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Key Enabling Technologies and Smart Specialization Strategies. 

Regional evidence from European patent data. 
 

 

 

Abstract 
 

The paper aims at investigating whether Key Enabling Technologies (KETs) can have a role in 

facilitating regional Smart Specialisation Strategies (S3). Drawing on the economic geography 

approach to S3, we formulate some hypotheses about the impact that KETs-related knowledge can 

have on the construction of new regional technological advantages (RTAs). By crossing regional data 

on patent applications, in KETs-mapped classes of the International Patent Classification (IPC), with a 

number of regional economic indicators, we test these hypotheses on a panel of 26 European countries 

over the period 1980-2010. KETs show a positive impact on the construction of new RTAs, pointing 

to a new “enabling” role for them. KETs also exert a negative moderating role on the RTAs impact of 

the density of related pre-existing technologies, pointing to the KETs capacity of making the latter less 

binding in pursuing S3. Overall, the net-impact of KETs is positive, pointing to a new case for 

plugging KETs in the S3 policy tool-box. 

 

Key words: Key Enabling Technologies; Smart Specialization Strategies; Revealed Technological 

Advantages. 
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1 Introduction 

Set by the European Commission on the policy-agenda for “ensuring the competitiveness of 

European industries in the knowledge economy” (EC, 2009; 2012), the six technologies it 

identified as “key enabling” (i.e. KETs) – industrial biotechnology, nanotechnology, micro- 

and nanoelectronics, photonics, advanced materials, and advanced manufacturing 

technologies – have surprisingly not found much scope in the academic discourse. With the 

exception of the “Feasibility study for an EU Monitoring Mechanism on Key Enabling 

Technologies” (EC, 2011) – Feasibility Study hereafter – little can be found on the scientific 

rationale for giving KETs a prominent policy role, and the proof of their relevance still seems 

to lay in the oven. Such a research-policy mismatch also characterises the recent prioritisation 

that KETs have found in the mounting debate on S3, with explicit policy recommendations 

for monitoring (e.g. in the S3 Platform and in the Eye@RIS3 observatory) and supporting 

their development (e.g. in Regional Operational Plans). In the realm of regional studies, the 

lack of attention for the role of KETs appears to us even more unfortunate, given a 

substantiating economic geography approach to S3, in which the role of KETs is for us 

amenable to consideration. To be sure, plugging KETs in this approach is for us more than 

desirable to find an actual, and possibly more specific, case for their claimed entrance in the 

S3 “policy-mix”. 

In this paper we move a first, but twofold step in this still unexplored direction. On the one 

hand, from a theoretical point of view, we try to move further a simple commodity-related 

relevance of KETs – as “significant [inputs] of future goods and services” (EC, 2012) – and  

recognise for them some more articulated characteristics that could potentially impact on the 

development of S3. On the other hand, from an empirical point of view, we test for this 

potential role by extending the patent-based data and methodologies through which, in 

regional studies, S3 have been related to the construction of new RTAs (Colombelli et al., 

2014; Essletzbichler 2013). These are the main bits of value added of the paper, from which 

original results and policy implications also emerge about the case for supporting the 

development of KETs in the search of S3. 

The rest of the paper is organised as follows. Section 2 provides the theoretical background of 

the paper and puts forward some hypotheses about a novel “key” role that the technologies at 

stake can be expected to have at the regional level. Section 3 presents the empirical 

application for testing these hypotheses, the data and the econometric strategy through which 
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it is pursued. Section 4 comments the main results and presents their policy implications. 

Section 5 concludes and sets the research agenda for the future. 

2 Theoretical background and hypotheses 
 

What makes of the six identified technologies “key enabling” ones, is for the proponent 

European policy-makers (see, in particular, EC, 2009 and 2012)
1
 a pragmatic and prospective 

rationale. Pragmatically, they are claimed to “enable”: “the development of new goods and 

services and the restructuring of industrial processes” (our own emphasis). In a nutshell, 

KETs would be technological inputs for obtaining new “KETs-based products and 

applications”, that is “key” (in the sense specified below) innovations, according to a 

mechanism of knowledge production function (Griliches, 1989), whose working is notably 

“black-boxed”. Still pragmatically, and somehow tautologically, their common distinguishing 

features with respect to arguably non- or less key enabling technologies, are their being 

“knowledge intensive and associated with high R&D intensity, rapid innovation cycles, high 

capital expenditure and highly skilled employment”. Prospectively, the same technologies are 

deemed “key” as they are expected to enable (in the sense above) European industries to “shift 

to a low carbon, knowledge-based economy” (our own emphasis). As such, whether KETs are 

actually able to open the “doors” of “future societal challenges” can only be accounted in the 

framework of an economic foresight exercise. 

Even with the benefits of a policy jargon, the nature and the functional boundaries (i.e. with 

respect to non-/less ones) of KETs are apparently quite loose, especially vis a vis the firm role 

they are conversely gaining in the policy realm.
2
 This high policy attention would certainly 

require a sounder research base, at least in two respects: i) in disentangling a more cogent (not 

to say, more scientific) and extant account of the “key enabling” role of the identified 

technologies; ii) in ascertaining whether such a role is actually able to legitimate the inclusion 

of the six identified technologies in the “KETs-club”, as well as the exclusion of other than 

them. 

                                                           
1
 The discussion and citations which follow, are based on these EC documents and on their synthesis reported in 

the relevant web-site: http://ec.europa.eu/enterprise/sectors/ict/key_technologies/index_en.htm. 
2
 This is reflected in the recent analyses that the European Commission has requested of international industrial 

policies on KETS (Biorn et al., 2011), of policy practices promoting the industrial uptake and deployment of 

KETs (Van de Velde  et al., 2012), and of international market distortions in the area of KETs (ECSIP, 2013). 
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In what follows, we will refrain from addressing the second question, taking for granted and 

postponing to our future research agenda the (EC) policy position that the six technologies at 

stake actually share common “key-enabling” characteristics, which other do not have.
3
 We 

instead focus on the first question, and look for a sounder account of this role, by referring to 

a regional level of analysis and to the place KETs have recently found in the debate on S3. 

Indeed, also at this level of analysis, a research-policy mismatch characterises the role of 

KETs (Capello et al, 2014; Camagni and Capello, 2013; Foray et al, 2011; OECD, 2013). On 

the one hand, European policy makers recommend regions to insert the diffusion and/or 

application of KETs among the priority areas on which to build their smart specialisation 

strategies: not only through generic “best” policy practices to share with other regions – as it 

was initially invoked by the S3 Platform of the JRC-IPTS European Commission – but even 

in concrete “regional operational plans”, to be constantly monitored (such as with the 

Eye@RIS3 initiative) and forcefully implemented. On the other hand, the rationale for 

plugging KETs among the policy priorities for S3 is quite loose, and generally linked to the 

need of having “horizontal priorities … in addition to technological, sectoral or cross-sectoral 

priority areas” (Sörvik et al., 2013). At the regional level of analysis, however, the concept of 

S3 has luckily found in economic geography an interesting and rigorous characterisation, with 

respect to which the research-policy mismatch affecting KETs could be possibly reduced. 

As discussed by Boschma (2014), by adopting an economic geography perspective, the 

concept of smart specialisation shares the main principles of the construction of regional 

advantages (CRA), which requires regions to identify technology based development patterns, 

drawing upon knowledge, variety and policy platforms (Oughton et al., 2002; Asheim et al., 

2011). In turn, the CRA approach identifies “related variety” as the main driver of 

diversification and industrial branching at the regional level (Boschma, 2011). Proximity 

amongst sectors or technologies shapes regional development trajectories in such a way that 

competences accumulated over time are likely to create dynamic irreversibilities, engendering 

path-dependent diversification dynamics (Boschma et al., 2013 and 2014; Colombelli et al., 

2014; Essletzbichler 2013). Differently from CRA, smart specialisation does not entail 

explicitly the regional dimension. As McCann and Ortega-Argiles (2011) argue, the 

geographical dimension should be rather integrated in the smart specialisation looking at the 

effects of regional features on entrepreneurs’ ability to engage in successful learning 

processes. In this respect, S3 should stimulate the regional diversification into particular 

                                                           
3
 On this position, and for a definition and an illustration of the six identified technologies, see  EC (2011). 
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domains yielding economic and technological opportunities. The combination of S3 and CRA 

allows to developing a framework in which the regional governance of S3 is driven by 

knowledge accumulated over time by local agents. Regional development emerges out of a 

process of industrial diversification, in which the introduction of new varieties is constrained 

by the competencies accumulated at the local level. From the spectrum of possible new 

activities, the birth of industries that are closely related to already existing local production is 

more likely. The new activities exploit (at least in part) already developed routines. 

The previous conceptual framework is of course affected by the nature of the technologies 

nurturing the regional system and the dynamics of its S3-CRA combination. In particular, the 

technologies under the KETs-heading have some characteristics that can be assumed to affect 

the S3 of the regions mastering the relative knowledge.
4
 

The first characteristic is the general nature of KETs, in terms of number and variety of their 

possible applications. All of the six KETs are the technological building-blocks of a large 

array of product and process applications. This emerges clearly in the Feasibility Study on 

KETs (EC, 2011), both from their “technical” definitions and from the number of products, 

already or not yet commercially available, identified on their basis. All the individual KETs 

definitions actually refer to several fields of application.
5
 Furthermore, their individual 

analysis (based on existing literature, web searches and experts views) leads to identify 

different components for them, each of which is, in turn, at the basis of different current and 

prospective products.
6
 Similarly to GPTs – from which they differ for a lower (if not even 

absent) role of military and defence-related procurement (Ruttan, 2006) and for a less 

infrastructural nature (Lipsey et al., 2005) – KETs have many different uses and can have 

important spillover effects on the development of other technologies. In a regional realm, the 

                                                           
4 

In the rest of this section, we will generically refer to this circumstance by alluding to the “presence” of KETs 

in a region. We will be more precise about how this presence can be detected in the following section. Secondly, 

we will refer to characteristics that, although common to them, the different KETs can reveal to a different 

extent, due to their intrinsic heterogeneity: an aspect, which we will also account for in the next section. 
5
 These definitions rely on specific projects documented in the Feasibility Study. Just to make an example, the 

definition of industrial biotechnology is taken from the HLEG project as: “the application of biotechnology for 

the industrial processing and production of chemicals, materials and fuels. It includes the practice of using 

micro-organisms or components of micro-organisms like enzymes to generate industrially useful products, 

substances and chemical building blocks with specific capabilities that conventional petrochemical processes 

cannot provide” (EC, 2011, pag. 45). 
6
 Still as an example, nanotechnology is disaggregated into as many as 10 components – Metal-foam sandwich 

panel structures, Quantum dot systems for optoelectronics, Carbon Nanotubes (CNT), Polymers films, 

Nanoalloys and composites, Microelectromechanical systems (MEMS), Micro fibres, Functional coatings, 

Graphene bearing Nano Powders (GNP’s), and Nano catalysts – each with a variable number of based products – 

17, 20, 11, 7, 7, 17, 5, 13, 2, and 4, respectively. For the sake of illustration, the 4 Nano catalysts based products 

are: Polyethylene catalysts, Tetraethylammonium Hydroxide (TEAH) catalysts, Catalyst micro reactors, and 

Split Plasma catalysts.   
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general nature of KETs can be expected to have an impact on S3, meant as the construction of 

new RTAs on the basis of pre-existing technologies (see above). In a similar branching 

process, regions with KETs (see footnote 6) could exploit their spillovers and come to master 

the knowledge of other applications than an initial focal one, among the several applications 

relying on their use. Just to make some examples, the nanotechnology advantages a region has 

been able to gain in the production of carbon nanotubes could lead it to acquire a new 

technological specialisation in polymers films or micro fibres. Indeed, all of these applications 

draw on a core of nanotechnology knowledge and on the region’s capacity to extend it to 

different fields. By the same token, a specialised knowledge of advanced materials for the 

production of glass and ceramics, could have spillovers on a region’s capacity of specialising 

in advanced materials for electric or magnetic applications. All in all, for their own general 

nature, KETs could act as propeller of new RTAs and have a direct impact on the region’s 

capacity of developing them. The following hypothesis can thus be put forward: 

Hp1: KETs increase the region’s capacity of constructing new revealed technological 

advantages. 

A second KETs characteristic with important implications for the development of S3 is their 

system nature, in terms of their relationships with other technological fields. Working like 

what Thomas Hughes called “large technological systems” (Hughes, 1987), the general extent 

of their potential application (see the previous characteristic) naturally entails that KETs are 

used in combination with other technologies, through which their application becomes more 

specific and then actual. Just to make an example, in order to get implemented in the 

realisation of electric vehicles, advanced materials and other relevant KETs will have to be 

linked, tailored and combined, in a systemic fashion, with more standard technologies, like 

mechanics and electronics, to mention a few. Following the previous economic geography 

approach, at the regional level, the knowledge acquired in KETs could be likely combined 

with other technologies, in which regions have acquired experience, if not even a 

specialisation. The crucial point is that, by getting combined with the extant technologies of 

the region, KETs could change their actual degree of exploitable relatedness and, in so doing, 

their relevance for the acquisition of new ones. On the one hand, KETs could widen the 

spectrum of opportunities along which the regional knowledge base can be newly 

recombined, and thus make the impact of related variety and of the cognitive proximity with 

respect to its constituent technologies less binding. For example, the combination of (KETs) 

micro-electronics with more “traditional” home technologies embodied in the region (e.g. 
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wood and plastics assembling technologies), could make the latter less binding for the 

region’s capacity of obtaining new specialisations in the field, as in the case of smart 

domotics. On the other hand, KETs could also play an opposite role and make regional 

learning dependent on the deepening of the technologies to which they apply, with a more 

binding role for related variety. An example could be provided by the combination of (KETs) 

photonics with boating/shipping technologies in regions relying on fishery areas, whose 

impact is presumably that of making the relationship with the latter more important for the 

acquisition of new RTAs. In principle, each of the two outcomes illustrated above is equally 

possible. Indeed, not only depends it on the technical complementarities that could equally 

well emerge between the specific KETs and non-KETs of the regions at stake. But also on the 

policy-choice regions are free to make between an approach to KETs that relaxes and 

reinforces, respectively, the role of the existing knowledge base for regional learning. 

Accordingly, the following two hypotheses can be put forward, being their validity subject to 

empirical application:   

Hp2a: KETs negatively moderate the impact of regional related knowledge on the 

construction of new revealed technological advantages. 

Hp2b: KETs positively moderate the impact of regional related knowledge on the 

construction of new revealed technological advantages. 

Before moving to the empirical test of the proposed hypotheses, it should be noted that the 

KETs characteristics identified above possibly hold true to a different extent for the six 

technologies the European policy makers have identified. Their intrinsic knowledge base is 

actually heterogeneous and makes them characterised by different degrees of generality and 

system properties. Accordingly, a disaggregated test of HP1 and HP2s for each and every of 

the six KETs appear more than desirable and can’t be excluded to yield different outcomes: a 

circumstance that would be extremely useful in orienteering regions towards the construction 

of their actual KETs portfolio and to the eventual selection of specific KETs within it. 

3 Empirical application 

3.1 Data 

In light of their EU policy relevance, the natural context for testing our hypotheses about 

KETs is represented by European regions. As usual, their empirical coverage is mainly 
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determined by the availability of data for measuring the phenomenon at stake, in our case 

represented by the presence of KETs knowledge at the regional level and by the other regional 

drivers the literature has identified for the acquisition of new RTAs. 

As far as the first point is concerned, we have referred to the Feasibility Study and, out of the 

three approaches proposed to identify KETs data in existing databases, we have opted for the 

so-called “technology diffusion approach” and adapted it to a regional level of analysis (EC, 

2011, pag. 21).
7
  In particular, we have drawn on this approach the idea of taking the number 

of patent applications in KETs-mapped IPC classes as a proxy of the new knowledge 

produced in the respective fields.  

The most critical analytical step of this approach consists of identifying KETs patents based 

on IPC codes. In order to address this issue, a conversion table has been put forward by the 

Feasibility Study, which is still under revision. In the current application, we have referred to 

the latest available version (see Vezzani et al., 2014) and used it to access the OECD Reg Pat 

dataset (July 2014), which contains information on a number of patent items (e.g. 

International Patent Classifications (all digits); region codes; patents ID). 

We have then related this information, rather than to the economic sectors of the applicants 

(in which the original approach assumes the knowledge will “diffuse”), to the regions in 

which the applicants reside. In so doing, we are confident to have an indication of the 

capability of regions in producing new technological knowledge in the field of KETs (or in 

one/some of them) that is relevant for industrial application and commercialisation. 

As far as the other S3 drivers are concerned, regional patent data at the NUTS2 level have 

been crossed with those of the European Regional Database, maintained by Cambridge 

Econometrics,
8
 in order to build up other relevant control variables (see the next sections). By 

merging the two, we are left with a regional dataset of 26 EU countries (excluding only 

                                                           
7
 As clarified in the Feasibility Study, this approach is actually more consistent with the kind of techno-economic 

analysis we are carrying out than the other two, that is: the “component approach”, which identifies KETs 

components and map with them companies and relevant codes of production and trade classifications; and the 

“value chain approach”, which identifies the underlying components of final products relying heavily on KETs 

technology. 
8
 “Cambridge Econometrics … updates and augments the regional accounts data published by Eurostat, making 

use of alternative data supplied by a range of sources including other Eurostat sources and national statistical 

offices to produce a full time series of data ranging back to 1980 (with data for the New Member States starting 

in 1990) across all NUTS2 and NUTS3 regions of the EU” 

(http://www.camecon.com/SubNational/SubNationalEurope/RegionalDatabase.aspx). 
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Greece and Croatia from the 28 of the EU due to data constraints) over the period 1981-2010: 

a wide geographical account of the issues at stake, and for a quite long temporal span. 

 

3.2 Variables 

Following the economic geography approach to S3 discussed above, the focal dependent 

variable is the number of new RTAs of a certain region i, meant as the number of those RTAs 

it shows at time t, in their absence at a previous time, t - 1, that is: 

    



New_ RTA i t  xists
   (1) 

where     



xist1, if RTAist1 and 0<RTAist11 . 

In turn, the Revealed Technological Advantage (RTA) of region i (out of n) in technology s 

(out of m) at time t is captured with a standard Balassa indicator for trade specialisation, 

redefined in terms of number of patents filed in the correspondent IPC class (PATist)  (Soete, 

1987): 

 
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 
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1 1

1

1   (2) 

In our sample, m = 632 and n = 235, while a lag of 1 year is considered for the emergence of a 

new RTA to emerge
9
. 

According to the same approach, the dynamics of the RTAs of a region is first of all explained 

by the technological space local agents have managed to command in the past, i.e. by the 

lagged value of the dependent variable,     



New_ RTAit1. In the extant literature (Boschma et al., 

2013; Colombelli et al., 2014), this first regressor is retained to account for the path-

dependency of technological specialisation at the regional level, at which “success could 

breed success” and entail possible patterns of hysteresis. Its inclusion is thus fundamental, in 

spite of the complexity it poses in the estimate of an autoregressive kind of model (see the 

next section). 

                                                           
9
 Different lag specifications have been tried, and the results are fairly consistent. 
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A second core regressor of the analysis comes from the intrinsic geographical nature of the 

approach we follow, namely from the role that the manifold notion of proximity has in it 

(Boschma, 2004). In particular, technological, or cognitive proximity has proven to play a key 

role for the process at stake. Regions should be more capable of developing a new variety of 

technological advantages by relating them to the existing ones, given the similarities of 

learning practices and heuristic principles that their “related variety” (Frenken et al., 2007) 

entails. This related-variety way of specialising – in brief, “specialising differently” – has 

been considered the core of the S3 itself (Boschma and Giannelle, 2014) and has spurred 

substantial research efforts to find a proper measurement of the related variety between new 

and extant technologies at the regional level (Frenken et al., 2007; Boschma and Iammarino, 

2009; Quatraro, 2010). 

Among the available alternatives, we hereby stick to an approach that, while consistent with 

the technological focus implied by the KETs notion, appears particularly suitable to be 

plugged in the patent-based nature of our application. Drawing on Hidalgo et al.’s (2007), and 

adapting their representation of the product space of a country to the technology space of a 

region, we look at the density of the linkages that each technology s of region i at time t (i.e. 

  



RTAits ) reveals with respect to those (out of the remaining     



m1) it was specialised in at time 

t-1, and we then work out the average of this density for region i (    



Av_Densit) as it follows.  

We first calculate a proximity measure () between two technologies, s and z, which is 

defined as the minimum of the pairwise conditional probability of a region having RTA in a 

technology s, given that it has a RTA in another technology z, that is: 

 )(),(min szztstszt RTARTAPRTARTAP    (3) 

where 
    



P(RTAst RTAzt )
P(RTAst RTAzt )

P(RTAzt)
. 

For each and every focal technology z, we then calculate the (weighted) average proximity 

with respect to it of the different s technologies in which region i has gained a new revealed 

technological advantage at time t, as follows: 

    



wadizt1 
 szt1New_ RTAistsz


 szt1sz


    (4) 
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Finally, for each and every region i, we work out the regional average (or average density) of 

these z-specific distances at time t-1, by weighting them with the (relative) revealed 

technological advantages the region has gained in z at time t, that is:  

    



Av _ densit  wadizt1zs
 

New_ RTAizt

New_ RTAiztzs


   (5) 

All in all,     



Av_Densit  is thus a proxy of the extent to which the new technological advantages 

that a region gain at time t are, all together (that is, on average), close (in the sense specified 

above) to those in which it had gained an advantage in the previous period t-1. In brief, it is a 

proxy of the idea of related variety, which a smart specialisation strategy would suggest to be 

positively correlated with our dependent variable, pointing to the accumulation of 

technological competences in ‘close’ or complementary technologies for the development of 

new ones. 

The list of independent variables of the approach we are following is completed by the 

inclusion of a number of regional controls. Among these, an important control is represented 

by the “technological” size of the region. In general, this is proxied by the R&D intensity of 

the focal region, defined as the ratio between its R&D expenditure and its gross value added. 

However, when we calculate R&Dt-1 in an internally data consistent way, that is as the lagged 

logarithm of the relative regional ratios from the same dataset as the other variables, we 

unfortunately experience a dramatic loss of observations (see Table 2). Accordingly, in our 

benchmark estimations (see Section 3) we will rather stick to an alternative proxy of regional 

technological size, more consistent with patent-based nature of our model, that is the number 

of IPC codes in which a region has registered patent applications at time t-1,     



Co u n tIPCi t1. 

Having a lower numerosity, we instead insert R&Dt-1 along with     



Co u n tIPCi t1 only among the 

robustness check estimations of the model (see Section 3.3). Indeed, their simultaneous 

inclusion is motivated by the fact that, while they are both size-related variables, they have a 

different nature, as     



Co u n tIPCi t1 also account for the “degrees of freedom” the region has 

available in exploring new technological advantages over time.  

As for the other controls, we included in the estimated model the (lagged logarithm of) 

regional gross value added and the (lagged logarithm of) regional employment. 
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In order to plug the role of KETs in the model and test for our hypotheses, we draw on the 

“technology diffusion approach” sketched above and build up two proxies for them. The first 

one,     



KETs_ Fileit1
, looks at the number of KETs-mapped IPC classes, in which the resident 

inventors of region i have filed patents at time t-1, irrespectively from the specific KETs in 

which this has occurred (a 1-year temporal lag is still retained for the sake of consistency). 

This indicator provides a first bit of evidence of the extent at which the inventive efforts 

carried out by the region makes available KETs-based knowledge, which could be used and 

combined with other local technologies. The second proxy we build up,     



KETs_ RTAit1
, tries 

to go beyond the “simple availability” of KETs knowledge in the region, and counts the 

number of cases (i.e. IPC classes) in which this availability has also turned into an actual 

technological specialization (as measured by the RTA index), still irrespectively from the 

specific KETs. In brief, unlike the former, the latter KETs proxy provides evidence of a 

situation in which, not only are KETs part of the regional knowledge base, but also among its 

superior areas of expertise. Finally, in order to test for the role of the six specific technologies 

within the KETs-club, both the indicators are recalculated by referring to the number of IPC 

classes that pertain to each of the six of them. 

Table 1 summarizes the variables used in the study, the way they are defined and the data 

sources upon which they build. 

Insert Table 1 about here 

 

3.3 Econometric strategy 

The model we use for testing our hypotheses is implicitly defined as follows: 

    



New _ RTAit  f (New _ RTAit1, Av_ densit ,

KETsit1, Av_ densit * KETsit1,

CountIPCit1,zit1,dtime,dreg ion,it )

  (6) 

where, in addition to the previous positions, z is the vector of our structural regional controls 

(including R&D in the robustness check estimations), dtime and dregion are year- and 

regional dummies, respectively, and  an error term with standard properties. 
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In particular, the test of HP1 is related to the significance and sign of KETs, in one of its two 

forms, while that of HP2a and HP2b to the significance and sign of KETs as a moderating 

variable of the impact of Av_dens. 

The econometric strategy we follow to estimate model (6) is first of all driven by the nature of 

our dependent variable,     



New _ RTA , which is a count one, with a quite over-dispersed 

distribution (as from inspection of Figure 1 and Table 2 reporting the main descriptive 

statistics of our variables). Its correlation with the identified regressors is reported in Table 3. 

Insert Figure 1 about here 

Insert Table 2 and 3 about here 

As baseline estimation, we thus apply a fixed effects Negative Binomial (NegBin) model, and 

check for its robustness by implementing also a Multilevel Negative Binomial (MMNegBin) 

model, which appears to be a particularly appropriate technique when observations are 

organized at more than one level (like NUTS2, NUTS1, etc…). Accordingly, the functional 

form to be estimated is the following: 

    



New_ RTA i t  exp(1New_ RTA i t12 Av _ densi t 

3KETs i t14 Av _ densi t * KETs i t1

5CountIPC i t15zi t1 dtime  dregioni t)   (7)

 

In augmenting this baseline, we should consider that the model specified in equation (6) 

regresses the dependent variable at time t against its lagged value. This introduces an intrinsic 

dynamics in the model, which calls for the adoption of an econometric strategy able to 

minimize the possible bias in the estimations. For this reason, following Cameron and Trivedi 

(2005 and 2010), an additional set of estimates is carried out by using a dynamic GMM model 

for count data. In particular, we use a Conditionally Correlated Random (CCR) effects model 

(Mundlak, 1978; Chamberlain, 1984) without initial conditions, which provides a compromise 

between fixed effects and random effects estimators. 

 

3.4 Results 

Before presenting the results of the econometric estimates, it is interesting to notice the spatial 

distribution of the dependent variable and of our main regressors (Fig. 2).  
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 Insert Fig. 2 about here  

In the top-left diagram we show the spatial distribution of the average values of New_RTA 

over the time span 2001-2006. The map provides evidence of a marked geographical 

concentration of such variable, wherein Central European regions appear to be characterized 

by higher values, while the emergence of new technological specialization in peripheral 

regions seems to be much weaker a phenomenon. The top-right diagram shows the 

distribution of the count of KETs for which the region has developed a technological 

specialization (average values over 2001-2006). Even in this case one can notice that the 

highest values are concentrated in Central European regions. The same applies also to 

distribution of the variables shown in the bottom-right (CountIPC) and in the bottom-left 

(Av_density) diagrams. Overall, there seem to be traces of an idiosyncratic geographical 

distribution of the phenomenon at stake, which somehow mimics that of other more standard 

economic indicators, pointing to its apparent neutrality with respect to the need of favoring 

regional convergence across Europe: an issue, which is by now postpone to our future 

research agenda.  

Let us consider now the results of the estimates, starting with those on the role of KETs in 

aggregate terms. The baseline (static) model provides results that are consistent with the 

rationale of S3 in terms of construction of new RTA, when the simplest trace of KETs-

patenting in the region is considered, that is by referring to     



KETs_ Fileit1 as proxy (Table 4).  

Insert Table 4 about here 

In columns (1) and (2) we report the simplest specification of the model (NegBin and 

MMNegBin, respectively). First of all, a previous gain of new technological advantages (

    



New_ RTAit1 ) contributes positively to a further gain of them in the following period. 

Regions having entered new technological fields in the past thus develop the capacity of 

doing it persistently, showing evidence of a certain hysteresis in the process already found in 

other studies Boschma et al., 2013; Colombelli et al., 2014). However, it must be noted that 

the coefficient, although statistically different from zero, is lower than one, and actually its 

value is very small. This implies a dynamic process in which the opportunities to develop new 

technological specializations in the long run are likely to get exhausted.
10

 

                                                           
10

 This is consistent with a framework in which the set of technological fields is finite and static, which is what 

we observe in the so-called ‘normal science’ periods. When paradigmatic shifts take place, one can observe the 
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The construction of new RTAs also builds on the knowledge locally accumulated over time, 

insofar as the former is to some extent related to the latter, in a cumulative perspective in 

which local innovative agents are likely to stand on giants’ shoulders. The average proximity 

of the current technological portfolio to the previous one (    



Av_densit ) actually yields a 

significant and positive coefficient. This is an interesting result, which provides evidence of a 

(related-)variety-friendly pattern of specialisation, recently invoked as a truly smart 

specialization strategy (Frenken, 2014).  

In columns (3) and (4) we add the two variables that allow us to capture the impact of KETs 

on the entry of regions in new technological domains, i.e.     



KETs _ File  and its interaction with 

    



Av_dens. 

While substantially confirmed, the previous “standard story” takes on new interesting 

specifications when the role of KETs is considered. First of all, the availability of generic 

KETs knowledge in the region increases its capacity of entering into new technological fields 

(    



KETs _ File  is significant and positive). The discovery-potential entailed by the general 

(purpose) nature of KETs gets thus confirmed and leads to support our HP1. As far as HP2 is 

concerned,     



KETs _ File  exerts a significant moderating role of the impact of     



Av_dens on 

    



New _ RTA , and this is negative. In support of our HP2a, regions seem to use the systemic 

nature of KETs to span the boundaries of the extant technologies’ related variety. In other 

words, the availability of KETs knowledge (of any kind) seems to make the effect of the 

technological/cognitive proximity with respect to the regional knowledge base less binding in 

changing the regional specialisation pattern. 

In columns (5) to (8) of Table 4 we add control variables to check for regions’ size effects. 

Although with low significance, and only in the NegBin specification (5), the discovery 

process at stake appears limited by the number of already unfolded technologies, as 

    



Count_ IPCit1
 is significant and negative. When a more standard proxy of innovation efforts 

at the regional level is included, R&D turns out significant and positive (7) and (8), signaling 

that higher spenders in R&D are more likely to develop technological competencies. 

As for the other controls, as expected we notice that both lnEmploymentt-1 and lnGVAt-1 show 

positive and significant coefficients. It is worth stressing that the inclusion of control variables 

                                                                                                                                                                                     
enlargement of the technological landscape through the creation of brand new technological fields (and classes). 

These rare events are likely to rejuvenate the prospect for the development of new technological specializations 

in local contexts. 
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in our estimated models does not alter the key results concerning the role of KETs and their 

interaction with Av_Dens. 

The previous results about the role of KETs in general remain substantially unaltered when 

we consider the region’s capacity of specializing in them, i.e. with respect to     



KETs _ RTA  

(Table 5). 

Insert Table 5 about here 

The different columns of Table (5) only report the results from the Negative Binomial 

estimations, as from Table (4) we can observe that the MMNegBin yield consistent results, 

while from Table (3) we can infer that the observed variance of the dependent variable is far 

larger than the mean, suggesting that the variable is overdispersed. In column (1) we report 

the results of the baseline model augmented by the inclusion of the variable     



KETs_ RTAit1
 

and of its interaction with Av_Dens. In the other columns, we insert the other controls of the 

technological and economic size of the regions, following different combinations for them. In 

general, the results of the baseline are confirmed, being the acquisition of new specializations 

positively related to both kinds of size, and still negative affected by the available degree of 

technological freedom (Count_IPC). 

It must be noted that the coefficients are substantially stable across the different estimations, 

and also when comparing Tables 4 and 5. The main difference can be identified as far as the 

KETs interaction variable is concerned. Actually, when the impact of KETs is captured by the 

relative specialization of the region, the coefficient of the interaction with Av_Dens is still 

negative and significant. This is an interesting result, which shows that Hp2a holds the true 

also when the regional specialisation in KETs is considered rather than its simple availability. 

In other words, the capacity of the region to master KETs knowledge in such a way to get a 

relative advantage in their development, enables the region itself to benefit from (related-) 

variety-freedom in getting new technological specializations. 

Quite interestingly, the results obtained from the estimates of the baseline (static) model are 

also confirmed when a more suitable dynamic estimation strategy is followed, both in terms 

of     



KETs _ File  and     



KETs _ RTA . For the sake of brevity, in Table 6 we show only the results 

concerning the latter case (results on the former are available from the authors on request). 

Insert Table 6 about here 
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We can notice that all of the coefficients show signs which are consistent with the previous 

estimations, and which are statistically significant. The only exception concerns the control 

variables. Actually in nearly all of the specifications apart from (6), Count_IPC is no longer 

significant, and the same occurs for lnEmpl. Still, gross regional value added and R&D keep 

on showing their expected positive sign, both alone and in combination.
11

 

It is worth discussing at some more length the implications of the empirical results, in 

particular, as far as the interaction variable is concerned. Actually, from the different sets of 

estimations we obtained clearly consistent results which point to a positive effect of both 

Av_dens and KETs on the creation of new technological specializations, no matter the way we 

proxy the presence of KETs in the region. The interaction variable is instead characterized by 

a negative and significant coefficient across the different estimations. The basic question 

remains as to what extent the negative coefficient of the interaction variable can offset the 

positive coefficients of the other focal regressors. In brief, do KETs play a positive net-effect 

on the region’s capacity to develop new technological specializations? 

In this direction, it can be useful to evaluate the marginal effects at means of each variable of 

interest. It is worth recalling that when estimating a negative binomial model like the one 

reported in Table 5, the coefficients tell us to what extent the difference in the logs of 

expected counts of the dependent variable is expected to change for a one unit change in the 

predictor variable, all other things being equal. Moving from equation (6), we can therefore 

calculate the overall effects of KETs, by taking the derivative of the dependent variable with 

respect to     



KETs_ RTAit1
. If we set     



y  ln[E(New _ RTA)] , we then obtain: 

    



y

KETs _ RTAi t1

34Av _densi t
    (8) 

The first row of Table 7 provides the results of the calculation, along with a z-test indicating if 

the overall effect is statistically different from zero.  

Insert Table 7 about here 

Actually, the overall effect appears to be positive and significant. The creation of new 

specialization in KETs is likely to positively contribute the prospective creation of further 

                                                           
11

 Given the different econometric strategy, a comparison of the magnitude of the coefficients with the static case 

is of course not possible. 
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new specializations in the future, even by discounting the dumping role KETs play on the 

specialization potential of related variety. 

The second battery of results of our application concerns the estimates of the same model as 

above (see Eq.(6)), but by “exploding” in it the knowledge availability specialization (

    



KETs( j)_RTAit1) that regions could display in each and every of the six technologies j (with 

j = BIOTECH, NANOTECH, NANOELCT, PHOTO, ADVMAT, and ADVTECH) 

separately considered. Given the robustness of the aggregated results to the inclusion of R&D, 

in order to keep a satisfactory number of observations we limit this last part of the analysis to 

the benchmark specifications of Table 4. 

Starting with the estimates of the baseline (static) model, let us observe that the basic 

mechanisms underlying the construction of new RTAs are confirmed when individual KETs 

specialisations are considered (Table 8).  

Insert Table 8 about here 

Furthermore, as in the case of KETs in aggregate terms, the previous disaggregated results 

appear in general robust with respect to a dynamic specification of the model (Table 9). This 

is a first set of reassuring results about the functional boundaries of the KETs club. When 

their additive and their moderating role for the creation of new technological advantages are 

considered, each and every of the six KETs share the same features we have identified for 

KETs in general. Whether these same features are not shown by other non-KETs 

technologies, thus setting an actual boundary with respect to the former, is instead an open 

issue, which we postpone to our future research agenda. 

Insert Table 9 about here 

As for the overall effect of RTA_KETs, we can use equation (8) to provide an evaluation of 

the overall contribution of the single KETs group to the creation of new technological 

specializations. Rows (2) to (7) of Table 7 provide the results of the calculations using the 

margins at means. First of all, we must notice that two KETs groups seem not to have 

statistically significant net-effects of NEW_RTA, i.e. Nanotech and Advtech. For these two 

specific technologies, and for these two only, the two “enabling” roles (additive and 

moderating) we have singled out with our model somehow seems to cancel out, making them 

not significant in developing new technological advances. Whether they could identify a sub-

set of less effective KETs is of course no more than a suggestion, which is in need of future 
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check by looking at the inner characteristics of these technologies and at their diffusion at the 

regional level in Europe. On the other hand, the net-effect of the significant KETs is quite 

heterogeneous: Biotech shows the highest coefficient, followed by Advmat and Photo, which 

are characterized by nearly similar coefficients, and finally Nanoelect. The possibility that 

these four technologies could exert different degrees of “enabling power” is also no more than 

a suggestion, which require further scrutiny of their knowledge-bases and applications. 

4 Conclusions 

Increasingly more invoked by European policy makers as the main driver of a new wave of 

knowledge-based structural changes, which regions should implement with their help in a new 

wave of specialisation patterns, KETs have so fare attracted the sole attention of technical 

reports and feasibility studies, which take their role for granted. In the light of such a high 

policy potential, this is of course quite unfortunate, and urges more profound research work in 

order to establish whether the six technologies identified by the European Commission are 

actually enabling, and eventually of what. 

By making use of regional patent data, in this paper we have moved a first step in this 

direction and plugged KETs in the economic geography approach to smart specialization 

strategies. In particular, by identifying some pivotal characteristics of these technologies, we 

have tried to test whether their alleged enabling role could be seen (also) in their capacity of 

allowing regions to acquire new technological specialisations on the basis of their pre-existing 

ones. 

The results we have obtained are quite reassuring in this last respect. Irrespectively of their 

specificities, all of the six technologies “enable” European regions to increase their portfolio 

of new technologies over time, confirming such a role at the aggregated level. Quite 

interestingly, and still consistently with their aggregate pattern, all of the KETs also enable 

regions to search for new technologies more distantly from their pre-existing knowledge base, 

by attenuating the binding effect that the latter has in the same respect. Finally, with the 

exceptions of only two of them, the dumping role that KETs play on the related variety of the 

regions is more than compensated by the inner variety potential assured by their general and 

systemic nature. All in all, KETs actually guarantee regions a higher capacity to master new 

technological advantages. 
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These results convey to KETs a policy potential that can be finally deemed actual, and not 

only potential. Furthermore, they also enable to make this policy impact more specific. First 

of all, in spite of the attention so far reserved to the so-called “deployment” or “use” of KETs, 

the development of KETs-related knowledge appears as much important in fostering smart 

specialisation patterns. Accordingly, the support to the creation of KETs knowledge and 

KETs research strongly candidates for entering the S3 policy-mix. Secondly, while drawing 

on pre-existing knowledge, KETs also enable regions to make it less binding. Accordingly, 

KETs also appear the leverage for turning S3 from exploitative to explorative and to span the 

boundaries of the regions’ related variety. 

Of course, the paper is not free from limitations, which could be addressed in its future 

extensions. First of all, the kind of patent data we have used represents only one of the 

possible perspectives through which the generation of KETs knowledge can be maesured, 

with all the caveats patent data require. Secondly, other aspects more connected to the use and 

exploitation of this KETs knowledge would require consideration, to see whether the enabling 

role of the technologies at stake could be confirmed. Thirdly, the list of regional controls we 

have inserted could be also enlarged, but only at the price of loosing a lot of data and relevant 

information. Last but not least, other forms of proximity in addition to that we have accounted 

for with our density variable could be plugged into the analysis. Actually, the development of 

new technological specialisations by a focal region could be affected by that of geographically 

closer ones, as their spatial proximity could allow for inter-regional knowledge spillovers that 

affect the capacity of acquiring new RTAs (Fisher and Varga, 2003; Fritsch and Franke, 2004; 

Paci et al., 2014). This eventuality should thus be carefully controlled for in the structure of 

the observable data, and its detection possibly recommends the use of proper spatial 

econometrics techniques. 
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Figure 1 - Kernel Density Distribution of New_RTA 
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Figure 2 - Spatial Distribution of Relevant Variables 
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Table 1 - Variables Definition 

Variable Definition Source 

NewRTAi,t Number of technological 

specializations in region i, which 

were observed at time t but were 

not at time t-1  

Elaborations on OECD RegPat 

Database (July 2014). 

Av_densi,t Average proximity of all 

technologies observed at time t in 

region i to all other technologies 

observed in the same region at time 

t-1 

Elaborations on OECD RegPat 

Database (July 2014). 

KETs_filei,t Number of technologies flagged as 

KET observed at time t in region i. 

Elaborations on OECD RegPat 

Database (July 2014); EC (2011). 

KETs_RTAi,t Number of KETs for which the 

region i has developed a 

specialization at time t. 

Elaborations on OECD RegPat 

Database (July 2014); EC (2011). 

R&Di,t Logarithm of the ratio between 

regional R&D expenditure and 

gross value added 

Elaborations on Eurostat and 

Cambridge Econometrics 

Databases 

CountIPCi,t Number of different technologies 

observed in the patent portfolio of 

region i at time t. 

Elaborations on OECD RegPat 

Database (July 2014). 

lnGVAi,t Natural logarithm of Gross Value 

Added of region i at time t. 

Cambridge Econometrics 

(December 2014) 

lnEmploymentit Natural logarithm of employment 

level in region i at time t. 

Cambridge Econometrics 

(December 2014) 
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Table 2 - Descriptive Statistics 

Variable N max min mean sd skewness kurtosis 

New_RTA 7942 117.000 0.000 38.385 27.767 0.156 1.787 

Av_dens 6797 0.533 0.000 0.137 0.112 0.434 2.147 

KETS_RTA 9290 906.000 0.000 58.343 106.540 3.379 17.018 

Av_dens* 

KETs_RTA 

6475 320.655 0.000 19.163 36.466 3.390 16.637 

R&D 3157 0.00023 0.136 0.0151 0.0127 1.882 8.689 

Count_IPC 9290 6914.000 1.000 446.853 771.337 3.568 18.889 

LnEmplt 6486 8.685 0.000 6.408 0.814 -0.940 7.284 

lnGVA 6486 13.045 0.000 10.018 0.992 -1.076 12.227 

 

 

 

Table 3 - Correlation Matrix 

  1 2 3 4 5 6 7 8 9 

1 New_RTA 1          

2 Av_dens 0.9028* 1        

3 KETS_file 0.8960* 0.8840* 1       

4 KETS_RTA 0.8950* 0.8831* 0.9999* 1      

5 Av_dens* 

KETs_RTA 

0.9053* 0.9415* 0.9614* 0.9609* 1     

6 Count_IPC 0.9226* 0.9148* 0.9732* 0.9722* 0.9723* 1    

7 LnEmplt 0.4393* 0.4144* 0.4471* 0.4459* 0.4486* 0.4673* 1   

8 lnGVA 0.7771* 0.7715* 0.7808* 0.7800* 0.7959* 0.8093* 0.7685* 1  

9 R&D 0.6418* 0.6487* 0.7327* 0.7333* 0.7300* 0.7305* 0.2487* 0.5594* 1 
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Table 4 - Baseline estimation 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

 NegBIN MMNegBin NegBIN MMNegBin NegBIN MMNegBin NegBIN MMNegBin NegBIN MMNegBin NegBIN MMNegBin 

             

New_RTAt-1 0.0084*** 0.0259*** 0.0067*** 0.0196*** 0.0067*** 0.0196*** 0.0054*** 0.0165*** 0.0046*** 0.0145*** 0.0020*** 0.0168*** 

 (0.0003) (0.0005) (0.0003) (0.0005) (0.0003) (0.0005) (0.0004) (0.0005) (0.0004) (0.0005) (0.0005) (0.0006) 

             

Av_denst 0.8822*** 1.3601*** 1.6128*** 2.9308*** 1.6142*** 2.9384*** 1.4744*** 3.1815*** 1.3592*** 2.9070*** 0.6257*** 2.9000*** 

 (0.0931) (0.1160) (0.1056) (0.1139) (0.1056) (0.1146) (0.1181) (0.1154) (0.1106) (0.1122) (0.1581) (0.1429) 

             

KETs_Filet-1   0.0012*** 0.0031*** 0.0015*** 0.0032*** 0.0015*** 0.0034*** 0.0011*** 0.0032*** 0.0007*** 0.0028*** 

   (0.0001) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0003) (0.0002) 

             

Av_denst* 
KETS_Filet-1 

  -0.0061*** -0.0123*** -0.0060*** -0.0122*** -0.0052*** -0.0120*** -0.0037*** -0.0108*** -0.0024*** -0.0101*** 

   (0.0005) (0.0005) (0.0005) (0.0006) (0.0005) (0.0006) (0.0005) (0.0005) (0.0006) (0.0007) 

             

Count_IPCt-1     -0.0001** -0.0000 -0.0001** -0.0000 -0.0001*** -0.0001*** 0.0001** -0.0000 

     (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

             

lnEmpltt-1       0.1537*** 0.0067     

       (0.0384) (0.0081)     

             

lnGVAt-1         0.5428*** 0.1574***   

         (0.0319) (0.0086)   

             

R&Dt-1           3.3097*** 3.5756*** 

           (1.0132) (0.6415) 

             

_cons 2.7184*** 2.1938*** 2.8629*** 2.2371*** 2.8808*** 2.2364*** 2.1498*** 2.3272*** -2.4522*** 0.9289*** 4.0073*** 2.3479*** 

 (0.0475) (0.0287) (0.0516) (0.0254) (0.0524) (0.0254) (0.2485) (0.0551) (0.3277) (0.0826) (0.1168) (0.0270) 

N 6794 6797 6472 6475 6472 6475 5103 5103 5103 5103 3106 3106 

AIC 45199.7970 54983.9034 43448.4925 51999.4869 43445.2385 52001.1075 34610.6650 41108.9501 34355.9796 40777.2465 19546.8017 24838.9741 

BIC 45384.0395 55174.9820 43644.9745 52202.7580 43648.4957 52211.1544 34813.3301 41318.1528 34558.6447 40986.4492 19667.6236 24965.8370 

chi2 2380.4923 17648.0973 2292.6299 20097.7279 2298.1182 20100.3007 1546.5749 16839.5829 1969.3246 18188.9192 189.5901 11091.5944 

ll -22572.8985 -27463.9517 -21695.2462 -25969.7435 -21692.6192 -25969.5538 -17274.3325 -20522.4751 -17146.9898 -20356.6233 -9753.4009 -12398.4871 

Standard errors in parentheses 
*
 p < 0.10, 

**
 p < 0.05, 

***
 p < 0.01 
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Table 5 - RTA in KETs 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 NegBin NegBin NegBin NegBin NegBin NegBin NegBin MMNegBin MMNegBin 

          

New_RTAt-1 0.0073
***

 0.0057
***

 0.0048
***

 0.0022
***

 0.0053
***

 0.0046
***

 0.0020
***

 0.0066
***

 0.0165
***

 

 (0.0004) (0.0004) (0.0004) (0.0005) (0.0004) (0.0004) (0.0005) (0.0003) (0.0006) 

          

Av_denst 1.7497
***

 1.6101
***

 1.4506
***

 0.6819
***

 1.5598
***

 1.4332
***

 0.6777
***

 1.7092
***

 2.9981
***

 

 (0.1108) (0.1218) (0.1135) (0.1634) (0.1204) (0.1127) (0.1624) (0.1077) (0.1427) 

          

KETs_RTAt-1 0.0015
***

 0.0015
***

 0.0009
***

 0.0012
***

 0.0018
***

 0.0013
***

 0.0009
***

 0.0018
***

 0.0029
***

 

 (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0003) (0.0002) (0.0003) 

          

Av_denst* 

KETs_RTAt-1 

-0.0078
***

 -0.0067
***

 -0.0047
***

 -0.0028
***

 -0.0062
***

 -0.0045
***

 -0.0030
***

 -0.0072
***

 -0.0122
***

 

 (0.0006) (0.0006) (0.0005) (0.0007) (0.0006) (0.0005) (0.0007) (0.0006) (0.0007) 

          

Count_IPCt-1     -0.0001
***

 -0.0001
***

 0.0001
**

 -0.0001
***

 0.0000 

     (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

          

lnEmpltt-1  0.1171
***

   0.1516
***

     

  (0.0366)   (0.0383)     

          

lnGVAt-1   0.5464
***

   0.5385
***

    

   (0.0314)   (0.0319)    

          

R&Dt-1    3.1453
***

   3.2693
***

  3.5436
***

 

    (1.0183)   (1.0154)  (0.6423) 

          

_cons 2.7170
***

 2.2715
***

 -2.5704
***

 3.9731
***

 2.1515
***

 -2.4174
***

 3.9920
***

 2.8753
***

 2.3431
***

 

 (0.0503) (0.2391) (0.3209) (0.1175) (0.2482) (0.3276) (0.1172) (0.0525) (0.0269) 

N 6794 5262 5262 3168 5103 5103 3106 6472 3106 

AIC 44990.0158 35401.9951 35129.3464 19822.9999 34595.8547 34344.5047 19544.4224 43422.8695 24806.0142 

BIC 45187.9058 35599.0431 35326.3944 19938.1562 34798.5198 34547.1698 19665.2443 43626.1267 24932.8771 

chi2 2565.6464 1647.6872 2136.3495 193.5547 1559.3238 1980.2319 191.6209 2319.0571 11258.6753 

ll -22466.0079 -17670.9975 -17534.6732 -9892.5000 -17266.9273 -17141.2523 -9752.2112 -21681.4347 -12382.0071 

Standard errors in parentheses 
*
 p < 0.10, 

**
 p < 0.05, 

***
 p < 0.01  
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Table 6 - GMM Dynamic Count Data Model  

 (1) (2) (3) (4) (5) (6) 

 GMM GMM GMM GMM GMM GMM 

       
New_RTAt-1 0.0149

***
 0.0130

***
 0.0120

***
 0.0130

***
 0.0129

***
 0.0117

***
 

 (0.0007) (0.0007) (0.0006) (0.0007) (0.0007) (0.0006) 

       
Av_denst 2.7556

***
 2.8996

***
 2.6368

***
 2.8637

***
 2.8513

***
 2.4960

***
 

 (0.1636) (0.1484) (0.1435) (0.1689) (0.1687) (0.1563) 

       

KETs_RTAt-1 0.0030
***

 0.0032
***

 0.0030
***

 0.0029
***

 0.0029
***

 0.0026
***

 

 (0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004) 

       
Av_denst* 
KETs_RTAt-1 

-0.0114
***

 -0.0115
***

 -0.0105
***

 -0.0106
***

 -0.0105
***

 -0.0088
***

 

 (0.0015) (0.0014) (0.0013) (0.0013) (0.0013) (0.0011) 

       
Count_IPCt-1 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0001

**
 

 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

       
lnEmpltt-1  0.0145   0.0201  

  (0.0175)   (0.0199)  

       
lnGVAt-1   0.1172

***
   0.1328

***
 

   (0.0163)   (0.0179) 

       

R&Dt-1    1.9049
***

 2.0535
***

 2.4909
***

 

    (0.7323) (0.7497) (0.7376) 

       

Cons 2.4993
***

 2.4833
***

 1.4973
***

 2.5455
***

 2.4250
***

 1.3357
***

 

 (0.0351) (0.1123) (0.1665) (0.0421) (0.1283) (0.1824) 

N 6475 5103 5103 3106 3106 3106 

Regional Clustered Standard errors in parentheses 

Conditionally correlated random (CCR) effects model (Mundlak (1978) and Chamberlain (1984)) 
*
 p < 0.10, 

**
 p < 0.05, 

***
 p < 0.01 



31 
 

 

Table 7 - Overall effect of RTA_KETs  

 Coef. Std. Err. z P>z 

Overall effect 0.000772 0.00016 4.82 0.000 

Biotech 0.004594 0.000496 9.26 0.000 

Nanotech 0.000621 0.007025 0.09 0.930 

Nanoelct 0.00117 0.000409 2.86 0.004 

Photo 0.002685 0.000678 3.96 0.000 

Advmat 0.002221 0.000244 9.10 0.000 

Advtech 9.51E-05 0.000281 0.34 0.735 

Note: Linear combination of margins at means



32 
 

Table 8 - RTA Breakdown (1/3) 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

 New_RTA New_RTA New_RTA New_RTA New_RTA New_RTA New_RTA New_RTA New_RTA New_RTA New_RTA New_RTA 
             

New_RTAt-1 0.0068*** 0.0054*** 0.0046*** 0.0068*** 0.0053*** 0.0045*** 0.0072*** 0.0056*** 0.0048*** 0.0072*** 0.0055*** 0.0048*** 

 (0.0003) (0.0004) (0.0003) (0.0003) (0.0004) (0.0004) (0.0003) (0.0004) (0.0003) (0.0003) (0.0004) (0.0003) 

             

Av_denst 1.5460*** 1.4846*** 1.4551*** 1.5504*** 1.3976*** 1.3928*** 0.9135*** 0.8094*** 0.8370*** 0.9719*** 0.8050*** 0.8503*** 

 (0.1049) (0.1150) (0.1081) (0.1047) (0.1155) (0.1087) (0.0907) (0.0987) (0.0925) (0.0916) (0.0983) (0.0925) 

             

BIOTECHt-1 0.0103*** 0.0102*** 0.0089*** 0.0108*** 0.0101*** 0.0089***       

 (0.0009) (0.0009) (0.0009) (0.0009) (0.0009) (0.0009)       

             

Av_denst* 

BIOTECHt-1 

-0.0393*** -0.0367*** -0.0319*** -0.0374*** -0.0334*** -0.0289***       

 (0.0032) (0.0033) (0.0031) (0.0033) (0.0034) (0.0031)       
             

NANOTECHt-1       0.0431*** 0.0645*** 0.0471*** 0.0508*** 0.0589*** 0.0414** 

       (0.0130) (0.0170) (0.0161) (0.0132) (0.0170) (0.0161) 

             

Av_denst * 

NANOTECHt-1 

      -0.2944*** -0.3529*** -0.2713*** -0.2998*** -0.3195*** -0.2370*** 

       (0.0472) (0.0576) (0.0531) (0.0479) (0.0580) (0.0538) 

             

lnEmpltt No YES NO NO YES NO NO YES NO NO YES  

             

lnGVAt NO NO YES NO NO YES NO NO YES NO NO YES 

             

Count_IPCt-1 NO NO NO YES YES YES NO NO NO YES YES YES 

             
_cons 2.7882*** 2.0435*** -2.6178*** 2.8793*** 1.9485*** -2.6740*** 2.9427*** 2.1576*** -2.5615*** 2.9922*** 2.0541*** -2.6302*** 

 (0.0497) (0.2467) (0.3212) (0.0524) (0.2524) (0.3223) (0.0499) (0.2502) (0.3271) (0.0517) (0.2554) (0.3277) 

N 6472 5103 5103 6472 5103 5103 6472 5103 5103 6472 5103 5103 
AIC 43481.4080 34627.2508 34354.7931 43441.7822 34599.5842 34320.9622 43534.8551 34655.5243 34383.7303 43516.8769 34641.2463 34364.7043 

BIC 43677.8900 34823.3783 34550.9206 43645.0394 34802.2493 34523.6273 43731.3371 34851.6518 34579.8578 43720.1341 34843.9114 34567.3694 

chi2 2266.0920 1535.1575 1979.2355 2308.2549 1566.4153 2011.6750 2232.4127 1523.1566 1949.8933 2250.4184 1540.7158 1963.9936 
ll -21711.7040 -17283.6254 -17147.3965 -21690.8911 -17268.7921 -17129.4811 -21738.4275 -17297.7621 -17161.8651 -21728.4384 -17289.6232 -17151.3522 

Standard errors in parentheses 
*
 p < 0.10, 

**
 p < 0.05, 

***
 p < 0.01 
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Table 8 - RTA Breakdown (2/3) 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

 New_RTA New_RTA New_RTA New_RTA New_RTA New_RTA New_RTA New_RTA New_RTA New_RTA New_RTA New_RTA 
             

New_RTAt-1 0.0073*** 0.0059*** 0.0050*** 0.0073*** 0.0058*** 0.0050*** 0.0071*** 0.0057*** 0.0049*** 0.0071*** 0.0057*** 0.0048*** 

 (0.0003) (0.0004) (0.0003) (0.0003) (0.0004) (0.0003) (0.0003) (0.0004) (0.0004) (0.0003) (0.0004) (0.0004) 

             

Av_denst 1.1670*** 1.0693*** 1.0343*** 1.2058*** 1.0197*** 1.0105*** 1.2927*** 1.1830*** 1.1368*** 1.3072*** 1.1325*** 1.1010*** 

 (0.0974) (0.1073) (0.1002) (0.0973) (0.1069) (0.1001) (0.0985) (0.1075) (0.1013) (0.0983) (0.1077) (0.1014) 

             

NANOELCTt-1 0.0038*** 0.0037*** 0.0024*** 0.0046*** 0.0036*** 0.0024***       

 (0.0007) (0.0008) (0.0008) (0.0008) (0.0008) (0.0008)       
             

Av_denst * 

NANOELCTt-1 

-0.0185*** -0.0160*** -0.0111*** -0.0184*** -0.0139*** -0.0094***       

 (0.0027) (0.0028) (0.0025) (0.0027) (0.0029) (0.0026)       

             

PHOTOt-1       0.0083*** 0.0080*** 0.0057*** 0.0095*** 0.0083*** 0.0062*** 

       (0.0012) (0.0013) (0.0012) (0.0012) (0.0013) (0.0012) 

             

Av_denst *  

PHOTOt-1 

      -0.0389*** -0.0343*** -0.0245*** -0.0382*** -0.0315*** -0.0218*** 

       (0.0042) (0.0044) (0.0039) (0.0043) (0.0045) (0.0040) 
             

lnEmpltt NO YES NO NO YES NO NO YES NO NO YES NO 

             

lnGVAt NO NO YES NO NO YES NO NO YES NO NO YES 

             

Count_IPCt-1 NO NO NO YES YES YES NO NO NO YES YES YES 

             

_cons 2.8423*** 2.2384*** -2.6306*** 2.9152*** 2.0882*** -2.7054*** 2.8506*** 2.2097*** -2.4962*** 2.9106*** 2.1001*** -2.6124*** 
 (0.0495) (0.2445) (0.3258) (0.0519) (0.2519) (0.3259) (0.0497) (0.2447) (0.3261) (0.0520) (0.2504) (0.3269) 

N 6472 5103 5103 6472 5103 5103 6472 5103 5103 6472 5103 5103 

AIC 43572.5866 34712.4949 34436.2800 43542.8540 34689.0037 34405.4753 43528.5196 34677.5198 34414.5901 43509.4760 34662.7453 34389.9812 

BIC 43769.0686 34908.6224 34632.4075 43746.1112 34891.6688 34608.1404 43725.0016 34873.6473 34610.7176 43712.7332 34865.4104 34592.6463 
chi2 2182.5421 1453.1585 1895.7712 2214.4558 1481.2778 1921.8039 2222.8979 1484.4741 1911.6029 2245.2125 1503.0804 1932.9937 

ll -21757.2933 -17326.2474 -17188.1400 -21741.4270 -17313.5019 -17171.7376 -21735.2598 -17308.7599 -17177.2950 -21724.7380 -17300.3726 -17163.9906 

Standard errors in parentheses 
*
 p < 0.10, 

**
 p < 0.05, 

***
 p < 0.01 
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Table 8 - RTA Breakdown (3/3) 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

 New_RTA New_RTA New_RTA New_RTA New_RTA New_RTA New_RTA New_RTA New_RTA New_RTA New_RTA New_RTA 
             

New_RTAt-1 0.0068*** 0.0056*** 0.0048*** 0.0067*** 0.0054*** 0.0047*** 0.0066*** 0.0052*** 0.0046*** 0.0066*** 0.0052*** 0.0046*** 

 (0.0003) (0.0004) (0.0003) (0.0003) (0.0004) (0.0003) (0.0003) (0.0004) (0.0004) (0.0003) (0.0004) (0.0004) 

             

Av_denst 1.4885*** 1.3687*** 1.3049*** 1.4673*** 1.2604*** 1.2301*** 1.4714*** 1.2887*** 1.1896*** 1.4663*** 1.2900*** 1.1897*** 

 (0.1040) (0.1119) (0.1051) (0.1035) (0.1124) (0.1055) (0.1036) (0.1156) (0.1091) (0.1041) (0.1157) (0.1091) 

             

ADVMATt-1 0.0048*** 0.0044*** 0.0034*** 0.0053*** 0.0045*** 0.0035***       

 (0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004)       

             

Av_Denst * 

ADVMATt-1 

-0.0177*** -0.0151*** -0.0118*** -0.0158*** -0.0126*** -0.0097***       

 (0.0016) (0.0015) (0.0014) (0.0016) (0.0016) (0.0014)       

             

ADVTECHt-1       0.0025*** 0.0021*** 0.0008* 0.0024*** 0.0020*** 0.0009* 

       (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) 

             

Av_denst * 

ADVTECHt-1 

      -0.0165*** -0.0137*** -0.0088*** -0.0165*** -0.0137*** -0.0087*** 

       (0.0016) (0.0016) (0.0014) (0.0016) (0.0016) (0.0014) 

             

lnEmpltt NO YES NO NO YES NO NO YES NO NO YES NO 

             

lnGVAt NO NO YES NO NO YES NO NO YES NO NO YES 

             

Count_IPCt-1 NO NO NO YES YES YES NO NO NO YES YES YES 

             

_cons 2.8014*** 2.1818*** -2.4599*** 2.9089*** 2.0214*** -2.5237*** 2.9450*** 2.2039*** -2.3973*** 2.9425*** 2.2152*** -2.4082*** 

 (0.0496) (0.2429) (0.3243) (0.0524) (0.2510) (0.3247) (0.0525) (0.2499) (0.3315) (0.0527) (0.2511) (0.3321) 

N 6472 5103 5103 6472 5103 5103 6472 5103 5103 6472 5103 5103 

AIC 43488.4650 34645.4081 34386.5237 43436.0461 34609.8509 34344.3374 43421.7780 34587.3307 34337.0332 43423.5618 34589.1577 34338.7842 

BIC 43684.9470 34841.5356 34582.6512 43639.3033 34812.5160 34547.0025 43618.2600 34783.4582 34533.1607 43626.8191 34791.8228 34541.4493 
chi2 2261.3300 1515.6182 1944.7106 2317.8626 1553.4874 1976.1143 2322.8849 1567.4565 1978.3561 2323.1754 1567.4894 1978.1043 

ll -21715.2325 -17292.7040 -17163.2618 -21688.0230 -17273.9255 -17141.1687 -21681.8890 -17263.6653 -17138.5166 -21681.7809 -17263.5788 -17138.3921 

Standard errors in parentheses 
*
 p < 0.10, 

**
 p < 0.05, 

***
 p < 0.01 
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Table 9 - GMM Dynamic Count Model (KET breakdown) 

 (1) (2) (3) (4) (5) (6) 

 New_RTA New_RTA New_RTA New_RTA New_RTA New_RTA 
       

New_RTAt-1 0.0155*** 0.0177*** 0.0169*** 0.0163*** 0.0158*** 0.0152*** 

 (0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007) 

       

Av_denst 2.5698*** 1.8489*** 2.1162*** 2.3057*** 2.4789*** 2.6191*** 

 (0.1777) (0.1280) (0.1473) (0.1489) (0.1551) (0.1610) 

       

BIOTECH t-1 0.0194***      

 (0.0015)      

       

Av_denst*  
BIOTECH t-1 

-0.0697***      

 (0.0059)      

       

NANOTECHt-1  0.1451***     

  (0.0222)     

       

Av_denst * 
NANOTECHt-1 

 -0.5494***     

  (0.0897)     

       

NANOELCTt-1   0.0105***    

   (0.0015)    

       

Av_denst* 
NANOELCt-1 

  -0.0387***    

   (0.0055)    

       

PHOTOt-1    0.0199***   

    (0.0025)   

       

Av_denst *  

PHOTOt-1 

   -0.0741***   

    (0.0090)   

       

ADVMATt-1     0.0078***  

     (0.0012)  

       

Av_denst * 
ADVMATt-1 

    -0.0279***  

     (0.0041)  

       

ADVTECHt-1      0.0081*** 

      (0.0010) 

       

Av_denst * 
ADVTECHt-1 

     -0.0296*** 

      (0.0043) 

       

Count_IPCt-1 -0.0000** -0.0000*** -0.0000*** -0.0000*** -0.0000* -0.0000 

 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

       

Const 2.4946*** 2.5643*** 2.5401*** 2.5338*** 2.5175*** 2.5205*** 

 (0.0361) (0.0361) (0.0354) (0.0353) (0.0355) (0.0359) 

       

N 6475 6475 6475 6475 6475 6475 

Region clustered Standard errors in parentheses 
*
 p < 0.10, 

**
 p < 0.05, 

***
 p < 0.01 


