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Abstract
Using Matthes (2015) estimation of Ramsey optimal policy under

commitment (OPUC) in the new-Keynesian four-equations model, we
interpret Volcker�s Fed structural break of credibility as a "Taylor
principle saddlenode bifurcation" with a strictly negative optimal out-
put gap rule parameter and a shift of in�ation rule parameter to a
value larger than one (Taylor principle). Negative intertemporal elas-
ticity of substitution, as in limited asset market participation (Bilbiie
and Straub (2013)), and a positive marginal e¤ect of current output
on future in�ation in the New-Keynesian Phillips curve (Mavroeidis
et al. (2014), Taylor (1999)) would lead to an optimal positive output
gap parameter. In the general linear quadratic case, OPUC admits a
representation of the optimal rule as a non-inertial negative feedback
function of current private sector�s variables, with a unique initial an-
chor of forward variables. OPUC negative feedback optimal policy
rule parameters never belong to the same set than positive feedback
"optimal simple" rule parameters, which implies opposite policy rec-
ommendations. OPUC stabilizes the private sector�s saddlepoint equi-
librium in a stable converging sink with determinacy of optimal initial
values of private sector�s forward variables.
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"The same equations have the same solutions", Feynman, Leighton and
Sands (1964, 12.1)

"In new-Keynesian models, [the in�ation Taylor rule parameter] F� > 1
is the condition for a "dynamically unstable" model. New-Keynesian models
want unstable dynamics in order to rule out multiple equilibria [sunspots]
and force forward-looking solutions. In Taylor�s model, F� > 1 is the con-
dition for stable dynamics, eigenvalues less than one, in which we solve
for endogenous variables (including in�ation) by backward looking solution.
The conditions F� > 1 sounds super�cially similar, but in fact, its operation
is diametrically the opposite. Taylor is worried about "spirals", not about
determinacy... New-Keynesian models and results are often described with
old-Keynesian intuition. This is a mistake." Cochrane (2011, p.602-604).

1 Introduction

Can the theory of Ramsey (1927) optimal policy under commitment of a
decentralized economy rise on its ability to organize and interpret facts?
Using data on in�ation, output and interest rate including the Clarida, Gali
and Gertler�s (2000) period and assuming the private sector�s four-equations
new-Keynesian model, Matthes (2015, p.3) estimates the probability that
"only in 1980 were policy actions of the Volcker Federal Reserve able to
signi�cantly move the private sector�s beliefs towards a central bank that acts
under commitment and prefers lower in�ation."
We use Matthes (2015) estimates for computing the unique representation

of optimal policy rule using the private sector�s variables (more details below).
Optimal policy under commitment con�rms that U.S. in�ation was conquered
in the early 1980�s by a change from a "passive" policy in which interest did
not respond su¢ ciently to in�ation to an "active" policy in which they do
so. The in�ation rule parameter is 2:76 in Matthes (2015), close to 2:15 in
Clarida, Gali, Gertler (2000) and larger than one, according to the Taylor
principle.
But a �rst surprise comes from that interest did respond negatively to

output gap (We compute Matthes (2015) output gap rule parameter: �2:61)
with optimal policy instead of positively 0:83 in the Clarida, Gali and Gertler
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(2000) "simple" rule story. This sign di¤erence re�ects the opposite opera-
tion of monetary policy: negative feedback versus positive feedback. A sec-
ond surprise is that this seemingly countercyclical optimal Taylor rule with
respect to output is in fact procyclical in the new-Keynesian model! Con-
versely, the "seemingly counter-cyclical" positive output gap rule parameter
is key in Clarida, Gali, Gertler (2000) to obtain a procyclical positive feed-
back rule in order to increase the number of unstable dimensions the private
sector�s dynamics. The sign of negative feedback rule parameters depends
on the sign restriction of the monetary policy transmission mechanism. In
the new-Keynesian model, current policy rate increases next period output
gap (via the intertemporal substitution e¤ect), Hence, a negative feedback
rule parameter with respect to output gap should be negative. Then, one-
time-step output gap decreases two-time-step in�ation, so that a negative
feedback rule parameter for the response of policy rate to in�ation should
necessarily be positive.
First, DSGE modellers shifting from the hypothesis of non-optimal policy

maker�s, "simple" rule, determinacy (with positive feedback rule) to optimal
policy under commitment (with negative feedback rule) implies a dramatic
change for the estimation of the model because forward variables turn to
be necessarily included in the stationary recursive dynamics of the economy.
In technical terms, changing determinacy assumptions is a Hopf bifurcation
(Barnett and Duzhak (2008).Second, with optimal policy under commitment,
one may interpret the shift from active to passive monetary policy in 1973
and from passive to active monetary policy in 1981 as back and forth Taylor
principle saddlenode bifurcations. Following a mismearement of the output
gap, and being uncertain on the structural break on the trend of output in
1973, Fed policy may have turned to give an excessive weight on output gap
with respect to in�ation. Because of a new-Keynesian monetary transmission
mechanism where the policy rate modi�es one-time-step output gap without
a direct one-time-step e¤ect on in�ation, this opens the possibility to reduce
the volatility of output, but to choose in�ation rule parameter close to one
and let in�ation close to a unit root. Such a policy is risky, with a lack of
robustness of stabilization to measurement errors of structural parameters.
Diverging in�ation occured with in�ation spiral and indeterminacy.
In 1981, Volcker�s created a structural break on in�ation and output gap

expectations, having built the credibility of Fed preferences with relatively
large weight on in�ation volatility, leading to a larger than one in�ation rule
parameter. Because of the new-Keynesian monetary transmission mecha-
nism, to stabilize two-time-step in�ation, one needs to stabilize �rst the in-
termediate target (output gap) at one time step with the policy rate. Then,
both in�ation and output gap turned to be stabilized, with a relatively safe
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distance from bifurcation borders and more robustness to measurement errors
on structural parameters.
Policy makers may still worry on the negative sign of optimal policy out-

put rule parameters, which contradicts countercyclical monetary policy Fed
statements. Identical saddlenode bifurcations occurs with a negative feed-
back output gap parameter which is positive if one asssumes opposite sign
restrictions than the current ones in the new-Keynesian model: a negative
intertemporal elasticity of substitution and a positive sensitivity of future
in�ation to current output gap). Matthes (2015) Bayesian estimates depend
heavily on the priors with positive sign restrictions on the intertemporal elas-
ticity of substitution (prior 0.5) and on the negative sign restriction of the
e¤ect on future in�ation of current output gap (prior 0.3). Bayesian estima-
tion is indeed more likely to �nd negative posterior estimates with negative
priors. An alternative theory and its estimations, such as limited asset mar-
ket participation (Bilbiie (2007), Bilbiie and Straub (2013)), �nds negative
aggregate intertemporal elasticity of substitution. This estimates are also
found in several countries by Havranek et al. (2015) meta-analysis despite
a massive publication bias for positive IES estimated by Havranek (2013).
Mavroeidis et al. (2014, �gure 5) found nearly 40% positive correlation be-
tween future in�ation and current output gap in the new-Keynesian Phillips
curve. Alternative sign restriction as the key di¤erence in Taylor�s (1999)
model with respect to the new-Keynesian four equations model. Assuming
in�ation is forward instead of backward in this model, optimal policy under
commitment leads also to a Taylor principe with an intertemporal elasticity of
substitution equal to zero and a positive correlation between future in�ation
and current output gap in the new-Keynesian Phillips curve. Uncertainty
upon the sign (including zero) of structural parameters driving the monetary
policy transmission is the worst type of uncertainty for the design of policy
rule, in both optimal and non-optimal determinacy hypothesis, and in the
case of robust optimal control applied on optimal policy under commitment.
This paper�s novelty is a contribution to the interpretation of Ramsey

(1927) optimal policy under commitment of a decentralized dynamic econ-
omy (Miller and Salmon (1985), Levine and Currie (1987)). We interpret
optimal policy under commitment as a theory of how the credibility of pol-
icy maker�s commitment perceived by the private sector leads to an initial
structural break on private sector�s expectations re�ected by a unique opti-
mal anchor (which di¤ers from old-Keynesian model where all variables are
backward looking), followed by the stabilization of private sector�s forward
and backward variables saddlepoint equilibrium dynamics into converging
sink described by a "large" stationary vector auto-regressive of order one
(VAR(1)) of minimal number of dimensions equal to the number of predeter-
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mined and forward variables, exactly as old-Keynesian stabilization policy,
instead of a "narrow" stationary VAR(1) of minimal number of dimensions
equal only to the number of predetermined variables.
We break a thirty years old convention stating that one can use any of the

in�nite number of representations of optimal policy rule, except one, where
the rule depends on private sector�s variables (Miller and Salmon (1985),
Levine and Currie (1987)). This convention has always contradicted linear
algebra: a mathematically and observationally equivalent system of equations
including initial boundary conditions describe optimal policy under commit-
ment with this representation of the rule! Optimal policy under commitment
has opposite policy recommandation with negative feedback rule parameters
which are always di¤erent from positive feedback "simple" and "optimal sim-
ple" rule parameters. Thirty years is incredibly long!
Can policy makers lean against bubbles and crashes of prices, output, as-

set prices and debt diverging from a "good" local economic equilibrium? At
the same time, can policy makers determine unique anchors for the current
values of forward looking variables, such as the price level? The new Keyne-
sian and dynamic stochastic general equilibrium (DSGE) models, "simple"
Taylor rule, provides the current standard answer which is negative. They
use a "non-optimal policy maker�s determinacy hypothesis" (our terminol-
ogy): policy makers should not use negative feedback rule parameters sta-
bilizing the private sector�s saddlepoint equilibrium into a converging sink.
Policy maker�s should use positive feedback rule parameters so that private
sector�s equilibrium remains a saddlepoint equilibrium. Hence, there is a
unique anchor of forward variables, such as in�ation, output and asset prices
on predetermined variables, such as the stocks of public debt, of private debt,
of capital and autoregressive shocks.
However, policy-makers and economists do not have a perfect knowledge

of structural parameters such that the intertemporal elasticity of substitution
(Havranek et al. (2015), Havranek (2013)) and the in�ation output gap sen-
sitivity in the new-Keynesian Phillips curve (Mavroeidis et al. (2014)). The
"non-optimal policy maker�s determinacy hypothesis" is not robust to mis-
speci�cation errors of the value of structural parameters. The initial anchor
of forward on the unique stable path of a equilibrium with slightly misspec-
i�ed parameters corresponds to a jump on an "out-of-equilibrium" unstable
path of the correctly speci�ed good local equilibrium, with a large loss of
welfare. Potential diverging paths (bubbles) of DSGE models maintained
with "non-optimal policy maker�s determinacy hypothesis" have a probabil-
ity equal one to be real world e¤ective bubbles with large welfare costs of
leaving a good local equilibrium neighborhood.
Section two compares optimal and non-optimal determinacy hypothesis
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for the new-Keynesian four-equations model and Matthes (2015) versus Clar-
ida, Gali, Gertler (2000) estimations since Volcker�s Fed. Section three does
the same for Taylor�s (1999) principle with opposite sign restrictions than
in the new-Keynesian model. Section four obtains general determinacy and
policy rule identi�cation results for DSGE models comparing policy maker�s
models. The conclusion uses alternative criteria than determinacy to com-
pare the Ramsey (1927) determinacy hypothesis with respect to the non-
optimal policy maker�s determinacy hypothesis.

2 New-Keynesian Four-Equations Model

(1) The monetary policy transmission mechanism
The new-Keynesian private sector�s four-equations model is written with

all variables as deviations of an equilibrium. In equations 1 and 2, two non-
controllable exogenous stationary and predetermined variables zx;t and cost-
push z�;t are auto-regressive of order one (0 < j�z;xj < 1 and 0 < j�z;�j < 1)
where "g;t and "z;t are zero-mean, normally, independently and identically
distributed additive disturbances. Initial values of predetermined forcing
variables are given. The equilibrium is for output gap: yt = 0, for in�a-
tion: �t = 0 and it = i�: the nominal rate is equal to an optimal real rate
of interest i� with zero in�ation at the equilibrium. In the representative
household�s consumption Euler equation (equation 1), expected output gap
is equal to current output gap plus an increasing linear function of the real
rate of interest, nominal rate it (written as deviation from i�) minus expected
in�ation Et�t+1, with a intertemporal elasticity of substitution 
 > 0. This
is an intertemporal substitution (IS) equation. It is a mistake to call it an
investment-savings equation as the representative consumer consumes all its
current income at all dates: investment and savings are equal to zero (Gali
(2015)). In the new-Keynesian Phillips curve (equation 2), � discounted ex-
pected in�ation is equal to current in�ation plus a negative linear function of
current output gap with a sensitivity ��. Sign restrictions are such that pa-
rameters 
; �; � are all strictly positive. The new-Keynesian private sector�s
four-equations system is:

zx;t = �z;xzx;t�1 + "x;t where "x;t is iid N
�
0; s2x

�
, zx;0 given, (1)

z�;t = �z;�z�;t�1 + "�;t where "x;t is iid N
�
0; s2�

�
, z�;0 given. (2)

xt = Etxt+1 � 
 (it � Et�t+1) + zx;t where 
 > 0 (3)

�t = �Et�t+1 + �xt + z�;t where � > 0 and � > 0 (4)
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The system is written in a vector auto-regressive of order one (VAR(1))
state space form, with �rst predetermined variables zt and second forward
variables qt (Giordani and Söderlind (2004)):

0BB@
zx;t+1
z�;t+1
Etxt+1
Et�t+1

1CCA =

0BB@
�z;x 0 0 0
0 �z;� 0 0
�1 


�
1 + 
�

�
� 

�

0 � 1
�

��
�

1
�

1CCA
0BB@
zx;t
z�;t
xt
�t

1CCA+
0BB@
0
0


0

1CCA it+
0BB@
�z;x 0
0 �z;�
0 0
0 0

1CCA� "z;x;t+1
"z;�;t+1

�
;

(5)
with block notations, in Kalman controllable staircase form:

zt =

�
zx;t
z�;t

�
, qt =

�
xt
�t

�
, z0 given, q0 free. (6)�

zt+1
Etqt+1

�
=

�
Azz 0zq
Aqz Aqq

��
zt
qt

�
+

�
0z
Bq

�
it +

�
�t

0qq

�
"t: (7)

Reduced form elements of the transmission mechanismmatricesA andBq
are functions of the vector of structural parameters denoted �1 = (�,�,�,�z;x,�z;�).
Two policy targets (output gap xt and in�ation �t) are two-time-steps Kalman-
controllable by a single monetary policy instrument it, because rank(Bq;AqqBq) =
2. The full system (A;B) is stabilizable because the non-controllable vari-
ables are assumed to be asymptotically stable: 0 < j�z;xj < 1 and 0 < j�z;�j <
1.
With respect to the general case of section 4, this model does not include

endogenous predetermined variables, because the assumptions of a represen-
tative household and a zero net supply of one-period debt guarantee that public
debt is zero for all dates (Gali (2015), p.20, footnote 3). This eliminates the
stock-�ow dynamic equation of public debt. Then, forward variables cannot
be initially anchored on predetermined public debt, but on ad hoc exogenous
state variables zt with auto-regressive parameters. In this ad hoc corner
equilibrium, the interpretation of the intertemporal substitution equation is
slightly absurd. Although interest payments are zero because the represen-
tative household does not hold public debt, the interest rate on zero public
debt determines the household growth rate of its consumption, .
The laissez-faire ("open loop") private sector�s model is described by the

Fed following a �xed interest rate target or peg: it � i� = 0. The transition
matrix Aqq has one eigenvalue less than one and the other eigenvalue is
larger than one. The matrix Azz eigenvalues are stable: 0 < j�z;xj < 1 and
0 < j�z;�j < 1. The laissez-faire equilibrium has three stable eigenvalues and
one unstable eigenvalue for two predetermined variables and two forward
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variables. It faces indeterminacy according to Blanchard and Kahn�s (1980)
condition.
(2) Comparing optimal versus non-optimal policy maker�s de-

terminacy hypothesis
Ramsey (1927) policy maker minimizes a quadratic loss function with

respect to the policy rate, in�ation and the output gap in order to �nd
optimal rule parameters, using this following representation it = F�q (�)qt +
F�z (�) zt, with a positive weights matrix Q � 0, with a strictly positive
adjustment cost parameter R > 0 on the volatility of her policy instrument
and a discount factor � equal to one:

L = �Et
+1X
t=0

�t
�
�2t +Qxxx

2
t + 2Q�z�tz�;t + 2Qxzxtzx;t +Qzzz

2
t +Ri

2
t

�
(8)

subject to the private sector�s new-Keynesian four equations model (equa-
tions (1) to (4)), with initial conditions for predetermined state variables and
natural boundary conditions for forward variables (see section 4). There are
possible policy maker�s restrictions Qxz = Q�z = Qzz = 0. For a Ramsey
planner, additional restrictions constrain preference parametersQ to be func-
tions of structural parameters of the private sector (Levine, Pearlman, Pierse
(2008)). The policy maker�s chooses optimal policy while taking private sec-
tor�s behavior and initial conditions as constraints (equations 1,2,3,4).
Table 1 compares optimal versus non-optimal policy maker�s determinacy

hypothesis with an ad hoc interest rule it = Fqqt + Fzzt. .
Table 1: Optimal versus non-optimal policy maker�s determinacy hy-

pothesis.
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PM: Optimal Non-optimal PM
game Stackelberg against nature

P zt+1 = Azzzt +�t"t+1 Azzzt +�t"t+1

F qt+1 =
(Aqz +BqF

�
z) zt

+
�
Aqq +BqF

�
q

�
qt

Nz (F) zt+1

L �q;t = Pqzzt +Pqqqt 0; Lucas critique
R it = F�zzt + F

�
qqt Fzzt + Fqqt

F
F� (�), structural
parameters

ad hoc, Lucas critique

I z0 = given given
I q0 = �P�1qq Pqzz0 Nz (F) z0
P 2 + 2: zt; �q;t 2: zt
F 2: qt 2: qt

B. K.
4 stable: �z;x; �z;�;
j0:39� 0:13ij = 0:41:

2 stable: �z;x; �z;�
:

B. K.
2 unstable:
ja� bij = 1=0:41 = 2:44

2 unstable:
ja� bij = 1:27

total 6 dimensions 4 dimensions
PS sink 4/0 saddlepoint 2/2
PM saddlepoint 4/2 Lucas critique 0/0

identif.
restrict F

zero
2: e.g. Fz = 0
as it =
(Fq + FkN

�1
z ) :qt

Matthes/CGG Fz Fzx = 1:15; Fz� = 5:1 Fzx = 0; Fz� = 0
set Fq DO � DS DNO � DU

Feedback Fq Negative, Stabilizing Positive, Destabilizing
Sign restriction Fx Fx < 0 Fx > 0
Taylor principle Fx >

�
1�� (1� F�) Fx >

�
1�� (1� F�)

Matthes/CGG Fq Fx = �1:61; F� = 2:79 Fx = 0:93; F� = 2:15

��t ! 0
(for Q� ! +1)

F�y 2 DO bounded with��� �F�y���! 0
F� ! �1; Fx bounded
j� (Fy)j ! +1

B.K. Blanchard Kahn determinacy condition, PS: private sector, PM pol-
icy maker, P predetermined, F forward, L Lagrange multiplier, R rule, I
initial conditions and initial anchor.
Both rational expectations solutions are exactly described by the system

of equations (PFLRI) in table 1. For optimal policy under commitment, for-
ward variables (equation F) are recursive and belongs to the VAR(1) part of
the rational expections system, because of the credible commitment at the
initial date of the policy maker. This is no longer the case with non-optimal
policy maker, where private sector�s forward variables are permanently an-
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chored as linear functions of current predetermined variables. The elements
of NNO (Fq; �) are computed as rational fractions of reduced form policy rule
parameters Fq and of structural parameters (�; 
; �;�t;Azz) in appendix 1.1.
Policy maker�s Lagrange multipliers (equation L) corresponds to the op-

timal jump equations of rational expectations system, as a result of in�nite
horizon transversality conditions (cf. section 4). They are set to zero for all
dates in the case of non-optimal policy, which faces the Lucas critique.
The optimal rule parameters (equation R) depends on policy maker�s

preferences and on the private sector�s monetary transmission mechanism
structural parameters. In the non-optimal policy maker�s determinacy hy-
pothesis, changes of structural parameters � = (�; 
; �) of monetary policy
transmission mechanism do not imply a change of reduced form policy rule
parameters (F�; Fx): the non-optimal policy maker�s rule faces the Lucas
critique (Hurtado (2014)).
A unique optimal initial anchor (equation I) of forward variables is chosen

by the policy maker. It is usually distinct from the initial and permanent
anchor of non-optimal policy maker.
The unique optimal anchor is found minimizing the loss function at the

initial date with respect to initial value of forward variables. This predeter-
mines to zero at the initial date the two policy maker�s Lagrange multipliers
of the two forward variables, which are equal to the marginal loss function.
Hence, the policy maker�s Hamiltonian system includes then 4 predetermined
variables and 2 forward, whereas the non-optimal policy maker�s determinacy
hypothesis includes only 2 predetermined variables and 2 forward. Hence,
the Blanchard Kahn determinacy condition are di¤erent. The number of sta-
ble eigenvalues required for determinacy is 4 for the Ramsey (1927) optimal
policy maker. It is equal to 2 in the case of non-optimal determinacy.
The representation of the Ramsey (1927) dynamics in the four dimensions

stable subspace using private sector�s variables is now a stable sink with 4
stable eigenvalues, whereas the open loop model included 3 stable and 1
unstable eigenvalues. There remains 2 unstable eigenvalues for the policy
maker�s saddlepoint equilibrium, which includes 6 dimensions. Optimal pol-
icy rule used stabilizing negative feedback in order to turn the open loop
unstable private sector dynamics into a closed loop stable sink. The closed
loop matrixAyy+BqFq has two stable eigenvalues.Numerical eigenvalues are
given for Matthes (2015) estimation of structural parameters.
By contrast, the number of stable dimensions required for determinacy

is 2 with the non-optimal policy maker�s determinacy hypothesis. With this
policy, the private sector shifts from an open loop dynamics 3 stable and
1 unstable eigenvalue to a closed loop dynamics including 2 stable and 2
unstable eigenvalues. Non-optimal policy rule parameters use destabilizing
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positive feedback in order to increase the number of unstable dimensions
with respect to the open loop system. The closed loop matrix Aqq + BqFq
has two unstable eigenvalues. The out-of-equilibrium monetary transmission
mechanism related to the vector auto-regressive of order one (VAR(1)) qt =
(Aqz +BqFz)zt�1 + (Aqq +BqFq)qt�1 is exploding. It is substituted by the
instantaneous jump of forward variables on predetermined variables for all
periods: qt = NNO (Fq; �) :zt.
Two identi�cation restrictions are required for the non-optimal policy

rule, as the VAR(1) consists now only of two equations (equation P), and
two variables are linear function of two others (equation F). The non-optimal
policy rule can include at most two parameters (cf. section 4). We set to
zero the two rule parameters on autoregressive shocks. with identi�cation
restrictions such that the policy rule does not react to auto-regressive shocks
zt (Fz = 0).
Optimal negative feedback rule parameters related to controllable vari-

ables versus non-optimal positive feedback rule parameters belongs to two
distinct sets denoted DO and DNO.
(3) Volcker�s optimal policy under commitment versus non-optimal

policy maker�s determinacy hypothesis
Volcker�s US disin�ationary monetary policy is often related to the private

sector�s belief of the Fed�s credible commitment to lean against in�ation
spiral despite a recession (Goodfriend and King (2005)). Matthes (2015)
uses Söderlind (1999) algorithms to estimate the private sector�s probability
of discretionary policy versus optimal policy under commitment from 1960
to 2005. He assumes restrictions on policy maker�s restrictions Qxz = Q�z =
Qzz = 0. Additional restrictions assuming Volcker-Greenspan to be Ramsey�s
(1927) planners would have constrained their preference parameter Qxx to
be a function of structural parameters of the private sector.
Matthes (2015) �nds that the pre-Volcker period �ts a stationary dis-

cretionary policy estimating Oudiz and Sachs (1985) model. He �nds that
optimal policy under commitment �ts Volcker�s period. We use Matthes
(2015, table 1) calibrated discount factor � = 0:99 and posterior estimates
for optimal policy under commitment, starting from priors satis�es the sign
restrictions of the new-Keynesian four-equations model: � = 0:7=(1 + �) =
0:7=(1:99) = 0:35 (prior 0:3=(1:99) = 0:15), 
 = 1=� = 1=1:61 = 0:62 (prior
1=2), �z;x = 0:4,�z;� = 0:57,�z;x� = 0:61,R = 0:11, Qx = 0:07, Q� = 1,
Qjz = 0. Both priors for � and 
 corresponds to large positive values with
respect to Havranek et al. (2015), Havranek (2013) and Mavroeidis (2014)
surveys. The large posterior size of in�ation/output sensitivity � = 0:35
(more than the double of the prior 0:15) is an extreme positive value very
likely to be revised in future replications.
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Optimal policy implies four stable eigenvalues: two complex conjugate
0:39� 0:13i; 0:39 + 0:13i with absolute value of 0:41, two auto-regressive pa-
rameters (0:3; 0:6) of forcing variables zt. It includes two unstable complex
conjugate eigenvalues which mirror the two complex conjugate, with absolute
value 1=0:41 = 2:4 which are ruled out by policy maker�s transversality con-
ditions leading to matrix Pq.
We compute the linear relation between policy maker�s Lagrange multi-

pliers and private sectors variables. The optimal initial anchor of forward
variables corresponds to the Fed credibility structural break in 1981. In
Matthes 2015 (�gure 2), the probability of commitment regime rises over 0:6
in 1981:

�t=Pq (�; �; 
;Qx; R)qt +Pz (�; �; 
;Qx; R;Qxz; Q�z;Azz) zt (9)�
�x;t
��;t

�
=

�
0:66 �1:22
�1:22 3:67

��
xt
�t

�
+

�
0:40 1:92
�0:83 �4:01

��
zx;t
z�;t

�
(10)�

�x;1981
��;1981

�
= 0()

�
x1981
�1981

�
=

�
�0:52 �2:31
0:05 0:33

��
zx;1981
z�;1981

�
(11)

The matrix Pq is the unique solution of a discrete time Ricatti equation
(Sargent and Ljungqvist (2012), chapter 19) and Pz is the unique solution of
a Sylvester equation. They allow to compute unique optimal rule parameters
Fq and Fz (code in appendix 1) presented in table 2.
In the general case (section 4), during a period where structural para-

meters do not change, there is an in�nite number of representations of the
optimal policy rule which are observationally equivalent to the representation
as a non-inertial simple rule function of private sectors current variables with
with �xed coe¢ cients belonging to an optimal set DO. This representation
is exactly Kalman�s (1960) representation of the optimal rule for the linear
quadratic regulator which is programmed in MATLAB and SCILAB. Among
the in�nity of representation F0 and of their determinacy sets D

0
S, this repre-

sentation is the simplest to be presented by policy advisers to policy makers
and by policy makers to the real world economic agents.
Considered in isolation, all these policy rules are completely di¤erent.

Considered within the optimal policy maker�s Hamiltonian system of equa-
tions including boundary conditions fP; F; L;R; Ig for all dates, they are
all equivalent representations found by linear substitution using other equa-
tions of the system, for that the new representations of the rule R0 belong-
ing to a mathematically and observationally equivalent system of equations
fP 0; F 0; L0; R0; I 0g for all dates:
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fP; F; L;R; Ig for all dates t, fP 0; F 0; L0; R0; I 0g for all dates t (12)

The optimal set D
0
O of rule parameters F

0 of the rule R0 may appear
very di¤erent from the optimal set DO of rule parameters F, but this does
not change the solution. Table 2 compares di¤erent representations of policy
rules:
Table 2: Representations of rule parameters during Volcker�s-Greenspan

period.
Rule: Fx F� Fzx Fz� F�x F�� Fzx(�1) Fz�(�1) F�(t�1) Fi(t�1)
CGG 0:93 2:15 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0:79
M �1:61 2:79 1:15 5:10 n.a. n.a. n.a. n.a. n.a. n.a.
M.1981 �3:92 2:03 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
M.SL n.a. n.a. 2:14 9:73 �2:69 �0:13 n.a. n.a. n.a n.a.
M.1981 n.a. n.a. 2:14 9:73 n.a. n.a. n.a. n.a. n.a. n.a.
M3.HD n.a. n.a. n.a. n.a. n.a.
M.apdx n.a. n.a. 0:41 �0:56 ? ? n.a. n.a. �1:27 n.a.
n.a.: not available, ?: values not reported by Matthes (2015), SL: Sargent

Ljunqgvist textbook representation, HD: Sargent Ljunqgvist history depen-
dent representation, apdx: Matthes (2015) online appendix.
The �rst rule is Clarida, Gali and Gertler (2000): F� = 2:15, Fx = 0:93 us-

ing limited information generalized method of moments (GMM) to estimate
an inertial Taylor rule but not the four other equations of the new-Keynesian
model. Using the same data for the same period, Mavroeidis (2010, �gure 2)
found very large robust con�dence intervals for Clarida, Gali, Gertler (2000)
estimates which overlaps to negative values for both rule parameters F� and
Fx.
By contrast, Matthes (2015) is a full information Bayesian estimation of

the new-Keynesian four equations model with an estimation of Fed preference
parameters. Matthes (2015) estimated in�ation target �� is 1:76 which is
lower than 3:58 found by Clarida, Gali and Gertler (2000) and his estimated
long run interest rate is i� = 1:03%.
For estimated structural parameters, which did not change during Volcker-

Greenspan period, this reduced form representation of the policy rule of op-
timal policy under commitment is a non-inertial simple rule with a small
number (four) of �xed rule parameters. Volcker�s optimal policy under com-
mitment is estimated such that the in�ation rule parameter is large (2:79)
and the output gap parameter is large in absolute value and negative (�1:61)
and the interest rate also respond to auto-regressive shocks. This seemingly
pro-cyclical monetary policy rule is counter-cyclical in this model (see next
section).
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For the year 1981, we substitute the optimal initial anchor of in�ation
and output gap in 1981. The credibility structural break of the initial jump
of forward variables is observationally equivalent to an initial value of the
optimal policy rate in 1981 with a response to in�ation in 1981 (2:03) and a
sharp negative response to output gap in 1981 (�3:92).
Another observationally equivalent representation of Matthes (2015) op-

timal rule is Sargent and Ljunqvist�s (2012) textbook representation as a
function of the policy maker�s predetermined variables. It is given on the
fourth row of table 2. Its observationally equivalent representation for the
year of the structural break of Fed�s credibility is immediately found setting
�x;1981 = ��;1981 = 0. However, its rule parameters cannot be compared with
Clarida, Gali and Gertler (2000). It can hardly be understood and communi-
cated to policy maker�s and by policy maker�s to the general public, because
the interest rate responds only to variables which are not reported national
accounts statistics: policy maker�s Lagrange multipliers (�x;t; ��;t) and auto-
regressive forcing variables (zx;t; z�;t). We suggest to label this representation
"implicit" instead of "explicit" as proposed by Svensson (2003). Conversely,
we suggest to label the observationally equivalent representation of the rule
as a function of private sector�s variables as "explicit" instead of "implicit"
as proposed by Svensson (2003).
Sargent and Ljunqvist (2012, chapter 19) and Woodford (2003) propose

an observationally equivalent history dependent representation of optimal
policy rule, after linear substitutions using period t � 1 equations of the
system (FPLRI) valid at all dates. With this "history dependent" repre-
sentation, appears the lagged interest rate in the rule. "This insight partly
motivated Woodford (2003) to use his model to interpret empirical evidence
about interest rate in the United States" (footnote 10, p.774). Unfortunately,
this representation includes 5 reduced form parameters instead of 4 reduced
form parameters for the two other observationally equivalent rules which are
"non-inertial". This implies that one identi�cation restriction on reduced
form parameters is required for this representation of the rule. Without
this identi�cation restriction, the auto-regressive parameter in this "history-
dependent" rule is not identi�ed. Contrary to Woodford�s (2003) interpre-
tation, including a cost of the volatility of the policy rate (R > 0) in the
policy maker�s loss function is not a micro-foundation of an "inertial" policy
rule including a lagged value of policy rate. This representation is obser-
vationally equivalent to non-inertial representations of optimal policy with
fewer reduced form parameters. Larger smoothing parameters (R > 0) im-
plies lower optimal policy rule parameters Fq and Fz and implies a more
inertial rule, with a parameter equal to zero for lagged instrument it�1, but
with a policy rate which responds less to deviations of policy targets from
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their equilibrium!
The last row is a representation of Matthes�(2015) rule in Matthes online

appendix (equation 4), which excludes the output gap. He does not report
the numerical values of two rule parameters. This representation includes 5
reduced form parameters instead of 4 reduced form parameters for the two
previous observationally equivalent rules. This implies that one identi�cation
restriction on reduced form parameters is required for this representation of
the rule.
Finally, an in�nity of observationally equivalent forward and backward

representations of optimal rule where the policy rate responds to lagged or
expected values of in�ation are computed by linear substitutions using pre-
vious or future periods equations P and F of the PFLAI system of equations:

it = F(A+BF)
k:(qt+k; zt+k) for k 2 Z (13)

(4) Optimal versus non-optimal determinacy sets
Proposition 2.1. Optimal versus non-optimal determinacy sets
(i) The determinacy set DO of optimal rule parameters (F�; Fx) obtained

when varying (Qxx, R) 2 [0;+1[�]0;+1[ is included in the stable set DS

which imply two stable eigenvalues for the closed loop system excluding non-
controllable variables qt = (Ayy +BqFq)qt�1.
(ii) This set has no intersection with the non-optimal policy maker deter-

minacy set DNO which imply two unstable eigenvalues. It is usually restricted
to an implementable intersection with Fx 2 [0; 3] and F� 2 [1; 3] (Schmitt-
Grohé and Uribe (2007). This rectangle is included in the unstable set of rule
parameters DU :

DO � DS and DNO � DU with DS \DU = ?

(iii) Both sets DO and DNO satis�es the new-Keynesian Taylor principle
for F�: Fx > �

1�� (1� F�). However, the optimal policy rule parameter for
the output gap is always strictly negative Fx < 0 for the optimal determinacy
set DO whereas it is usually assumed to be at least equal to zero Fx � 0 for
the non-optimal policy maker determinacy set DNO (table 1).
Proof.
(i) is derived from in�nite horizon transversality conditions, general case

in section 3.
(ii) is a particular case of Wonham (1967) pole (eigenvalues) placement

theorem: for a controllable pair (Ayy;Bq), the eigenvalues of Ayy+BqFq
can be arbitrarily located in the complex plane (complex eigenvalues, however,
occur in complex conjugate pairs) by choosing a policy rule Fq accordingly.
(iii) see appendix 1 and general case in section 3.

15



­8

­7

­6

­5

­4

­3

­2

­1

0

1

2

­5 0 5 10 15 20 25

Figure 1: Optimal determinacy set (small triangle) D0 of rule parame-
ters included in upper corner of the large stable triangle Ds in the plane of
rule parameters (F�; Fx) for the new-Keynesian two-equations model, using
Matthes (2015) estimates.
Table 3: Apexes of the optimal set and of the stability set of rule para-

meters on output gap and on in�ation
Minimize: R Qxx Q�� �1; j�1j �2; j�2j F� Fx
Interest rate, 1;+1 0 0 0:41 0:73 1:77 �1:05
Output gap, 10�7 1; (+1) 0 10�7 0:995 1:06 �1:27
In�ation. 10�7 0 1; (+1) 10�3 10�3 5:63 �2:88
Matthes (2015) 0:11 0:07 1 0:41 0:41 2:79 �1:61
CGG (2000) - - - 1:27 1:27 2:15 0:93
Saddlenode/Hopf: - - - 1 1 1:01 �0:37
Saddlenode/Flip: - - - 1 �1 1:10 �3:60
Hopf/Flip: - - - �1 �1 19:4 �6:82
In �gure 1, the optimal determinacy setDO for (Qxx, R) 2 [0;+1[�]10�7;+1[

corresponds to the small triangle within the stability triangle DS. In table
3, vertexes of DO corresponds to the Fed seeking only maximal inertia of the
policy rate or miniminizing only the variance of output gap without notice
of the zero lower bound (R = 10�7) or miniminizing only the variance of
in�ation without notice of the zero lower bound (R = 10�7).
Matthes (2015) rule parameters are represented by a red dot in the small

triangle DO and Clarida, Gali and Gertler (2000) rule parameters are repre-
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sented by in red dot in the Schmitt-Grohé and Uribe (2007) implementable
simple rule rectangle. Assuming non-optimal determinacy versus optimal
determinacy amounts to cross the Hopf bifurcation top side of the stability
triangle, which corresponds to two conjugate eigenvalues having absolute
value equal to one (Barnett and Dhuzak�s (2008)). The private sector�s
economy shifts from 4 stable eigenvalue, including two complex conjugate
eigenvalues (plus two unstable for the policy maker�s Lagrangian system) to
2 stable eigenvalues and 2 unstable complex conjugate eigenvalues (four un-
stable eigenvalues for the policy maker�s Lagrangian system, which violates
the policy maker�s in�nite horizon transversality conditions).
The near-vertical left side of the stability triangle DS sets the border of

"Taylor principle saddle-node bifurcations". It is such that 1 is an eigenvalue
(P (1) = 0). The eigenvector related to this unit root eigenvalue has a large
weight on in�ation with respect to the output gap. In 1973, the Fed shifted
from active monetary policy (Taylor principle is satis�ed Fx larger than one,
on the right of this near-vertical side) to passive monetary policy on the left
of this near-vertical side. In 1981, Volcker�s Fed shifted back to stability from
passive monetary policy to active monetary policy with a structural break
of the credibility of the Fed commitment to lean against in�ation. The pri-
vate sector�s economy shifts from 4 stable eigenvalue (plus two unstable for
the policy maker�s Lagrangian system) to 3 stable eigenvalue and one unsta-
ble eigenvalue (three unstable eigenvalue for the policy maker�s Lagrangian
system).
In 1973, the Fed may have had a relative large weight Qxx on output,

due an excessively large error on the measure of the output gap following
an unexpected downward break of the trend of output growth. In the limit
case where the Fed minimizes only the output gap volatility without notice
of zero lower bound constraint on policy rate (R � 0), the left apex DO

corresponds to rule parameters (F� = 1:06; Fx = �1:27) with a Taylor rule
parameter very close to the Taylor principle lower bound (the saddle-node
bifurcation line) and in�ation close to unit root (eigenvalue), while output
gap may be close to zero root (eigenvalue). The ability to stabilize out-
put without stabilizing in�ation is due to this assumption of the monetary
transmission mechanism: interest has an e¤ect on one-time-step output gap
and no direct e¤ect on one-time-step in�ation. Being so close to the Taylor
principle saddle-node bifurcation border, this optimal policy was not robust
to small misspeci�cation of private sector�s structural parameters (
; �; �).
Then, the Fed crossed the Taylor principle saddlenode bifurcation side of the
stability triangle in 1973.
In 1981, Matthes (2015) found Volcker�s rule parameters far from the

Taylor principle saddle-node bifurcation border: (F� = 2:76; Fx = �1:61). It
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is half way to the extreme case where the Fed preferences minimizes only in-
�ation volatility without notice of zero lower bound constraint (R � 0), with
rule parameters (F� = 5:63; Fx = �2:88) with related two complex conjugate
eigenvalues with absolute value close to zero (j�1j = j�2j = 0:001). This case
corresponds to the right vertex of the optimal determinacy triangle DO. Poli-
cies with a relative large weight on in�ation are necessarily also stabilizing
output, because the policy rate does not have a direct one-time-step e¤ect on
in�ation and because there is an indirect (pass-through) transmission channel
e¤ect which occurs from one-time-step output gap to two-time-step in�ation.
By comparison, Schmitt-Grohé and Uribe (2007) "optimal simple" rule with
a loss function minimizing only the square of in�ation would �nd zero in�a-
tion for positive or negative in�nite value of the in�ation rule parameter F�
and an in�nite eigenvalues.
Finally, the bottom side of the stability triangle corresponds a �ip bifur-

cation (�1 is an eigenvalue) when the output gap parameter Fx is too large
in absolute value and negative. Because the optimal optimal determinacy
triangle DO is far from this border, large errors on structural parameters
would be required to observe such a bifurcation. The private sector�s econ-
omy shifts from 4 stable eigenvalue (plus two unstable for the policy maker�s
Lagrangian system) to 3 stable eigenvalue and one unstable eigenvalue (three
unstable eigenvalue for the policy maker�s Lagrangian system).
With opposite sign restrictions 
 < 0 and � < 0, triangles of �gure 1

are found by symmetry with respect to the horizontal axis in the positive
quadrant of (Fx; F�). A similar story holds this time with a positive sign of
the output gap parameter Fx > 0 for optimal policy under commitment and
a negative sign of the output gap parameter Fx < 0 for Clarida, Gali, Gertler
(2000).
Proposition 2.2. The signs of negative feedback rule parame-

ters (Fx; F�) depends on the signs restrictions on monetary policy
transmission mechanism (
, �) according to table 4.
Table 4: Sign restrictions on policy transmission implies signs restric-

tions on negative feedback optimal rule parameters
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NKIS: new-Keynesian intertemporal substitution equation, NKPC: new-
Keynesian Phillips curve, Fed: Fed statements, Bilbiie (2007) and Bilbiie and
Straub (2013): limited asset market participation theory.
Proof.
A negative feedback rule imply absolute values of closed-loop eigenvalues

of Ayy +BqFq smaller than the ones of open loop matrix Ayy. For positive
open-loop eigenvalues for Ayy > 0, then one has BqFq < 0. Hence, the rule
parameter Fq should have the opposite sign of the marginal e¤ect Bq of the
policy instrument on the one-time-step value of the target. This is only a
necessary condition. A necessary and su¢ cient condition is that both rule
parameters belong to the stability set for negative feedback rule.
In the new-Keynesian model transmission mechanism proceeds in two

steps. On a �rst period, a rise of the policy rate leads to a rise of one-time-
step output gap (with a strictly positive intertemporal substitution parameter

). Hence, a stabilizing negative feedback rule parameter should be negative
for a negative feedback of a positive current output gap shock xt > 0.
There is no direct e¤ect of the policy rate on one-time-step in�ation, but

only a two-time-step e¤ect passing through output gap. If the marginal e¤ect
of the policy rate on two-time-step in�ation is negative, hence, a stabilizing
negative feedback rule parameter on in�ation should be positive.
Conversely, the limited asset market participation allows the possibility

of a negative intertemporal elasticity of substitution. The monetary policy
transmission mechanism is in line with Fed statements: a rise of the policy
rate leads to a fall of one-time-step output gap. When the current output
gap is above equilibrium xt > 0, a negative feedback response of the policy
rate stabilizing the output gap is necessarily positive Fx > 0. In the new-
Keynesian Phillips curve, the sign restriction is such that a rise of one-time-
step output gap decreases two-time-step in�ation, which is the opposite of

19



Fed statements. The two signs of the transmission channel through the e¤ect
on the output gap are at each period the opposite of Fed statements. Because
minus times minus is equal to plus, a rise of the interest rate leads to decrease
two-time-step in�ation by a factor ��
 in the new-Keynesian model and for
the Fed statements. When current in�ation is above equilibrium �t > 0, a
stabilizing negative feedback response of the policy rate is necessarily positive
F� > 0.
The empirical evidence of sign restrictions has been recently reviewed us-

ing thousands of single equation (limited-information) estimates in Havranek
et al. (2015) and in Mavroeidis et al. (2014)). Both surveys highlight a mas-
sive publication bias in favor of positive coe¢ cients (
 > 0; � > 0) (Havranek
(2013) and Mavroeidis et al. (2014), table 5). Both surveys found a large
uncertainty of estimates of (
; �) so that strictly positive, equal to zero or
strictly negative signs are not necessarily rejected. Using positive prior in
Bayesian estimation, Matthes (2015) found positive posterior estimate: 
 =
0:62, (with a prior of 
 = 0:5) using limited asset market participation
(LAMP) for a theoretical micro-foundation of an aggregate negative elas-
ticity of substitution 
, Bilbiie and Straub (2013) found 
 = �0:6 during the
Volcker-Greenspan period in the USA.

3 Taylor�s (1999) principle

Cochrane (2011) highlighted that Taylor (1999) used negative feedback rule
only because output gap and in�ation are assumed to be predetermined.
But it is possible to assume that in�ation is a forward variable in Taylor�s
(1999) model. Optimal policy under commitment uses negative feedback
rule and �nds again the Taylor principle, with Taylor (1999) opposite sign
restrictions � < 0 and an intertemporal elasticity of substitution 
 = 0 than
with the new-Keynesian model (� > 0,
 > 0). Taylor�s model includes the
new-Keynesian Philips curve with negative sign: � < 0 and auto-regressive
cost-push shock z�;t, assuming � = 1. With an intertemporal elasticity of
substitution equal to zero, output gap is a predetermined variable with de-
pends negatively (��) on the current policy rate minus current in�ation,
instead of expected in�ation, which is debatable. It also depends on an auto-
regressive shock zx;t with the same auto-regressive parameter �z;x = �z;� than
the cost-push shock z�;t.

xt = �� (it � �t) + zx;t where � > 0
The current period output gap can be eliminated, so that the private sec-

tor�s monetary policy transmission mechanism is described by an in�ation
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equation diverging at growth rate � which is Kalman controllable by the
policy rate (@Et�t+1=@it = � = ��� 6= 0) and a single aggregated AR(1)
predetermined stationary shock zt. The policy maker�s quadratic loss func-
tion includes structural parameters Q � 0 and R > 0:

min�Et
+1X
t=0

�t
�
�2t + 2Q�z�tz�;t +Qzzz

2
t +Ri

2
t

�
(14)

Et�t+1 = (1 + �)�t � � (it � r) + zt (15)

zt = �zt�1 + "z;t (16)

zt = ��zx;t + z�;t; "z;t = ��"y;t + "�;t (17)

In the laissez-faire ("open loop") private sector�s model, the Fed follows a
�xed nominal interest rate target: it = i�. The system includes one forward
variable (in�ation �t diverging at growth rate � > 0) and one exogenous
predetermined variable and is a saddlepoint equilibrium. Blanchard and
Kahn (1980) condition is satis�ed for determinacy with �t = �1

1+���zt. Table
5 compares solutions for both determinacy hypothesis, .
Figure 2. Taylor�s (1999) model phasis diagramma: in�ation

response after a -10% cost-push shock, a a function of the shock
with 0.9 auto-correlation coe¢ cient.
Table 5. Taylor (1999) model.
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Optimal PM determinacy Non optimal PM determinacy
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�
+
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+
; �
�
; Q�z
�

�
= �P�1� P�zz0 , ��;0 = 0 �0 =

�1
1+���F���z0, z0 given

Predetermined: 2: (zt; ��;t) 1: zt
Forward: 1: �t 1: �t

Blanchard Kahn: 2 stable �; � (F �� ), 1 stable eigenvalue �,
1 unstable eigenvalue: 1=� (F �� ). 1 unstable eigenvalue � (F�).

0 < R < +1) 0 < � (F �� ) = 1 + � � �F �� < 1
1+�

j� (F�)j = j1 + � � �F�j > 1
Taylor: F �� 2 DO =]1 +

1
1+�
; 1 + 1

�
[�]1; 1 + 2

�
[ F� 2 DNO =]�1; 1[[]1 + 2

�
;+1[

Negative feedback, Stabilizing Positive feedback, Destabilizing
@�t=@F

�
� < 0, if �t�1 > 0 @�t=@F� < 0

If Q� ! +1) F ��

�
�
�
; R
�

�
! 1 + 1

�

) j� (F �� )j ! 0) ��t ! 0

For Q� ! +1 : jF�j ! +1
) j� (F�)j ! +1) � ! 0

The optimal in�ation rule parameter F ��

�
�
�
; R
�

�
decreases with the mon-

etary transmission parameter � and with the Fed�s relative weight R on the
volatility of the policy rate. When varying Fed�s preference 0 < R < +1
for given transmission �, F ��

�
�
�
; R
�

�
varies within the optimal set DO =

]1 + 1
1+�
; 1 + 1

�
[ included in the stability interval DS =]1; 1 +

2
�
[ . The rule

parameter F �� is a linear decreasing function of the in�ation growth factor
(eigenvalue �1) which varies between zero and the inverse of the open-loop
growth factor for maximal inertia of the Fed (R! +1): ]0; 1

1+�
[.

If the Fed minimizes only the variance of in�ation down to zero (growth
factor �1 = 0) regardless of zero lower bound constraint (the cost of changing
policy rate tends to zero: R ! 0), the maximal negative feedback value of
the optimal rule parameter is reached: F �� = 1 +

1
�
.

For non optimal policy maker�s determinacy hypothesis, this is obtained
in minimizing the jump of in�ation on the predetermined variable. This
minimizes the slope of the eigenvector of the eigenvalue � where the rule
parameter F� is at the denominator of a rational fraction. This implies an
in�nite out-of-equilibrium positive feedback rule coe¢ cient F�, policy rate
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it and in�ation growth factor �1. The Fed should have a perfect knowl-
edge of structural parameters � and �. For this optimal policy assuming
the non-optimal policy maker�s determinacy condition (F�), an in�nitesimal
measurement error by the Fed on � or � would instantanously blow up in-
�ation �t with an in�nite discontinuity, from zero to in�nity. This implies
an in�nite lack of robustness of the stability of this equilibrium path to the
misspeci�cation of structural parameters.
This result is frequently found in DSGE models seeking with simulation

grid optimal rule parameters F in the non-optimal policy maker�s determi-
nacy hypothesis setDNO. For example, Schmitt-Grohé and Uribe (2007) �nd
numerically F� = 332 (footnote 8, p.1712). Indeed, Ramsey (1927) planner
seeks optimal rule parameters F in the optimal Ramsey (1927) planner deter-
minacy setDO which has no intersection with the non-optimal policy maker�s
determinacy set DNO.
Figure 2 represents in�ation response after a �10% cost-push shock as

a function of a cost-push shock with an auto-correlation parameter � =
0:9 for several cases: a laissez-faire equilibrium path, a laissez-faire out-of-
equilibrium path, an optimal path under commitment on date t = 0, an
optimal path under commitment optimizing on date t = 3, and the line
�t = �P�1� P�zzt in the out-of-equilibrium case of the Fed reneging commit-
ment at all dates and changing the optimal initial anchor with a new opti-
misation at all dates (cf. section 5). The "optimal policy minimizing only
in�ation within the non-optimal policy maker�s determinacy set" is such that
�t = 0 and zt = �tz0, with dots on the horizontal axis. Its related out-of-
equilibrium paths corresponds to �t = �1: they cannot be seen on the
diagram.

4 Linear quadratic policies: general case

The policy transmission mechanism is described by private sector�s linearized
dynamics. In the linear quadratic framework including additive gaussian ran-
dom variables, the certainty equivalence property (Simon (1956), Kalman
(1960), Hansen and Sargent (2013)) is validated for linear �rst order condi-
tions, so that the rational expectations solutions of optimal rule parameters
is equivalent to a perfect foresight solution with unknown initial conditions
for forward variables: they �nally do not depend on an appropriate vector of
random gaussian variables which can be added or omitted. The system can
be written in a Kalman controllable staircase form:
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where yt = (kTt ;q
T
t )
T is an (nc +m) � 1 vector, kt is an nc � 1 vector

of controllable predetermined variables at time t = 0 with initial conditions
k0 given, qt is an m� 1 vector of controllable non-predetermined "forward"
variables (including at least one forward variable m � 1), zt is an (n� nc)�
1 vector of exogenous non-controllable predetermined stationary variables
(such as auto-regressive forcing variables), it is a p � 1 vector of the policy
maker�s instruments. We assume that all m forward variables are controllable
and that the number of controllable predetermined variables is nc with 0 �
nc � n. All variables are expressed as absolute or proportional deviations
about a steady state. A (�1) is (n+m)� (n+m) matrix which depends on
a vector of structural parameters �1 belonging to a set �1 � Rn�1 . B (�1)
is the (n+m)� p matrix of the marginal e¤ects of policy instruments it on
next period policy targets yt+1.
In the laissez-faire equilibrium, the private sector�s dynamics is an open

loop system governed by the transition matrix A (�1): there is no policy
intervention: it = 0. Else the private sector�s dynamics is a closed loop
system with a transmission mechanism of economic policy given by the series
AtB, t 2 N. Kalman�s (1960) de�nes that a closed loop system is t-time-
steps controllable if, from any start state y0 we can reach any desired state y�

at time t. Kalman�s (1960) controllability is a generalization of Tinbergen�s
(1952) rule for static models: achieving the desired values of a number of
policy targets in t-time-steps requires the policy maker to control an equal
number of policy instrument per time-steps (see appendix).
Ramsey�s (1927) policy maker is a Stackelberg leader of a decentralized

economy uses only policy instrument under his control (taxes, subsidies, pol-
icy interest rate) which are not under the control of the decentralized private
sector. The Ramsey policy maker�s preferences are represented by a quadratic
loss function subject to private sectors linear conditions. The policy maker�s
preferences can be derived from private sector�s utility: in this case, the policy
maker is a Ramsey planner. An approximation of non-linear non-quadratic
programs into a linear-quadratic program is obtained using the method pro-
posed by Levine, Pearlman and Pierse (2008). The policy maker minimizes
her quadratic loss function subject to the private sector dynamics by �nding
a sequence of decision rules for policy instruments it (Hansen and Sargent
(2013)):
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where � is the policy maker�s discount factor and her policy preference are
the relative weights included matrices Q;R. Q � 0 is a (n+m)� (n+m)
positive symmetric semi-de�nite matrix, R > 0 is a p � p strictly positive
symmetric de�nite matrix so that policy maker�s has at least a small concern
for the volatility of policy instruments.
Matrices Q and R de�ne the policy maker�s preference which depend

on an vector of structural parameters �2 belonging to a set �2 � Rn�2 . If
the Ramsey policy maker is a Ramsey planner, her preference matrices Q
also depends on the private sector�s structural parameters �1 governing the
private sectors equation (1). The weightsR on the volatility of the macroeco-
nomic policy instruments may represent the private sector preference, they
always belong to the set �2 because they do not show up in equation (1) de-
scribing the private sector�s micro-level decisions, which excludes the optimal
decisions of macroeconomic policy instruments.
With Ramsey (1927) optimal policy under commitment, Lyapunov as-

ymptotic stability of the closed loop private sector�s equilibrium (whereas the
open loop "laissez-faire" private sector�s equilibrium may be a saddlepoint
equilibrium) jointly obtained with the determinacy of the initial value of pri-
vate sector�s forward variables (proposition 4) is an immediate consequence
of 2(n+m) boundary conditions determining the policy maker�s Lagrangian
system with 2(n+m) variables (yt; �t), with �t the policy maker�s Lagrange
multipliers.
Table 6: Boundary conditions: stability and determinacy of optimal

policy under commitment
Number: 2(n+m) = Boundary conditions

n� nc lim
t!+1

�tzt = 0, zt bounded

+nc +m lim
t!+1

@L
@yt

= 0 = lim
t!+1

�t�t, �t bounded

+n k0 and z0 predetermined
+m q0 = q

�
0 , @L

@q0
= 0 = ��q;t=0 predetermined

First, besides the assumption that exogenous variables zt are asymptot-
ically stable, transversality conditions at the �nal period, taken as limits
in the in�nite horizon, are assumed to seek asymptotic stability of the pol-
icy maker�s Lagrange multipliers. This provides (nc +m) constraints which
forces stabilization of controllable variables of the decentralized private sec-
tor�s saddle point equilibrium into a sink. Boundary conditions at the initial
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date are required for determinacy. First, n boundary conditions are the ini-
tial conditions of predetermined variables k0 and z0 given (called "essential
boundary conditions" (Bryson and Ho (1975)).
Second,m "natural boundary conditions" are such that the policy maker�s,

as a consistent Stackelberg leader, uses the criteria of optimality to select
unique optimal initial values (or "jumps", or "anchors") of private sectors
forward variables. Bryson and Ho ((1975), p.55) explains "natural boundary
conditions" as follows: "If qt is not prescribed at t = t0; it does not follow
that �q(t0) = 0: In fact, there will be an optimum value for q(t0) and it will
be such that �L = 0 for arbitrary small variations of q(t0) around this value.
For this to be the case, we choose @L

@q(t0)
= �q;t0 = 0 (1) which simply says

that small changes of the optimal initial value of the forward variables q(t0)
on the loss function is zero. We have simply traded one boundary condition:
q(t0) given, for another, (1). Boundary conditions such as (1) are sometimes
called "natural boundary conditions" or transversality conditions associated
with the extremum problem." The policy maker�s Lagrange multipliers of pri-
vate sector�s forward (Lagrange multipliers) variables are predetermined at
the value zero: �q;t=0 = 0 in order to determine the unique optimal initial
value q0 = q�0 of private sector�s forward variables. Table 7 compares three
policy maker�s model.
Table 7: Comparing three policy maker�s models
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PM: Optimal Discretion Non-optimal PM
game Stackelberg Nash against nature
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F qt+1 =
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+(Aqz +ByF
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z) zt

N�
k;D:kt+1

+N�
z;Dzt+1

Nk (F)kt+1

+Nz (F) zt+1

L �k;t =
Pkkkt +Pkzzt
+Pkqqt

Pkk;Dkt +Pkz;Dzt
.

0

L �q;t =
Pqkkt +Pqzzt
+Pqqqt

0 0

R it =
F�kkt + F

�
zzt

+F�qqt

F�k;Dkt + F
�
z;Dzt

.
Fkkt + Fkzt
+Fqqt

F F� (�) F�D (�) Lucas critique
I z0 = given given given
I k0 = given given given

I q0 =
�P�1qq Pqkk0
�P�1qq Pqzz0

indeterminacy
Nk (F)k0
+Nz (F) z0

P n+m: zt;kt; �q;t n: zt;kt n: zt;kt
F m+ nc: qt; �k;t m+ nc: qt; �k;t m: qt

B. K. n+m stable at least n n stable,
B. K. m+ nc unstable at most m+ nc m unstable
total n+ nc + 2m n+m+ nc n+m
PS converging sink saddlepoint; sink saddlepoint
PM saddlepoint saddlepoint Lucas critique
restrict zero Fq;D = 0, Nq;D = 0 Nq;N = 0

identif.
of F

at most: n+m at most: n
at most n: it =
(Fk + FqNk) :kt
+(Fk + FqNz) :zt

set Fy DO � DS DD DNO � DU

feed-
back

negative
stabilizing

indeterminacy
positive
destabilizing

B.K. Blanchard Kahn determinacy condition, PS: private sector, PM pol-
icy maker, P predetermined, F forward, L Lagrange multiplier, R rule, I
initial conditions and initial anchor.
Proposition 4.1: Determinacy and stability.
If Ramsey policy maker�s preference satisfy: Q � 0 and R > 0, if there is

controllability of all forward variables and of nc predetermined variables and
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if there is asymptotic stability of the remaining n� nc exogenous variables:
(i) There is determinacy (uniqueness) of policy rule parameters
(ii) There is determinacy of optimal initial values of private sectors for-

ward variables.
(iii) The policy maker�s Blanchard and Kahn�s (1980) determinacy con-

dition is the number of stable eigenvalues of the policy maker�s Hamiltonian
system is equal the number of the policy maker�s predetermined variables,
which is equal to the number of the private sector�s predetermined and for-
ward variables.
(iv) The representation of policy maker�s optimal rule functions of private

sector�s variables is a negative feedback which transforms the private sector�s
saddle point equilibrium into a stable sink, with a unique optimal jump of
forward variables.
(v) Rule parameters in optimal policy under commitment always belong

a distinct set DO without intersection with the set DNO of the non-optimal
policy maker�s determinacy hypothesis.
Proof.
(i) The policy maker�s Hamiltonian system is exactly the linear quadratic

regulator Hamiltonian system. There is uniqueness of the optimal policy rule
parameters if private sector�s variables are controllable by the policy maker
and if policy maker�s preference satisfy: Q � 0 and R > 0 (Kalman (1960)).
(ii) If the forward variables are controllable, it is possible to determine

their optimal initial value with a �rst order condition such that the predeter-
mined Lagrange multipliers of the private sector�s forward variables are set to
zero (Bryson and Ho (1975), p.55-59). Xie (1997) provides a counter-example
when a forward variable is not controllable and the initial date transversality
condition does not hold.
(iii) The number of private sector�s controllable and predetermined vari-

able is nc and their policy maker�s Lagrange multipliers are forward variables
nc. If If all the m private sectors�forward variables are controllable, the re-
lated m policy maker�s Lagrange multipliers are all predetermined. The total
number of policy maker�s predetermined and controllable variables is equal
to nc +m which is also the number of policy maker�s forward variables. The
policy maker�s Blanchard and Kahn�s (1980) determinacy condition is that
there are exactly nc+m stable eigenvalues for the policy maker�s Lagrangian
system. The policy maker�s saddle point equilibrium has a stable manifold
of dimension nc +m in a space of dimension 2(nc +m). The private sector�s
saddle point equilibrium has a stable manifold of dimension nc in a space
of dimension nc +m. There are two distinct Blanchard and Kahn�s (1980)
determinacy conditions for the closed loop policy maker�s Lagrangian system
and for the open loop laissez-faire private sector�s Lagrangian system.
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(iv) The representation of optimal policy rule as a non-inertial linear func-
tion of the current values of private sectors variables is the standard solu-
tion proposed by the LQR problem (Kalman (1960), Sargent and Ljungqvist
(2012), chapter 19). Optimal rule parameters do not depend on initial con-
ditions. Optimal rule parameter do not depend on shock nor on initial
conditions (Kalman (1960)). Optimal rule parameters are exactly the same
functions of structural parameters if all variables are predetermined (old-
Keynesian stabilization) or if at least one or more controllable variables is
forward with unknown initial values (rational expectations)! This rather ob-
vious interpretation has never been clearly stated for more than thirty years
of optimal policy under commitment. The compulsory convention to use al-
ternative representations of optimal rules appears to be designed "as if" this
property was unconceivable.
(v) For given structural parameters �, the representation of the optimal

policy rule as a function of private sector�s variables has constant reduced
form coe¢ cients F. It is a non-inertial linear simple rule. These rule parame-
ters cannot be in the non-optimal policy maker�s determinacy hypothesis set
(table 4). It is an immediate consequence of Wonham (1967) pole placement
theorem for controllable pair (A;B). The set of rule parameters correspond-
ing to nc +m stable closed loop eigenvalues has no intersection with the set
of rule parameters corresponding to nc stable closed loop eigenvalues and m
unstable closed loop eigenvalues for a given private sector�s system of equa-
tions.
Q.E.D.
Proposition 4.2: An in�nite number of observationally equiva-

lent representations of reduced form optimal rule
The representation of optimal policy rule as a non-inertial linear function

of current values of private sector�s variables included in the policy maker�s
optimal system of equations (which also includes boundary conditions, such
as the optimal initial anchor) faces an in�nite number of observationally
representations of policy rules obtained using linear substitutions from other
equations of the optimal system of equations.
Proof:
Considered in isolation, all these policy rules are completely di¤erent.

Considered within the optimal policy maker�s Hamiltonian system of equa-
tions including boundary conditions fP; F; L;R; Ig for all dates, they are
all equivalent representations found by linear substitution using other equa-
tions of the system, for that the new representations of the rule R0 belong-
ing to a mathematically and observationally equivalent system of equations
fP 0; F 0; L0; R0; I 0g for all dates:

29



fP; F; L;R; Ig for all dates t, fP 0; F 0; L0; R0; I 0g for all dates t (20)

The optimal set D
0
O of rule parameters F

0 of the rule R0 may appear very
di¤erent from the optimal set DO of rule parameters F, but this does not
change the solution.
In Levine and Currie (1987), "over-stable" rules R use the representation

of optimal policy rule as a function of the current values of the private sec-
tor�s variables, but they are assumed not to satisfy the optimal initial anchor
condition I : q0 = �P�1qq Pqkk0 � P�1qq Pqzz0. Hence, they can never repre-
sent optimal policy under commitment, because, by assumption (by petitio
principii), they are never optimally anchored and always lead to "sunspots"
equilibria. Levine and Currie (1987) equations surrounding their theorem 5
are proving that a representation of optimal rules as a function of current
private sector�s variables (R) within an optimal system including the neces-
sary initial optimal boundary conditions for forward variables (I: q0 = q�0)
represents optimal policy under commitment. From the point of view of the
Kalman�s (1960) policy maker, as a Stackelberg leader in the policy game,
this is the private sector�s model which is under-stable in the policy maker�s
Lagrangian system, taking into account the number of its in�nite horizon
transversality conditions (see additional information in the appendix), not
the policy maker�s optimal rule which is "stable" and not "over-stable".
There is nothing "unconceivable" with this result which just falls from

the boundary conditions of table 6. If one wishes to maintain the private sad-
dlepoint equilibrium, one should not assume the policy maker�s as a Ramsey
(1927) Stackelberg leader in Kalman linear-quadratic framework, because, by
Kalman�s design of in�nite horizon transversality conditions, the open loop
saddlepoint equilibrium will always be transformed into a converging sink
by an optimal negative feedback rule, within a policy maker�s Hamiltonian
system saddlepoint equilibrium of larger dimension. Omitting some bound-
ary conditions for ad hoc "over-stable" rules is not the correct answer for
"protecting" private sector�s saddlepoint equilibrium.
A comparison with time-consistent discretionary policy and "sim-

ple" rule non-optimal policy maker�s determinacy hypothesis.
Under the non-optimal policy maker�s determinacy hypothesis, policy

maker�s Lagrange multipliers �t of controllable variables are set to zero for
all periods. This reduces the number of predetermined variables to n instead
of n +m. This excludes m predetermined optimal policy maker�s Lagrange
multipliers �q;t of m private sector�s forward variables qt. This reduces the
number of forward variables to m instead of m + nc. This excludes nc for-
ward optimal policy maker�s Lagrange multipliers �k;t of nc private sector�s
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predetermined and controllable variables kt. Rule parameters always belong
to distinct set with optimal determinacy set DO (for varying policy maker�s
preferences) of negative feedback rules versus non-optimal determinacy set
DNO of positive feedback rules.
Both "simple" rules and optimal policy without commitment faces time

inconsistency (Calvo (1978), Miller and Salmon (1985), Currie and Levine
(1987)). If the policy maker optimizes again at a future date T without a
change of structural parameters, the optimal policy rule parameters F and
the optimal P providing weight matrix for the initial anchor do not change,
because they do not depend on initial conditions. The time-inconsistent
change of current date anchor is due to the fact that the current values of
predetermined variables kT and zT changed with respect to their values at
the initial date k0 and z0. The optimal value at date T when optimizing
again at date T (q�;t=TT ) is di¤erent from the optimal value at date T chosen
at date zero (q�;t=0T ):

q�;t=00 = �P�1qq Pqkk0 �P�1qq Pqzz0: optimal t = 0 initial anchor (21)

q�;t=TT = �P�1qq PqkkT �P�1qq PqzzT 6= q
�;t=0
T : optimal t = T initial anchor

(22)

q�;t=0T = (Aqk �BqFk)kT�1+(Aqq �BqFk)qT�1+(Aqz �BqFz) zT�1
(23)

In time-consistent discretionary policies (Oudiz and Sachs (1985)), both
the private sector and the policy maker know that the policy maker is not
credible to stick to the promised paths of private sector�s forward variables.
Exclusion restrictions on rule parameters of the private sectors (Nq;D = 0)
and of the policy makers (Fq;D = 0) related to forward variables de�ne time-
consistent rule. Private sector�s and policy maker�s time-consistent policy
rules depend only on predetermined variables kt and zt.
Are excluded from time-consistent policy rule all forward variables (in-

�ation, output gap, asset prices, systemic risk indicators), which of usually
Fed�s targets. Although time-consistent rules are appealing in theory, this
are not for policy maker�s because they acknowledge the failure of Fed�s cred-
ibility to anchor and to drive private sector�s expectations. A second major
problem highlighted recently is that time-consistent discretionary policy faces
indeterminacy (Blake and Kirsanova (2012)). Depending on initial condition,
Oudiz and Sachs (1985) algorithm may converge to distinct equilibria.
With non-optimal policy maker�s determinacy hypothesis, the private sec-

tor�s knows that the policy maker�s lacks credibility to stick to her manage-
ment of private sector�s forward variables. Hence, the private sector�s optimal
policy only depends on predetermined variables (Nq;N = 0). But the policy
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maker is myopic. She does not notice that she is not credible for the private
sector. She designs a policy rule function of forward variables (Fq;N 6= 0) as
if she is credible to determine the future path of private sector�s expectations.
The non-optimal rule without commitment faces time-inconsistency because
it depends on forward variables.
Proposition 4.3. Identi�cation with the non-optimal policy maker�s

determinacy hypothesis (Henry, Levine, Pearlman (2012)).
The number of rule parameters that can be identi�ed is at most equal to the

number n of private sector�s predetermined endogenous ( kt) and exogenous
( zt) variables
Proof: It follows from the policy maker�s myopic belief that she is cred-

ible while she is not perceived to be credible by the private sector! Sub-
stituting private sector�s forward variables by their anchor into the policy
maker�s rule leads to an observationally equivalent policy which includes a
number of non-zero rule parameters at most equal to the number of private
sector�s predetermined variables (table 5, identi�cation row for non-optimal
column). If the number of policy maker�s rule parameters exceeds the num-
ber of private sector�s predetermined variables, identi�cation restrictions are
missing. If there is no predetermined variable, zero rule parameter can be
identi�ed. This is the case of the new-Keynesian two-equation model without
auto-correlated shocks (Cochrane (2011, section V)).
New-Keynesian example: Mavroeidis (2010, online appendix, model

2) checked with rank condition that if the auto-correlation coe¢ cient is equal
to zero �z;� = 0, an identi�cation restriction is needed to identify the two
policy rule parameters in Fq. Cochrane (2011, section V) found that identi-
�cation of rule parameters is not possible if �z;� = �z;x = 0 (Azz = 0). The
new-Keynesian model boils down to a certainty equivalent two-equations
model. In this case, there is no longer a predetermined variable causing
transitory dynamics that could be used as an anchor of forward variables.
For any shock "t, forward variables in�ation �t and output gap xt instanta-
neously jump on the long run equilibrium �� = 0 = x�, which is surrounded
by out-of-equilibrium unstable paths. There is no predicted variation in right
hand side variables of the policy rule it = Fqqt. The policy rule parameters
cannot be estimated and are not identi�ed (Cochrane (2011), section V).
This case is described by Burmeister (1980): "Sometimes, the dynamic equi-
librium point of models having no state variables is completely unstable; it
is then convenient to interpret such dynamic equilibrium points as "degener-
ate saddle points" having a convergent manifold of dimension zero, i.e. the
convergent manifold simply coincides with the dynamic equilibrium point".
Proposition 4.4. Identi�cation of optimal policy under commit-

ment policy preferences.
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If all (m) forward variables are controllable, if the number of controllable
predetermined variables is such that 1 � nc � n, if all the remaining (n�nc)
non-controllable predetermined variables have stable eigenvalues and if n�2�1
de�nes the number of autonomous policy maker preference parameters:
(i) If (n+m)p � n�2 � 1, identifying the optimal policy rule parameters

amounts to identify a subset of the autonomous parameters of the policy
maker�s preference in the loss function.
(ii) If (n + m)p � n�2 � 1 = k > 0, identifying the optimal policy rule

parameters requires to set k identi�cation restrictions on private sector deep
parameters (for example, to calibrate their values instead of estimating them)
and on covariances between disturbances.
Proof.
The rule parameters are reduced form parameters which are non-linear

functions of the structural parameters F (�1; �2). It is possible to identify and
estimate p(n+m) reduced form rule parameters and to restrict (calibrate) the
values of the same number of structural parameters. The conditions compare
the number of structural parameters of the policy maker�s preference with
the number of reduced form rule parameters, which may be known after
estimation of the policy rules. The number of reduced form parameters in
the optimal policy rule F may be smaller than the number of structural
form policy maker�s preference parameters in Q (�1; �2) and R (�2). The
same, observationally equivalent, rule F can correspond to di¤erent matrices
Q (�1; �2) and R (�2). Identi�cation restrictions on Q (�1; �2) and R (�2) may
be required. For example, Q and R may be constrained to be diagonal. The
minimal number of policy rule parameters limits the number of policy maker
preference parameters that can be estimated.
Proposition 4.5. Identi�cation of discretionary policy prefer-

ences
If n � 1 is the number of predetermined variables and if n�2 � 1 de�nes

the number of autonomous policy maker preference parameters:
(i) If np � n�2 � 1, at most n parameters for each of the time-consistent

rules related to each of the p policy instruments can identify a subset of the
autonomous parameters of the policy maker preference in the loss function.
(ii) If np� n�2 � 1 = k > 0, identifying the time-consistent optimal pol-

icy rule parameters requires to set k restrictions on private sector structural
parameters and on the covariances of disturbances.
Proof.
The reduced form n parameters of the p rules are non linear functions of

the structural parameters (�1; �2). The identi�cation conditions compare the
number n�2�1 of unknown structural parameters of policy maker�s preference
�2 to the total number np of reduced form parameters of the p rules.
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5 Conclusion

A given DSGE model of the private sector faces at least three ways to be
solved depending on assumptions regarding the policy maker: optimal policy
under commitment, discretionary policy and non-optimal policy maker�s de-
terminacy hypothesis. As optimal policy maker�s determinacy is the opposite
of non-optimal policy maker�s determinacy, we need other criteria than only
determinacy in order to select which hypothesis of policy maker�s determi-
nacy is the most useful for normative and positive macroeconomic research.
Table 6 lists other criteria besides determinacy, ordered by our personal pref-
erences with respect to their importance. We rank very high the size of the
stationary endogenous VAR(1) after optimal policy under commitment, be-
cause a major econometric problem of the two other solutions is that for-
ward variables (�ows such as consumption, investment, prices, asset prices)
are forced to be linear function of very inertial endogenous predetermined
stocks (debt, capital) which is obviously not a good �t. This usually justify
adding several ad hoc exogenous auto-regressive forcing variables to �t the
data. Their auto-regressive component may be removed where all forward
and predetermined endogenous variables belong to the economy stationary
VAR(1).
Table 8: Criteria for deciding on policy maker�s models

Criteria Commitment, 1978 Discretion 1985 Non-optimal 1998
Determinacy If controllable No If controllable

Identi�cation of rule At most n+m At most n At most n
Endogenous VAR(1) nc +m nc nc
Stabilization robustness Yes No No
Optimal normative Yes No No
Lucas critique OK Yes Yes No
Certainty equivalence Yes Yes No
Time consistency No Yes, no forward No
Fed statements OK Yes No No
Computational time Fast, Ricatti Indeterminacy Grid, it depends

Total score 9/10 3/10 1/10
% DSGE 2014 2%, 45 papers 2%, 45 papers 96%, 3410 papers

Despite their superiority concerning these nine criteria, DSGE solved with
optimal rules under commitment (e.g. Woodford (2003), Levine, McAdam
and Pearlman (2008), Matthes (2015)) represent around 2% of recent DSGE
papers with respect to DSGE solved with non-optimal policy maker�s deter-
minacy hypothesis. This percentage, perhaps under-estimated, is a rounded

34



ratio of number of answers to the keywords "optimal policy under commit-
ment" and to the keyword "DSGE" in Google scholar data base for 2014:
56=3580 = 1:6%.
A drawback of optimal policy under commitment was the lack of an in-

terpretation of policy rules functions of policy maker�s Lagrange multipliers,
when giving advice to policy makers. With the representation of the policy
rule proposed in this paper, this is no longer the case. An additional step is
to adjust optimal policy under commitment with optimal control robust to
misspeci�cation of the private sector�s model (Hansen and Sargent (2007),
Walsh (2003), Giordani and Söderlind (2004), Giannoni (2007), Levine and
Pearlman (2010)) with this new representation of optimal policy.
We highlight a con�ict between opposite optimal versus non-optimal de-

terminacy hypothesis. This is not a con�ict between simple rule versus op-
timal rule. A simple rule is de�ned as a linear function of deviations from
equilibrium of a small number of private sector�s variables with �xed parame-
ters. During a period with unchanged structural parameters, a reduced form
rule of optimal policy under commitment is a particular simple rule. Linear
quadratic regulator including zero restrictions on rule parameters also sets
boundary conditions seeking private sector�s stable sink equilibrium with de-
terminacy (Holly and Hughes-Hallett (1989)). Those zero restrictions do not
necessarily imply the non-optimal policy maker�s determinacy hypothesis.
An more demanding de�nition states that a "simple" rule implies necessarily
the non-optimal policy maker�s determinacy hypothesis. Such a demanding
statement is not Taylor�s (1999) de�nition of a simple rule.
Thousands of new papers can be published solving and estimating already

published DSGE models using (robust) optimal policy under commitment in-
stead of the non-optimal policy maker�s determinacy hypothesis. These new
publications will suggest opposite stabilization results and opposite policy rec-
ommendations with distinct rule parameters than the original papers. Svens-
son (2003) argues: "Monetary policy by the world�s most advanced central
banks these days is at least as optimizing and forward-looking as the behavior
of most rational agents. I �nd it strange that a large part of the literature on
monetary policy still prefers to represent central bank behavior with the help
of mechanical instrument rules" and, we add, with the help of non-optimal
policy maker�s determinacy hypothesis.
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6 Appendix 1: New Keynesian model

1.1. Matrix NNO

The matrix NNO is found seeking two stable eigenvectors using the non-
optimal determinacy hypothesis which are necessarily the auto-regressive
term of stationary exogenous forcing variables. Then, the lower diagonal
block should include two unstable eigenvalues:
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with block notations, in Kalman controllable staircase form:

zt =

�
zx;t
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�
, qt =

�
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�
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The matrix C (C�1 = D) includes �rst two columns eigenvectors vs;t re-

lated to stable eigenvalues �z;x and �z;� in diagonal matrix �s and second two
column eigenvectors vu;t related to the two unstable eigenvalues in diagonal
matrix �u

M=

�
C11 C12

C21 C22

��
�s 0
0 �u

��
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D21 D22

�
(27)�
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�
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�ts 0
0 �tu
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�
(28)

The Blanchard and Kahn�s (1980) stable subspace unique solution is given
by:
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In this case:
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 (F� � �z;i) + (1� �z;i) (1� ��z;i) for i = x; �, so that:
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An in�nitely large value of the output gap rule parameter Fx leads to an

immediate jump on the long run equilibrium for the output gap xt = 0 (the
parameters anchoring output gap xt on predetermined variables zt tends to
zero). An in�nitely large value of the output gap rule parameter F� leads
to an immediate jump of in�ation on its long run equilibrium �t = 0 (the
parameters anchoring in�ation �t on predetermined variables zt tends to
zero).

lim
Fx!+1

NNO =

�
0 0
0 1

1���z;i

�
and lim

F�!+1
NNO =

�
0 1

�

0 0

�
(35)
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Mavroeidis (2010) online appendix checks the rank condition for the iden-
ti�cation of the policy rule parameters taking into account the other linear
equations of the system including yt = NNOzt.
1.2. Stability set (triangle) DS of rule parameters and bifurca-

tions (�gure 1)
The two rule parameters are an a¢ ne function of the trace T and the

determinant D of the closed loop matrix Ayy +ByFy for control variables.

Ayy +ByFy =

�
1 + 
�

�
+ 
Fx � 
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+ 
F�

��
�

1
�

�
(36)

0 = P (X) = X2 � T:X +D with T = 1 +
1 + 
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+ 
Fx (37)
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� � 0, T 2 � 4D � 0, D � T 2

4
(40)

A stability triangle with bifurcation borders and a quadratic function
delimiting complex conjugate versus non-complex solutions (discriminant
� � 0) is described in the plane (T;D). Figure 1 obtains a stability triangle
and quadratic function in the plane (F�; Fx) using the a¢ ne transformation
between both pair of variables (F�; Fx). Figure 1 expands Mavroeidis (2010)
�gure 2 for negative values of the output gap rule parameter Fx. Three in-
equality conditions delimits the stability triangle, the equality corresponds
to a bifurcation to instability. The saddle-node bifurcation inequality con-
dition is P (1) > 0 with one limit eigenvalue equal to 1. It corresponds to
the Taylor principle border in Mavroeidis (2010). The Hopf bifurcation in-
equality condition is D < 1 computed by Barnett and Duzhak (2008) with a
limit pair of complex conjugate solution of absolute value equal to one. We
complement the �gure by the �ip bifurcation inequality P (�1) > 0 with one
limit eigenvalue equal to �1. The stable set DS for rule parameters (Fx; F�)
is delimited in a triangle such that the in�ation rule parameters is larger than
one (it satis�es the Taylor principle) but such that the output gap parameter
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is strictly negative for the sign restrictions 
 > 0 and � > 0:

Fx >
�

1��
� �

1� �F� for P (1) > 0: If Fx < 0) F� > 1 (41)

Fx <
� � 1



� �F� for D < 1: If F� > 0) Fx <
� � 1



< 0: (42)

Fx > �
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� �

1 + �
� �

1 + �
F� for P (�1) > 0 (43)

As 0 < � � 0:99 < 1, (e.g. � � 0:99), the line (D = 1) is over the line
(P (�1) = 0) for F� > 1 and Fx < 0:

� � 1



> �2


� �

1 + � �
and � � > � �

1 + �
(44)

Intersection between conditions provides the three vertexes, with Matthes
(2015) estimates values: A (T = 2; D = 1) = (Fx = �0:37; F� = 1:01), B (T = 0; D = �1) =
(�3:6; 1:10), C (T = �2; D = 1) = (�6:82; 19:4) of the stability triangle, or-
dered by rising values of F� and falling values of Fx. The case of one-time-step
full stabilization with two identical zero eigenvalues corresponds to "cen-
tral" point E (T = 0;� = 0 = D) = (�3:59; 5:66), on the horizontal line for
Fx = � 1



� 1+
�


�
with the intersection with the parabola � = 0 with hori-

zontal axis on �gure 1. Complex solutions are given by F� being a quadratic
function of Fx and crossing the triangle at the two intersection points A and
C, with a minimal value on point A, so that the full segment D = 1 joining
vertexes A to C of the triangle corresponds to an Hopf bifurcation.
Over the triangle and on the left of the quasi-vertical line P (1) = 0 is an

area with two unstable eigenvalue (source), as well as on the right of the quasi-
vertical line P (1) = 0 after point B and below the rather �at line P (�1) = 0
with two negative rule parameters. These two areas corresponds to the non-
optimal policy maker�s determinacy area. By convention, negative signs for
both policy rules are are never considered. The remaining areas outside the
triangle and the non-optimal policy maker�s determinacy corresponds to the
saddle point case, with one stable and one unstable eigenvalue. The origin
F� = Fx = 0 is the open-loop "laissez-faire" case: it belongs to one of these
two areas.
1.3. Optimal policy under commitment set DO of rule parame-

ters (�gure 1)
The upper vertex (Fx = �1:05; F� = 1:77) corresponds to maximal inertia

with an in�nite cost of changing the policy rate: (Qxx = Q� = 0, R = 1), with
eigenvalues related to open-loop eigenvalues as follows: �1 = �1;OL = 0:41,
�2 = 0:73 = 1=�2;OL = 1=1:37. The right vertex (Fx = �2:88; F� = 5:63)
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corresponds to an in�nite weight on in�ation, that is a minimal inertia with a
negligible cost of changing the policy rate and zero weight on the output gap:
(Qxx = 0, Q� = 1, R = 10�7), with two conjugate closed loop eigenvalues
close to zero j�1j = j�2j = 0:001. The left vertex (Fx = �1:27; F� = 1:06)
close to the limit line of the Taylor principle for the in�ation parameter,
corresponds to an in�nite weight on the output gap, that is a minimal in-
ertia with a negligible cost of changing the policy rate and zero weight on
in�ation: (Qxx = 1, Q� = 0, R = 10�7), with one closed loop eigenvalue
nearly zero �1 = 10�7 and the other one close to one: �2 = 0:995. This is
due to the particular structure of the model. The output gap can be sta-
bilized in one-time-step e¤ect of the interest rate independently of in�ation.
In�ation depends only on two-times-step e¤ects of the interest rate, as ex-
plained in the next section. Curves joining the vertexes are drawn using a
numerical grid for varying (Qxx, R) 2 [0;+1[�]0;+1[. These curves are
quasi-linear. The optimal set for the linear quadratic regulator keeps some
distance from the bifurcation limit lines (except in the case where (Qxx = 1,
Q� = 0, R = 10�7). This is a well known feature of the robustness of the
linear quadratic regulator optimal policy. However, when the LQR is coupled
with learning using the Kalman �lter taking into account additive quadratic
Gaussian errors, the linear quadratic Gaussian is not robust to misspeci�ca-
tion, with a non-negligible probability of LQR rules leading to destabilization
with eigenvalues outside the stability triangle. This is the reason why robust
optimal control is a useful next step for these optimal policy (Hansen and
Sargent (2007)).
The linear quadratic regulator determinacy set is much smaller than the

stability triangle set and keeps some distance from bifurcations borders of
the stability triangle set (another feature of robustness). Decreasing values
of R always imply a larger (in absolute value) output gap rule parameter Fx.
When Qx is relatively small, decreasing values of R always imply a larger
in�ation rule parameter F�. For R = 10�7, Qx = 0, Q� = 1 imply two
complex conjugate eigenvalues with absolute value 10�3 very close to zero
(one-time-step stabilization). When Qx is relatively very large, decreasing
values of R imply a smaller in�ation rule parameter F�. For R = 10�7,
Qx = 1, Q� = 0, this leads to one eigenvalue close to zero and another one
close to one. This is related to the structure of the transmission mechanism:
the interest rate can stabilize the output gap in one time-step with only an
e¤ect of the output gap in two time step on in�ation.
1.4. Scilab code
Download the free software Scilab, copy and paste the following code in

the central window, and get the results (pay attention the character for trans-
pose should be a straight line: �). The code enters Matthes (2015) estimates.
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A discount factor � in the loss function implies to solve equations with ma-
trices

p
�A and

p
�B instead of A and B. Then, the code solves for Py and

rule parameters Fy using lqr (linear quadratic regulator) command. It then
solves for Pz using sylv (Sylvester equation) command. Finally it computes
Fz using Hansen and Sargent (2008) formulas (4.5.7). Their formulas (4.5.7)
for Fy and Fy, formula (4.5.10) for Pz and (4.3.13) for Py are:

Py = Qyy + �A
0

yyPyAyy � �A
0

yyPyBy

�
R+ �B

0

yPyBy

��1
�B

0

yPyAyy (45)

Fy =
�
R+ �B

0

yPyBy

��1
�B

0

yPyAyy (46)

Pz=Qyz + � (Ayy +ByFy)
0PyAyz + � (Ayy +ByFy)

0PzAzz (47)

Fz =
�
R+ �B

0

yPyBy

��1
�B

0

y (PyAyy +PzAzz) (48)

Several linear substitutions are included at the end of the code.
beta1=0.99; gamma1=1/1.61; kappa=0.7/(1+beta1);
rho1=0.40; rho2=0.57; rho12=0.61;
R=0.11;
Qx=0.07; Qpi=1; Qxpi=0;
Qxrho1=0; Qpirho1=0;
Qxrho2=0; Qpirho2 =0;
A1=[1-(kappa*gamma1/beta1) -gamma1/beta1 ; -kappa/beta1 1/beta1]

;
A=sqrt(beta1)*A1;
B1=[gamma1 ; 0];
B=sqrt(beta1)*B1;
Q=[Qx Qxpi ;Qxpi Qpi ];
Big=sysdiag(Q,R);
[w,wp]=fullrf(Big);C1=wp(:,1:2);D12=wp(:,3:$);
M=syslin(�d�,A,B,C1,D12);
[Fy,Py]=lqr(M);
A+B*Fy;
AS=(A+B*Fy)�;
Fy
spec(A+B*Fy)
Ayz=[-1 gamma1/beta1 ; 0 -1/beta1 ];
Azz=[rho1 rho12; rho12 rho2 ];
Qyz=[Qxrho1 Qpirho1 ; Qxrho2 Qpirho2 ];
BS=-Azz;
CS=Qyz+AS*Py*Ayz;
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Pz=sylv(AS, BS, CS, �d�);
AS*Pz*BS+Pz-CS;
norm (AS*Pz*BS+Pz-CS);
N=-inv(Py)*Pz;
Fz=inv(R+B�*Py*B)*B�*(Py*Ayz + Pz*Azz);
rho1=0.3; rho2=0.6;
sp1=spec(A+B*Fy)
sp1t=sp1�
Spectrum=[sp1t rho1 rho2 ]
F=[Fy Fz ]
N
Fy*N+Fz
Fy+Fz*inv(N)
Py
Pz
Fy*inv(Py)
Fz-Fy*inv(Py)*Pz
1.5. Taylor�s (1999) model
For � > 0, 0 < � < 1, R > 0�Q�z > 0, using Hansen and Sargent (2008)

formulas, one has closed form solutions:
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7 Appendix 2: Optimal policy under com-
mitment (not for publication).

Summary: The controllability of all forward variables and of at least one pre-
determined variables is required for the determinacy of optimal rules under
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commitment. The policy maker�s Lagrangian includes n + m stable eigen-
values and n + m unstable eigenvalues. The minimal loss value matrix P
is also a Blanchard and Kahn (1980) projection matrix ruling out unstable
paths of the Hamiltonian system. The Hamiltonian system has equivalent
representations with the policy maker�s predetermined variables (kTt ,�

T
q;t)

T or
with the private sector predetermined and forward variables (kTt ,q

T
t )
T . Op-

timal policy under commitment always stabilizes the private sector saddle
point equilibrium (kTt ,q

T
t )
T into a stable sink. Optimal initial conditions of

forward variables (�Tq;t,q
T
t )
T are computed.

7.1 Controllability

Predetermined and forward variables: If tqt is the agents expectations

at date t of qt+1 de�ned as follows :

tqt+1 = Et (qt+1 p 
t) : (54)


t is the information set at date t (it includes past and current values of
all endogenous variables and may include future values of exogenous vari-
ables). According to Blanchard and Kahn (1980), a predetermined variable
is a function only of variables known at date t so that kt+1 = tkt+1 whatever
the realization of the variables in 
t+1. Predetermined variables are state
variables such as the stocks of capital, wealth and debt of entrepreneurs,
wage-earners, banks and government and the shadow prices of forward vari-
ables in the policy maker optimal program. A non-predetermined ("forward"
in what follows) variable can be a function of any variable in 
t+1, so that
we can conclude that qt+1 = tqt+1 only if the realization of all variables in

t+1 are equal to their expectations conditional on 
t. Forward variables are
�ow variables (such as consumption, output gap, investment), price variables
(consumer price, asset prices, credit interest rate), and the shadow prices of
predetermined variables.
Stability condition modi�ed by the policy maker�s discount fac-

tor. Because of the discounted quadratic loss function, the stability criterion
for eigenvalues of the dynamic system is such that

���(��2i )t��� < j��2i j < 1, so
that stable eigenvalues are such that j�ij < 1=

p
�.

Kalman�s (1960) controllability. The matrix pair (
p
�Anc+m;nc+mp

�Bnc+m;1) is controllable if the Kalman (1960) controllability matrix has
full rank:

rank
�p

�B �AB �
3
2A2B ... �

nc+m
2 Anc+m�1B

�
= nc +m (55)
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Hint. A system is t-time-steps controllable if from any start state y0 we
can reach any target state y� at time t. For a linear time-invariant system,
we have

yt = A
ty0 +A

t�1Bi0 +A
t�2B2i1 + :::+ABit�2 +Bit�1 (56)

Hence, the system is t-time-steps controllable if and only if the above
linear system of equations in the sequence of policy instruments i0,i1,...,it�1
has a solution for all choices of y0 and y�. With n the dimension of the state
space, this is the case if and only if:

rank
�
B AB A2B ... At�1B

�
= n: (57)

The Cayley-Hamilton theorem states that for all A, for all dates t � n:

9w 2 Rn, At =
i=n�1X
i=0

wiA
i

Hence, we obtain that the system (A B) is controllable for all times t � n
if and only if

rank
�
B AB A2B ... An�1B

�
= n (58)

Kalman�s controllability matrix (B AB A2B ... An�1B) is the inter-
action over n periods of matrix B with matrix A describes the transmission
mechanism of control policies.
Kalman�s (1960) controllability is a precise statement of Tin-

bergen�s (1952) rule. In the scalar case, controllability means @yt+1=@it =
b 6= 0: a single policy instrument has a non-zero marginal e¤ect on the fu-
ture value of a single policy target. For n policy targets, Kalman�s (1960)
controllability de�nes exact conditions for Tinbergen�s rule: n policy instru-
ments with non-collinear marginal e¤ects on the n policy targets, so that
rank(B)= n, are required to bring back a system to equilibrium policy tar-
gets y�after a shock y0 in only one period. Kalman�s controllability states a
generalized Tinbergen�s rule. Only one policy instrument can bring back a
system of n policy targets to equilibrium policy targets y�after a shock y0 in
n periods. There are n instrument per period with non-collinear e¤ects over
time on the n policy targets. Stabilization of multiple policy targets can be
achieved by a single policy instrument at a lower pace (it takes more time).
Including more than a single instruments with non-collinear e¤ects over time
is then only a matter of reducing the minimal time necessary to bring back
the system to equilibrium and fastening the convergence to equilibrium. Tin-
bergen�s (1952) intuition to allocate each instrument to a distinct target is not
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exactly necessary. Kalman�s (1960) point is that policy instruments should
not have collinear e¤ects over time on the policy targets.
Pole placement theorem (Wonham (1967)). If the matrix pair

(
p
�Anc+m;nc+m

p
�Bnc+m;1) is controllable, i.e. if the Kalman (1960) con-

trollability matrix has full rank:

rank
�p

�B �AB �
3
2A2B ... �

nc+m
2 Anc+m�1B

�
= nc +m (59)

the eigenvalues of
p
� (A+BF) can be arbitrarily located in the complex

plane (complex eigenvalues, however, occur in complex conjugate pairs) by
choosing a policy rule matrix F accordingly.

7.2 Optimal policy under commitment

7.2.1 Optimal program

The loss function is:

max
fit;yt+1gt=+1t=0

�1
2

+1X
t=0

�t
�
yTt Qyy (�1; �2)yt + 2y

T
t Qyz (�1; �2) zt + z

T
t Qzz (�1; �2) zt + i

T
t R (�2) it

�
(60)

subject to:

�
zt+1
Etyt+1

�
=

�
Azz (�1) 0zy
Ayz (�1) Ayy (�1)

��
zt
yt

�
+

�
0z

By (�1)

�
it (61)

where zt are non-controllable predetermined variables and where yt+1
are controllable forward and predetermined variables. It is also subject to
boundary conditions:

Number: 2(n+m) = Boundary conditions
n� nc lim

t!+1
�tzt = 0, zt bounded

+nc +m lim
t!+1

@L
@yt

= 0 = lim
t!+1

�t�t, �t bounded

+n k0 and z0 predetermined
+m q0 = q

�
0 ,

@L�(y0)
@q0

= 0 = ��q;t=0 predetermined
The solution proceeds in three steps.
Step 1 �nds the optimal value function matrix Py and rule parameters

Fy obtained when setting the exogenous non-controllable variables to zero at
all dates (zt = 0). This is the linear quadratic regulator solution.
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Step 2 �nds the optimal value function matrix Pz and the optimal rule
parameters Fz of the exogenous non-controllable variables. This is the aug-
mented linear quadratic regulator solution. Those two steps provide rule
parameters which do not depend on random additive normal shocks nor on
initial conditions (Simon (1956) Kalman (1960)). The rule parameters are
thus identical for old-Keynesian model (the number of forward variables is
zero) or for new-Keynesian rational expectations model (the number of for-
ward variable is at least one).
Step 3 �nds the optimal initial anchor of private sector�s forward variables

q�0 on the current value of predetermined variables k0 and z0. Step 3 is
speci�c to rational expectations forward variables with an optimal initial
anchor decided by the policy maker. Without commitment, another period
optimal anchor q�t changes because on the current value of predetermined
variables kt and zt is di¤erent from their initial values k0 and z0.
We present a �rst way to �nd the unique solution of optimal policy under

commitment with Lagrange multipliers and a second way without Lagrange
multipliers substituting directly the private sector�s recursive dynamics di-
rectly in the Bellman�s equation loss function. We then demonstrate ob-
servationally equivalent optimal solution including optimal initial values of
forward variables.

7.2.2 First way to �nd the unique solution of optimal policy under
commitment with Lagrange multipliers

Besides providing options with numerical computations, the main interest of
this solution that it allows an interpretation in line with Radon (1928) and
Blanchard and Kahn (1980) condition for unique solution of a saddlepoint
Lagrangian or Hamiltonian system. The Lagrangian solution involves costate
variables (Lagrange multipliers) for the policy maker. The policy maker�s
Lagrangian includes n+m stable eigenvalues and nc+m unstable eigenvalues.
The matrix P is interpreted as a projection matrix on the stable subspace
of dimension n +m satisfying the in�nite horizon transversality conditions.
Consistent to the size of the stable subspace and Blanchard and Kahn�s
(1980) determinacy of the initial conditions of forward variables, The third
step implies that the m policy maker�s costate variables, Lagrange multiplier
of forward variables, are predetermined to zero at the initial date. The nc
policy maker�s costate variables of controllable predetermined variables are
forward (jump) variables.
Step 1. Lagrangian system
Because of the certainty equivalence principle for determining optimal

policy in the linear quadratic regulator, the expectations of random variables
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" are equal to zero and do not show up in the Lagrangian. Hence, the program
is identical to solving for optimal policy rule parameters with perfect foresight
dynamics such as Etyt+1 = yt+1. Her Lagrangian includes nc +m Lagrange
multipliers on controllable predetermined and forward variables: 2�t+1�y;t+1,
�
0
y;t+1 = (�k;t+1; �q;t+1) and denote y

0
t =

�
kTt ;q

T
t

�
T :

max
fit;yt+1gt=+1t=0

� L =
+1X
t=0

�t
�

1
2
(y0tQyyt + 2y

0
tQyzzt + z

0
tQzzzt + i

0
tRit)

+2�t+1�
0
t+1 [Ayyyt +Ayzzt +Byit � yt+1]

�
Following Hansen and Sargent (2007), the evolution of the forcing se-

quence zt+1 = Azzzt can be temporarilly set aside of the Lagrangian, as it
cannot be controlled by the policy maker�s instrument. There is no �rst or-
der condition with respect to the non-controllable variables zt nor Lagrange
multipliers.
First order necessary conditions for the maximization of the Lagrangian

with respect to the policy instrument and to the state variables are:

@L
@yt+1

= 0) �A
0

yy�t+1 = �t �Qyyyt �Qyzzt (62)

@L
@it

= 0) �B
0

y�t+1 = �Rit (63)

We eliminate temporarily the policy instrument substituting it by the
Lagrange multipliers (using its marginal condition) in the private sector law
of motion:

Etyt+1 = Ayzzt +Azzyt + �ByR
�1B0y�t+1 (64)

Adding the marginal conditions on the policy targets (nc +m Lagrange
multipliers dynamics) to the private sector�s model leads to this Lagrangian
system:

La

0@ yt+1
�t+1
zt+1

1A = Na

0@ yt
�t
zt

1A (65)

It includes (nc + m) states and their (nc + m) costates, the 2(nc + m)
dimensions state-costate evolution equations is:

�
I �B (�1)R (�2)

�1B0 (�1)
0 �A0 (�1)

�
| {z }

=L

�
yt+1
�t+1

�
=

�
A (�1) 0
�Q (�1) I

�
| {z }

=N

�
yt
�t

�
(66)
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If L and in particular A are invertible (non singular), the state-costate
evolution equation with discrete time Hamiltonian matrixM is:

�
yt+1
�t+1

�
=

�
A+BR�1B0A0�1Q �BR�1B0A0�1

���1A�1Q ��1A0�1

�
| {z }

=M=L�1N

�
yt
�t

�

The in�nite horizon transversality condition setting bounded discounted
costates restrict a solution that stabilizes the state-costate vector for any
initial values of y0 and z0. Hence, we seek a characterization of the multiplier
�t of the form:

�t = Pyyt +Pzzt

such that the resulting composite sequence
�
y
0
t; �

0
t; z

0
t

�
is in the stable sub-

space of the Lagrangian system. This constraint on the Lagrange multipliers
�t minimizes the optimal loss function:

L�t = ytPyyt + 2ytPzzt + ztPzzzt so that �t =
@L�t
@yt

= Pyyt +Pzzt (67)

Step 2. Linear quadratic regulator
It includes (nc + m) states and their (nc + m) costates, the 2(nc + m)

dimensions state-costate evolution equations is:

�
I �B (�1)R (�2)

�1B0 (�1)
0 �A0 (�1)

�
| {z }

=L

�
yt+1
�t+1

�
=

�
A (�1) 0
�Q (�1) I

�
| {z }

=N

�
yt
�t

�
(68)

If L and in particular A are invertible (non singular), the state-costate
evolution equation with discrete time Hamiltonian matrixM is:

�
yt+1
�t+1

�
=

�
A+BR�1B0A0�1Q �BR�1B0A0�1

���1A�1Q ��1A0�1

�
| {z }

=M=L�1N

�
yt
�t

�

The eigenvalues of 2(n + m) square matrix M come in reciprocal pairs. A
stable eigenvalue is paired with a mirror unstable eigenvalue. For any real
eigenvalue �i, eigenvalues of M includes both �i and 1=�i. For a pair of
complex conjugate stable eigenvalues with absolute value j�ij, eigenvalues
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of M also includes another pair of complex conjugate unstable values with
absolute value 1= j�ij.
A hint for this result is that the matrixM is a real symplectic matrix:

J =MJM0 andM0= J�1M�1J with J =
�

0 �In+m
In+m 0

�
Similar matrices de�ne the same linear transformation but with di¤erent

coordinate system. In this case, the change of coordinate is done using an
anti-symmetric matrix J. The transpose of M is similar to its inverse M�1,
thus they share the same eigenvalues. For any matrix M, the eigenvalues
of M�1 are the reciprocals of the eigenvalues of M, and the eigenvalues of
M0, the transpose of M, are the same than the eigenvalues of M. Hence,
eigenvalues of M come in reciprocal pairs.
If we exclude the case with eigenvalues equal to one, a Jordan reduced

form of the matrixM with the usual spectral saddle point factorization where
�s includes the �rst half (n+m) of the stable eigenvalues, with eigenvectors
basis of the stable invariant subspace ofM, and ��1s includes the second half
(n+m) of the unstable eigenvalues, with absolute values equal to the inverse
of the eigenvalues of �s. The left eigenvector matrix is denoted C, its inverse
(the right eigenvector matrix) is denoted D = C�1 and canonical variables
are denoted v:

M=

�
C11 C12
C21 C22

��
�s 0
0 ��1s

��
D11 D12

D21 D22

�
(69)�

yt
�t

�
=

�
C11 C12

C21 C22

��
vs;t
vu;t

�
,
�
vs;t
vu;t

�
=

�
�ts 0

0 (��1s )
t

��
vs;0
vu;0

�
(70)

The vector of costate variables is equal to the marginal value of the loss
function:

L�t =
1

2
y
0

tPyt =
1

2
�
0

tyt with �t =
@L�

@yt
= Pyt (71)�

�k;t
�q;t

�
=

�
Pkk Pkq
Pqk Pqq

�� bktbqt
�
: (72)

The minimal loss value matrix P is also a Blanchard and Kahn (1980)
projection matrix used to set the initial conditions in order to rule out un-
stable paths of the discrete time Hamiltonian system. The optimal solution
P of the matrix Riccati equation is also a function of stable left eigenvectors
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(C :1) or stable right eigenvectors (D2:) of the Hamiltonian matrix H accord-
ing to P = �D�1

22D21 =C21C
�1
11 . The matrix P can also be interpreted as a

Blanchard and Kahn�s (1980) determinacy projection matrix ruling out the
explosive paths related to the n+m unstable eigenvalue�u of the Stackelberg
leader�s Lagrangian, because of the transversality conditions in the in�nite
horizon:

�
yt
�t

�
=

�
C11

C21

�
�ts (D11y0 +D12�0) +

�
C12
C22

�
�tu (D21y0 +D22�0)

(73)�
yt
�t

�
=

�
C11

C21

�
�ts (D11y0 +D12�0) when �0 = Py0 with P = �D�1

22D21

(74)

yt = C11vs;t, �t = C21vs;t = C21C�1
11 yt = Pyt with P = C21C

�1
11

(75)

One obtains the dynamics of the private sector state and costate variables
(kt,qt) and the dynamics of the leader�s costate multipliers in relation:

yt =

�
kt
qt

�
= C11e

�stC�1
11

�
k0
q0

�
= (A+BF)t

�
k0
q0

�
�t =

�
�k;t
�q;t

�
= C21e

�stC�121

�
�k;0
�q;0

�
= P

�
kt
qt

�
Step 3: Augmented linear quadratic regulator.
We then solve for Pz as a Sylvester equation. The rule parameters are

computed Fz using Hansen and Sargent (2008) formulas (4.5.7):

Pz = Qyz + � (Ayy +ByFy)
0PyAyz + � (Ayy +ByFy)

0PzAzz (76)

Fz =
�
R+ �B

0

yPyBy

��1
�B

0

y (PyAyy +PzAzz) (77)

Step 4: Optimal initial anchor of forward variables on predeter-
mined variables
The marginal value of the optimal loss function is (it is also to Lagrange

multipliers �q;t in the second solution):

L�t = ytPyyt + 2ytPzzt + ztPzzzt )
@L�t
@qt

= Py;kqkt +Py;qqqt +Pzzt = �q;t

(78)
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Optimal initial anchor of forward variables on predetermined variables is:

@L�0
@q0

= Py;kqk0 +Py;qqq0 +Pzz0 = 0 = �q;0 ) (79)

q0 = �P�1y;qqPy;kqk0 �P�1y;qqPzz0 (80)

We may also compute the Lagrange multiplier on predetermined variables
at the initial date:

�k;t=0 = Pkkk0 +Pkqq0 =
�
Pkk �PkqP�1qq Pqk

�
k0

7.2.3 Second way to �nd the unique solution of optimal policy un-
der commitment without Lagrange multipliers (Bellman�s
equation)

Step 1: Linear quadratic regulator
The optimal value function has the form L�0 (y0) = �y00Pyy0 where it

is to be demonstrated that P is solution of a discrete time matrix Ricatti
equation. Associated with the optimal program problem assuming (zt = 0)
is the Bellmann equation:

�y0tPyt = max
fit;yt+1gt=+1t=0

�
�
y
0

tQyt+i
0
tRit + �y

0

t+1Qyt+1

�
yt+1 = Ayt+Bit

where yt+1 denotes next value of the state. The optimal rule is found using
the transition law to eliminate next period state, the Bellman�s equation
becomes:

� y0tPyt
= max

fit;yt+1gt=+1t=0

�
h
y
0

tQyt+i
0
tRit+� (Ayt+Bit)

0P (Ayt+Bit)
i

The formula for policy rule parameters of endogenous variables Fy is given
by �rst order condition of the Bellman�s equation:

�
R+ �B

0
PB
�
it = ��B

0
PAyt)

it=�
�
R+ �B

0
PB
��1

�B
0
PAy = Fyyt with

Fy = ��
�
R+ �BTPB

��1
BTPA:
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One also derives the matrix P (�1; �2) as a unique stabilizing solution of a
discrete time matrix Ricatti equation with below its inverse matrix equation.

P (�1; �2) = Q+ �A
TPA� �ATPB

�
R+ �BTPB

��1
�BTPA: (81)

P (�1; �2) = Q+ �A
T
�
P�1 + �BR�1BT

��1
�A (82)

Step 2: Augmented linear quadratic regulator
See second way to solve for the unique solution.
Step 3: Optimal initial anchor of forward variables on preder-

mined variables
The marginal value of the optimal loss function is (it turns to be equal

to Lagrange multipliers �q;t in the �rst solution):

L�t = ytPyyt + 2ytPzzt + ztPzzzt )
@L�t
@qt

= Py;kqkt +Py;qqqt +Pzzt = �q;t

(83)
Optimal initial anchor of forward variables on predetermined variables is:

@L�0
@q0

= Py;kqk0 +Py;qqq0 +Pzz0 = 0) (84)

q0 = �P�1y;qqPy;kqk0 �P�1y;qqPzz0 (85)

Q.E.D.

7.2.4 Observationally equivalent representation of the unique op-
timal solution of optimal policy under commitment

The certainty equivalent Hamiltonian dynamics system including its bound-
ary conditions in the stable manifold of dimension n+m has equivalent rep-
resentations when written using n+m states or costates variables among the
total set of n + nc + 2m variables. They are forced to be function of n +m
stable eigenvalues �s. In particular, one may focus either on the private
sector variables (kTt ,q

T
t )
T or on the policy maker�s predetermined variables

(kTt ,�
T
q;t)

T . The Hamiltonian system has equivalent representations with the
policy maker�s predetermined variables (kTt ,�

T
q;t)

T or with the private sector
variables (kTt ,q

T
t )
T . Sometimes, textbook solution uses a permutation matrix

for solving the Hamiltonian directly in the space (kTt ,�
T
q;t)

T . A system of
linear equation has identical solutions whatever the order of the equations,
and rational expectations macroeconomic models cannot be an exception!
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Eigenvalues and the stable invariant subspace do not change when revers-
ing the order of the lines of a matrix. It is possible but not necessary to
change the order of the Hamiltonian equations or the order of the lines of the
Hamiltonian matrix H to solve for optimal rules under commitment in or-
der to compute directly the dynamics for the pair of predetermined variables
(kt,�q;t). Let us compare the two representations of the unique solution:

PM: Optimal R1 Optimal R2
P zt+1 = Azzzt +�t"t+1 Azzzt +�t"t+1

P kt+1 =
(Akk +ByF

�
k)kt

+
�
Akq +ByF

�
q

�
qt

+(Akz +ByF
�
z) zt

�
A2;kk +B2;yF

�
2;k

�
kt

+
�
A2;kq +B2;yF

�
2;�q;t

�
�q;t

+
�
A2;kz +B2;yF

�
2;z

�
zt

F qt+1 =
(Aqk +ByF

�
k)kt

+
�
Aqq +ByF

�
q

�
qt

+(Aqz +ByF
�
z) zt

�
A2;qk +B2;yF

�
2;k

�
kt

+
�
A2;qq +B2;yF

�
2;q

�
�q;t

+
�
A2;qz +B2;yF

�
2;z

�
zt

L �k;t =
Pkkkt +Pkzzt
+Pkqqt

Pkkkt +Pkzzt
+Pkqqt

L �q;t =
Pqkkt +Pqzzt
+Pqqqt

Pqkkt +Pqzzt
+Pqqqt

R it =
F�kkt + F

�
zzt

+F�qqt

F�2;kkt + F
�
2;zzt

+F�2;q�q;t
I z0 = given given
I k0 = given given

I q0 =
�P�1qq Pqkk0
�P�1qq Pqzz0

�q;0 = 0
P�1qq exists

The linear relation between private sector�s forward variables and policy
maker�s Lagrange multipliers of private sector�s forward variables can only be
done within the stable subspace of the policy maker�s Hamiltonian system
� = Pyy +Pzz because of the in�nite horizong transversality condition of
the policy maker�s program. It is obtained as follows:
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�
�k;t
�q;t

�
=

�
Py;kk Py;kq
Py;qk Py;qq

��
kt
qt

�
+Pzzt and P�1qq exists)

qt = �P�1y;qqPzzt �P�1y;qqPy;qkkt +P�1y;qq�q;t ,0@ zt
kt
qt

1A = D

0@ zt
kt
�q;t

1A with D =

0@ Izz 0 0
0 Ikk 0

�P�1y;qqPz �P�1y;qqPy;qk P�1y;qq

1A and

D�1 =

0@ Izz 0 0
0 Ikk 0
Pz Py;qk Py;qq

1A
The easiest equivalence is for the optimal initial condition of forward

variables (I) of forward variables I q0:

q0 = �P�1y;qqPzz0 �P�1y;qqPy;qkk0 , �q;t=0 = 0

Surprisingly, it is actually the one which is "forgotten" to erroneously
"prove" that the representation (1) leads necessarily to sunspots.
The equivalence for recursive dynamics (VAR(1) of minimal size) are:

0@ zt+1
kt+1
qt+1

1A =

0@ Azz 0 0
Akz +ByF

�
z Akk +ByF

�
k Akq +ByF

�
q

Aqz +ByF
�
z Aqk +ByF

�
k Aqq +ByF

�
q

1A0@ zt
kt
qt

1A,

0@ zt+1
kt+1
�q;t+1

1A = D�1

0@ Azz 0 0
Akz +ByF

�
z Akk +ByF

�
k Akq +ByF

�
q

Aqz +ByF
�
z Aqk +ByF

�
k Aqq +ByF

�
q

1AD
0@ zt

kt
�q;t

1A
The equivalence for optimal rule parameters is:

it =
�
Fz Fk Fq

�0@ zt
kt
qt

1A = FD

0@ zt
kt
�q;t

1A,

F2=FD

Considered in isolation, these policy rules are completely di¤erent. Con-
sidered within the optimal policy maker�s Hamiltonian system of equations
including boundary conditions fP; F; L;R; Ig for all dates, they are equivalent
representations found by linear substitution using other equations of the sys-
tem, for that the new representations of the rule R0 belonging to a mathemat-
ically and observationally equivalent system of equations fP 0; F 0; L0; R0; I 0g
for all dates:
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fP; F; L;R; Ig for all dates t, fP 0; F 0; L0; R0; I 0g for all dates t (86)

Indeed, these linear substitutions do not change the closed, loop optimal
path for the variables (zt;kt;qt) obtained by the full system fP; F; L;R; Ig
for all dates t. For the interpretation of optimal policy rule and for commu-
nication to and by policy maker�s, representation 2 is completely useless. It
is as if it was used to conceal the negative feedback stabilizing properties of
optimal policy under commitment for thirty years. Q.E.D.
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