on past productivity, ωit−1, and

past R&D expenditure, rit−1. Past R&D expenditures, rit−1, account for the fact that the firm

may affect its future productivity by investing into R&D. Given that the firm knows its current

productivity and anticipates the effect of R&D on productivity in period t when making the decision

about investment in R&D in period t−1, the firm knows the expected effect of R&D, g (ωit−1, rit−1),

4Note, however, that the estimation method is more general, and applies also to other functional forms, such as
CES, provided some basic requirements are met. In particular, static inputs need to have positive cross-partials with
productivity and the value of the firm has to be increasing in dynamic inputs (Ackerberg et al., 2007).

5Given that we are closely following the methodology of Doraszelski and Jaumandreu (2013), we are adopting
their notation as far as possible.

6ωit = g (ωit−1, rit−1) + ξit = α0 + α1ωit−1 + α2 (ωit−1)
2 + α3 (ωit−1)

3 + α4rit−1 + ξit.
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made in period t − 1 on productivity in period t. Random shock, ξit, is zero mean independent

productivity innovation, which represents both uncertainties linked to past productivity, ωit−1, and

uncertainties linked to past R&D, rit−1. The controlled Markov law of motion (2) implies that

stochastic shocks to productivity in period t will carry forward to firm’s productivity in future

periods, i.e. firm-specific productivity shocks can accumulate over time.

As shown by Doraszelski and Jaumandreu (2013, p. 1346), the assumptions that labour and

materials are static inputs in production function (1) imply the following labour demand function:

l (t, kit, ωit, wit, pMit, dit) =
1

1− βl − βm

(
β0 + (1− βm) lnβl + βm lnβm + µ+ βtt+ βkkit + ωit

− (1− βm) (wit − pit)− βm (pMit − pit) + ln

(
1− 1

η (pit, dit)

))
(3)

where µ = lnE [exp (eit)], (wit − pit) is the real wage, and (pMit − pit) is the real price of materials.

As shown by Doraszelski and Jaumandreu (2013, p. 1346), solving labour demand function (3) for

productivity, ωit, one obtains the inverse labour demand function:

hl (t, kit, lit, pit, wit, pMit, dit) = λl − βtt− βkkit + (1− βl − βm) lit + (1− βm) (wit − pit)

+βm (pMit − pit)− ln

(
1− 1

η (pit, dit)

)
(4)

where λl = −β0 − (1− βm) lnβl − βm lnβm − µ is a constant.

As shown by Doraszelski and Jaumandreu (2013, p. 1346), substituting firm’s productivity (2)

into production function (1) and using the inverse labour demand function (4) yields an empirically

estimable production function:

yit = β0 + βtt+ βkkit + βllit + βmmit + (ω (lit−1, kit−1, pit−1, qit−1, wit−1) , rit−1) + ξit + eit (5)

where time trend, t, captures shifts in productivity that are not part of ωit, and wit, qit and pit are

prices for labour, materials and output, respectively.

When estimating equation (5), the endogeneity of static inputs needs to be addressed. Whereas

capital input, kit, is uncorrelated with ξit (because it is determined in period t− 1, and all lagged

variables lit−1, kit−1, pit−1, wit−1, rit−1 are uncorrelated with ξit), labour input, lit, and material

input, mit, are correlated with ξit (because ξit is part of ωit, and lit and mit are functions of ωit).

The endogeneity of static inputs can be addressed by instrumenting for lit and mit, which requires

that the instruments are not correlated with ξit. Our instrumenting strategy follows Doraszelski
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and Jaumandreu (2013): given that lit−1 and mit−1 are uncorrelated with ξit, we use them as

instruments for lit and mit.

2.2.2 R&D and firm productivity

Usually, non-linear treatment effects are studied by employing the binary treatment propensity

score (BPS) estimator proposed by Rosenbaum and Rubin (1983). In the present study, we employ

a generalised version of the BPS (GPS), because it has several important advantages with respect

to our objective and the available data. First, it allows for a continuous treatment. As a result,

the (finite) sample we have in the present study can be used more efficiently. Second, the GPS

estimator reduces bias caused by non-random treatment assignment, which is also the case with

the BPS. Third, an important advantage of the GPS is that it allows to estimate the treatment

effect also without a ‘zero’ control group, because there are no firms without R&D in our sample.

Following Hirano and Imbens (2004), we implement the GPS estimator in three steps. However,

before describing the GPS methodology, it is worthwhile to outline the temporal framework of our

analysis. The values of the response variable of interest (TFP) are recorded for the year 2007— a

year before the outbreak of the global financial crisis, triggered by the collapse of Lehman Brothers

in September 2008. in order to avoid a simultaneity bias, the values of our treatment variable

(R&D intensity) are taken for the year 2006. Correspondingly, the GPS values are also defined for

this year. The GPS is obtained by conditioning on the observed covariate values for the years 2006

as well as 2005.

The first step is based on the assumption that the conditional distribution of treatment variable,

r, is normal given the covariates:

r2006i |X2006
i ∼ N(X2006′2

i ), (6)

where X2006
i ≡

(
Z2006′
i ;Z2005′

i

)′
is a z × 1 vector of both contemporaneous and lagged values of

discrete and continuous covariates, Zi. The parameters of the conditional distribution (γ, σ2) are

evaluated using a standard OLS regression. The estimated GPS is defined as follows:

ŝ2006i =
1√
2πσ̂2

exp

[
− 1

2σ̂2
(r2006i −X2006′

i γ̂)2
]
. (7)

The propensity score in equation (7) fulfils its purpose of measuring degree of similarity across

heterogeneous firms if a so-called balancing property is satisfied, i.e. for those firms with assigned

equal propensity scores (conditional on the firm-specific covariates) the associated treatment level
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is independent from firm characteristics.

Following equation (2), in the second step, the expected value of response variable, ω2007
i , is

modelled as a flexible parametric function of treatment (R&D investment) and the generalised

propensity score, r2006i and s2006i , respectively:

E[ω2007
i |r2006i , s2006i ] = α0+α1∗r2006i +α2∗

[
r2006i

]2
+α3∗s2006i +α4∗

[
s2006i

]2
+α5∗

[
r2006i ∗ s2006i

]
, (8)

where the latter is substituted with its estimates, ŝ2006i , from the first step. The flexibility of the

functional form can be controlled for by varying the power of variables r2006i and s2006i and their

cross-products.

The average expected response of target variable, ω, for treatment dose, τ , is estimated in the

third step:

̂E[ω2007(τ)] =
1

N

N∑
i=1

[
α̂0 + α̂1 ∗ τ + α̂2 ∗ τ2 + α̂3 ∗ ŝ(τ,X2006

i ) + α̂4 ∗ ŝ(τ,X2006
i )2 + α̂5 ∗ (τ ∗ ŝ(τ,X2006

i ))
]
,

(9)

where the coefficient estimates from the expected response (8) are used. The whole dose-response

function is obtained by computing equation (9) for each treatment level by using a grid of values

in the corresponding range of treatment variable. We also provide a treatment effect and elasticity

functions. The former function is a first derivative of ̂E[ωt(τ)] with respect to argument. The latter

function is computed using a standard elasticity formula [∂ ̂E[ωt(τ)]/∂τ ]/[ ̂E[ωt(τ)]/τ ]. The latter

function is of particular interest for us, as it allows us to directly compare our results with those

reported in the previous literature. Following Hirano and Imbens (2004), the confidence interval

around the estimated dose-response function is obtained by using a bootstrap procedure.

3 Data and variable construction

3.1 Data sources

The principal data source in our study is the EU Industrial R&D Investment Scoreboard. The

Scoreboard is an annual data set compiled and provided by the European Commission. The Score-

board data set we use in the empirical analysis comprises data on R&D investment, as well as

other financial and economic variables (e.g. net sales, operating profits, employees) for the top
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1,500 R&D global performers: 750 companies based in the EU and 750 based outside the EU.78

In addition to economic and financial variables, the Scoreboard identifies also the industrial sector

(of the parent company) as well as the geographical region of R&D investment (according to the

location of company’s headquarter). The Scoreboard data are reported in two ways. On the one

hand, the Scoreboard data are presented as national aggregates broken down by NACE Rev.1.1 in

the Eurostat dissemination database. On the other hand, given that the presentation of the aggre-

gated statistics per economic activity and per country has no data for certain economic activities

and certain countries, the full set of data is also presented as broken down by individual enterprise

group.

The Scoreboard data set is compiled from companies’ annual reports and accounts with reference

date of the 1st August of each year. For those companies, whose accounts are expected close to

the cut-off date, preliminary information is used. In order to maximise the completeness and to

avoid double counting, the consolidated group accounts of the ultimate parent company are used.

Companies, which are subsidiaries of another company, are not considered separately. Where

consolidated group accounts of the ultimate parent company are not available, subsidiaries are

however included. In case of a demerger, the full history of the continuing entity is included,

whereas the history of the demerged company goes only back as far as the date of the demerger

to avoid double counting. In case of an acquisition or merger, the estimated figures for the year of

acquisition are used along with the estimated comparative figures if available.

It is important to note that the Scoreboard data are different from the official R&D statistics

provided by statistical offices. The Scoreboard data refers to all R&D financed by a particular

company from its own funds, regardless of where the R&D activity is performed. Hence, because

companies are identified with country of their registered head office which, in some cases, may be

different from the operational or R&D headquarters. In contrast, the R&D statistics usually refers

to all R&D activities performed by businesses within a particular sector and country, regardless of

the location of the business’s headquarters and regardless of the origin of the sources of finance.

Second, the Scoreboard collects data from audited financial accounts and reports, whereas the

R&D statistics are compiled on the basis of statistical surveys, in general covering the known R&D

performer. Further differences concern sectoral classifications (R&D statistics follows the classifi-

7In the first edition (2004) the top companies were 500 EU and 500 non-EU; in the eleventh edition (2014), they
are 2,500 in total.

8Scoreboard data set may be criticised that it has a sample bias affecting the results, because it only represents the
top R&D investors. However, this argument doesn’t appear to be convincing since the 750 companies based in the EU
and 750 based outside the EU altogether represent approximately 80% of business expenditure on R&D worldwide
(Moncada-Paterno-Castello et al., 2010). While small R&D investors and non-R&D-performers are excluded from
the sample, the objective of the present study is to focus on the impact of R&D investment on firm productivity, but
not to examine the structure of the whole economy.
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cation of economic activities in the European Community, NACE Rev.1.1, whereas the Scoreboard

allocates companies in accordance to the sectoral classification as defined by the Financial Times

Stock Exchange Index (ICB classification) and then converts them into NACE Rev.1.1. These

differences need to be kept in mind when comparing the results reported in this paper to studies

employing statistical R&D data.

For the purpose of TFP estimations, the EU industrial R&D investment Scoreboard data are

augmented by the Orbis database, which contains worldwide company accounting data and is com-

mercialised by the Bureau van Dijk Electronic Publishing (BvDEP). Orbis reports annual accounts

data on more than 100 million private and public companies covering both large multinationals as

well as small and medium sized companies (SMEs) across all industries world wide for the 1996-2011

period. In order to enhance the comparison across countries, all firm accounts are transformed into

a universal format. We use the European Central Bank period average exchange rates to convert

all accounting data into EURO.

The Orbis database contains firm-level accounting data in a standardised financial format for

26 balance sheet variables, 25 income statement variables, and 26 financial ratios based on these

variables. In addition, it contains also important information about company characteristics. First,

there is information on the year of incorporation, which allows to calculate the age of the firm.

Second, Orbis includes the national industry code and assigns companies a 3-digit NACE code –

the European standard of industry classification – which we use to classify firms and construct

industry dummy variables. In empirical analysis we use NACE Rev.1.1 codes on a 2-digit level to

increase to a significant level the number of firms per industry. All firms in the Orbis database

are uniquely identified by their VAT number, which allows us to match them with the Scoreboard

data.

3.2 Dependent (response) variable

The dependent (response) variable is firm-specific TFP in 2007. In Section 2.2.2 it corresponds

to variable ωit. In order to retrieve the unobserved firm-specific productivity, we estimate firm-

level production functions as described in section 2.2.1. We apply the non-linear GMM estimator to

estimate Equation (5). For robustness, we also estimate firm-level TFP by employing the non-linear

least squares estimator. The estimation results are reported in Table 2.

According to Table 2, the estimated coefficients are reasonable and the returns to scale, as given

by β̂l+ β̂k+ β̂m, are close to constant. Generally, our production function estimates are in line with

those reported in the literature Olley and Pakes (1996), Levinsohn and Petrin (2003), Ackerberg
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et al. (2006), Doraszelski and Jaumandreu (2013).

From the production function estimates we construct productivity series for each firm,9 which

in turn are used to construct the response variable – TFP in 2007 – for each firm. After accounting

for missing values in the main variables of interest and covariates, we are left with a total number

of 1129 companies, which we employ in the empirical analysis.

3.3 Explanatory (treatment) variable

We define the explanatory (treatment) variable, rit, as the share of R&D investment in the total cap-

ital expenditure. The constructed measure of R&D intensity includes all cash investment in R&D

funded by companies themselves, but excludes any R&D undertaken under contract for customers,

such as governments or other companies, and the companies’ share of any associated company or

joint venture R&D investment. R&D expenditures are calculated based on the R&D accounting

definition set out in the International Accounting Standard (IAS) 38 “Intangible assets”, which is

based on the OECD “Frascati” manual. Research is defined as original and planned investigation

undertaken with the prospect of gaining new scientific or technical knowledge and understanding.

Expenditure on research is recognised as an expense when it is incurred. Development is the ap-

plication of research findings or other knowledge to a plan or design for the production of new or

substantially improved materials, devices, products, processes, systems or services before the start

of commercial production or use. Development costs are capitalised when they meet certain criteria

and when it can be demonstrated that the asset will generate probable future economic benefits.

Where part or all of R&D costs have been capitalised, the additions to the appropriate intangible

assets are included to calculate the cash investment and any amortisation eliminated.

In order to account for inter-sectoral heterogeneity of firms with respect to R&D intensity, we

regroup all firms into four sub-samples according to the level of technological intensity. Follow-

ing the OECD classification, firms are regrouped into four groups according to the 3-digit ICB

classification: high-, medium-high-, medium-low-, and low-tech companies:

• High-tech: Technology hardware & equipment, Software & computer services, Pharmaceu-

ticals & biotechnology, Health care equipment & services, and Leisure goods;

• Medium-high-tech: Industrial engineering, Electronic & electrical equipment, General in-

dustrials, Automobiles & parts, Personal goods, Other financials, Chemicals, Aerospace &

defence, Travel & leisure, Support services, and Household goods & home construction;

9The firm-level productivity estimates, ω̂it, are retrieved using: ω̂it = −β̂tt +
(
1− β̂l − β̂m

)
lit − β̂kkit +(

1− β̂m

)
(wit − pit) + β̂m (qit − pit), where β̂l, β̂m, and β̂k denote production function estimates.
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• Medium-low-tech: Food producers, Fixed line telecommunications, Beverages, General

retailers, Alternative energy, Media, Oil equipment, services & distribution, and Tobacco;

• Low-tech: Gas, water & multi-utilities, Oil & gas producers, Nonlife insurance, Industrial

metals & mining, Construction & materials, Food & drug retailers, Banks, Electricity, Indus-

trial transportation, Mobile telecommunications, Forestry & paper, Mining, Life insurance.

A descriptive statistics of R&D activity for each group of companies is reported in Table 1.

According to Table 1, the R&D activity of high-tech firms, measured both in absolute and relative

terms, substantially exceeds that of medium-tech and low-tech companies. Overall, the R&D

intensity takes values in the range between the minimum value of 0.0026 and the maximum value

of 126.38. We inserted the footnote with this information.

Given that the unconditional distribution of the treatment variable is highly skewed, we take a

logarithmic transformation of explanatory variable in order comply with the normality assumptions

in the first step of the GPS regression. As suggested by Hirano and Imbens (2004), we also take a

logarithmic transformation of the estimated generalised propensity score in the second step.

3.4 Covariates

In equation (7) the expected amount of treatment, rit, that a firm receives in a given period t is

evaluated given the covariates, Xit, i.e., the estimation of the impact of treatment is based on com-

parison of firms with similar propensity scores, ŝit.
10 Adjusting for the propensity scores removes

the biases associated with differences in covariates, which allows to estimate the marginal treatment

effect for a specific treatment level on the outcome variable of firms that have received a specific

treatment level with respect to firms that have received a different treatment level (counterfactual),

whereas both groups of firms have similar characteristics.

In order to control for differences with respect to a specific treatment level (R&D productivity)

on the outcome variable (productivity growth) of firms that have received a specific treatment level

with respect to firms that have received a different treatment level (counterfactual), the expected

amount of treatment, rit, is evaluated given the covariates, Xit. The set of covariates are selected

based on previous studies (Hall et al., 2010). Given the availability of variables in the merged

Scoreboard and Orbis data set, we construct the following covariates:

• Net sales: In line with the accounting definition of sales, sales taxes and shares of sales of joint

ventures & associates are excluded. For banks, sales are defined as the “Total (operating)

10The adequacy of the estimated GPS is checked by assessing its balancing properties.
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income” plus any insurance income. For insurance companies, sales are defined as “Gross

premiums written” plus any banking income.

• Operating profit: Profit (or loss) before taxation, plus net interest cost (or minus net inter-

est income) and government grants, less gains (or plus losses) arising from the sale/disposal of

businesses or fixed assets. Due to the fact that companies report both positive and negative

operating profit, we cannot take a logarithmic transformation of this variable. In order to

do so, we created the following two variables log(Operating profit)POS and log(Operating

profit)NEG. The former variable is equal to the log of actual values whenever a firm reports

positive profit and zero otherwise. The latter variable is equal to the log of absolute actual

values multiplied by minus one whenever a firm reports negative profit and zero otherwise.

• Capital expenditure: The expenditure used by a company to acquire or upgrade physical

assets such as equipment, property, industrial buildings. In company accounts capital expen-

diture is added to the asset account (i.e. capitalised), thus increasing the amount of assets.

It is disclosed in accounts as additions to tangible fixed assets.

• Number of employees: The average number of employees or, if the annual average is not

available, the number of employees at the end of the reference period.

• Material costs: The cost of material inputs of companies used for production of goods and

services in the respective year.

• Prices: The relative producer prices for inputs and outputs calculated using the concept of

total price performance (Jorgenson and Griliches, 1967), which measures the growth of input

prices compared to the growth of output prices.

• Market capitalisation: The share price multiplied by the number of shares issued at a

given date. Market capitalisation data have been extracted from both the Financial Times

London Share Service and Reuters. These reflect the market capitalisation of each company

at the close of trading on 4 August 2006. The gross market capitalisation amount is used to

take into account those companies for which not all the equity is available on the market.

• Industry sectors: The industry sectors are based on the ICB classification. The level

of disaggregation is generally the three-digit level of the ICB classification, which is then

converted to NACE Rev.1.1.

• Sector dummy variable: Sectors are classified into high-tech, medium-high-tech, medium-

low-tech, and low-tech.
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• Regional dummies: “Asian Tigers”, “BRIC”, “EU”, “Japan”, “RoW”, “Switzerland”, and

“USA”.

4 Results

4.1 Non-linearities in the R&D-productivity relationship

The results of the first step GPS estimation procedure (equation 6) are reported in Table 3 for

the pooled sample containing all companies. From the table we note that variation in the R&D

intensity is best captured by the number of employees, its squared value, operating profits as well as

lagged value of TFP and its squared value. Also the industry-specific dummy variables contribute

substantially to the explanatory power of the first step of the GPS regression.11 By means of this

regression we are able to explain more than 70% in variation of treatment intensity variable, which

is important in order to create a powerful GPS. The underlying assumption of normality of our

treatment variable given the covariates was tested using the Kolmogorov-Smirnov test (Marzucchi

et al., 2015). The corresponding p-value is 0.55, indicating that we cannot reject the corresponding

null hypothesis at the usual levels.

We verify whether the GPS is appropriately specified by testing the so-called balancing property.

In doing so, we follow the procedure applied in Hirano and Imbens (2004, p. 80-82) by dividing

data into three groups of approximately equal size according to the terciles of the treatment inten-

sity distribution. This allows us to verify whether there are substantial differences in observables

pertaining to different levels of treatment intensity, indicating a possibility of non-random selection

into different levels of treatment which causes biases in causal inference of treatment effects. The

results presented in Table 4 indicate that indeed there is a very strong heterogeneity among the

covariates belonging to different groups. The entries in each column are t-values corresponding to

the null hypothesis that the mean of a respective covariate in a group i is equal to the mean of

the corresponding covariate in the remaining groups j ̸= i. The corresponding null hypothesis is

rejected in all but three cases at the 5% significance level. A well specified GPS should be able to

successfully account for these differences.

Before verifying whether the balancing property holds for the GPS adjusted data, we followed

Becker et al. (2012) and imposed a common-support condition on the observed ranges of GPS

values for observations in each treated group i with those belonging to the control groups j ̸=

i. Observations falling outside of the overlapping interval of the GPS values were omitted from

11These results are not reported for the sake of saving space.
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our further analysis. This allows us to focus on the observations that are sufficiently uniform in

observable characteristics, concentrated in GPS, at each level of treatment intensity.

The balancing properties of covariates adjusted for the GPS are reported in Table 5. Compared

to the results for the unadjusted covariates reported in Table 4, there is a substantial improvement

with only five test statistics exceeding the nominal 5% significance level. The mean absolute value

of all t-statistics reported in Table 5 drops to 1.062 from the corresponding value of 9.088 computed

across all groups and covariates in Table 4. On basis of these encouraging results we conclude that

the generalised propensity scores are appropriately defined allowing us to consistently estimate the

dose-response relationship between the variables of interest.

Table 6 reports the second step GPS estimation results, (equation 8), where the relationship

between the response and treatment variables is specified, conditioning on the estimated GPS

from the first step. The functional form represents a quadratic approximation also used in Hirano

and Imbens (2004, p. 82). According to Table 6, the treatment variable, ln r2006i , the generalised

propensity score, ln s2006i , its squared value,
[
ln s2006i

]2
, and the cross-product term, ln r2006i ∗ln s2006i ,

have coefficient estimates that are significantly different from zero.

The results from the third step, (summarised in equation 9), can be illustrated at best graph-

ically in Figure 1, where the average expected response of the TFP to each treatment dose (the

so-called dose-response function) is shown. From the specified dose-response function it is possible

to derive the corresponding treatment effect function as well as the elasticity function, shown in

Figures 2 and 3, respectively.

Figure 3 reports the third step GPS estimation results expressed in terms of productivity

elasticity with respect to R&D investment. The 90% confidence interval, which was computed

using a bootstrap procedure based on 1000 draws, is marked by the dashed lines. According to

Figure 3, the estimated elasticity of the average expected response of TFP in 2007 to R&D intensity

in 2006 (GPS-adjusted) ranges between -0.02 and 0.33 (average 0.15). These results are in line with

previous firm level studies, which have estimated the size of productivity elasticity associated with

R&D investment ranging from 0.01 to 0.32 (see Mairesse and Sassenou, 1991; Griliches, 2000;

Mairesse and Mohnen, 2001, for surveys).

At the aggregated level, the estimated elasticity of firm productivity is an increasing function

in the R&D intensity, though with a decreasing rate. Figure 3 suggests that the higher is R&D

investment the larger is productivity growth per unit of R&D investment. The estimated concave

relationship between R&D investment and firm productivity also suggests that likely there is a

maximum optimal level of R&D investment after which productivity growth per unit of R&D
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investment would decrease again.

The impact of R&D investment on firm productivity is not significant (even slightly negative) at

very low levels of R&D. These results are consistent with findings of Geroski (1998) and Gonzalez

and Jaumandreu (1998), who find that a certain critical mass of R&D capacity is required, before

significant productivity growth can be achieved from investment in R&D.Without sufficient existing

knowledge, firms are not capable to absorb and use the new knowledge effectively, and hence are not

able to benefit from internal and external R&D investment (Cincera, 1997; Cohen and Levinthal,

1989; Griffith et al., 2004; Fabrizio, 2009). An even more interesting result seems to be the fact

that, after becoming positive, the effect of R&D on productivity continues being positive but

it’s decreasing. These results jointly support both the ”standing on the giants shoulders” and the

”fishing-out effect” hypotheses discussed in Section 1. Previously accumulated knowledge ”standing

on giants shoulders” seems to be always beneficial for improving firm productivity. However, after

a certain level (around 20%), prior research may have discovered the ideas which are the easiest to

find and further improvements are more difficult (the marginal effect of R&D starts to decrease, as

it can be seen in Figure 2).

4.2 Inter-sectoral firm heterogeneity

Given that our sample consists of very heterogeneous firms, for which R&D intensity may play

rather differentiated role in increasing firm productivity, the impact of equivalent R&D investment

may differ between different sectors. For example, given that persistent innovation is likely to

be more important for productivity growth than temporary innovation (Raymond et al., 2010), if

persistent R&D performers reside more frequently in high-tech sectors than in low-tech sectors, then

high-tech innovators would benefit more from R&D than low-tech innovators. Second, R&D may

be only one part of innovation process particularly in low-tech sectors, where design, logistics and

organisation and other non-R&D innovations are at least as important for successful innovations

as investment in R&D (Potters, 2009). Third, through knowledge spillovers, R&D inputs in high-

tech sectors may contribute importantly to the innovative power of low-tech sectors. On the other

hand, firms in low-tech sectors may benefit from a “late-comer advantage”, while firms in high-tech

sectors may be more affected by diminishing returns to R&D due to the so-called “fishing out”

effect, suggesting that the relationship between R&D and productivity growth might be stronger

for firms in low-tech than in high-tech sectors (Marsili, 2001; Von Tunzelmann and Acha, 2005;

Mairesse and Mohnen, 2005).

In order to control for inter-sectoral firm heterogeneity in the impact of R&D investment and
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firm productivity growth, we regrouped all firms into four more homogeneous groups according

to their level of technological intensity. As above, we applied the GPS estimator to each of these

groups, using the same empirical specification as in section 4.1. The estimation results are reported

in Figures 4-5.

Figure 4 reports the third step GPS estimation results expressed in terms of productivity

elasticity with respect to R&D investment of high-tech companies.12 As before, the 90% confidence

interval, which was computed using a bootstrap procedure based on 1000 draws, is marked by

the dashed lines. According to Figure 4, the estimated elasticity of the average expected response

of TFP in 2007 to R&D intensity in 2006 (GPS-adjusted) ranges between -0.04 and 0.54 (average

0.25) for high-tech companies. These results imply that high-tech sectors’ firms not only invest more

in R&D, but also achieve more in terms of productivity gains connected with research activities.

These results are in line with previous studies, which usually find that R&D investment makes

larger impact on firm productivity in high-tech sectors than in low-tech sectors (Griliches and

Mairesse, 1983; Cuneo and Mairesse, 1984; Verspagen, 1995; Harhoff, 1998; Kwon and Inui, 2003;

Tsai and Wang, 2004; Ortega-Argiles et al., 2010; Kumbhakar et al., 2010).

For companies in low-tech industries, we estimate an average productivity elasticity with re-

spect to R&D investment of 0.05 (Figure 5). At very low levels of R&D intensity the impact

on productivity growth is slightly negative. The estimated productivity elasticity with respect to

R&D investment increases continuously up to 0.12, though this estimate is not statistically sig-

nificant from zero. Compared to firms in high-tech industries, the point estimate of the elasticity

of firm productivity is around five times lower. These results confirm previous studies looking at

inter-sectoral differences in the R&D impact on firm productivity.13

Our results seem to be in line with previous literature, which provides several reasons, why

firms in low-tech industries may benefit less from own R&D investment than firms in high-tech

industries. First, persistent innovation is found to be more important for productivity growth

than temporary innovation and, according to Raymond et al. (2010), persistent R&D innovators

reside more frequently high-tech sectors than in low-tech sectors. Second, innovation does not stop

12The results for the first step and second step GPS estimations for low-, medium–low, medium-high and high-
tech sub-samples are qualitatively comparable to those reported for the full sample, and therefore are not reported
separately. These results are available from the authors upon request.

13We compute the dose-response functions and their derivatives for medium-low-tech and medium-high-tech com-
panies. It turns out that after imposing the common support assumption for medium-low-tech companies, there only
39 firms are left in this group, which is not sufficient, in our opinion, to obtain reliable estimates of the dose-response
function. For medium-high-tech companies we found that the results, though these are based on a sufficiently large
number of observations (442 firms), are qualitatively similar to those reported for the low-tech companies, i.e. we do
not find a statistically significant evidence of existence of a close relationship between R&D and firm productivity
for this group of companies. This is reflected in the low value of R2 reported for the second-stage regression is 0.08
for medium-high-tech companies, which is much lower than the R2 = 0.23 reported for the second-stage regression
for high-tech companies. For the sake of brevity, we make the corresponding estimates available upon request.
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at R&D investments, implying that R&D is only one part of innovation process. According to

Potters (2009), the non-R&D innovation plays a particularly important role for firms in low-tech

sectors, where design, logistics and organisation and other non-R&D innovations are at least as

important for successful innovations as investment in R&D. Third, through knowledge spillovers,

the innovative activities in high-tech sectors contribute importantly to the innovative power of low-

tech sectors (Potters, 2009). The possibility of substitution between intramural R&D efforts and

spillovers from high-tech sectors seem particularly plausible in light of our rather broad sectoral

classification. For example, innovation in software & computer services (high-tech sector) could

increase firm productivity also in many low-tech industries without their own intramural R&D

efforts.

5 Conclusions

The present paper studies the relationship between R&D investment and firm productivity growth

by explicitly accounting for non-linearities in the R&D-productivity relationship and inter-sectoral

firm heterogeneity. We attempt to answer two questions: how R&D investment affects firm pro-

ductivity at different levels of technological intensity, and what the inter-sectoral productivity

differences are with respect to productivity effects of R&D investment? These questions are highly

relevant for both R&D performers and policy makers, but have not been answered in a satisfactory

way in the literature yet.

Given that such questions cannot be answered in the canonical knowledge capital framework of

Griliches (1979), we employ a two step estimation approach, which allows us to accommodate the

potential non-linearities in the R&D-productivity relationship. In a first step, we estimate firm-level

production functions by employing the structural production function estimator of Doraszelski and

Jaumandreu (2013), which allows us to retrieve firm productivity. In a second step, we employ the

generalised propensity score (GPS) approach of Hirano and Imbens (2004) to estimate the impact

of R&D investment on firm productivity. By employing a two step estimation approach we are able

to relax the linearity assumption of the Griliches (1979) knowledge capital model.

In the empirical analysis we match two firm-level panel data sets: the EU Industrial R&D

Investment Scoreboard data and the Orbis world wide company information from the BvDEP.

The merged panel we employ in the empirical analyses contains 1129 companies from the OECD

countries covering the 2006-2007 period.

Our results suggest that: (i) R&D investment increases firm productivity with an average elas-

ticity of 0.15; (ii) the impact of R&D investment on firm productivity is differential for different
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levels of R&D intensity – the estimated productivity elasticity ranges from -0.02 for low levels

of R&D intensity to 0.33 for high levels of R&D intensity; (iii) the relationship between R&D

expenditures and productivity growth is non-linear, and only after a certain critical mass of knowl-

edge is accumulated, the productivity growth is significantly positive; (iv) there are important

inter-sectoral differences with respect to R&D investment and firm productivity – firms in high-

tech sectors not only invest more in R&D, but also achieve more in terms of productivity gains

connected with research activities.

An important caveat about our empirical analysis concerns the nature of the sample, which is

made by the top innovators with regard to R&D investments. First, while other data sets, such

as the OECD BERD data, can be considered fully representative of the OECD economies, in the

EU Industrial R&D Investment Scoreboard used in the present study only the R&D ”champions”

are considered. This is a clear limitation of our analysis, the results of which cannot be straight-

forwardly extrapolated to e.g. SMEs. However – notwithstanding this source of sample selection

– our analysis still provides interesting insights, and has even certain support from the empirical

evidence on concentration of innovative activities. It is well documented in the previous literature

that innovative activities are highly concentrated – only a small share of firms around the world

innovate, the majority of firms in most regions around the world do not engage in any significant

R&D activities, they imitate (Slivko and Theilen, 2014). Hence, by considering the top 1,500 inno-

vators, which account for more than 80% of global R&D expenditure (top 2,500 account for more

than 90% of global R&D expenditure), ensures also certain representativeness. Second, the data

set used in the empirical analysis does not allow to account for knowledge spillovers. However, ac-

cording to previous evidence, knowledge spillovers are an important form of externality associated

with innovative activities. For example, according to Bloom et al. (2013), the positive effects de-

riving from technology spillovers counterbalance the negative business-stealing effects derived from

increased productivity of competitors. In order to account for knowledge spillovers, other type of

data, such as patent citations, would need to be used.

These results allow us to better interpret the wide distribution of estimates reported in previous

studies, and brings more precision to the estimated effects of R&D, and the identified relationship

between R&D expenditures and firm productivity allows to derive some implications for research

and innovation policy. First, in presence of non-linear effects, policy makers may have several policy

options to achieve the same objective, while different policy instruments may have very different

opportunity costs. Reversely, the same policy instrument may have very different implications, if

applied to different sectors with different levels of R&D intensity, e. g. firms with low level of R&D

21



intensity vs. firms with high level of R&D intensity.

Second, in times of economic and financial crisis, an efficient use of public funds has become

a more important issue than ever before. In order to undertake impact assessment of alternative

policy instruments, the productivity elasticity of R&D is required, which according to our results

is not constant with respect to the level of technological intensity – it ranges from -0.02 for low

levels of R&D intensity to 0.33 for high levels of R&D intensity. Hence, taking an average value

for all firms would generate biased and/or inefficient policy recommendations. Our results provide

the entire functional relationship between the R&D investment and firm productivity which can be

readily used, not only an average point estimate.

Third, in order to stimulate innovative activities, such as R&D investment, public policy mea-

sures should be expressly conceived according to the particular types of firms. For example, mea-

sures of policy support for high-tech sectors should be different from those addressing low-tech

sectors. Given that according to our estimates higher productivity gains can be achieved in high-

tech sectors, public policy should combine measures for stimulating R&D investment particularly

in medium and high-tech sectors, while implementing incentive schemes to reinforce the absorp-

tion capacity in low-tech sectors. More generally, we advocate that from policy perspective the

allocation of R&D support is as important issue as measures to increase of R&D expenditure.

Fourth, given that the relationship between R&D and productivity is stronger in the high-tech

sectors, an alternative way to increase productivity could be an industrial policy based on incentives

in favour of the expansion of high-tech sectors. In other words, reshaping the industrial structure,

which is fixed in the short-term, but should be targeted in the long-run, if knowledge-based economy

is a long-term policy objective.
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Table 1: Descriptive statistics

High-tech Medium-high-tech Medium-low-tech Low-tech

R&D volume (2006), mln Euro 137780 115500 14511 14448
R&D intensity (2006), median value 3.60 0.77 0.25 0.10
Number of firms (Obs.) 462 458 79 130

Notes:
R&D intensity is defined as a share of R&D expenditure in capital expenditure.

Table 2: Production function estimates

All companies High-tech Medium-high-tech Medium-low-tech Low-tech

Materials 0.691∗∗∗ 0.707∗∗∗ 0.693∗∗∗ 0.696∗∗∗ 0.651∗∗∗

(0.018) (0.025) (0.027) (0.026) (0.022)
Labour 0.237∗∗∗ 0.210∗∗∗ 0.227∗∗∗ 0.232∗∗∗ 0.261∗∗∗

(0.010) (0.017) (0.016) (0.012) (0.013)
Capital 0.120∗∗∗ 0.105∗∗∗ 0.102∗∗∗ 0.113∗∗∗ 0.153∗∗∗

(0.018) (0.023) (0.026) (0.027) (0.024)
Trend -0.016 -0.015 -0.015 -0.017 -0.019

(0.011) (0.020) (0.012) (0.011) (0.013)
Industry dummies + + + + +
Regional dummies + + + + +

Obs. 1129 462 458 79 130
R2 0.720 0.649 0.638 0.651 0.667

Notes:
Robust standard errors are reported in parentheses. The regressions contain regional and industry dummies.
‘***’, ‘**’ and ‘*’ denote significance at the 1%, 5% and 10% level, respectively.
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Table 3: Regression results

GPS: first-step regression, Equation (7)a

Coef. S.E. T-stat. P-val.

Intercept 15.298∗∗∗b 4.588 3.335 0.001
log(Number of employees)2006 -1.235∗∗∗ 0.293 -4.222 0.000[
log(Number of employees)2006

]2
0.041∗∗∗ 0.013 3.097 0.002

TFP2005 -30.895∗∗ 13.856 -2.230 0.026[
TFP2005

]2
24.590∗∗ 9.859 2.494 0.013

log(Net Sales/Number of employees)2005 -0.218 0.188 -1.160 0.246[
log(Net Sales/Number of employees)2005

]2
-0.026 0.046 -0.569 0.570

log(Operating profit)2006POS -0.115∗∗∗ 0.040 -2.903 0.004
log(Operating profit)2006NEG 0.062 0.042 1.456 0.146
log(Operating profit)2005POS 0.050 0.043 1.170 0.242
log(Operating profit)2005NEG -0.079∗ 0.045 -1.737 0.083

log(Market capitalisation)2006 0.233 0.336 0.693 0.489[
log(Market capitalisation)2006

]2
-0.013 0.022 -0.578 0.563

log(Market capitalisation)2005 -0.210 0.343 -0.613 0.540[
log(Market capitalisation)2005

]2
0.016 0.022 0.720 0.472

Industry dummies +
Regional dummies +

R2 0.721
Obs. 1129

Notes:
a The dependent variable r2006i in the first-step regression is the log of R&D intensity in 2006,
defined as the share of R&D expenditure in capital expenditure in the same year. The
regression contains regional and industry dummies.

b ‘***’, ‘**’ and ‘*’ denote significance at the 1%, 5% and 10% level, respectively.
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Table 4: Initial balancing properties of covariates

Group 1 Group 2 Group 3

log(Number of employees)2006 15.278 6.307 -21.260[
log(Number of employees)2006

]2
14.264 5.445 -21.249

TFP2005 16.387 5.315 -18.321[
TFP2005

]2
16.281 4.919 -18.881

log(Net Sales/Number of employees)2005 5.331 -3.236 -2.471[
log(Net Sales/Number of employees)2005

]2
-4.619 0.961 2.859

log(Operating profit)2006POS 15.326 3.402 -17.387
log(Operating profit)2006NEG 5.791 3.068 -7.068
log(Operating profit)2005POS 12.800 3.645 -15.607
log(Operating profit)2005NEG 4.667 3.618 -6.826

log(Market capitalisation)2006 11.551 1.981 -12.844[
log(Market capitalisation)2006

]2
10.786 1.310 -12.362

log(Market capitalisation)2005 10.741 2.167 -12.241[
log(Market capitalisation)2005

]2
10.037 1.455 -11.614

Obs. 376 376 377

Notes:
Groups of approximately equal size were created using distribution of the contin-
uous treatment variable, R&D intensity. Table entries are t-values of the test for
the equal means between observations belonging to a particular group and those
observations that do not belong to this group. The entries in the bold fold indicate
significance at the 5% level. For the sake of brevity, the corresponding t-values for
regional and industry dummy variables are not shown in the table.
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Table 5: GPS-adjusted balancing properties of covariates

Group 1 Group 2 Group 3

log(Number of employees)2006 0.615 2.699 -2.115[
log(Number of employees)2006

]2
0.594 2.617 -2.074

TFP2005 0.063 1.879 -1.278[
TFP2005

]2
0.063 1.848 -1.269

log(Net Sales/Number of employees)2005 -1.882 -1.593 1.785[
log(Net Sales/Number of employees)2005

]2
2.026 1.053 -1.571

log(Operating profit)2006POS 0.540 1.283 -1.315
log(Operating profit)2006NEG -0.072 0.754 -0.770
log(Operating profit)2005POS -0.902 1.829 -0.715
log(Operating profit)2005NEG -0.913 1.293 -0.271

log(Market capitalisation)2006 -0.604 0.704 -0.118[
log(Market capitalisation)2006

]2
-0.755 0.669 0.036

log(Market capitalisation)2005 -0.970 0.897 0.092[
log(Market capitalisation)2005

]2
-1.075 0.751 0.280

Obs. 277 358 223

Notes:
Table entries are t-values of the test for the equal means between observations
belonging to a particular group and those observations that do not belong to this
group, accounting for GPS. The entries in the bold fold indicate significance at
the 5% level. For the sake of brevity, the corresponding t-values for regional and
industry dummy variables are not shown in the table.

Table 6: Regression results

GPS: second-step regression, Equation (8)a

Coef. S.E. T-stat. P-val.

Intercept 0.8192∗∗∗b 0.0045 183.740 0.000
ln r2006i -0.0176∗∗∗ 0.0021 -8.384 0.000[
ln r2006i

]2
0.0003 0.0008 0.388 0.698

ln s2006i 0.0114∗∗ 0.0046 2.456 0.014[
ln s2006i

]2
0.0015∗∗ 0.0007 2.019 0.044

ln r2006i ∗ ln s2006i -0.0027∗∗∗ 0.0010 -2.728 0.007

R2 0.127
Obs. 858

Notes:
a The dependent variable is the estimated level of TFP in 2007, ωit.
b ‘***’, ‘**’ and ‘*’ denote significance at the 1%, 5% and 10% level,
respectively.

31



0 10 20 30 40 50 60 70 80 90 100 110 120 130

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Figure 1: Dose-response function: All companies: Average expected response of TFP (2007) [Y-
axis] to R&D intensity in 2006 [X-axis], GPS-adjusted. Dashed lines: bootstrapped 90 % confidence
interval based on 1000 replications.
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Figure 2: Treatment-effect function: All companies: Derivative of the average expected response
of TFP (2007) [Y-axis] to R&D intensity in 2006 [X-axis], GPS-adjusted. Dashed lines: boot-
strapped 90 % confidence interval based on 1000 replications.
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Figure 3: All companies: Elasticity of the average expected response of TFP (2007) [Y-axis]
to R&D intensity in 2006 [X-axis], GPS-adjusted. Dashed lines: bootstrapped 90 % confidence
interval based on 1000 replications.
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Figure 4: High-tech companies: Elasticity of the average expected response of TFP (2007) [Y-
axis] to R&D intensity in 2006 [X-axis], GPS-adjusted. Dashed lines: bootstrapped 90 % confidence
interval based on 1000 replications.
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Figure 5: Low-tech companies: Elasticity of the average expected response of TFP (2007) [Y-
axis] to R&D intensity in 2006 [X-axis], GPS-adjusted. Dashed lines: bootstrapped 90 % confidence
interval based on 1000 replications.
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