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Abstract

We study some dynamical features of electricity markets modelling
demand and supply by means of a nonlinear cobweb model. We consider
a periodically perturbed demand function to take into account the real
world seasonalities (daily, weekly and yearly) while supply function can
include a stochastic term to encompass possible shocks like outages and
plants unavailability. Using adaptive expectations we investigate the ef-
fects on equilibrium prices in a perturbed and in an unperturbed model
considering peak and off-peak market configurations. Starting from a well
known partial equilibrium model, suitable to describe price dynamics of
non-storable goods, we introduce a sigmoid supply function and a period-
ically perturbed demand function. Our simulative investigations confirm
that the model is able to reproduce several effects observed in real price
dynamics. We also focus on how the dynamics can be influenced by al-
tering some market rules set by regulators, like price caps and floors. In
particular, we show that taking into account periodical perturbations in
the demand function can lead to the anticipation, with respect to the clas-
sical model, of chaotic dynamics. Moreover, we study how the dynamic is
influenced if negative prices are allowed.
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1 Introduction and Background

The electricity industry has radically changed during the last decades under the
wave of privatizations and liberalizations. Now electricity is exchanged in whole-
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sale markets where profit-maximising generators compete for the right of selling
their product to eligible consumers who pay the cost minimizing equilibrium
price. In the majority of electricity markets an auction takes place on a hourly
basis and the equilibrium price is fixed at the intersection point of demand and
supply. Decentralized production and price decisions introduced a new perspec-
tive with respect to the pre-liberalization monopolistic and vertically integrated
scenario, where state-owned monopolists were responsible for all production and
investment decisions. Now electricity prices are relevant since they constitute
economic signals to producers and potential investors in the market.

Decentralized decision on production and investments based on expected
profit maximization requires an accurate forecast of prices. Cycles and season-
alities are a peculiar characteristics of electricity market prices. Due to demand
fluctuations, environmental conditions and supply shocks (plant outages, un-
availability) we observe hourly, daily, weekly and seasonal fluctuations, whereas
in the long run we observe cycles due to long term capacity decisions. System
operators preserve the security of supply managing a capacity reserve to cover
imbalances between generation and load due to random variations in demand,
forecast errors, unplanned unavailability of generating capacity. The reserve
margin, defined as the percentage difference of the installed capacity in excess
of peak demand is used by [1] to measure the occurrence of cycles1.

Economic conditions and regulatory provisions may influence the dynamics
of electricity prices and their stability. In this paper we design a cobweb model
that is able to replicate the main characteristics of an electricity market for
demand and supply. Using this model we want to analyze the dynamics of elec-
tricity prices and in particular how their stability is influenced by deregulation,
market structure and other regulatory rules like price caps and floors.

We follow the research perspective pioneered by [7] who studies the dy-
namic of prices in a cobweb model with nonlinearities and myopic expectations
of players. He finds that chaotic behavior can occur even if demand and sup-
ply functions are monotonic. Adaptive expectations reduce the amplitude of
fluctuations but at the same time price-quantity cycles may become unstable.

Economic literature on cycles has been applied to electricity markets mainly
in models describing investment choices of producers under uncertainty about
prices and profits. [2] and [3], used the electricity industry as an example of
building booms with a simulated CCGT power plant construction which deliv-
ers more than enough new capacity to keep pace with growth in demand. From
this point of view, the electricity industry shows analogies with other indus-
tries mainly due to long delays in plant constructions, sunk capital costs and
non-storability. In this setting, cycles are induced by external shocks hitting
the market with inelastic demand which generates price variability larger than
the initial shock itself. Simulation models are based on some bounded ratio-
nality assumption for agents: they make long-term price expectations based
on current information and cycles occur because of systematic forecast errors.

1The reserve margin is considered adequate for system security when it ranges between
18% and 25%.
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When rational expectations are assumed endogenous cycles are removed. Mar-
ket structure is also relevant in determining investment and production choices
as it can be seen in [8],who considers a model characterized by a long run in-
creasing trend in demand and in [1], where deregulation of electricity markets
can induce sustained fluctuations and a threat for the security of supply.

This research perspective is particularly interesting for analyzing deregulated
electricity markets characterized by time varying demand and supply, which may
also be subject to possible shocks.

2 Model

To describe the price behavior in an electricity market, we propose a theoretical
model based on an adaption of the classical nonlinear cobweb model (for a
detailed presentation see [6, 7]). The cobweb model, which describes a single
market with one lag in supply, namely in which there exists a lag between the
decision to produce a particular product and its actual production, is usually
used to explain the cyclical nature of prices and quantities through time of a non-
storable good. Let us suppose that pt be the observed price of the good at time
t and let pet the expected price. If we consider the demand function qdt = D(pt)
and the supply function qst = S(pet ), under the temporary equilibrium hypothesis
qdt = qst , we have that

pt = D−1(S(pet )). (1)

Depending on how expectations are assumed, the previous dynamical equation
describes the time adjustment of the prices. A possible choice is given by the
so-called adaptive expectations

pet+1 = pet + ω(pt − pet ), (2)

where 0 < ω ≤ 1 is the expectation weight factor. We remark that, as explained
in [6], rearranging the previous expression, the expected price with adaptive
expectations can be expressed as a weighed average, with fading weights, of all
past prices. Adaptive expectations can be considered as a suitable assumptions
to describe agents’ behavior in electricity markets where hourly auctions are
conducted every day of the year (a total of 8760 auctions) between the same set
of agents and under recurrent demand and supply conditions.

Combining (1) and (2) we obtain the cobweb model with adaptive expecta-
tions

pet+1 = pet + ω(D−1(S(pet ))− pet ). (3)

In the classical nonlinear cobweb model both demand and supply functions are
independent of t and the resulting model is an autonomous discrete dynamical
equation. In the present work, to take into account the periodic variation of the
demand function that occurs in electricity markets, we consider a periodically
perturbed function qdt = D(pt, t). We stress that a perturbed supply function
can be likewise considered, but we observed that the model with perturbation
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on just the demand function is able to reproduce all the qualitative dynamics
of the doubly perturbed framework.

The resulting model consists of a non-autonomous discrete equation. For
simplicity, we take into account a perturbation of period 2, which encompass the
alternation of peak and off-peak settings of the actual demand/supply dynamic.

We assume that the periodic perturbation of the demand function is de-
scribed by D(pt, t) = f(pt) + σ(−1)t, where σ represents the size of the per-
turbation. When σ = 0, we indeed have no perturbations, while at even times
t = 2, 4, . . . (resp. odd times t = 1, 3, . . . ) we have the peak (resp. off-peak)
demand. In particular, we assume a linear perturbed demand function

D(pt, t) = d1pt + d2 + σ(−1)t. (4)

In what follows, the model obtained considering D(pt, t) (resp. D(pt, 2),D(pt, 1)
and σ = 0) will be called perturbed (resp. peak, off-peak and unperturbed)
cobweb model.

To reproduce the supply function, we make reference to the typical shape of
the aggregate merit order which we observe, for example, in the Italian wholesale
market. In Figure 1 we report an example of possible supply/demand configu-
ration2. Demand and supply are obtained from the merit order of buying and
selling bids submitted to the Market Operator. We typically register some bids
without price limit for demand (this means a completely inelastic portion of
demand function) and bids at zero price for supply (this means a flat portion of
the supply function). There is a regulatory cap on bids (and hence prices) equal
to e 3,000 so the supply function becomes horizontal at that price value. In the
intermediate portion of supply (demand) we observe an increasing (decreasing)
function. However, historical data show that the equilibrium price never reached
the cap: the maximum equilibrium price registered in the wholesale market was
e 378,47 in year 2006 and e 324,20 in 2012. The minimum value of equilibrium
price is equal to zero in some hours of 2013. Therefore the empirical observation
of the price range allows us to identify a relevant portion of the supply function
which we will use for our simulative analysis (see 2).

For the above mentioned reasons, we choose for S the following analytical
expression

qst = S(pet ) = s1 +
1

λ
tanh−1

(

pet − s2
s3

)

+ εt, (5)

where si, λ are suitable parameters, tanh−1 is the inverse of the hyperbolic
tangent function and εt is a stochastic term that allows encompassing exogenous
shocks in the supply function. We have that, using (4) and (5) in (3), the

2Hourly graphical representations can be found in the Italian market operator website:
www.mercatolelettrico.org
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Figure 1: Example of supply (black) and demand (red) curves, from the Italian
market.

resulting dynamical equation results

pet+1 =(1− ω)pet

+ ω







s1 +
1

λ
tanh−1

(

pe

t
−s2
s3

)

+ εt − d2 − σ(−1)t

d1






.

For details about a classical cobweb model with stochastic perturbation we
refer to [5]. Function (5) is an increasing smooth function taking values in
(s2−s3, s2+s3), with an inflection point at p = s2 (see Figure 2). In particular,
if we assume that prices can vary between the minimum pm and the maximum
pM , we have that s2, s3 have to be chosen accordingly to







s3 =
pM − pm

2
,

s2 =
pM + pm

2
,

so that function S(pet ) defined in (5) can take values in (pm, pM ). We remark
that S(pet ) could be negative for some parameters choices and for some values
of p, which is indeed unfeasible. This can be fixed by bounding S from below,
so that the supplied quantity be non-negative. However, in all the simulative
experiments, we focused on the price dynamics which gave only positive supply
levels. Moreover, we notice that s1 represent the supply level corresponding to
the expected price pet = (pm + pM )/2 and allows for shifting the supply curve.
Finally, parameter λ > 0 regulates the slope of the supply curve. In Figure 2 we
report some parameter configurations to which we will refer in Section 3. We
consider two different couples of demand functions, which differ for the value of
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Figure 2: Example of supply (black), peak (red)/off-peak (blue) and unper-
turbed (green) demand functions.

perturbation σ. In both cases we set d1 = −2, d2 = 3, while we considered a
small perturbation σ = 1 for the former couple (solid colored lines) and and a
larger one σ = 2 for the latter (dashed colored lines). Setting pM = 2, s1 = 4
and λ = 0.6, we consider two different supply functions, obtained respectively
for pm = 0 (solid black line) and pm = −0.15 (dashed black line). The supply
functions reported in Figure 2 are not stochastically perturbed.

We notice that the shape and the location of our assumed demand and
supply function are consistent with real world observations. Electricity demand
is completely inelastic in its upper portion and it can be approximated with a
downward sloping function in the neighborhood of the equilibrium. Price and
quantity data of the Italian electricity market suggest to model the possible
equilibria, that we will consider in our simulative experiment, as in Figure 2.
We observe that in the Italian wholesale market the equilibrium price never
reached the cap level (Euro 3000) whereas it sometimes reached the floor of
zero.

3 Simulative experiments

In this section we investigate the possible scenarios arising from the periodically
perturbed cobweb model described in the previous section. We report and com-
ment the results of several simulations, together with the parameters we used.
In particular, we want to analyze the effects of demand perturbation on the
stability of the dynamics, comparing the results with both the unperturbed and
the peak/off-peak demands settings. We also comment the role of expectation
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weights. Unless specified, we do not add a stochastic perturbation to the sup-
ply. In all the simulations, we are going to use black, green, red and blue colors
respectively for perturbed, unperturbed, peak, off-peak cobweb models.

In the first simulation we consider the parameters setting used in Figure 2
for the demand and supply functions represented by a solid line, which results
in a moderate demand perturbation and a supply with only positive prices. In
Figure 3, we compare the resulting price dynamics for different possible expecta-
tion weights. As we can see, if the expectation weight is too small, the resulting
dynamic oscillates around the equilibrium of the unperturbed cobweb model,
alternating two values which are different from the peak and off-peak equilib-
ria. The unperturbed classical cobweb is able to reproduce only an “average”
behavior of the market price dynamics and shows no oscillations. Increasing the
expectation weight, the perturbed system exhibits a dynamic of two alternat-
ing values which are very close to the peak and off-peak equilibria. Increasing
further the value of ω introduces instability in the system, and the resulting
dynamics is chaotic for both the perturbed and the off-peak equation, while the
peak dynamic still converges. As we can see, in all the three reported situa-
tions, the unperturbed model shows stable dynamics, while for ω = 0.076 the
perturbed model exhibits a chaotic dynamic which resembles price volatility.
This is summarized Figure 4 (for details about bifurcation diagrams we refer
to the book of Hommes [6]), in which we report the bifurcation diagrams of
the perturbed, off-peak, peak and unperturbed models. As we can see, we have
that the perturbed dynamics is less stable than the unperturbed one, as period
doublings and chaotic dynamics occur for smaller values of ω. Moreover, the
off-peak dynamic is the most unstable while the peak dynamic is the most stable
one. If we compare the unperturbed cobweb model to the perturbed one, we can
see that the unperturbed model has an “intermediate” behavior with respect to
peak/off-peak scenarios, while introducing the periodical perturbation leads the
dynamic to behave as the most unstable one, inheriting the stability behavior
of the off-peak dynamic. We stress the fact that there is a range of expectation
weights for which the dynamic is stable using the unperturbed classical cobweb
model, but which already gives chaotic price trajectories in the perturbed mode.
This suggests that the dynamics arising with a periodically perturbed demand
can not be completely described by considering a simple classical model, as, for
a fixed expectation weight, the two models may behave in different ways.
Our findings seem to mimic, even if in a very different setup, a well known result
observed in empirical analysis of real world electricity prices. [4] found evidence
of a direct leverage effect in the Italian market. This means that peak electricity
prices are less volatile than the off-peak ones. In the simulative results, this is
portrayed by the improved stability of the peak dynamic with respect to the
off-peak one.

In Figure 5 we report the results of a simulation in which we considered
the parameter setting used in Figure 2 for the demand represented by dashed
lines (large perturbation) and the supply function represented by a solid line
(positive prices). Moreover, we include a stochastic Gaussian perturbation term
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Figure 3: Comparison of time series for different values of expectation weights.

for the supply, with null average and standard deviation 0.03. We can see that
also in this case the perturbed scenario exhibits chaotic behavior in advance
of the unperturbed one, while the peak scenario has further improved stability
and the off-peak becomes unstable for smaller values of ω. In Figure 6 we
report the time series obtained for ω = 0.053, in which the dynamic, which is
stochastically perturbed, qualitatively reproduces the period-two cycle of the
peak/off-peak alternation As for the first simulation, we have that there are
values of expectation weights for which the dynamic is stable for the unperturbed
model while it is chaotic for the perturbed one.

In the last simulation we want to test the capability of the proposed approach
to model the effects of possible variations in the price bounds pm and pM . In
particular, we investigate the variation in the lower bound pm, which is now set
to −0.15 (see Figure 2, dashed supply curve). Negative bids (and prices) are
allowed for example in the German market and also in Italy there is a regulatory
debate on pro and cons of negative prices3. The remaining parameters are the

3In the presence of high shares of intermittent generation, conventional producers can find
reasonable to be subject to a negative price to keep the production units operating.
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Figure 4: Bifurcation diagrams of the perturbed, off-peak, peak and unper-
turbed model, showing that the route toward chaos occurs for different expec-
tation weights. The stability behavior of the perturbed model is similar to that
of the off-peak situation. For a range of values of ω, the unperturbed cobweb
model presents a stable dynamic which, conversely, is already unstable for the
perturbed one.

Figure 5: Bifurcation diagrams of the perturbed, off-peak, peak and unper-
turbed models with stochastic term ε, showing that the route toward chaos
occurs for different expectation weights.

same used for the simulation reported in Figure 4. The resulting equilibrium
prices are positive for the peak demand and negative for the off-peak one. As we
can see comparing the results reported in Figure 7 with those of Figure 4, the
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Figure 6: Prices time series of the periodically perturbed model with stochastic
term ε, compared to the equilibria of the peak, off-peak and unperturbed model.
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Figure 7: Bifurcation diagrams of the perturbed, off-peak, peak and unper-
turbed models, for negative off-peak equilibrium price.

dynamics obtained with a negative pm are stable for a slightly larger interval
of expectation weights (the bifurcation diagrams of Figure 7 are shifted to the
right with respect to the corresponding ones of Figure 4)

4 Final Comments and Conclusions

We proposed a novel approach to model the price behavior in electricity markets,
based on a classical cobweb model with a periodically perturbed demand and
an increasing sigmoidal supply function, in which the two asymptotes represent
the upper and lower bound on prices. We showed that such perturbed model de-
scribes dynamics which are different from both the unperturbed model, showing
anticipation of chaotic dynamics, and the peak/off-peak dynamics. We studied
the effect of adaptive expectations on price evolution and we showed that the
classical cobweb model can exhibit stable dynamics for expectation weight val-
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ues for which the dynamics of the perturbed one have already become chaotic.
This highlights the importance to take into account the demand perturbation
in the model, as the resulting dynamics may not be correctly described by the
unperturbed model. In further investigations, we aim to refine the expectation
formation, considering different kinds of expectations and endogenizing their
formation. The simulative experiment conducted on price floors and caps shows
that the introduction of negative prices in the wholesale electricity market may
have a stabilizing effect on price dynamics. This result offers a new element
in the debate among the regulator and producers in favor of the introduction
of this new rule in the Italian market. We also found evidence of a possible
direct leverage effect, already noticed in the Italian market, since the dynamic
behavior of peak prices is less-unstable than the off-peak one. We aim to test
our model using real world market data.

References

[1] Santiago Arango and Erik Larsen. Cycles in deregulated electricity markets:
Empirical evidence from two decades. Energy Policy, 39(5):2457 – 2466,
2011.

[2] A. Ford. Cycles in competitive electricity markets: A simulation study of
the western united states. Energy Policy, 27(11):637–658, 1999. cited By
67.

[3] A. Ford. Waiting for the boom: A simulation study of power plant construc-
tion in california. Energy Policy, 29(11):847–869, 2001. cited By 55.

[4] A. Gianfreda, L. Grossi, and D. Olivieri. Volatility structures of the italian
electricity market: An analysis of leverage and volume effects. In Energy
Market (EEM), 2010 7th International Conference on the European, pages
1–6, June 2010.

[5] C. Hommes and A. van Eekelen. Partial equilibrium analysis in a noisy
chaotic market. Economics Letters, 53(3):275 – 282, 1996.

[6] C. H. Hommes. Behavioral Rationality and Heterogeneous Expectations in
Complex Economic Systems. Cambridge University Press, 2013.

[7] Cars H. Hommes. Dynamics of the cobweb model with adaptive expecta-
tions and nonlinear supply and demand. Journal of Economic Behavior &
Organization, 24(3):315 – 335, 1994.

[8] Marek Kocan. Cyclic behavior in dynamic investment decisions for dereg-
ulated energy markets. Central European Journal of Operations Research,
16(1):67–78, 2008.

11


