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1. Introduction

Issues about persistence and frequency variability of time series are often

raised in macroeconomics and finance. In particular, a large literature in

econometrics has developed parametric tools to capture the low-frequency be-

haviour of some time series, which exhibit strong persistence in time. Models

such as local-to-unity, fractional or ”long memory” have been particularly ap-

plied to capture low-frequency behaviour of the stocastic component of those

series. As an example, take the long debate starting from Ding, Engle and

Granger (1993) and Ding and Granger (1996) on the persistency character-

istic of asset returns. A common finding is that returns themselves contain

little serial correlation, while absolute returns and their power transforma-

tions are highly correlated. In Ding et al. (1993) a long memory property for

the absolute returns of S&P500 daily stock market is established empirically.

However, recent literature have focused on the possibility of confusing long

memory and structural change. Mikosch and Starica (2000) find structural

change in asset return dynamics and argue that it could be responsible for

evidence of long memory. Moreover, Diebold and Inoue (2001) show analyt-

ically that stochastic regime switching is easily confused with long memory,

even asymptotically, so long as a small amount of regime switches occurs.

Granger and Hyung (2004) study occasional structural breaks and their em-

pirical results suggest the possibility such at least part of the long memory

can be caused by the presence of neglected breaks in the series. According to

these recent findings, the persistency characterizing some time series should

be taken into account when modelling the series as a non-linear model. In

this paper we propose a method to validate the use of Markov switching

models through the use of their spectral density functions. We first apply

some new tools recently proposed in Cavicchioli (2014a) to detect the pres-

ence of structural changes in the data. Then we derive close-form formulae

for the spectral representations of Markov switching VAR processes which

are necessary to evaluate high- and low-frequency variability of time series.

The aim is twofold: from one side, we investigate non-linear features of the
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data to correctly specify the parametric model, from the other, we check the

correct specification analyzing their frequency contents through the spectral

density function. If the empirically detected persistency is captured by the

chosen parametrization, then we can be more confident in the application of

our parametric model. Our results are related to the work of Krolzig (1997)

in terms of state space representation and stable representation and to the

paper of Pataracchia (2011) where a different Markovian representation has

been considered. However, note that in the latter paper, it is assumed that

the constant term (which is also governed by Markov chain) is zero. Here

we find more general and useful expressions. Thus our primary interest is to

test non-linearity in the data, study their behaviour at different frequencies

through spectral functions and validate the chosen model in relation with its

empirical counterpart. The plan of the paper is the following. In Section 2

we study the spectral density functions of Markov-switching (MS) VAR(0)

and VAR(p) processes in close-form, both from their switching state-space

representations and from stable VARMA representations. Section 3 shows

some numerical examples of the spectral densities for MS models. In Section

4 we investigate the presence of structural changes in real data. Then we

check the ability of the chosen models to capture high- and low-frequency

variability, using arguments from Section 2. Section 5 concludes. Derivation

of some formulae can be found in the Appendix.

2. Spectra of Markov-switching VAR

2.1 Spectra of hidden Markov process

Let us consider the model

(2.1) yt = νst + Σstut

where ut ∼ IID(0, Ik), yt, νst and ut are K×1, Σst is K×K and (st) follows

an M -state (irreducible and ergodic) Markov chain. Let P = (pij)i,j=1,...,M

be the transition matrix of the chain, where pij = Pr(st = j|st−1 = i).

Ergodicity implies the existence of a stationary vector of probabilities π =
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(π1 . . . πM)
′

satisfying π = P
′
π and i

′
Mπ = 1, where iM denotes the (M × 1)

vector of ones. Irreducibility implies that πm > 0 for m = 1, . . . ,M , meaning

that all unobservable states are possibile. An useful representation for (st) is

obtained by letting ξt denote a random (M×1) vector whose mth element is

equal to unity if st = m and zero otherwise. Then the Markov chain follows

a VAR(1) process

ξt = P
′
ξt−1 + vt

where vt = ξt − E(ξt|ξt−1) is a zero mean martingale difference sequence.

Consequently, we have the following standard properties (h > 0):

E(ξt) = π E(ξtξ
′

t) = D = diag(π1 . . . πM)

E(ξtξ
′

t+h) = DPh vt ∼ IID(0,D−P
′
DP)

Define Λ = (ν1 . . .νM) and Σ = (Σ1 . . .ΣM). We get a first state space

representation of (2.1)

(2.2)

 yt = Λξt + Σ(ξt ⊗ IK)ut

ξt = P
′
ξt−1 + vt

In fact, for st = m, ξt = em the mth column of the identity matrix IM . So

we get

yt =
(
ν1 . . . νM

)


0
...

1
...

0


+
(
Σ1 . . . ΣM

)


0
...

IK
...

0


ut

= νm + ΣmIKut = νm + Σmut.

The transition equation in (2.2) differs from a stable linear VAR(1) process

by the fact that one eigenvalue of P
′

is equal to one, and the covariance

matrix is singular due to the adding-up restriction. For analytical purposes,

a slightly different formulation of the transition equation in (2.2) is more
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useful, where the identity i
′
Mξt = 1 is eliminated. See Krolzig (1997), Chp.3.

This procedure alters the state-space representation by using a new (M−1)-

dimensional state vector

δt =

 ξ1,t − π1
...

ξM−1,t − πM−1

 .

The transition matrix F associated with δt is given by

F =

 p1,1 − pM,1 . . . pM−1,1 − pM,1

...
...

p1,M−1 − pM,M−1 . . . pM−1,M−1 − pM,M−1

 .

The eigenvalues of F are less than 1 in absolute value. Here the relations

ξM,t = 1−
M−1∑
m=1

ξmt πM = 1−
M−1∑
m=1

πm

have been used. Then we have

ξt − π = P
′
(ξt−1 − π) + vt

hence

δt = F δt−1 + wt

where

wt = (IM−1 − iM−1)vt.

This gives a second (unrestricted) state-space representation

yt = Λπ + Λ(ξt − π) + Σ((ξt − π)⊗ IK)ut + Σ(π ⊗ IK)ut

hence

(2.3)

 yt = Λπ + Λ̃δt + Σ̃(δt ⊗ IK)ut + Σ(π ⊗ IK)ut

δt = F δt−1 + wt
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where

Λ̃ = (ν1−νM . . .νM−1−νM) Σ̃ = (Σ1−ΣM . . .ΣM−1−ΣM).

We then have the following standard properties:

E(δt) = 0 E(δtδ
′

t) = D̃

E(δtδ
′

t+h) = D̃(F
′
)
h
, h > 0 wt ∼ IID(0, D̃− FD̃F

′
)

where

D̃ =

π1(1− π1) . . . −π1πM−1
...

...

−πM−1π1 . . . πM−1(1− πM−1)

 .

The autocovariance function of the process (yt) in (2.3) is given by

Γy(0) = Λ̃D̃Λ̃
′

+ Σ̃(D̃⊗ IK)Σ̃
′

+ Σ((DP∞)⊗ IK)Σ
′

Γy(h) = Λ̃FhD̃Λ̃
′

, h > 0

where DP∞ = ππ
′

and P∞ = limn Pn = iMπ
′
. The multivariate spectral

matrix describes the spectral density functions of each element of the state

vector in the diagonal terms. The off-diagonal terms are defined cross spectral

density functions and they are typically complex numbers. Here we are only

interested in the diagonal terms. Therefore, we can compute them, without

loss of generality, considering the summation

Fy(ω) =
+∞∑

h=−∞

Γy(|h|)e−iωh

where the frequency ω belongs to [−π, π]. See also Pataracchia (2011) where

a different spectral representation was obtained. Since the spectral radius

ρ(F) of F is less than 1, the spectral density matrix of the process (yt) in

(2.3) is given by

(2.4) Fy(ω) = Q+ 2Λ̃FRe{(IM−1eiω − F)−1}D̃Λ̃
′

6



where Re denotes the real part of the complex matrix (IM−1e
iω −F)−1, and

Q = Λ̃D̃Λ̃
′

+ Σ̃(D̃⊗ IK)Σ̃
′

+ Σ((DP∞)⊗ IK)Σ
′
.

Complete derivation of Formula (2.4) is given in the Appendix. An alter-

native approach to the same problem is based on a stable representation of

(2.3). Set µy = Λπ. From (2.3) we get

δt = F (L)−1wt

where F (L) = IM−1 − FL (here L is the lag operator). Substituting this

relation into the measurement equation in (2.3) yields

|F (L)|(yt − µy) = Λ̃F (L)∗wt + Σ̃(F (L)∗wt ⊗ IK)ut + |F (L)|Σ(π ⊗ IK)ut

where F (L)∗denotes the adjoint matrix of F (L) and |F (L)| is the determinant

of F (L). Thus we get a stable VARMA(p∗, q∗) representation of the process

(yt) in (2.3)

(2.5) φ(L)(yt − µy) = θ(L)εt

where p∗ = q∗ ≤M − 1, φ(L) = |F (L)| is scalar and

θ(L) = (Λ̃F (L)∗ Σ̃(F (L)∗ ⊗ IK) |F (L)|IK).

See also Cavicchioli (2014a), Th.6. The error term is also given by

εt = (w
′

t u
′

t(w
′

t ⊗ IK) u
′

t(π
′ ⊗ IK)Σ

′
)
′

with variance matrix

Ξ = V ar(εt) = diag(D̃− FD̃F
′
, (D̃− FD̃F

′
)⊗ IK ,Σ((DP∞)⊗ IK)Σ

′
).

Using (2.5) the spectral density matrix of the process (yt) in (2.3) is also

given by

Fy(ω) =
θ(eiω)Ξθ

′
(e−iω)

|φ(eiω)|2
.
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In fact, we can apply a well-known result (see, for example, Gourieroux

and Monfort (1997), Chp.8, Formula 8.3, p.257). The spectral density of a

VARMA process

Φ(L)yt = Θ(L)εt,

with V ar(ε) = Ω, is given by

(2.6) Fy(ω) =
1

2π
Φ−1(exp(iω))Θ(exp(iω))ΩΘ(exp(iω))′ Φ−1(exp(iω))′

This formula can be applied when det Φ(z) has all its roots outside the unit

circle. Moreover, we can also write Fy(ω) as

Fy(ω) =
1

2π

Φ∗(exp(iω))Θ(exp(iω))ΩΘ(exp(iω))′ Φ∗(exp(iω))′

| det Φ(exp(iω))|2

where Φ∗ denotes the adjoint matrix of Φ. Here, we apply these formulae

ignoring the coefficient. Written in this form Fy(ω) is a matrix whose ele-

ments are rational functions of exp(iω). This property is a characteristic of

the VARMA process.

2.2 Spectra of MS-VAR(p)

Let us consider the MS-VAR(p), p > 0, process

(2.7) A(L)yt = νst + Σstut

where A(L) = IK−A1L−· · ·−ApL
p is a (K×K)-dimensional lag polynomial.

Assume that there are no roots on or inside the unit circle of the complex

plane, i.e., |A(z)| 6= 0 for |z| ≤ 1. Reasoning as above, the process (yt) in

(2.7) admits a stable VARMA(p∗, q∗) with p∗ ≤M + p− 1 and q∗ ≤M − 1:

(2.8) Ψ(L)(yt − µy) = θ(L)εt

where Ψ(L) = |F (L)|A(L) = φ(L)A(L) and θ(L)εt is as in (2.4). If we

want the autoregressive part of the stable VARMA in (2.8) to be scalar, we

have to multiply (2.8) on the left with the adjoint A(L)∗ to give a stable

VARMA(p
′
, q

′
) representation, where the bounds satisfy p

′ ≤ M + Kp − 1

8



and q
′ ≤M + (K − 1)p− 1. Thus the spectral density matrix of the process

(yt) in (2.8) is given by

Fy(ω) =
A−1(eiω)θ(eiω)Ξθ

′
(e−iω)[A

′
(e−iω)]−1

|φ(eiω)|2

=
A∗(eiω)θ(eiω)Ξθ

′
(e−iω)A∗

′
(e−iω)

|φ(eiω)|2| det A(eiω)|2
.

From the above section we can also obtain the matrix expression

(2.9)
Fy(ω) = A−1(eiω)Q[A

′
(e−iω)]−1 + 2A−1(eiω)Λ̃F

×Re{(IM−1eiω − F)−1}D̃Λ̃
′

[A
′
(e−iω)]−1.

A similar result can be obtained for a Markov switching VAR(p), p > 0,

process

(2.10) Ast(L)yt = νst + Σstut

where we assume that the state variable is independent of the observables.

Define

A(L) = (A1(L) . . . AM(L))

where

Am(L) = IK −A1,mL− · · · −Ap,mL
p

for m = 1, . . . ,M . Recall that st ∈ {1, . . . ,M}. Then (2.10) can be written

in the form

A(L)(ξt ⊗ IK)yt = Λξt + Σ(ξt ⊗ IK)ut.

Assume that B(L) = A(L)(π ⊗ IK) is invertible. Then the spectral density

matrix of the process (yt) in (2.10) is given by

(2.11) Fy(ω) =
B−1(eiω)θ(eiω)Ξθ

′
(e−iω)[B

′
(e−iω)]−1

|φ(eiω)|2
.

Finally, we can also obtain the matrix expression

(2.12)
Fy(ω) = B−1(eiω)Q[B

′
(e−iω)]−1 + 2B−1(eiω)Λ̃F

×Re{(IM−1eiω − F)−1}D̃Λ̃
′

[B
′
(e−iω)]−1.
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3. Simulation exercises

As a first example, let us consider an univariate MS(2)-AR(1) model defined

as

(3.1)

yt = a1 yt−1 + σ1 ut st = 1

yt = a2 yt−1 + σ2 ut st = 2.

In Figure 1 we plot the spectral density of the model (3.1), where the error

term is ut ∼ IIDN (0, 1) and σ1 = σ2 = 1. The autoregressive coefficients

and transition probabilities are as follows: a1 = .8, a2 = .3, p11 = .6, p22 = .4

(top left panel); a1 = .8, a2 = .3, p11 = .9, p22 = .1 (top right panel);

a1 = −.8, a2 = −.3, p11 = .6, p22 = .4 (bottom left panel); a1 = .8, a2 = −.3,

p11 = .6, p22 = .4 (bottom right panel). In general, spectra are a sort of

weighted average of the two undelying linear models. Moreover, when the

autoregressive coefficients are both positive (a1 = 0.8 and a2 = 0.3) or nega-

tive (a1 = −0.8 and a2 = −0.3), the shape is similar to the typical spectral

representation of an AR(1) with positive/negative coefficients. When the

sign is opposite (a1 = 0.8 and a2 = −0.3) the prevailing shape depends on

which model dominates in terms of absolute value of the coefficients and

underlying probabilities. Finally, if the transition probabilities are very dif-

ferent (p = 0.9 and q = 0.1), the more persistent regime becomes more likely

and the peak of the spectrum increases.

As a second example, let us consider a simulation experiment from Diebold

and Inoue (2001) (Example 4.3, page 149) in which they study the finite-

sample property of some MS(2)-AR(0) models. We analyze the same model

from the frequency domain prospective, taking advantage of our results in

Section 2. The simulated processes are the following:

(3.2) yt = µst + εt

where εt ∼ IIDN (0, σ2), and st and ετ are independent for all t and τ . The

intercept term takes values µ0 = 0 in the first regime and µ1 = 1 in the

10



0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

a1=.8 a2=.3, p11=.6 p22=.4
0 0.5 1 1.5 2 2.5 3

0

5

10

15

20

25

30

a1=.8 a2=.3, p11=.9 p22=.1

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

16

18

a1=−.8 a2=−.3, p11=.6 p22=.4
0 0.5 1 1.5 2 2.5 3

0

5

10

15

20

25

30

a1=.8 a2=−.3, p11=.6 p22=.4

Figure 1: Plot of spectral density functions from the simulated MS(2)-AR(1) model in

(3.1), where σ1 = σ2 = 1 and autoregressive coefficients and transition probabilities are

as follows: a1 = .8, a2 = .3, p11 = .6, p22 = .4 (top left panel); a1 = .8, a2 = .3, p11 = .9,

p22 = .1 (top right panel); a1 = −.8, a2 = −.3, p11 = .6, p22 = .4 (bottom left panel);

a1 = .8, a2 = −.3, p11 = .6, p22 = .4 (bottom right panel). Spectral densities (solid lines)

are depicted together with the two underlying linear models (dashed lines).
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Figure 2: Plot of spectral density functions from simulated MS(2)-AR(0) models in (3.2)

with the intercept term equal to 0 in the first regime and 1 in the second regime. Transition

probabilities are p00 = p11 = 0.95 (left panel) and p00 = p11 = 0.9995 (right panel). This

example is taken from Diebold and Inoue (2001) (4.3, page 149).

second regime. For a short time series (T = 400) or a long one (T = 10, 000)

the following results remain the same. Diebold and Inoue (2001) observe the

behaviour of the data for different values of probabilities (p00 and p11) and

show that for equal probabilities close to one (e.g., 0.9995), the regime does

not change with positive probability, so that it does a good job of mimicking

long memory. On the contrary, when we observe equal transition probabilities

but well away from unity (e.g., 0.95), the long memory feature is less marked

in the data. Note at this point that traditionally long memory has been

defined in the time domain in terms of decay rate of long-lag autocorrelations,

or in the frequency domain in terms of rates of explosion of low-frequency

spectra. Here we are able to confirm Diebold and Inoue (2001) conclusions

through the analysis of the spectra of the two described cases. Figure 2 shows

the spectral densities of the MS(2)-AR(0) model with equal probabilities

which are away from unity (left panel) and with probabilities very close to

one (right panel). In the first case the spectrum shows a smoother behaviour

which vanishes only at frequency equal to 1, while in the second we witness

an explosion at low-frequency in the spectra. Therefore, we conclude that

stochastic regime switching is intimately related to long memory and could

12



be easily confused with it, as long as only a small amount of regime switches

occurs in an observed sample path.

4. Frequency variability in real data

A recent paper by Müller and Watson (2008) has proposed a framework

to study how successful are time series models in explaining low-frequency

variability. In fact, some econometric models (local-to-unity or fractional)

were specifically designed to capture low-frequency variability of the data.

However, they provide reliable guidance for empirical analysis only if they

are able to accurately describe not only low-frequency behaviour of the time

series, but also high-frequency. In particular, the authors focus on lower fre-

quencies than the business cycle, that is a period greater than eight years,

and some inference is proposed on the low-frequency component of the series

of interest by computing weighted averages of the data, where the weights are

low-frequency trigonometric series. We propose to look at the relative impor-

tance of low- and high-frequencies in a time series from a different prospec-

tive. We assume that a suitable parametric model should be able to capture

the relative importance of the different frequencies which characterize the be-

haviour of the series. Our aim is to study some empirical questions of interest

from Müller and Watson (2008) with a different approach. In particular, we

firstly use recent test from Cavicchioli (2014a) to correctly parametrize the

process we are considering. Then, by using simple Maximum Likelihood Es-

timation (MLE) expressions from Cavicchioli (2014b) we proceed to estimate

the model. Finally, using spectral density results presented in Section 2, we

check if the chosen model is able to extract frequency variability of the initial

process. Following Müller and Watson (2008), we investigate the following

questions: (1) after accounting for a deterministic linear trend, is real gross

domestic product (GDP) consistent with a I(1) model? (2) is the term spread

consistent with the I(0) model, that is are long term and short term interest

rates cointegrated? (3) are absolute daily returns, which are characterized

by ”slow decay of autocorrelations” consistent with an I(1) or I(0) model?
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We study those questions allowing the possibility that those series may be

affected by structural changes and, if it is the case, they should be taken into

account when fitting a model on the data. We take postwar quarterly U.S.

data and focus on a period greater than 32 quarters, that is frequencies lower

than the business cycle, as in Müller and Watson (2008). In particular, we

consider quarterly values (1952:Q1 - 2005:Q3) of the logarithm of de-trended

real GDP and de-meaned term spread - difference between interest rates for

10 years and 1 year U.S Treasury bonds. Moreover, we observe daily abso-

lute returns (January 2nd, 1957 - September 30th, 2013) computed as the

logarithm of the ratio between consecutive closing prices from S&P500. Data

are taken from the FRED database. Before proceeding with our analysis, we

plot sample periodograms of the data in order to have a preliminary idea

on the different behaviour of the series. In Figure 3 we recognize a mixed

pattern of low- and high-frequency cycles for real GDP and bond spread

which produces uncertainty on the relative importance of the two compo-

nents. On the contrary, we recognize the explosion at the low-frequency in

the periodogram of absolute returns, as we expected from ”long-memory”

considerations. To correctly estimate the process, the first step is to test lin-

earity or non-linearity of the model and, if it is case, the number of regimes

which characterizes the time series. For the determination of regime number,

we use results from Cavicchioli (2014a).

With regard to the real GDP, we select a linear model, that is one regime

is sufficient to describe the data. We include one lag for the autoregressive

model (as suggested by standard information criteria for the AR model)

and plot its spectral density in Figure 4 (upper panel). The spectra of this

model is typical of an autoregressive model; here low-frequencies are the

most important, giving credit to an I(1) model. However, if we take the

first differences of the series, we somehow depurate the process from the

stochastic trend (not only from the linear deterministic one, as before). Here

the test suggests a MS(2)-AR(1) model and the spectra in Figure 4 (lower

panel) retains only high-frequency movements. It suggests that the long-
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Figure 3: Periodograms of logarithm of detrended U.S. real GDP (top panel), demeaned

Treasury bond spread as the difference between interest rates for 10 years and 1 year U.S

Treasury bonds (middle panel); those two series have quarterly frequency and the period

is from 1952:Q1 to 2005:Q3. Absolute daily returns (bottom panel) as the logarithm of

the ratio between consecutive closing prices from S&P500 (January 2nd, 1957 - September

30th, 2013). Data are taken from FRED database.
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run pattern characterized by two phases of the economy is captured by the

switching model.

When considering the Treasury bond spread, a 2-state switching model is

selected. Thus, we estimate a MS(2)-AR(1) model which turns to be as

follows
µ̂ = [0.4033 0.0047]

sd(µ̂) = [1.2356 0.4711]

φ̂ = [−1.1343 − 0.8474]

sd(φ̂) = [1.3273 0.2711]

σ̂ = [0.8737 0.3331]

sd(σ̂) = [0.6178 0.2356]

P̂ =

[
0.76 0.24

0.24 0.76

]
Then we use the estimated values in the spectral formulae of Section 2 to

depict the spectral representation of the data, which is in Figure 5. The

spectrum suggests that only high-frequencies of the series matter, even if

with relatively uncertainty given by the 95% confidence bands. This seems to

be consistent with an I(0) model, where high-frequency variability dominates

the process.

Finally, we evaluate the behaviour of absolute returns from S&P500, which

typically suffer of ”long memory”. Here a 3-state switching model suits the

data and we estimate a MS(3)-AR(1). The estimated parameters are the

following
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Figure 4: Spectral density functions (solid lines) for the logarithm of detrended U.S.

real GDP modelled as a linear AR(1) (upper panel) and for the logarithm of differenced

U.S. real GDP modelled as MS(2)-AR(1) (lower panel) along with 95% confidence interval

bands (starred lines). Both series have quarterly frequency for the period 1952:Q1 to

2005:Q3. Data are taken from FRED database.
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Figure 5: Spectral density (solid line) of demeaned Treasury bond spread (difference

between interest rates for 10 years and 1 year) at quarterly frequency (1952:Q1 to 2005:Q3)

modelled as a MS(2)-AR(1), along with 95% confidence interval bands (starred lines). Data

are taken from FRED database.

µ̂ = [−0.0408 0.0004 0.0049]

sd(µ̂) = [0.1276 0.0009 0.0084]

φ̂ = [0.2013 − 0.0001 − 0.0819]

sd(φ̂) = [4.8271 0.2609 0.5717]

σ̂ = [0.0737 0.0005 0.0048]

sd(σ̂) = [0.0471 0.0003 0.0031]

P̂ =

0.98 0.00 0.02

0.02 0.98 0.00

0.00 0.04 0.96


Using Formula (2.12), we construct the spectral density of the process having

the above estimated parameters. This is plotted in Figure 6 and it is very

close to the sample periodogram, with very tight confidence bands, open-

ing up a room for considering structural change rather than long memory

attributes of the process. Moreover, from the estimated values, we recog-
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Figure 6: Spectral density (solid line) of absolute daily returns (logarithm of the ratio

between consecutive closing prices from S&P500) for the period January 2nd, 1957 -

September 30th, 2013, modelled as a MS(3)-AR(1), along with 95% confidence interval

bands (starred lines). Data are taken from FRED database.

nize a first regime of high-volatility and negative returns, a second regime of

low volatility and high returns and a third state of moderate volatility and

average returns. In particular, estimated transition probabilities show that

regimes are very persistent, which is also in line with the conclusion given by

Diebold and Inoue (2001).

6. Conclusion

In this work we study multivariate AR models subject to Markov Switch-

ing in the most general form and derive close-form formulae for the spectral

density functions of such processes. The spectral densities of these models

can be very useful as a tool to infer information on the persistency charac-

terizing the series and to check the correct parametrization of the process.

In particular, after having assessed linearity or non-linearity of the series,

spectral analysis gives some insights on the relative importance of high- and

low- frequency variability and help to validate the assumed model. We ap-

plied the method to some macroeconomic and financial data to evaluate their
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frequency variability and to investigate the problem of ”structural change vs

long memory” of returns via spectral analysis.
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[8] Mikosch, T. and Stǎricǎ, C. (2000) Is it really long memory we see

in financial returns?, Extremes and Integrated Risk Management 12,

149-168.

20



[9] Müller, U. K. and Watson, M. W. (2008) Testing Models of Low Fre-

quency Variability, Econometrica 76(5), 979-1016.

[10] Krolzig, H.M. (1997) Markov-Switching Vector Autoregressions: Mod-

elling, Statistical Inference and Application to Business Cycle Analysis,

Springer Verlag, Berlin-Heidelberg-New York.

[11] Pataracchia, B., (2011) The Spectral Representation of Markov Switch-

ing ARMA Models, Economics Letters 112, 11-15.

Appendix

Derivation of Formula (2.4):

The spectral density of the process (yt) in (3) is given by

Fy(ω) =
+∞∑

h=−∞

Γy(|h|)e−iωh = Γy(0) +
+∞∑
h=1

Γy(h)e−iωh +
−1∑

k=−∞

Γy(k)e−iωk

= Γy(0) +
+∞∑
h=1

Γy(h)e−iωh +
+∞∑
h=1

Γy(k)eiωh.

Note that(
n∑
h=1

Ah

)
(I − A) = (A+ A2 + · · ·+ An)(I − A) = A− An+1

which is equal to A when n goes to infinity with the spectral radius of

A less than 1. Hence(
lim

n→+∞

n∑
h=1

Ah

)
(I − A) = A and

+∞∑
h=1

Ah = A(I − A)−1.
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It turns out that spectral density of the process in (3) is given by

Fy(ω) = Λ̃D̃Λ̃
′
+ Σ̃(D̃⊗ IK)Σ̃

′
+ Σ((DP∞)⊗ IK)Σ

′

+
+∞∑
h=1

Λ̃F hD̃Λ̃
′
e−iωh +

+∞∑
h=1

Λ̃F hD̃Λ̃
′
eiωh

= Q+ Λ̃
+∞∑
h=1

(Fe−iω)hD̃Λ̃
′
+ Λ̃

+∞∑
h=1

(Feiω)hD̃Λ̃
′

= Q+ Λ̃(Fe−iω)(I − Fe−iω)−1D̃Λ̃
′
+ Λ̃(Feiω)(I − Feiω)−1D̃Λ̃

′

= Q+ 2Λ̃FRe{(IM−1eiω − F)−1}D̃Λ̃
′

where Re denotes the real part of the complex matrix (IM−1e
iω−F)−1,

and

Q = Λ̃D̃Λ̃
′
+ Σ̃(D̃⊗ IK)Σ̃

′
+ Σ((DP∞)⊗ IK)Σ

′
. �
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