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Abstract We introduce a model for analyzing the upgrade of the national
transmission grid that explicitly accounts for responses given by the power
producers in terms of generation unit expansion. The problem is modeled as a
bilevel program with a mixed integer structure in both upper and lower level.
The upper level is defined by the transmission company problem which has to
decide on how to upgrade the network. The lower level models the reactions of
both power producers, who take a decision on new facilities and power output,
and Market Operator, which strikes a new balance between demand and sup-
ply, providing new Locational Marginal Prices. We illustrate our methodology
by means of an example based on the Garver’s 6-bus Network.

Keywords Power Network Expansion Planning · Generation Expansion ·
Bilevel Programming · k -th Best Algorithm

1 Introduction

The Emergence of liberalized systems for power generation is expected to in-
crease competition and lower prices for consumers during the upcoming years.
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In many countries, the electricity sector has undergone substantial structural
changes, due to a series of reforms which, during the last decade, have led to
a process in the quest for efficiency and increase of social welfare. The reason
why these reforms have been introduced may be mainly found on a list of
key factors such as the poor performance of the state-run electricity sector in
terms of high costs, inadequate expansion of access to electricity service for
the load and/or unreliable supply, the inability of the state sector to finance
needed expenditures on new investment and/or maintenance, the need to re-
move subsidies to the sector in order to release resources for other pressing
public expenditure needs and the desire to raise immediate revenue for the
government through the sale of assets from the sector (Bacon 1995; Int. En-
ergy Agency 1999; World Energy Counc. 1998; Patterson 1999). See Hyman
(2010) for considerations about how consumers can benefit to different extents
from the deregulation.

With the liberalization, private companies started entering the power mar-
ket, offering electricity at lower prices thereby introducing a competition pat-
tern which should pass a larger share of benefits on to consumers.

In this respect, the evolution of electricity industry from the Vertically
Integrated Utilities, which were the past standard structure for electricity
generation and delivery, to the nowadays deregulated structure is introduc-
ing several challenges in planning and operating power systems. Particularly
important are the aspects related to the coordination of generation systems
with transmission lines. With no longer vertical structure ensuring automatic
coordination of such activities it becomes necessary to develop mechanisms to
align production and transmission expansion decisions of the market actors
covering these two roles.

As a mention, in Italy, after the power market liberalization, most of the
power generation system has been removed from the former monopolist and
is now carried out by different GenCos (Generating Companies), even though
competition is still really limited by an incumbent producer which alone holds
about 50% of total generation capacity. The agency delegated to ensure the
transmission system to operate in a secure way is the TransCo (Transmission
Company), Terna (Genesi et al. 2008, TERNA, S.p.A 2007). Finally, tariffs
are defined by the GME (Gestore del Mercato Elettrico), which is the Italian
regulator, sometimes referred to as Market Operator (MO).

In Italy, investments in new transmission lines have been scarce during
the past years, mainly due to low remunerative capacity of the transmission
tariffs. This situation has driven the power system to face an augmented vul-
nerability, which has been highlighted by several incidents, such as the 2003
total black-out, when a tree flashover caused the tripping of a major tie-line
between Italy and Switzerland (as reported in the Final Report of the Investi-
gation Committee on the 28 September 2003 Blackout in Italy (2004)), which
brought to an unbalancing of transmission on the other lines that eventually
began tripping one after another. Over the course of several minutes the entire
Italian power system collapsed, causing the worst black-out ever recorded in
the national history.
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These failures have called for a drastic redesign of the national transmis-
sion system, especially for what concerns the transmission expansion plans.
Property and usage of the transmission grid, once up to different actors, have
been unified according to a so-called TransCo model. Terna is nowadays the
only company operating to secure the grid operations, with different producers
ensuring power generation at the different nodes.

In this new environment, when planning the expansion of the transmission
grid, it is important for the TransCo to take into account possible responses
provided by GenCos. Not accounting for such reactions could most likely lead
to potential over and under-investments beared by the TransCo across the
different nodes. This proactive policy would result in a better exploitation of
the new investments in transmission facilities.

We propose a deterministic multiperiod model for analysis of transmis-
sion grid expansion planning with competitive generation capacity planning
in electricity markets. The purpose of the model is providing a tool to de-
fine the optimal grid upgrading program in a market driven environment.
Interplay between TransCo and several independent GenCos is treated as a
leader-followers Stackelberg game. Such game is expressed as the following se-
quential decision pattern: the TransCo decides on the best possible upgrades of
transmission lines at time zero and the GenCos modify their production plans
over time and potential capacity expansion at time zero accordingly, reaching
an equilibrium together with the MO, which clears the market providing new
Locational Marginal Prices (LMP). GenCos’ reactions lead to a power pro-
duction equilibrium that is properly taken into account within the TransCo
decision problem, which receives back new LMPs and planned production used
to determine the aggregated social costs, defined as a the weighted sum of costs
paid by consumers and negative aggregated GenCo profits.

Coordination of generation and transmission expansion planning has be-
come steadily more important with the increasing introduction of renewable
production sources in the system, especially for what concerns wind technolo-
gies and the uncertainty that their introduction brings into the system. This
has sparked the production of an increasing amount of literature investigating
the effects of wind projects on the transmission network (see e.g. Baringo and
Conejo 2012; Heejung and Baldick 2013; Maurovich et al. 2013).

Problem of coordination of transmission expansion planning with compet-
itive generation capacity planning in electricity markets has been addressed
by some recent literature (Ng, Zhong and Lee 2009; Roh and Shahidehpour
2007), and usually solved by means of decomposition techniques aiming at
computing shadow prices for LMPs and introduce cuts to prevent GenCos
and transmission companies expanding capacity in an uncoordinated manner.
In this paper we solve the coordination problem using bilevel programming
techniques. Our aim is to find a method to obtain a global optimal solution
for the TransCo, given the responses provided by GenCos.

LMPs are obtained by including first order conditions of the market clear-
ing problem into the TransCo problem. The resulting model is composed of
two interdependent levels. The TransCo will take the role of leader by assum-
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ing the initial decision on how to upgrade the national transmission grid, while
the GenCos are considered as followers who react to the TransCo decision by
reviewing their facility expansion plan and related power production. At the
same level of the GenCos is the MO, who clears the market and sets the LMP
according to load and bids submitted by GenCos. Novelties introduced by our
approach include:

1. The use of binary variables representing power producers’ investment de-
cisions in a bi-level programming framework applied to the management
of power transmission expansion problems;

2. Development an algorithm for computing a Stackelberg equilibrium with
mixed integer decision variables on both upper and lower level;

3. Performing a sensitivity analysis for determining the effects of changing
budget availability up to the TransCo and the weighting factors express-
ing the relative importance of producers and consumers in the TransCo
objective function.

We assume that the GenCos’ bids will reflect the marginal production cost
with a bid up.

The model can be used as a tool to analyze consequences of different focuses
with respect to the relative importance of consumers or GenCos profitability on
the structure of the national transmission grid, related profitability for the gen-
eration companies and changes in social costs. Namely, the model can explain
how prices tend to converge when congestion is removed between market areas
and how aggregated profitability is shared among the producers when the con-
sumers assume steadily increasing importance for the Transmission Operator.
As it can be expected, GenCos owning plants with low marginal production
costs will erode market shares from the competitors. As a consequence, even
though aggregated profits will decrease, the most efficient producers should be
able to increase their profits.

In addition, the model could serve as a tool to investors to identify signals
on the location of new generation and transmission facilities and help system
planners and regulators to concur on the amounts and location of transmission
capacity. Considerations about uncertainty related to load growth are not
made in this work and shall be addressed in future research.

2 Literature Review

Due to its intrinsic complexity and multi-objective nature, the problem of
coordinating power transmission and generation has been tackled using many
different techniques. The first attempts to solve this problem date back to
the late sixties and were based on a centralized approach (Galloway et al.
1966; Garver 1970). Linear programming was mainly used with the aim of
minimizing the pooled costs for the system. The models were focused on the
analysis of possible outages stemming from over-utilization of the network. No
interplay was considered amongst the actors involved in the planning activity.



Power Transmission Capacity Expansion 5

Interactions among power transmission and generation have gained more and
more importance as game theoretic models have made their appearance in
optimization theory. An example of application of such mixture of equilibrium
concepts and optimization theory in analysis of electricity market equilibrium
can be found in Hobbs (2001).

Recent literature on transmission-generation expansion may be classified
according to the solution approach, heuristic or exact. First and foremost,
models can be classified as heuristic approaches or exact solution methods.
Other considerations may be made on the granularity used to model the ac-
tors, whether each player is considered as an active competitor or as an element
of a competitive fringe. In the first case the actor has the power of influencing
the prices through a fine tuning of its output, while in the latter case all actors
are considered as price takers. Hierarchical structure of the model is another
prominent aspect to be considered. Recent approaches encompass the use of
bilevel programming (Bard 1998) where the transmission planner takes its
decision with the first mover advantage, while generating companies have to
decide accordingly, together with the MO. Yet an important point is given by
the approach for modeling the equilibrium between actors. This can be done in
several ways, leading to diverse considerations on the stability of the equilib-
rium and the possibility to use an exact solution method. Some authors use a
Linear Complementarity Problem (LCP) approach (Ng et al. 2009; Shan and
Ryan 2011), i.e. they bundle Karush-Kuhn-Tucker conditions of the players
involved in the market game and solve the resulting joint system. Conversely,
other authors have modeled market equilibrium using best response functions
(Vespucci et al. 2010), i.e. starting from an initial point, they looped over the
different actors solving the i-th actor problem while keeping the other actors’
decisions as parameters. If convergence criteria are met, this would eventually
lead to a stable Nash equilibrium.

Finally, it is important to distinguish how generation expansion is treated
by the various authors. Many models, particularly the ones where equilibrium
amongst actors is modeled through a LCP, do not consider the expansion
planning problem of the generation side. This is due to complexity linked in
modeling binary decisions within a Karush-Kuhn-Tucker framework. Interplay
among generating companies is therefore defined as a Cournot-Nash game,
where players compete through a wise choice of output quantities.

The seminal papers in Stackelberg leader-followers approach to power trans-
mission expansion planning have been introduced by Sauma and Oren (2006,
2007). The authors define a three levels planning model considering both trans-
mission and generation expansion decisions. The third level considers the op-
erational problem for the GenCos and the market clearing problem given the
decisions about generation and transmission capacity. The authors assume that
the entire production in a given node is entirely covered by a single producer.
This allows them to obtain a formulation of the demand function in a given
node and related to a given producer. In this way each GenCo will decide at the
same time price and quantity to be produced. The second level defines, for each
GenCo, the generation capacity level, given the grid configuration provided in
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the first level by the Transmission Operator. Generation capacity is modelled
as a continuous variable, meanwhile transmission lines are discrete variables.
The problems defined in the second level are constrained by the equilibrium
obtained by the first order conditions of the third level problems. Therefore
the second level is defined as an Equilibrium Problem with Equilibrium Con-
straints (EPEC) whose solution cannot be obtained via plain use of first order
conditions of each Genco Problem because of nonconvexity of each GenCo
capacity expansion problem. The authors propose a solution approach based
on best response functions in order to achieve an equilibrium between GenCos
under different grid configurations. The first level problem is the problem of
maximizing a social welfare function. The first level objective function is used
to evaluate the quality of different predefined grid configuration proposals.

Pozo et al. (2013) extend the approach of the model proposed by Sauma
and Oren (2006) by introducing additional assumptions that allow to refor-
mulate the three-levels problem into a one-level MILP. The linearization is
accomplished through the reformulation of the second level EPEC into a set
of linear inequalities by discretizing the generation expansion variables and
enumerating all the possible solutions of the Mathematical Program with Equi-
librium Constraints defining the GenCos’ expansion problems for all possible
responses of the peer producers.

A work based on a bilevel programming approach is the one of Garcés et al.
(2009), which considers the transmission expansion problem as a Stackelberg
game with the TransCo assuming the role of the leader and deciding over the
transmission network upgrade, while the GenCos are considered as operating
under perfect competition. This implies that the lower level problem of the
game is defined by the market clearing condition and no expansion planning is
considered for the GenCos. A similar approach is taken on a subsequent article
by Garcés et al. (2010) which add considerations on load shedding costs. Both
works assume minimization of investment costs as the leader’s objective.

Strategic behaviour of the GenCos in influencing market prices is also con-
sidered in Shan and Ryan (2011). Their approach is still based on a bilevel
program, even though the two levels do not define decision problems up to two
different decision makers, but rather two different decision stages - namely in-
vestment and operational stage - of a centralized system. The objective of such
a system is to strike a balance between the minimization of the total cost up
to consumers and the maximization of the aggregated profits of the GenCos.

A centralized approach is also taken by Aguado et al. (2012), which consider
a Mixed Integer Linear Programming problem to obtain a pool based decision
for transmission network expansion to be evaluated with appropriate physical
and economic metrics. GenCos are not assumed to make any expansion plan.

A hierarchical approach is taken by Hesamzadeh et al. (2010). They con-
sider the interaction between TransCo, GenCos and MO on three different
levels. On the top level they consider the TransCo, which decides on transmis-
sion expansion while taking into account the response obtained by the equilib-
rium output of the GenCos. In addition, each GenCo problem is defined as a
bilevel problem having as lower level the MO market clearing conditions. Each
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GenCo submits a bid composed of the maximum output level and a bid-price
and receives the LMP by the lower level. The equilibrium between GenCos
is obtained by means of a best response function approach. These equilibria
are computed with respect to different network expansion choices. The best
expansion choice is then selected via a heuristic method: the TransCo starts
with a dummy and uneconomical solution containing all the candidate lines;
then lines are eliminated one by one starting from the least efficient one in
terms of social welfare. The procedure iterates until budget constraints are
satisfied.

A rather different approach is taken by Roh and Shahidehpour (2007), who
consider a coordination model where the Independent System Operator (ISO),
which takes care of system security, sends economical signals to TransCos and
GenCos to incentivize a coordinated expansion of transmission and generation.
In this framework, ISO obtains the expansion plan of GenCos and TransCos
and performs a security check on the network. Should any infeasibility be
detected, the ISO generates a Benders’ cut which is then included into the
GenCos and TransCos problems via Lagrangean Relaxation. LMP and Flow-
gate Marginal Prices are updated at each iteration with new dual variables of
the load constraint and fed back to the GenCos and TransCos and the process
starts anew. The last iteration is reached when there is no change in the social
cost function. The authors also solve a stochastic version (Roh and Shahideh-
pour 2007) of the model with scenarios defined by possible outages deriving
by malfunctioning of generation units or lines.

A similar approach to the one of Hobbs is taken by Ng et al. (2009). The
authors consider the problems of TransCo, GenCos and MO as the solution
of a LCP. The LCP is solved eliminating the constraints containing integer
variables related to generation and tranmission expansion. The LCP is then
reformulated into a quadratic optimization problem and the previously elimi-
nated constraints are incorporated back into the problem.

3 General model

The model introduced in this article defines a sequential game between three
players: the TransCo, a group of GenCos and the MO. The model is structured
in two different, interrelated decision levels that represent the sequential nature
of the decisions up to each player. Namely, the TransCo will take its decision
on the transmission structure as first mover, then each GenCo will decide on
power production levels and potential investments accordingly to the choice
made by the TransCo. Bids provided by each GenCo are collected and sorted
by a MO, which clears the market.

We assume that power is delivered to consumers spread over different nodes
having different load and power production capacity, which in turn depend on
the amount of existing and candidate generation units. The problem refers
to a medium/long time horizon, which we discretize in years. The modeling
framework considered in this paper is displayed in figure 1. The two-levels
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                                                                           Fig. 1 Interdependancies between transmission company, generator companies and MO

Stackelberg game involves only the network planner as the upper level player
and a group of power generating companies, whose bid-ask mechanism with
the consumers is mediated by a MO, as the lower level. The TransCo aims at
minimizing a social cost function, defined as the weighted sum of the total costs
up to the consumers and the negative sum of the GenCos aggregated profit.
The TransCo takes a decision on installation of new power transmission lines l
which, together with the existing transmission lines, will define bounds for new
capacities for the transmission corridors at time t. These bounds are used by
the MO to define how much power can be transferred between nodes in order
to cover the peak hour load of period t. Depending on the relative importance
of consumers and GenCos, congestions might or might not occur, leading to
several different LMPs or just one respectively.

Bids are sent to the MO by the GenCos in form of a pair (bikt, q̃ikt) defining
the price bid at time t from generator k belonging to GenCo i and the related
quantity respectively. The MO, given the power flow bounds defined by the
TransCo, will define the LMPs πzt for node z at time t and the accepted
quantity qikt of power generator i. GenCos aim at maximizing their profit by
deciding how much power to supply and whether to open new generation units.
We assume that GenCos do not influence LMPs through strategic bidding, so
that their bids simply reflect a mark-up on their marginal costs.

As aforementioned, the modeling framework is composed of three decision
problems where the TransCo problem and the GenCo problems together with
the MO problem are sequentially interrelated. The model is complicated by the
presence of binary variables both in the TransCo problem and in the GenCo
problems. A dedicated algorithm has been developed in order to take care of
binary decision variables featured in the equilibrium problem between GenCos
and MO. Such algorithm falls within the family of the k -th best algorithms
- see e.g. Bialas et al. (1982) - and it is tailored to the case encompassing
integer variables in the lower level problem. We tackle the problem by solving
a relaxation of the TransCo problem in which all binary decision variables are
controlled by the TransCo as a tentative solution, while first order conditions
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are imposed for the continuous variables of the GenCo and MO problems. This
returns a lower bound for the TransCo problem. One can normally expect
that the response given by the GenCos in terms of binary variables will not
coincide with the tentative solution provided by the optimal solution of the
relaxed TransCo problem. In this case the algorithm creates appropriate cuts
in order to prevent the TransCo to choose the same integer solution for the
variables up to the GenCos and proceeds with a new iteration.

3.1 The Market Operator Problem

The main task of the MO is matching energy demand and supply at each time
point and determine Locational Marginal Prices. Let us introduce the follow-
ing notation

Sets:

– T : set of periods t; in every period we consider the peak hour load;
– I: set of producers i;
– Z: set of nodes z;
– LE : set of existing transmission lines l;
– LC : set of candidate transmission lines l;
– KE

iz: set of existing technologies k belonging to producer i in node z;
– KC

iz: set of candidate technologies k of producer i in node z.

Parameters:

– bikt [e /MWh]: price of sell bid of generation unit k belonging to GenCo i
in period t;

– Azl: incidence matrix of the transmission network;
– Czt [MW]: load in node z in period t;
– Bl: subsceptance of line l;
– Xl: boolean parameter assuming value 1 if a line l is built;
– q̃ikt [MW]: power produced by generator k belonging to GenCo i at time
t;

– TRlt [MW]: maximum capacity of transmission line l in period t;
– TRlt [MW]: minimum capacity of transmission line l in period t.

Decision variables:

– qikt [MW]: accepted bid for technology k of producer i in period t;
– TRlt [MW]: power flow on transmission line l in period t;
– θzt voltage angle for terminal node in node z in period t.

Market clearing conditions for the perfect competitive system considered
for a group of similar producers is given by the solution of the problem

min
qikt,TRlt

∑
i∈I

∑
t∈T

∑
z∈Z

∑
k∈KE

iz∪KC
iz

biktqikt (1)
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subject to∑
i∈I

∑
k∈KE

iz∪KC
iz

qikt +
∑

l∈LE∪LC

AzlTRlt = Czt z ∈ Z, t ∈ T (2)

0 ≤ qikt ≤ q̃ikt z ∈ Z, k ∈ KE
iz ∪KC

iz, t ∈ T, i ∈ I (3)

TRlt = Bl

(∑
z∈Z

Azlθzt

)
Xl l ∈ LC , t ∈ T (4)

TRlt = Bl

(∑
z∈Z

Azlθzt

)
l ∈ LE , t ∈ T (5)

TRlt ≤ TRlt ≤ TRlt l ∈ LE ∪ LC , t ∈ T (6)

θz ≤ θzt ≤ θz z ∈ Z, t ∈ T (7)

TRlt ∈ < l ∈ LE ∪ LC , t ∈ T (8)

θzt ∈ < z ∈ Z, t ∈ T (9)

Solution of the introduced problem determines the accepted quantities min-
imizing the sum of the quantities times their bid prices. Constraint (2) ensures
market balance between demand and supply in each zone and its dual variable
represents the zonal LMP. Constraint (3) defines the bounds for the accepted
production from each generator. The MO cannot accept more than what has
been produced. Constraints (4) and (5) represent the power flow through can-
didate and existing lines. Finally θz and θz of the slack node z are set to zero.
Notice that the power flow equation (4) for the candidate line is multiplied by
a boolean parameter, which sets the transmission to zero when no line is built
in the considered transmission corridor.

3.2 The GenCo Problem

At the same level as the MO is the set of GenCos. These actors aim at maxi-
mizing their own profit by submitting bids (bikt, q̃ikt) to the MO and defining
their optimal expansion plan according to the grid structure. The problem of
the i-th GenCo involves the following notation

Parameters:

– πzt [e /MWh]: Locational Marginal Price in node z at time t ;
– δ: discounting factor;
– cik [e /MWh]: generation cost of technology k for producer i;
– fGik [e ]: investment cost of technology k for producer i;
– ΓC

ik [MW]: capacity of candidate technology k of producer i;
– ΓE

ik [MW]: capacity of existing technology k of producer i;
– qikt [MW]: accepted bid for technology k of producer i in period t.

Decision variables:
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– Yik: binary variable set to 1 if producer i activates candidate generation
unit k;

– q̃ikt [MW]: power produced by generator k belonging to GenCo i at time
t.

Each GenCo has a capacity limit for both existing and candidate genera-
tors. Such limits are expressed by the constraints

q̃ikt ≤ ΓE
ik z ∈ Z, k ∈ KE

iz, t ∈ T

and

q̃ikt ≤ ΓC
ikYik z ∈ Z, k ∈ KC

iz, t ∈ T

respectively.
Finally, the quantity sold by each GenCo cannot be larger than the quantity

accepted by the MO, i.e.

q̃ikt ≤ qikt z ∈ Z, k ∈ KE
iz ∪KC

iz, t ∈ T.

The decision problem of GenCo i is therefore the following

max
q̃ikt,Yik

∑
t∈T

δ−t
∑
z∈Z

πzt ∑
k∈KE

iz∪K
C
iz

q̃ikt −
∑

k∈KE
iz∪K

C
iz

cik q̃ikt

−∑
z∈Z

∑
k∈KC

iz

fGikYik (10)

subject to

q̃ikt ≤ ΓCikYik z ∈ Z, k ∈ KC
iz , t ∈ T (11)

q̃ikt ≤ ΓEik z ∈ Z, k ∈ KE
iz , t ∈ T (12)

0 ≤ q̃ikt ≤ qikt z ∈ Z, k ∈ KE
iz ∪KC

iz , t ∈ T (13)

Yik ∈ {0, 1} k ∈ KC
iz (14)

In this problem, πzt represents the LMP in node z in period t and is defined
as the shadow price associated to constraint (2).

The solution of each GenCo problem changes accordingly to the bid level
accepted by the MO in each node and the resulting Locational Marginal Price.
The bounds on accepted bids are defined in constraint (13) and the upper
bound qikt can be understood as a demand constraint at time t for power out-
put up to generator k belonging to GenCo i. This latter in turn depends on the
possibility of transferring electricity between different nodes. This mechanism
establishes a hierarchical relation between the decision up to each GenCo in
terms of MW to provide to the market and potential new installments and the
decision taken by the TransCo in terms of opened transmission lines. Accord-
ing to this relation we will refer to the GenCo problem as GPi (πzt, qikt), where
πzt and qikt are defined by the MO as a sequential response to the decisions
taken by the TransCo and as a concurrent response to the bids offered by the
GenCos.
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3.3 The TransCo Problem

TransCo aims at minimizing the weighted sum of aggregated costs up to con-
sumers and negative GenCo profits given the expansion investment budget. If
the consumers have a high importance in the aggregated social cost function
the TransCo will add new lines to reduce congestion and let GenCos with low
costs place a bid in different areas, lowering the value of the accepted bids
and, consequently, the electricity prices. The problem is formalized as follows.

Parameters:

– Czt [MW]: load in node z in period t;
– fTl [e ]: investment cost for opening line l;
– H [e ]: total budget for lines expansion;
– cik [e /MWh]: generation marginal cost of technology k for producer i;
– α: weighting factor ranging between 0 and 1, measuring the relative im-

portance of consumers and producers in the social cost function minimized
by the TransCo.

Decision variables:

– πzt [e /MWh]: LMP in node z at time t;
– q̃ikt [MW]: power produced by GenCo i from generation unit k at time t;
– Xl: binary variable taking value 1 if line l is built.

min
πzt,q̃ikt,Xl

α
∑
t∈T

∑
z∈Z

Cztπzt−(1− α)
∑
t∈T

δ−t
∑
z∈Z

πzt ∑
k∈KE

iz∪K
C
iz

q̃ikt −
∑

k∈KE
iz∪K

C
iz

cik q̃ikt


(15)

subject to ∑
l∈LC

fTl Xl ≤ H (16)

(πzt, q̃ikt) ∈ Ω (X) z ∈ Z, k ∈ KE
iz ∪KC

iz , t ∈ T, i ∈ I (17)

Xl ∈ {0, 1} l ∈ LC (18)

where (16) is the budget constraint to investment cost for lines expansion and
Ω (X) represents the space of joint solutions of problems (1)-(9) and (10)-
(14) parametrized by X, which represents the vector defined by variables Xl,
l ∈ LC . Such set contains the possible equilibria, defined in terms of decision
variables q̃ikt, Yik for the involved GenCos and decision variables qikt, TRlt, θzt
for the MO. We have considered that the main objective of the TransCo is
securing a viable power transmission by removing congestion between market
areas and, more generally, reducing social costs. As such, investment costs
have only been considered as a constraint, without modelling the effects in the
objective function.
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4 Model Reformulation

In the remainder of the article we introduce an iterative procedure in which
the TransCo takes control of all binary variables at each iteration returning a
tentative solution for the overall TransCo problem. Then a check is performed
to ensure whether the solution found by the relaxation coincides with the
solution of each GenCo with respect to the binary variables up to each of
them. Shall this not happen, a cut and a penalty are introduced into the
TransCo problem to prevent the same solution to be chosen again and the
aformentioned relaxation is solved again with the new constraints.

As mentioned earlier, we assume that GenCos do not perform any sort
of strategic bidding. The consequence is that bids will reflect marginal costs
cik of the production from a given generation unit k multiplied by a GenCo
specific bid up coefficient. This implies that the structure of the offer curve
is completely determined by the marginal costs up to each generation unit of
each GenCo and there will be no interplay to determine an equilibrium among
offer prices. This simplifies the structure of our problem allowing us to reach
an equilibrium in the system without directly recalling for a Stackelberg-Nash
framework, as originally done in Hashimoto (1985), under Cournot assump-
tion.

We show that the absence of an interplay between GenCos regarding prices
allows us to completely define the quantity bids by means of a modified version
of the MO Problem, as the sole lower level of the TransCo Problem. The
modified MO Problem is given by1

min
qikt,TRlt

∑
i∈I

∑
t∈T

∑
z∈Z

∑
k∈KE

iz∪KC
iz

biktqikt (19)

subject to∑
i∈I

∑
k∈KE

iz∪KC
iz

qikt +
∑

l∈LE∪LC

AzlTRlt = Czt : πzt z ∈ Z, t ∈ T (20)

qikt ≤ ΓC
ikYik : σC

ikt z ∈ Z, k ∈ KC
iz, t ∈ T, i ∈ I (21)

qikt ≤ ΓE
ik : σE

ikt z ∈ Z, k ∈ KE
iz, t ∈ T, i ∈ I (22)

TRlt = Bl

(∑
z∈Z

Azlθzt

)
Xl : ρClt l ∈ LC , t ∈ T (23)

TRlt = Bl

(∑
z∈Z

Azlθzt

)
: ρElt l ∈ LE , t ∈ T (24)

TRlt ≤ TRlt ≤ TRlt : η+lt , η
−
lt l ∈ LE ∪ LC , t ∈ T (25)

θz ≤ θzt ≤ θz : κ+zt, κ
−
zt z ∈ Z, t ∈ T (26)

1 For each constraint we report its dual variable after the colon.
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qikt ≥ 0 i ∈ I, z ∈ Z, k ∈ KE
iz ∪KC

iz, t ∈ T (27)

TRlt ∈ < l ∈ LE ∪ LC , t ∈ T (28)

θzt ∈ < z ∈ Z, t ∈ T (29)

which represents the original problem (1)-(9) with constraint (3) replaced by
constraints (11) and (12) with Yik controlled by the TransCo.

Even though a generic solution of problem composed of the TransCo and
modified MO problem might return different results from the ones obtained
as the optimal solution of (10)-(14) for each GenCo i, once we fix the value of
Yik for each i and k then we have that q̃ikt = qikt, as stated in the following

Proposition 1 For a fixed choice of Yik the optimal power output of each
GenCo i will be such that q̃ikt = qikt.

In correspondance of the choice Yik which is confirmed by the GenCos,
also the values of q̃ikt and qikt will coincide. This allows us to only consider
the modified MO problem as the lower level for the TransCo problem, shifting
the focus on the definition of the rational response of the GenCos in terms
of generation unit installments Yik to the choices made by the TransCo and
the modified MO problem defining the upper and lower level of the bilevel
problem respectively.

In principle, if GenCos had no possibility to expand capacity, it would be
possible to compute the Stackelberg equilibrium simply by considering the
TransCo problem as the upper level and the MO problem as the lower level.
The reason for this is that bid prices are already given and the profit function
for each GenCo is increasing with respect to the produced quantity. This im-
plies that GenCos selected by the MO will be willing to offer power as long as
their capacity limit is not hit.

The modified MO problem is therefore given by (1)-(9) with the inclusion
of constraints (11) and (12) replacing constraint (3) and with q̃ikt replaced by
qikt. We denote such problem as MO(X) in order to stress out its dependancy
on the upper and lower bounds on power transmission provided by TransCo.
Let dualMO (X) be the dual problem of the MO(X) problem parametrized
by the choice of all binary variables (Xl, Yik).

In (17) variables (πzt, q̃ikt) belong to the set Ω (X) if:

– πzt is taken from the vector
(
πzt, ρ

C
lt , ρ

E
lt , σ

C
ikt, σ

E
ikt, η

+
lt , η

−
lt , κ

+
zt, κ

−
zt

)
defining

the optimal solution to dualMO (X);

– q̃ikt is taken from the vector
(
q̃ikt, Ỹik

)
which represents the optimal solu-

tion to GPi (πzt, qikt);
– qikt belongs to the vector (qikt, TRlt, θzt) which solves MO (X) with Yik =
Ỹik where Yik is the tentative value chosen by the TransCo.

By Proposition 1 we have that qikt = q̃ikt for any solution (πzt, q̃ikt) ∈
Ω (X), therefore we can solve the TransCo problem constrained only by the
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optimality conditions for the modified MO problem for different tentative val-
ues of the binary decision Yik until it coincides with the one of the GenCos.

In order to obtain correspondance between the decisions Yik defined by
the bilevel problem TransCo-MO(X) and the ones up to the GenCos, Yik is
a parameter defined by the TransCo as a tentative value and corrected or
confirmed by GenCos after the solution of their decision problem.

The i-th GenCo is given by (10)-(14). We stress out that the GenCos are
willing to provide as much power as they can since their profit increases with
supplied power.

The problem to be solved by the TransCo is given by (15)-(18) and defines
a mathematical problem with bilevel structure entailing one leader (TransCo)
and multiple followers (GenCos and MO). We have included a constraint on the
total budget H that the TransCo is allowed to use for transmission expansion.
As explained earlier, the lack of interplay in the definition of the price bids
allows us to consider only the modified MO problem as the lower level. The
dual of the modified MO Problem is

max −
∑
z∈Z

∑
t∈T

Cztπzt +
∑
i∈I

∑
z∈Z

∑
k∈KC

iz

∑
t∈T

ΓCikYikσ
C
ikt +

∑
i∈I

∑
z∈Z

∑
k∈KE

iz

∑
t∈T

ΓEikσ
E
ikt

+
∑

l∈LE∪LC

∑
t∈T

TRltη
+
lt −

∑
l∈LE∪LC

∑
t∈T

TRltη
−
lt +

∑
z∈Z

∑
t∈T

θzκ
+
zt −

∑
z∈Z

∑
t∈T

θzκ
−
zt

s.c. πzt − σEikt ≤ bikt i ∈ I, t ∈ T, z ∈ Z, k ∈ KE
iz

πzt − σCikt ≤ bikt i ∈ I, t ∈ T, z ∈ Z, k ∈ KC
iz∑

z∈Z
Azlπzt + ρElt − η

+
lt + η−lt = 0 l ∈ LE , t ∈ T

∑
z∈Z

Azlπzt + ρClt − η
+
lt + η−lt = 0 l ∈ LC , t ∈ T

∑
l∈LC

BlAzlXlρ
C
lt +

∑
l∈LE

BlAzlρ
E
lt − κ

+
zt + κ−zt = 0 z ∈ Z, t ∈ T

σCikt ≥ 0 i ∈ I, k ∈ KC
iz , z ∈ Z, t ∈ T

σEikt ≥ 0 i ∈ I, k ∈ KE
iz , z ∈ Z, t ∈ T

η+lt , η
−
lt ≥ 0 l ∈ LE ∪ LC , t ∈ T

ρClt ∈ < l ∈ LC , t ∈ T

ρElt ∈ < l ∈ LE , t ∈ T

κ+zt, κ
−
zt ≥ 0, πzt ∈ < z ∈ Z, t ∈ T

(30)

In order to provide a viable relaxation for the TransCo problem we replace
the set Ω (X) by the primal-dual optimality conditions of the modified MO
Problem. We obtain the following mixed integer nonlinear problem.

min α
∑
t∈T

∑
z∈Z

Cztπzt − (1− α)
∑
t∈T

δ−t
∑
z∈Z

πzt ∑
k∈KE

iz∪K
C
iz

qikt −
∑

k∈KE
iz∪K

C
iz

cikqikt


(31)
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subject to ∑
l∈LC

fTl Xl ≤ H (32)

πzt − σEikt ≤ bikt i ∈ I, t ∈ T, z ∈ Z, k ∈ KE
iz (33)

πzt − σCikt ≤ bikt i ∈ I, t ∈ T, z ∈ Z, k ∈ KC
iz (34)∑

z∈Z
Azlπzt + ρElt − η

+
lt + η−lt = 0 l ∈ LE , t ∈ T (35)

∑
z∈Z

Azlπzt + ρClt − η
+
lt + η−lt = 0 l ∈ LC , t ∈ T (36)

∑
l∈LC

BlAzlXlρ
C
lt +

∑
l∈LE

BlAzlρ
E
lt − κ

+
zt + κ−zt = 0 z ∈ Z, t ∈ T (37)

∑
i∈I

∑
k∈KE

iz∪K
C
iz

qikt +
∑

l∈LE∪LC

AzlTRlt = Czt z ∈ Z, t ∈ T (38)

qikt ≤ ΓCikYik i ∈ I, z ∈ Z, k ∈ KC
iz , t ∈ T (39)

qikt ≤ ΓEik i ∈ I, z ∈ Z, k ∈ KE
iz , t ∈ T (40)

TRlt = Bl

∑
z∈Z

Azlθzt

Xl l ∈ LC , t ∈ T (41)

TRlt = Bl

∑
z∈Z

Azlθzt

 l ∈ LE , t ∈ T (42)

TRlt ≤ TRlt ≤ TRlt l ∈ LE ∪ LC , t ∈ T (43)

θz ≤ θzt ≤ θz z ∈ Z, t ∈ T (44)∑
i∈I

∑
t∈T

∑
z∈Z

∑
k∈KE

iz∪K
C
iz

biktqikt −
∑
z∈Z

∑
t∈T

Cztπzt +
∑
i∈I

∑
z∈Z

∑
k∈KC

iz

∑
t∈T

ΓCikYikσ
C
ikt+

+
∑
i∈I

∑
z∈Z

∑
k∈KE

iz

∑
t∈T

ΓEikσ
E
ikt +

∑
l∈LE∪LC

∑
t∈T

TRltη
+
lt −

∑
l∈LE∪LC

∑
t∈T

TRltη
−
lt

+
∑
z∈Z

∑
t∈T

θzκ
+
zt −

∑
z∈Z

∑
t∈T

θzκ
−
zt = 0

(45)
qikt ≥ 0 i ∈ I, k ∈ KE

iz ∪KC
iz , z ∈ Z, t ∈ T (46)

σCikt ≥ 0 i ∈ I, k ∈ KC
iz , z ∈ Z, t ∈ T (47)

σEikt ≥ 0 i ∈ I, k ∈ KE
iz , z ∈ Z, t ∈ T (48)

η+lt , η
−
lt ≥ 0, TRlt ∈ < l ∈ LE ∪ LC , t ∈ T (49)

ρClt ∈ < l ∈ LC , t ∈ T (50)

ρElt ∈ < l ∈ LE , t ∈ T (51)

κ+zt, κ
−
zt ≥ 0, θzt, πzt ∈ < z ∈ Z, t ∈ T (52)

Xl ∈ {0, 1} l ∈ LC (53)

Yik ∈ {0, 1} i ∈ I, k ∈ KC
iz , z ∈ Z (54)

where (32) represents the upper level constraint, (33)-(37) represent the con-
straints for problem dualMO(X), (38)-(44) represent the MO(X) constraints
and (45) requires the duality gap between the solutions of MO(X) and of
dualMO(X) to be zero.
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The objective function of problem (31)-(54) entails nonlinearities given by
the products between LMP and produced power, while constraints (37), (41)
and (45) contain products between continuous and integer variables.

It is anyway possible to provide an equivalent linear formulation for prob-
lem (31)-(54) by the following considerations. The complementarity system of
the first order conditions for the modified MO problem implies that

πztqikt = biktqikt + σE
iktqikt i ∈ I, t ∈ T, z ∈ Z, k ∈ KE

iz (55)

πztqikt = biktqikt + σC
iktqikt i ∈ I, t ∈ T, z ∈ Z, k ∈ KC

iz (56)

σE
iktqikt = ΓE

ikσ
E
ikt i ∈ I, t ∈ T, z ∈ Z, k ∈ KE

iz (57)

σC
iktqikt = ΓC

ikYikσ
C
ikt i ∈ I, t ∈ T, z ∈ Z, k ∈ KC

iz (58)

These equalities imply that

πzt
∑

k∈KE
iz∪KC

iz

qikt =
∑

k∈KE
iz∪KC

iz

biktqikt +
∑

k∈KE
iz

ΓE
ikσ

E
ikt +

∑
k∈KC

iz

ΓC
ikYikσ

C
ikt

which allows us to substitute the quadratic term in the objective function
by the equivalent expression containing products of continuous and binary
variables, as in constraints (37), (41) and (45).

Let us now consider how the product Xy of the continuous variable y
times the binary variable X can be reformulated as a linear expression. Let M
denote a large positive parameter and replace the product Xy by a continuous
auxiliary variable ỹ such that

ỹ−y ≤M(1−X), y− ỹ ≤M(1−X), ỹ ≤MX, −ỹ ≤MX (59)

if y ∈ <, while

ỹ − y ≤M(1−X), y − ỹ ≤M(1−X), ỹ ≤MX (60)

if y ≥ 0. We can provide the following mixed integer linear equivalent formu-
lation of problem (31)-(54), which we call Integer Leader Relaxation (ILR).

min α
∑
t∈T

∑
z∈Z

Cztπzt − (1− α)
∑
t∈T

δ−t
∑
z∈Z

 ∑
k∈KE

iz∪K
C
iz

biktqikt+

+
∑
k∈KE

iz

ΓEikσ
E
ikt +

∑
k∈KC

iz

ΓCik σ̃
C
ikt −

∑
k∈KE

iz∪K
C
iz

cikqikt


(61)

subject to ∑
l∈LC

fTl Xl ≤ H (62)
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πzt − σEikt ≤ bikt i ∈ I, t ∈ T, z ∈ Z, k ∈ KE
iz (63)

πzt − σCikt ≤ bikt i ∈ I, t ∈ T, z ∈ Z, k ∈ KC
iz (64)∑

z∈Z
Azlπzt + ρElt − η

+
lt + η−lt = 0 l ∈ LE , t ∈ T (65)

∑
z∈Z

Azlπzt + ρClt − η
+
lt + η−lt = 0 l ∈ LC , t ∈ T (66)

∑
l∈LC

BlAzlρ̃
C
lt +

∑
l∈LE

BlAzlρ
E
lt − κ

+
zt + κ−zt = 0 z ∈ Z, t ∈ T (67)

∑
i∈I

∑
k∈KE

iz∪K
C
iz

qikt +
∑

l∈LE∪LC

AzlTRlt = Czt z ∈ Z, t ∈ T (68)

qikt ≤ ΓCikYik i ∈ I, z ∈ Z, k ∈ KC
iz , t ∈ T (69)

qikt ≤ ΓEik i ∈ I, z ∈ Z, k ∈ KE
iz , t ∈ T (70)

TRlt = Bl

∑
z∈Z

Azlθ̃zlt

 l ∈ LC , t ∈ T (71)

TRlt = Bl

∑
z∈Z

Azlθzt

 l ∈ LE , t ∈ T (72)

TRlt ≤ TRlt ≤ TRlt l ∈ LE ∪ LC , t ∈ T (73)

θz ≤ θzt ≤ θz z ∈ Z, t ∈ T (74)∑
z∈Z

Azlθ̃zlt −
∑
z∈Z

Azlθzt ≤M(1−Xl) l ∈ LC , t ∈ T (75)

∑
z∈Z

Azlθzlt −
∑
z∈Z

Azlθ̃zt ≤M(1−Xl) l ∈ LC , t ∈ T (76)

∑
z∈Z

Azlθ̃zlt ≤MXl l ∈ LC , t ∈ T (77)

−
∑
z∈Z

Azlθ̃zlt ≤MXl l ∈ LC , t ∈ T (78)

ρ̃Clt − ρ
C
lt ≤M(1−Xl) l ∈ LC , t ∈ T (79)

ρClt − ρ̃
C
lt ≤M(1−Xl) l ∈ LC , t ∈ T (80)

ρ̃Clt ≤MXl l ∈ LC , t ∈ T (81)

−ρ̃Clt ≤MXl l ∈ LC , t ∈ T (82)

σ̃Cikt − σ
C
ikt ≤M(1− Yik) i ∈ I, t ∈ T, z ∈ Z, k ∈ KC

iz (83)

σCikt − σ̃
C
ikt ≤M(1− Yik) i ∈ I, t ∈ T, z ∈ Z, k ∈ KC

iz (84)

σ̃Cikt ≤MYik i ∈ I, t ∈ T, z ∈ Z, k ∈ KC
iz (85)∑

i∈I

∑
t∈T

∑
z∈Z

∑
k∈KE

iz∪K
C
iz

biktqikt −
∑
z∈Z

∑
t∈T

Cztπzt +
∑
i∈I

∑
z∈Z

∑
k∈KC

iz

∑
t∈T

ΓCik σ̃
C
ikt+

+
∑
i∈I

∑
z∈Z

∑
k∈KE

iz

∑
t∈T

ΓEikσ
E
ikt +

∑
l∈LE∪LC

∑
t∈T

TRltη
+
lt −

∑
l∈LE∪LC

∑
t∈T

TRltη
−
lt

+
∑
z∈Z

∑
t∈T

θzκ
+
zt −

∑
z∈Z

∑
t∈T

θzκ
−
zt = 0

(86)

qikt ≥ 0 i ∈ I, k ∈ KE
iz ∪KC

iz , z ∈ Z, t ∈ T (87)



Power Transmission Capacity Expansion 19

σCikt, σ̃
C
ikt ≥ 0 i ∈ I, k ∈ KC

iz , z ∈ Z, t ∈ T (88)

σEikt ≥ 0 i ∈ I, k ∈ KE
iz , z ∈ Z, t ∈ T (89)

η+lt , η
−
lt ≥ 0, TRlt ∈ < l ∈ LE ∪ LC , t ∈ T (90)

ρClt , ρ̃
C
lt ∈ < l ∈ LC , t ∈ T (91)

ρElt ∈ < l ∈ LE , t ∈ T (92)

κ+zt, κ
−
zt ≥ 0 θzt, πzt ∈ < z ∈ Z, t ∈ T (93)

θ̃zlt ∈ < z ∈ Z, l ∈ LC , t ∈ T (94)

Xl ∈ {0, 1} l ∈ LC (95)

Yik ∈ {0, 1} i ∈ I, k ∈ KC
iz , z ∈ Z (96)

When this problem is solved, we obtain the optimal values q∗ikt and π∗zt,
and the candidate value for the decision on candidate generation units Y ∗ik.
Moreover, a candidate value for the i-th GenCo profit v∗i can be computed
with the canditate values for the LMPs, power production and candidate de-
cision on generation units installments. Such values can be used to perform a
comparison with the GenCo problems. Namely, once one obtains the solution
of problem GPi (π∗zt, q

∗
ikt) it will be possible to compare the decision on open-

ing of candidate generation units stemming from the solution of GPi (π∗zt, q
∗
ikt)

which we denote by Ȳik with the candidate value Y ∗ik. In addition one will
compare the GenCos’ candidate profit value obtained by solving (61)-(96) and
denoted by v̄i with the actual optimal profit v∗i obtained solving problems
GPi (π∗zt, q

∗
ikt) for each GenCo i. If the comparison returns that Ȳik 6= Y ∗ik and

| v∗i − v̄i |≥ ε with ε > 0 and small, then a cut and penalty is inserted in prob-
lem (61)-(96) and a new iteration is performed. The details of such procedure
shall be explained in more detail in the remainder of the article.

5 Solution Approach

The solution of the ILR problem (61)-(96) will not be in general the solution
of the original problem (15)-(18). In fact, given a solution (X∗l , Y

∗
ik) of the ILR

problem, this coincides with the solution of (15)-(18) iff

Y ∗ik = Ȳik i ∈ I, k ∈ KC
iz. (97)

If the solution of i-th GenCo problem does not coincide with the solution
of ILR, it is necessary to devise a procedure to prevent the TransCo from
choosing the same integer solution when solving the ILR. Generally speaking,
the TransCo is forced to compute the optimal solution of a sequence of relaxed
problems with an increasing number of constraints until the optimal solution
also satisfies the equilibrium problem between the GenCos (10)-(14). This is
done by inserting an appropriate cut and a penalty term in the objective
function. Namely, at iteration r we define the following auxiliary variable as a
function of the variable Yik
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Ỹ
(r)
ik = a

(r)
ik Yik + b

(r)
ik (98)

with

a
(r)
ik =

{
1 if Y ∗ik[r−1] = 1

−1 if Y ∗ik[r−1] = 0

b
(r)
ik =

{
0 if Y ∗ik[r−1] = 1

1 if Y ∗ik[r−1] = 0

(99)

where Y ∗ik[r−1] defines the integer values of the candidate optimal solution

of the ILR problem at iteration r − 1, taken among all the
∣∣KC

∣∣ variables
controlled by the upper level decision maker through the ILR problem. This
auxiliary variable is then included in the term∑

i∈I
∑

k∈KC
i
Ỹ

(r)
ik

|KC |
which sums up to unit when the computed solution is the same as the candidate
optimal ILR solution. In order to avoid that any of the optimal solutions for
iterations from 1 to r−1 is picked up in the r-th iteration, we define the binary
variable ur, which takes the value one and triggers a penalty term in the leader
objective function when a previous integer solution is chosen. Formally, we

need to build a condition such that ur turns to unit when

∑
i∈I

∑
k∈KC

i
Ỹ

(r)
ik

|KC | = 1.

Such a cut is defined as

1 + ur ≥
∑

i∈I
∑

k∈KC
i
Ỹ

(r)
ik

|KC |
+ ε (100)

where ε < 1
|KC | .

When the right hand side of (100) is greater than one, binary variable ur
takes value 1 to satisfy the constraint. At the same time, a penalty term Mur
is added to the ILR objective function, with M being a large positive scalar.

An explicit reformulation of (100) in terms of the involved binary decision
variables is needed in order to be used as a constraint to penalize the ILR
problem. By multiplying each side of (100) by

∣∣KC
∣∣ and rearranging the result

we obtain ∑
i∈I

∑
k∈KC

i

Ỹ
(r)
ik −

∣∣KC
∣∣ur ≤ ∣∣KC

∣∣ (1− ε). (101)

Posing ε = 1
|KC | −

1
|KC |2 we can express the cut as

∑
i∈I

∑
k∈KC

i

Ỹ
(r)
ik −

∣∣KC
∣∣ur ≤ ∣∣KC

∣∣2 − ∣∣KC
∣∣+ 1

|KC |
(102)
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and substituting the expression (98) in (102) we finally obtain the reformula-
tion∑

i∈I

∑
k∈KC

i

a
(r)
ik Yik −

∣∣KC
∣∣ur ≤ ∣∣KC

∣∣2 − ∣∣KC
∣∣+ 1

|KC |
−
∑
i∈I

∑
k∈KC

i

b
(r)
ik (103)

At iteration n the problem of the TransCo, denoted by PILR[n], is com-
posed of constraints (62)-(96) including cuts (103) with index r = 1, ..., n and
with the following objective function

α
∑
t∈T

∑
z∈Z

Cztπzt − (1− α)
∑
t∈T

δ−t
∑
z∈Z

 ∑
k∈KE

iz∪KC
iz

biktqikt+

+
∑

k∈KE
iz

ΓE
ikσ

E
ikt +

∑
k∈KC

iz

ΓC
ik σ̃

C
ikt −

∑
k∈KE

iz∪KC
iz

cikqikt

+M

n∑
r=1

ur.

(104)

As for the other approaches in the family of k -th best algorithms, this
method assumes that the rational reaction of the lower level is a singleton.
Conversely, such problem could return a result which is not the same found
by the GenCos in terms of profitability and choice of binary variables only be-
cause of multiple alternative optimal solutions. This can generate sub-optimal
solutions for the problem (15)-(18).

The algorithm is described below, where vi[n] denotes the optimal profit of
the i-th GenCo at iteration n, v∗i[n] denotes the candidate profit for GenCo i
computed by the TransCo at iteration n and ε is a small positive real number.

The algorithm is composed of:

– a master problem, named PILR[n];
– a group of sub problems named GPi (π∗zt, q

∗
ikt) for each GenCo, exchang-

ing information about feasibility (and therefore overall optimality) of the
candidate solution.

PILR[n] proposes a lower bound for the solution to the problem, together with
the candidate values for new generation unit installments up to each GenCo
and related optimal profit value (Y ∗ik[n], v

∗
i[n]). Such solution is feasible for the

TransCo problem (15)-(18) only if the involved GenCos actually confirm the
candidate values when they solve their decision problem. Solution of problem
GPi (π∗zt, q

∗
ikt) for each GenCo will provide the vector (Ȳik[n], vi[n]), where the

first element denotes the optimal value for the variables defining installments
of new generation units for GenCo i and vi[n] denotes the optimal profit for
GenCo i when TransCo computes solution X∗l .

The TransCo problem (15)-(18) is feasible and candidate solution is opti-
mal if either Ȳik[n] and Y ∗ik[n] coincide, or vi[n] and v∗i[n] coincide. If feasibility
requirements are not met, a new cut and a penalty term are introduced into
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Algorithm 1 Progressive Penalization Algorithm
(Step 1)
n← 0
solve ILR→ (π∗

zt[n]
, q∗
ikt[n]

, Y ∗
ik[n]

, X∗
l[n]

, v∗
i[n]

)

if ILR is infeasible then
STOP. The problem is infeasible

else
(Step 2)
for i = 1→ |I| do

solve GPi

(
π∗
zt[n]

, q∗
ikt[n]

)
→ (Ȳik[n], vi[n])

end for
if Ȳik[n] = Y ∗

ik[n]
or | vi[n] − v∗i[n] |< ε then

X∗
l[n]

is the optimal solution of (15)-(18)

else
(Step 3)
while Ȳik[n] 6= Y ∗

ik[n]
and | vi[n] − v∗i[n] |≥ ε do

n← n+ 1
solve PILR[n] → (π∗

zt[n]
, q∗
ikt[n]

, Y ∗
ik[n]

, X∗
l[n]

, v∗
i[n]

)

if PILR[n] is infeasible then
STOP. The problem is infeasible

else
for i = 1→ |I| do

solve GPi

(
π∗
zt[n]

, q∗
ikt[n]

)
→ (Ȳik[n], vi[n])

end for
end if

end while
X∗
l[n]

is the optimal solution of (15)-(18)

end if
end if

the PILR to force the next iteration to avoid picking the previous candidate
solution Y ∗ik[n].

Step 1 computes the lowest possible bound, Step 2 checks whether the
solution obtained in Step 1 is feasible for the overall problem (15)-(18) and
while the program is not feasible a new iteration will add a cut and a new
penalty term into the PILR problem. This is done by defining a loop in Step 3.
The algorithm terminates when the first feasible solution is found or concludes
that no feasible solution exists.

6 Numerical Experiments

We tested our approach using the classical 6-bus example from Garver, under
a 5 periods time horizon. The initial structure of the grid for our test case is
depicted in figure 2. Data for the implementation are presented in tables 1-3.

We assume that the grid has 9 initial connections between nodes, 5 loads
and 10 initial generation units. We assume to have four GenCos, respectively
denoted as A1, A2, A3 and A4. Load is mostly concentrated in nodes 2, 4
and 5, as shown in table 3, while the main node for production is number 6.
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Fig. 2 Initial configuration of the 6-bus Garver grid in our Case Study (load changes over
periods and is displayed in table 3)

Generation units are labelled from G1 to G15 with units G11-G15 considered
as candidate generation units. Details on distribution of the generation units
on the grid are displayed in table 2, where the bid up coefficient defines a term
to be multiplied to the marginal cost to define the price bid. It is assumed
that at most three lines are admitted in each transmission corridor.

Table 1 Line data for Garver’s 6-bus example

from to Reactance Capacity Investment Cost
(p.u.) (MW) (Me )

1 2 0.40 100 7.7232
1 3 0.38 100 7.33704
1 4 0.60 80 11.5848
1 5 0.20 100 3.8616
1 6 0.68 70 13.12944
2 3 0.20 100 3.8616
2 4 0.40 100 7.7232
2 5 0.31 100 5.98548
2 6 0.30 100 5.7924
3 4 0.59 82 11.39172
3 5 0.20 100 3.8616
3 6 0.48 100 9.26784
4 5 0.63 75 12.16404
4 6 0.30 100 5.7924
5 6 0.61 78 11.77788

We have performed two set of analyses on the model. First, we have set the
focus on how different budget availability up to the TransCo can influence the
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Table 2 Data on Generation units

Unit marginal cost Capacity Investment cost owner node bid up coefficient
(e ) (MW) (Me )

G1 10 150 - A1 Z1 1.0072
G2 20 120 - A3 Z3 1.06
G3 22 120 - A4 Z3 1.069
G4 25 120 - A4 Z3 1.069
G5 8 100 - A4 Z6 1.069
G6 12 100 - A4 Z6 1.069
G7 15 100 - A4 Z6 1.069
G8 17 100 - A4 Z6 1.069
G9 19 100 - A4 Z6 1.069
G10 21 100 - A4 Z6 1.069
G11 11 162 4.5171 A2 Z3 1.0074
G12 10 100 6.441 A3 Z6 1.06
G13 9 150 2.7746 A4 Z6 1.069
G14 9.4 157 2.9796 A4 Z6 1.069
G15 12.2 102 2.026 A1 Z1 1.0072

Table 3 Load (MW) over time periods

node/Period 1 2 3 4 5

Z1 80 81.07 82.26 83.51 84.18
Z2 240 242 242.91 243.55 244.12
Z3 50 51.03 52.11 53.02 54.60
Z4 180 181.76 182.04 183.75 184.51
Z5 240 240.22 241.13 242.07 243.85
Z6 0 0 0 0 0

components of the social cost function, namely profitability of the GenCos and
social costs up to consumers. Then we have moved our attention on how the
profitability of GenCos and social costs change when we shift the weighting
factor α, which measures the relative importance of consumers and producers
in the aggregate social cost function.

Concerning the first set of analyses, results are displayed in figure 3. We
have set the weighting factor parameter α to 0.5 and performed a paramet-
ric analysis of social costs and aggregated GenCo profits as the TransCo
has a steadily increasing budget availability for investments on transmission
lines. Figure 6 (left) shows us two distinct effects of a budget increase. For
smaller increases the effect is a convergence of average (over periods) Loca-
tional Marginal Prices from different nodes, whilst for larger increases the
converged prices follow a common path downwards. This has an impact on
GenCos’ profits as explained later on.

As it can be seen from the tables, GenCo A4, who has the largest availabil-
ity of generation units and who can benefit of low marginal production costs
tends to increase the production, eroding market shares from its competitors.
The installation of new lines in the grid makes relatively easy to improve prof-
itability for the GenCos by selling power produced from generation units with
lower marginal costs. The TransCo is basically allowing GenCos to reach new
market nodes by selling energy where there is shortage but retaining some
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congestion on the lines which does prevent the prices to change too much.
In particular, GenCo A4 opens a new generation unit and starts selling cross
nodes with generation units having very low marginal costs, even though rev-
enues for A4 increase due to the lower marginal costs, its production does
not manage to cover the entire load in all nodes. This means that generation
units belonging to other GenCos will place higher bids in order to cover the
remaining load and prices will not decrease to their possible lower limit. Some
GenCos will experience a decrease of power sold as consumers can buy from
cheaper producers, while other GenCos will have an increase in sales and some
of them (A2 and A4) will install new generation units with lower marginal costs
compared to the competition. As a consequence prices tend to converge to a
common point as it is shown in figure 6 (left). Also the consumers will benefit
of such upgrade as they can buy energy for lower prices.

When no more benefits can be added to GenCos’ profitability by removing
congestion, the TransCo will completely move its focus on social costs up to
consumers and keep removing congestion to allow companies willing to bid at
lower prices to sell cross nodes. This will decrease the overall GenCos’ profits,
as it can be seen on the second portion of the curves in figure 3 (left), but it
will lower to a greater extent social costs, as it can be seen in figure 3 (right).

In addition, we report the different configurations of the grid with re-
spect to the minimum and the maximum budget amount considered for the
TransCo. Such configurations are depicted in figure 4. The figures show the
production capacities and the transmission levels between nodes. Transmis-
sion between two nodes with increasing indices has been labelled with positive
sign, whilst transmission between two nodes with decreasing indices has been
labelled with negative sign. The comparison between the two configurations
shows how TransCo manages to lower down costs up to consumer by open-
ing lines between different nodes. New lines are shown as dashed lines. We
particularly notice that node Z2 in figure 4 (left), which do not feature any
production unit, has to buy power from node Z3 since there is a congested
line between node Z2 and Z6. Generation units with the lowest marginal
costs are located in node Z6. As a new line is added between nodes Z2 and
Z6 the amount of power purchased by Z2 from generators located in node Z3
drastically decreases, while transmission from Z6 to Z2 almost doubles. The
new configuration (figure 4 right) allows consumers to buy power from nodes
different from Z3, whose generation units exhibit a higher production cost
compared to the generation units placed in different nodes. As a result, the
generation units expansion planning depicted in figure 4 (left) is rather differ-
ent compared to the one shown in figure 4 (right). In the left figure there is
generation expansion in nodes Z1 and Z3 - namely GenCo A1 opens candidate
generation unit G15 in node Z1 and GenCo A2 opens candidate generation
unit G11 in node Z3 - whilst in figure 4 (right) there is generation expansion
in nodes Z1 and Z6 with the same generation unit opened in node Z1 and
GenCo A4 opening candidate generation unit G14 in node Z6.

The effects of varying the weighting factor are displayed in figures 5 and
6 (right). We have performed the analyses setting a value of 30 Million Euros
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Fig. 3 Net Present Value of profits and total social costs for different levels of Budget
(weighting factor set to 0.5)

Z1
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Z4

Z5

Z3

Z6

36.37 MW

17.81 MW

115.61 MW

-96.49 MW

-9.65 MW

-100 MW

81.56 MW

-174.26 MW

-44.28 MW

600 MW

522MW

252MW

Z1

Z2

Z4

Z5

Z3

Z6

33.93 MW

18.41 MW

140.15 MW

-2.52 MW

-12.61 MW

-193.44 MW

4.73MW

-176.61MW

-96.58MW

757MW

360MW

252 MW

-22.71 MW

-59.40 MW

Fig. 4 Grid configuration related to budget level 10 Me (a) and 60 Me (b)

of the TransCo budget and assigning α the values 0, 0.2, 0.4, 0.6, 0.8, 1. For
increasing values of α the grid upgrading plan has an increasing focus on
congestion removal. This implies an initial convergence of prices over different
nodes, as shown in figure 6 (right) which, in turn allows more efficient GenCos
(in this case A2 opens new generation units in node Z3) to increase their
market share by opening new generation units with lower marginal production
costs. As a consequence some companies will erode market share to others.
When the weighting factor approaches the unit value (i.e. only consumers are
important in the social cost function) the TransCo will select a grid expansion
plan which further penalizes GenCos as some zones will have lower LMPs.
This entails a profit decrease for some GenCos.

All computations have been carried out using GAMS/CPLEX 12.1.0 using
four parallel threads on a Intel Core i7 machine running at 2.67 GHz with 8
GB of RAM. Computational time is heavily influenced by the data, ranging
between little over one minute for cases where GenCos respond to transmission
investments by opening new generation units to several minutes, when no
GenCo finds it profitable to open a new power generation unit.
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Fig. 5 Net Present Value of profits and total social costs for different choices of the weighting
factor (budget set to 30 Me )

Fig. 6 Locational Marginal Prices for different choices of budget (weighting factor set to
0.5) and weighting factor (budget set to 30 Me )

7 Conclusion

We have developed a model for analyzing and supporting the decisions on
transmission grid upgrades within a market environment. We have taken ex-
plicit account of possible reaction of GenCos and MO to grid upgrade decisions
both under an operational and an investment viewpoint. The problem has been
modeled as a Bilevel Programming Problem with binary decision variables in
both upper and lower level equilibrium problem. A dedicated algorithm, ex-
tending the idea of the k -th best algorithm to include mixed binary structure
in the lower level problem has been developed to solve the problem.

The model has been analyzed using the 6-bus Garver test case consider-
ing the possible outcomes stemming from different budget availability for the
TransCo and shifts in level of relative importance assigned to consumers and
producers by the TransCo. Results show how grid upgrades can help the sys-
tem keeping the power prices low or allow particular GenCos to exploit their
efficiency to increase profits.

There are several possible directions for future research. One of them is
to include strategic bidding into the framework. This will seriously increase
the computational burden as the modeling approach will entail a three level
hierarchical formulation where GenCos and MO are respectively in the inter-
mediate and lower level. As a consequence, new solution approaches must be
considered. Another possible developement could be to include the effects of
stochasticity and risk attitude on decisions of each player both on upper and
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lower levels. Finally, it would be beneficial to consider possible collaborative
patterns between TransCo and GenCos, where a vector of side payments could
complement a coordinated effort to provide electricity under the optimization
of a system performance.



Power Transmission Capacity Expansion 29

References

1. Aguado JA, de la Torre S, Contreras J, Conejo AJ, Mart́ınez A (2012) Market-driven
dynamic transmission expansion planning. Electric Power Systems Research 82 (1):88-
94

2. Bacon RW (1995) Privatization and Reform in the Global Electricity Supply Industry.
Annu. Rev. Energy Environ. 20:119-43

3. Bard JF (1998) Practical Bilevel Optimization. Nonconvex optimization and its applica-
tions (Vol. 30) Dordrecht: Kluwer Academic.

4. Baringo L, Conejo AJ (2012) Transmission and Wind Power Investment. IEEE Trans-
actions on Power Systems 27 (2):885-893

5. Final Report of the Investigation Committee on the 28 September 2003 Blackout in Italy
(2004) UCTE.

6. Bialas WF, Karwan MH, Sourie J-C (1982) On Two-Level Optimization. IEEE Trans-
actions on Automatic Control, 1:211-214

7. J. Fortuny-Amat and B. McCarl (1981) A Representation and Economic Interpretation
of a Two-Level Programming Problem. The Journal of the Operational Research Society
32:783-792

8. Galloway CD, Garver LL, Kirchmayer LK, Wood AJ (1966) Generation-Transmission
Expansion Planning. Proc. Power Systems Computation Conf. pt. 5, Stockholm, Sweden.

9. Garcés LP, Conejo AJ, Garcia-Bertrand R, Romero R (2009) A Bilevel Approach to
Transmission Expansion Planning Within a Market Environment. IEEE Transactions
on Power Systems 24 (3):1513-1522

10. Garcés LP, Romero R, Lopez-Lezama JM. Market-driven Security-constrained Trans-
mission Network Expansion Planning (2010) Transmission and Distribution Conference
and Exposition: Latin America (T&D-LA), 2010 IEEE/PES, 427-433

11. Garver LL (1970) Transmission Network Estimation using Linear Programming. IEEE
Trans. Power Apparat. Syst. 89:1688-1697

12. Genesi C, Marannino P, Siviero I, Zanellini F, Carlini EM, Pericolo PP (2008) Coor-
dinated Transmission and Generation Planning to Increase the Electricity Market Ef-
ficiency. XVI Power Systems Computation Conference (PSCC 2008), Glasgow, United
Kingdom.

13. Hashimoto H (1985) A Spatial Nash Equilibrium Model. Spatial Price Equilibrium:
Advances in Theory, Computation and Application. P. Harker, ed. Springer-Verlag,
Berlin. 20-40

14. Park H, Baldrick R, (2013) Transmission Planning Under Uncertainty of Wind and
Load: Sequential Approximation Approach. IEEE Transactions on Power Systems 28
(3):2395-2402

15. Hesamzadeh MR, Hosseinzadeh N, Wolfs PJ (2010) A Leader-Followers Model of Trans-
mission Augmentation for Considering Strategic Behaviours of Generating Companies in
Energy Markets. International Journal of Electrical Power. Energy Systems 32 (5):358-
367

16. Hobbs BF (2001) Linear Complementarity Models of Nash-Cournot Competition in Bi-
lateral and POOLCO Power Markets. IEEE Transactions on Power Systems 16 (2):194-
202

17. Hyman LS (2010) Restructuring Electricity Policy and Financial Models Energy Eco-
nomics 32:751-757

18. Int. Energy Agency. Electricity Market Reform: An IEA Handbook (1999) Paris:
OECD/IEA

19. Maurovich-Horvat L, Boomsma TK, Fleten SE, Siddiqui AS (2013) Transmission and
Wind Investment in a Deregulated Electricity Industry. 10-th International Conference
on the European Energy Market (EEM), 2013 1-7

20. Ng SKK, Zhong J, Lee CW (2009) A game-theoretic Study of the Strategic Interaction
Between Generation and Transmission Expansion Planning. Power Systems Conference
and Exposition, IEEE, Ed. Seattle, USA: IEEE. p. 10

21. Patterson W (1999) Transforming Electricity. Earthscan. London.
22. Pozo D, Sauma EE, Contreras J (2013) A three-level static MILP model for generation

and transmission expansion planning. IEEE Transactions on Power Systems 28(1):202-
210



30 Paolo Pisciella et al.

23. Pozo D, Contreras J, Sauma EE (2013) If You Build it, He Will Come: Anticipative
Power Transmission Planning. Energy Economics 36:135-146

24. Roh JH, Shahidehpour M, Fu Y (2007) Market-based Coordination of Transmission and
Generation Capacity Planning. IEEE Transactions on Power Systems 22 (4):1406-1419

25. Roh JH, Shahidehpour M, Wu L (2009) Market-Based Generation and Transmission
Planning With Uncertainties. IEEE Transactions on Power Systems 24 (3):1587-1598

26. Sauma EE, Oren SS (2006) Proactive Planning and Valuation of Transmission Invest-
ments in Restructured Electricity Markets. J. Regul. Econ. 30:261-290

27. Sauma EE, Oren SS (2007) Economic Criteria for Planning Transmission Investment
in Restructured Electricity Markets. IEEE Transactions on Power Systems 22(4):1394-
1405

28. Shan J, Ryan SM (2011) Capacity Expansion in the Integrated Supply Network for an
Electricity Market. IEEE Transactions on Power Systems 26 (4):2275-2284

29. TERNA, S.p.A (2007) Development Plan of the National Electric Transmission Net-
work. www.terna.it

30. World Energy Counc. (1998) The Benefits and Deficiencies of Energy Sector Liberali-
sation, Vol. 1. London: World Energy Counc.

31. Vespucci MT, Allevi E, Gnudi A, Innorta M (2010) Cournot Equilibria in Oligopolistic
Electricity Markets. IMA J Management Math 21 (2):183-193

32. Vespucci MT, Innorta M, Cervigni G (2013) A Mixed Integer Linear Programming
Model of a Zonal Electricity Market with a Dominant Producer. Energy Economics
35:40-41

Appendix

Proof (Proposition 1) The proposition can be proved by making considerations
on the structure of the Karush-Kuhn-Tucker conditions for the modified MO
problem. We report the complementarity conditions of such system

(
πzt − σE

ikt − bikt
)
qikt = 0 i ∈ I, t ∈ T, z ∈ Z, k ∈ KE

iz(
πzt − σC

ikt − bikt
)
qikt = 0 i ∈ I, t ∈ T, z ∈ Z, k ∈ KC

iz(
qikt − ΓE

ik

)
σE
ikt = 0 i ∈ I, t ∈ T, z ∈ Z, k ∈ KE

iz(
qikt − ΓC

ikYik
)
σC
ikt = 0 i ∈ I, t ∈ T, z ∈ Z, k ∈ KC

iz(
TRlt − TRlt

)
η+lt = 0 l ∈ LE ∪ LC , t ∈ T

(TRlt − TRlt) η
−
lt = 0 l ∈ LE ∪ LC , t ∈ T(

θz − θzt
)
κ+zt = 0 z ∈ Z, t ∈ T

(θzt − θz)κ−zt = 0 z ∈ Z, t ∈ T

(105)

Let us first prove that the margin of every GenCo is non negative. From
the first two equations of the complementarity system (105) one has

πztqikt = σE
iktqikt + biktqikt

πztqikt = σC
iktsqikt + biktqikt
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with σE
iktqikt, σ

C
iktqikt ≥ 0.

This implies that
πztqikt ≥ biktqikt

and since by assumption bikt ≥ cik, one has that

πztqikt ≥ cikqikt

therefore the margin is non negative, which means that each GenCo is willing
to increase its production until either the maximum accepted bid or a capacity
bound is reached.
Now we show the main claim of the proposition. The power produced by
each GenCo cannot be such that q̃ikt > qikt and it can be q̃ikt < qikt if and
only if q̃ikt = ΓE

ik for existing generation units or q̃ikt = ΓC
ikYik for candidate

generation units. But then it would be qikt > ΓE
ik or qikt > ΓC

ikYik which is
not feasible for the modified MO Problem. Therefore, once the MO solves the
aforementioned problem it must be q̃ikt = qikt for each GenCo. ut


