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1 Introduction

The use of a cooperative game approach to inequality has known an increasing interest
in the recent literature on inequality measurement. Economists have recently developed
some contributions to mould the general tools of cooperative game theory, in particular
the Shapley value concept, into a form that could be used for distributional analysis. Their
investigation was guided by a partial dissatisfaction with various aspects of the traditional
decomposition methods, rethinking the instruments that may underpin the multi-factorial
assessment of inequality.

Our analysis builds on the solution concepts of the cost cooperative games adapting
an environment of unequal pro�les of sources and propose a preference-based allocation
rule among factors. We observe that the heterogeneity of income sources generates un-
equal distribution and investigate how the use of the cooperative structure may guarantee
information to design inequality-reducing policy intervention.

The aim of this paper is therefore threefold. First, a welfare foundation mechanism á
la Blackorby et al. [4] is developed and characterizes a new axiomatic decomposition of the
Atkinson index [2] by income sources. We develop this measure as a characteristic function
of the game in terms of social cost of inequality1. Second, we associate the cooperative
game to the well-known problem of allocating an in�nitely divisible good among agents.
This model was investigated by Sprumont [35] who demonstrates the existence of a uniform
allocation rule as the only solution concept satisfying relevant criteria with single-peaked
preferences. We extend this rule focusing on bidimensional information about income
sources and preferences among types. In particular we study how to allocate each income
source according to a complete preference ordering and then observe how this rule performs
in terms of equity and e�cient properties2.

To get immediately what we have in mind, let us suppose that society is in a original
position where each type has clearly indicated his own preference among income sources3.
The policy-maker decides on a rule that assigns in place of the income pro�le produced
by each type, a new vector characterized by a collapse of all contributions in the single
preferred entry, while setting to zero the other ones. This weakly allocation rule satis�es
a set of purely ordinal axioms: feasibility, e�ciency and anonymity previously described
in the literature, see [35] and [36], plus some other properties as preference monotonicity,
Lorenz dominance and equal treatment of non-preferred contributions. Our claim is that
under general conditions, the extreme egalitarian solution which prescribes equal division
of the aggregate worth among factor coalitions is still possible without violating the indi-
vidual preferences. We then discover that the nucleolus of a cost cooperative game may
coincide with this weakly uniform rule.

As a last point, we propose a (specular) welfare loss game characterized by the dif-
ference between the sum of the costs generated by each income source and the overall
cost borne by the entire society. We show that the heterogeneity among income factors

1In the literature, the cost of inequality is interpreted as the fraction of total income which could be
sacri�ced with no loss of social welfare if the income sources were to be equally distributed.

2Dutta and Ray [12] and [13] propose a constrained egalitarian solution concept which satis�es the
core-like participation constraints.

3Basically the choice is conducted on the basis of di�erent employment categories, for instance, labour
and capital incomes, rents, inherited wealth or more general endowments.
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according to the population preferences may determine di�erent impact in terms of public
policy. Some sources (or coalitions of sources) reduces the welfare loss originated by the
inequality into the society. Social preference ordering on factors are then established.

Some strands of literature are taken into account in our evaluation.
As regards the decomposition by income sources, theoretical contributions have mainly

focused on Gini and Theil coe�cients. Shorrocks [32] proves the possibility to derive an
in�nite number of decompositions without restrictions; a property which is called natural

decomposition and is valid for the main inequality indices. According to his framework,
Lerman and Yitzhaki [21] exploit this property proposing a covariance formula of the Gini
coe�cient á la Fei et al. [16]4. This is equal to the sum of the covariances between each
income source and the cumulative distribution function of total income. Taking cue from
[21], we develop the Atkinson index as a unique measure satisfying some properties useful
to identify the marginal contribution of each income source distributed among types in
the society.

On the possibility to relate inequality to solution concepts of cooperative game, the pi-
oneering contribution was proposed by Shorrocks [34] in 1999 (recently published in 2013)
who evaluates each factor's contribution in terms of its marginal e�ect. This measure-
ment captures the impact of inequality if one of the factors were not present. His solution
speci�cally solves the inherent adding-up problem of sources repeating the exercise with
the change in the order, and then averaging the results over the runs for all sources.
Chantreuil and Trannoy [5] introduce an income inequality game performing axiomatic
characterizations of the Shapley value. On the same �eld, see also Sastre and Trannoy
[29], Israeli [20] and Devicienti [9] for diverse econometric applications. Charpentier and
Mussard [6] introduce multiplicative games providing dual results compared to Chantreuil
and Trannoy's contribution [5]. They also show the advantage to perform multiplicative
game to gauge income inequality variations, quite useful for policy purposes.

Finally, for what involves the issue of fairness in the distribution, our reference points
enclose models where preferences are single-peaked. The formal one is introduced by
Sprumont [35]. In general the uniform rule seems to be central in solving some class of
problems, for instance, changes in the amount to divide, evaluations of the preferences
of types or within the population. Di�erent extensions were proposed in the last decade.
Among others, Thomson [36] demonstrate that the uniform rule is the only e�cient so-
lution satisfying no envy criteria, and Thomson [37] shows that it is the only `selection
from the no-envy and Pareto solution satisfying weak replication-invariance and one-sided
welfare-domination under preference-replacement'. Otten et al. [24] require that two
agents with the same preferences should receive amounts that are indi�erent on the basis
of these preferences. They characterize an extension of the uniform rule which satis�es
monotonicity property with respect to simultaneous changes in the social endowment and
preferences.5

The remainder of this paper is as follows: Section 2 introduces the setup of the model
and the features of the multi-factor Atkinson index of inequality discussing its axiom-
atization and key properties. Section 3 presents the cost of inequality framework as a
cooperative game, listing possible solution concepts, and particularly focusing on the ax-

4See Morduch and Sicular [23] and Rao [26].
5See also note 17 on this point.
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iomatic foundation of the weakly uniform rule and its strict relation with the nucleolus.
Section 4 depicts the welfare loss game and outlines the social preferences ordering helpful
to implement inequality-reducing policies. Conclusions follow in Section 5.

2 A multi-factor Atkinson index of inequality

The population is �nite and divided into types, {1, ..., N}. The set of income factors
is �nite, {1, ...,M}. Let yij ≥ 0 denote the income that type i obtains from factor (or
source) j, i.e., Fj . The population of N ≥ 1 types is subject to M ≥ 1 income sources,
such that I = N × M is the number of income units in the society. Each type i' s
income vector is yi = (yi1, yi2, . . . , yiM ) ∈ RM

+ , while, YFj = (y1j , y2j , . . . , yNj) ∈ RN
+ and

Y = {y1, . . . ,yM} ∈ RI
+ de�ne, respectively, the income vector of Fj and the set of all

income vectors. For each i, there exists at least one factor Fk, where yik > 0.
We propose a multi-factorial structure of the Atkinson index by taking into account

the heterogeneity of sources within the society. We �rst introduce a normative evaluation
based on social welfare function with some requirements.6 According to Atkinson [2], a
multi-factor utilitarian social welfare function is:

W (y11, . . . , yNM ) =
1
I

M∑

j=1

N∑

i=1

Uij(yij) =

=
1
M

(∑N
i=1 Ui1(yi1)

N
+
∑2N

i=N+1 Ui2(yi2)
N

+ · · ·+
∑I

i=N(M−1) UiM (yiM )

N

)

where the welfare generated by contribution−j is:

Wj(y1j , . . . , yNj) =
1
N

jN∑

i=N(j−1)+1

Uij(yij)

such that

W (y11, . . . , yNM ) =
M∑

j=1

Wj(y1j , . . . , yNj)
M

The M di�erent functions received an equal weight on welfare orderings. For all Fj ,
j = 1, . . . ,M :

Wj(y1j , . . . , yNj) = Wj(ŷj , . . . , ŷj) = Uj(ŷj) ⇐⇒





1
1− ε ŷ

1−ε
j =

1
N

∑N
i=1

y1−ε
ij

1− ε

log ŷj =
1
N

∑N
i=1 log yij

(1)

6See Ebert [14].
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a functional form of utility−j can be de�ned on the basis of a unique inequality aversion
parameter, ε ∈ (0, 1). By (1), the multi-factor equally distributed equivalent (ede) income
ŷj is similar to the standard Atkinson setting, i.e.,





ŷj =
[

1
N

∑N
i=1 y

1−ε
ij

] 1
1−ε

if ε ∈ (0, 1)

ŷj =
[∏N

i=1 yij

] 1
N

if ε = 1

(2)

for all j = 1, . . . ,M . Some axioms satisfy by the multi-factor decomposition by income
sources:

• Normalization: An index of inequality is normalized if, for any egalitarian distri-
bution Y = (y, y, . . . , y) ∈ RI

+, then IA(Y ) = 0.

• Positive homogeneity of order 0: An index of inequality is relative if, for any
Y ∈ RI

+ and λ > 0, then IA(Y ) = IA(λY ).

• Symmetry: For all X,Y ∈ RI
+, such as Y = ΠX ∈ RI

+, where Π is a permutation
matrix, then IA(Y ) = IA(X).

• Population principle: Let any Y ∈ RI
+ and Y (t) being obtained after concatenat-

ing Y t times. For all t ∈ N∗\{1}, then IA(Y ) = IA(Y (t)).

• Transfer principle For all X,Y ∈ RI
+, such as Y = BX ∈ RI

+, where B is a
bistochastic matrix, then IA(Y ) = IA(X).

Denoting µj =
1
N

∑N
i=1 yij , the average income of j-factor among types, the related

Atkinson index is IA(YFj ) = 1− ŷj
µj

. More generally,

IA(YF1,...,Fk) = 1− 1
k

k∑

j=1

ŷj
µj

for k = 2, . . . ,M . Therefore,

De�nition 1. Given the income distribution Y ∈ RI
+ and the factors F1, . . .FM , the

multi-factor Atkinson index of inequality IA(YF1,...Fm) is:

IA(YF1,...,Fm) = 1− 1
M

M∑

j=1

ŷj
µj

=





1− N−
ε

1−ε

M

∑M
j=1




[∑N
i=1 y

1−ε
ij

] 1
1−ε

∑N
i=1 yij


 if ε ∈ (0, 1)

1− N

M

∑M
j=1




[∏N
i=1 yij

] 1
N

∑N
i=1 yij


 if ε = 1

(3)
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When M > 1, it can also be formulated as the arithmetic mean of the standard
Atkinson [2]7:

IA(YF1,...,FM ) =
IA(YF1) + · · ·+ IA(YFM )

M

Denote P = {F1, . . . ,FM} the set of available income sources. For each subset S ⊆ P,
S 6= ∅, then (3) is:

IA(YS) = 1− 1
|S|

∑

Fj∈S

ŷj
µj

= 1− N−
ε

1−ε

|S|
∑

Fj∈S




[∑N
i=1 y

1−ε
ij

] 1
1−ε

∑N
i=1 yij


 (4)

where |S| indicates the cardinality of S. A crucial property of (4) is subadditivity,

Proposition 1. The index IA is subadditive, i.e., for all nonempty subsets S, T ⊂ P,
such that S ∩ T = ∅, we have that:

IA(YS∪T ) < IA(YS) + IA(YT ) (5)

Proof. We employ (4) yielding:

IA(YS∪T )− IA(YS)− IA(YT ) = 1− N−
ε

1−ε

|S + T |
∑

Fj∈S∪T




[∑N
i=1 y

1−ε
ij

] 1
1−ε

∑N
i=1 yij


− 1+

+
N−

ε
1−ε

|S|
∑

Fj∈S




[∑N
i=1 y

1−ε
ij

] 1
1−ε

∑N
i=1 yij


− 1 +

N−
ε

1−ε

|T |
∑

Fj∈T




[∑N
i=1 y

1−ε
ij

] 1
1−ε

∑N
i=1 yij


 =

= −1− N−
ε

1−ε

|S + T |



∑

Fj∈S




[∑N
i=1 y

1−ε
ij

] 1
1−ε

∑N
i=1 yij


+

∑

Fj∈T




[∑N
i=1 y

1−ε
ij

] 1
1−ε

∑N
i=1 yij





+

+
N−

ε
1−ε

|S|
∑

Fj∈S




[∑N
i=1 y

1−ε
ij

] 1
1−ε

∑N
i=1 yij


+

N−
ε

1−ε

|T |
∑

Fj∈T




[∑N
i=1 y

1−ε
ij

] 1
1−ε

∑N
i=1 yij


 = · · · =

= −1 +
|T |
|S + T | (1− IA(YS)) +

|S|
|S + T | (1− IA(YT )) =

=
−|S + T |+ |T | − |T |IA(YS) + |S| − |S|IA(YT )

|S + T | < 0

where |S + T | = |S|+ |T |. This completes the proof of (5).

7Instead when M = 1, this index directly collapses into the standard one [2].
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Subadditivity is a desirable property for inequality measure. It implies that the in-
equality generated by a joint distribution of income sources is lower than the sum of
inequality of those sources considered separately. The aggregation of the sources tends
to shrink the level of the overall inequality. Subadditivity is in general veri�ed by coop-
erative games8. Our idea consists of investigating the characteristics of the multi-factor
Atkinson index (3) as a cost cooperative game9 where the income sources are players of a
subadditive coalitional game.

3 The cost of inequality as a cooperative game

Let us rede�ne P = {F1, . . . ,FM} as the set of players.10 The characteristic function
of the game IA : 2P → R is given by (3) where IA(YS) is computed by evaluating the
ede-components ŷj for each coalition S.11 Note that (IA, P) is not monotone since the
inequality function may increase or decrease with the numbers of factors in the coalition.
It is even veri�able that in (IA, P), concavity property does not hold as well.

By taking into account all factors F1, . . .FM in Y , (3) can be expressed as:

IA(YF1,...,FM ) = 1− 1
M

M∑

j=1

ŷj
µj

=
M∑

j=1

(
1
M
− 1
M

ŷj
µj

)
=

1
M

M∑

j=1

(
µj − ŷj
µj

)

The cost of inequality caused by source j is CA(YFj ) =
µj − ŷj
µj

. For each factor j, it is

generated by the di�erence between the average and the ede income required by the society
to guarantee the same level of welfare among types. The multi-factor Atkinson index can
then be interpreted as the average cost of inequality induced by factors F1, . . . ,Fk into
the society, i.e.,

CA(YF1,...,Fk) =
1
k

k∑

j=1

CA(YFj ) = IA(YF1,...,Fk)

for k = 1, . . . ,M . Let us investigate some properties and solution concepts of a cost
allocation game (CA, P)12.

8In the remainder of the paper, we will call them cooperative games instead of TU-games since their
characteristic value is neither a utility nor a payo� function.

9See [27] for the foundations of cost games.
10In such game, coalitions of factors are supposed to be de�ned rigorously: S ⊆ P is a coalition of

factors if for all Fj ∈ S, there exists at least one income ypj di�erent from the arithmetic mean

∑N
i=1 yij

µj
.

Consequently, when we evaluate inequality related to some factors, we rule out all constant factors, i.e.,
all elements which assign the same income to all individuals or types.

11The inequality is zero in case of an empty set where factors are not taken into account, i.e., IA(Y∅) = 0.
Note that this assumption is necessary when dealing with a cooperative game for both payo� and cost
functions.

12See [27].
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3.1 Solution concepts

We �rst carry out a decomposition of (3) according to Banzhaf13 and Shapley values14.
This approach has been developed in the literature on inequality assessment. Our theo-
retical background relies on Shorrocks [32], [33]. The main applications are developed by
Shorrocks [34] and Chantreuil and Trannoy [5]15. This technique leads to establish the
marginal contribution of each factor to the aggregate inequality level, see [6]. In particular,
Shapley [31] proposes to solve the problem of outcome distribution among the players by
taking into account the worth of each coalition. This value is here de�ned as the mathe-
matical expectation of the inequality level induced by each factor. All orders of formation
of the grand coalition are equiprobable, while, income sources enter in the coalition one
by one. Each of them receives the entire saving o�ered to the coalition previously formed.

De�nition 2. The Shapley value of the game (CA, P) is a vector

Φ(CA) = (φ1(CA), . . . , φM (CA)) ∈ RM

such that:

φj(CA) =
∑

S⊆P, Fj∈S

(M − |S|)!(|S| − 1)!
M !

(CA(S)− CA(S \ {Fj})) (6)

for all j = 1, . . . ,M .

An alternative solution is the Banzhaf value based on the subjective belief that each
factor is equally fair to join any coalition.

De�nition 3. The Banzhaf value of the game (CA, P) is a vector

β(CA) = (β1(CA), . . . , βM (CA)) ∈ RM

such that:

βj(CA) =
1

2M−1

∑

S⊆P, j∈S
(CA(S)− CA(S \ {j})) (7)

for all j = 1, . . . ,M .

These values de�ne the marginal contributions of factors to inequality. For example,
in an elementary 3-factor case, calling the factors F1, F2 and F3, φ1(CA) and β1(CA)
respectively amount to:

φ1(CA) =
1
6
[
2(CA(Y{F1,F2,F3})− CA(YF2,F3)) + CA(Y{F1,F2})− CA(Y{F2})+

+CA(Y{F1,F3})− CA(YF3) + 2(CA(YF1)− CA(Y∅))
]

13The Banzhaf value was initially introduced in [3] as a power index for voting games and subsequently
generalized to arbitrary cooperative games.

14The Shapley value is a world famous solution concept in Cooperative Game Theory, initially introduced
in [31] and then widely employed in Election Games, Bargaining Theory and many other areas. An
exhaustive overview of power indices, including axiomatization and applications, is [25].

15Pignataro [28] proposes an application of Shapley value in the opportunity egalitarian environment.
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and

β1(CA) =
1
4
[
CA(Y{F1,F2,F3})− CA(YF2,F3) + CA(Y{F1,F2})− CA(Y{F2})+

+CA(Y{F1,F3})− CA(YF3) + CA(YF1)− CA(Y∅)
]

It is well-known that in case of two factors, the Banzhaf value and the Shapley value
perfectly coincide.

Let us denote with xj ≥ 0 the share of the cost of inequality CA(YF1,...,FM ) attributed
to source j. A rule is a function de�ned for S ⊆ P relating each problem (CA, P) to
a vector x = (x1, . . . , xM ) ∈ RM+ . The vector x guarantees an allocation of the cost of
inequality for the grand coalition CA(YF1,...,FM ). The set of e�cient solutions is therefore
de�ned as the set of all vectors x whose coordinates sum up to the aggregate cost of
inequality, i.e.,

∑m
j=1 xj = CA(YF1,...,Fm). The standard individual rationality, i.e., source

rationality, is veri�ed if xj ≤ CA(YFj ) for all j = {1, . . . ,M}. Whenever both e�ciency
and source rationality are ensured, an allocation is de�ned as an imputation. The set of
imputations of the game (CA, P) is then given by:

I(CA) =



x ∈ RM |

∑

Fj∈P
xj = CA(YF1,...,Fm) and xj ≤ CA(YFj ) for all Fj ∈ P





The idea of rationality can be extended to subcoalitions (not only for each single factor).
Thus a coalition of sources S where S 6= ∅ has an incentive to cooperate if S cannot im-
prove on the allocation, i.e., coalition rationality holds such that

∑
j∈S xj ≤ CA(YF1,...,FS ).

Whenever a stronger rationality condition (collective rationality) holds, a further de�nition
can be provided (see [15]):

De�nition 4. The set

Core(CA) :=



x ∈ RM |

∑

j∈P
xj = CA(P) and

∑

j∈S
xj ≤ CA(S) for all S ⊆ P, S 6= ∅





is the core of the game (CA,P), i.e. the set of all non dominated allocations.

This solution concept is particularly relevant since it allows for a stability of the im-
putation (see [25]). It implies that it is not feasible to form alternative coalitions (rather
than the grand coalition) in which each income source produces lower cost. Thus the
core of CA refers to the notion of Pareto optimality : there is no imputation outside the
core where each income source may reduce its e�ect in terms of cost of inequality without
determining an increase in the cost originated by another source Fk, Fk 6= Fj . In gen-
eral, some contributions xj might be negative since the characteristic function CA is not
monotone16. Note that in general the core of an essential constant-sum game is empty.

Schmeidler [30] introduced the concept of nucleolus due to lexicographic maximization
of the minimum excess of costs over the contribution for all coalitions. In our framework,
since the cost of inequality originated by di�erent income sources is CA(YS), we can perform

16Drechsel [10] and Drechsel and Kimms [11] show that if the characteristic function of the cost game
is monotone, then all cost assignments in the core are non-negative.
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this measure as the di�erence between the stand-alone cost of inequality originated by a
coalition S of factors, for all S ⊆ P, and the sum of the costs attributed to those factors
in the assignment procedure. This is the so-called excess of the game:

De�nition 5. Given an allocation x ∈ RM , the excess of a coalition S with respect to x
can be de�ned as:

e(S,x) = CA(YS)−
∑

Fj∈S
xj (8)

The excess is typically viewed as a measure of satisfaction of each coalition S (or
dissatisfaction in case of payo� game). The nucleolus can be identi�ed as the imputation
that lexicographically maximizes the minimal excess among all coalitions.

De�nition 6. Given a game (CA,P) and an imputation x ∈ I(CA), if Θ(x) is the (2|P|−2)-
dimensional vector of all excesses e(S,x), where S ∈ 2P \{∅,P}, arranged in lexicographic

order, the nucleolus of (CA,P) is the unique imputation x∗ that lexicographically maxi-

mizes the minimal excess in Θ(x).

The nucleolus always exists and it is in the core of the game if the core is nonempty.
We extend these characterizations on the cost of inequality game (CA,P) to design a better
indicator of each factor's marginal contribution. The aim of reducing the cost of inequality
among coalitions is developed to maximize recursively the welfare of the worst-o� treated
coalitions.

3.2 The preferences-based uniform rule among factors

After introducing the solution concepts in the game, we investigate how to allocate each
income factor Fj ∈ P among types. We take into account that each type is endowed with
a complete preference ordering, see [17] and [18]. E�ciency and equity properties of the
game must be evaluated.

Suppose that each type i has a preference ordering Ri. Let us denote uij ∈ [0, 1] as
the value that type i attributes to the contribution yij obtained from Fj ∈ P. uikRiuij
means that uik is preferred to uij by type i. Type i announces her preference Ri and its

ranking is known for all uij . According to regularity conditions, these preferences relations

are assumed to be single-peaked. For each type i, there always exists a peak value ui∗,
corresponding to a certain factor Fk ∈ P, such that the following 2 conditions holds
according to Sprumont [35]:

1. ∀Fs,Ft ∈ P \ Fk, uis < uit < uik = ui∗ implies that ui∗Riu
i
tRiu

i
s;

2. ∀Fs,Ft ∈ P \ Fk, uis > uit > uik = ui∗ implies that ui∗Riu
i
tRiu

i
s;

In both cases, all the remaining contributions are arranged with the ranking induced
by preference Ri. Let R = (R1, . . . , RN ) be the system of preferences in the society.
Denote U = (uij)i=1,...,N ; j=1,...,M ∈ MN,M (R+) the matrix of all evaluations uij and
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V = (vij) ∈MN,M (R+) the matrix generated by:

vij =





∑M
l=1 u

i
l if uij = ui∗

0 otherwise

The matrices U and V are strictly related. The former contains the type's evaluations for
each source. The latter requires the sum of the i−type's into the ui∗ cell, while resetting
the other cells to 0 value. It therefore collects all information about preferences Ri in the
single preferred contribution. Let us de�ne vj∗ =

∑
i∈N v

i
j , v∗ = (v1∗, . . . , vM∗) ∈ RM and

v∗(R) =
∑M

j=1 vj∗
17. When dealing with single-peaked preferences, Sprumont [35] proves

that the uniform rule is the only one to satisfy the axioms of feasibility, e�ciency, strategy-
proofness and anonymity18. We give a new characterization conceived as an allocation rule
of types' preferences among factor components. We denote it weakly uniform rule since
some properties of the original rule hold, while some egalitarian axioms are also considered.

An allocation rule is e�cient among agents if and only if no type gets more than her
peak value, while other gets less according to matrix V . The matrix V is e�cient since
all types obtain a contribution higher than their initially preferred one.

De�nition 7. We say that the element zj ∈ R+ is an e�cient contribution if for all

vj∗ in V , we have that:





zj ≤ vj∗ if CA(YF1,...,FM ) ≤ v∗(R) for all j ∈ {1, ...,M}

zj ≥ vj∗ if CA(YF1,...,FM ) ≥ v∗(R) for all j ∈ {1, ...,M}

We focus our attention on some speci�c axioms to be satis�ed by this allocation rule:

• Feasibility (F): An allocation z = (z1, . . . , zM ) ∈ RM is feasible if
∑M

j=1 zj =
CA(YF1,...,FM ).

• E�ciency (E): An allocation z is e�cient if its coordinates are e�cient contribu-
tions.

• Type anonimity (TA): An allocation z is anonymous if it does not depend on the
order of types, i.e. if for all permutations Π : N −→ N on types, the allocation zΠ

obtained after applying Π is such that zΠ = z.

• Preference monotonicity (PM): Given two factors Fj , Fk such that vj∗ = 0 and
vk∗ 6= 0, i.e. Fj is not preferred by any type, whereas Fk is preferred by one type at
least, zj ≤ zk.

17Anno and Sasaki [1] propose an alternative egalitarian rule compatible with second-best e�ciency
allocations.

18See for details, Ching [7], [8], Sprumont [35] and Thomson [36]. For alternative extension, Otten et
al.[24] demonstrate that the uniform rule may coincide with the lexicographic egalitarian solution of a
bargaining game.
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• Equality of treatment for non-preferred sources (ETNS): Given two factors
Fj , Fk such that vj∗ = vk∗ = 0, i.e. they are both not preferred by any type, zj = zk.

• Lorenz dominance (LD): Denoting with >L the order induced by standard Lorenz
domination, we establish that z Lorenz dominates the aggregate preferences vector
v∗ in this way: by rearranging and normalizing their coordinates in increasing order
in the vectors ẑ = (ẑ1, . . . , ẑM ) and v̂∗ = (v̂1∗, . . . , v̂M∗), ẑ >L v̂∗ if

∑l
j=1 ẑj ≥∑l

j=1 v̂j∗ for l ∈ {1, . . . ,M}.

Before proceeding, we de�ne the multi-factor version of Sprumont's uniform rule:

De�nition 8. Given a cost game (CA, P, (Ri)i∈N ), and the types' preferences in the

matrices U and V , we denote with Ψ = (Ψ1, . . . ,ΨM ) the weakly uniform rule, where:

Ψj (CA, R) =





min{vj∗, λ(R)} if CA(YF1,...,FM ) ≤ v∗(R)

max{vj∗, µ(R)} if CA(YF1,...,FM ) ≥ v∗(R)

and where λ(R) and µ(R) are respectively the solutions to the equations

m∑

j=1

min{vj∗, λ(R)} = CA(YF1,...,FM ) and

m∑

j=1

max{vj∗, µ(R)} = CA(YF1,...,FM )

This rule simply suggests that whenever there is too little to share about cost CA
among types, i.e., CA(YF1,...,Fm) ≤ v∗(R), it assigns a positive amount λ(R) to factors
with preferred contributions (peaks) above this amount, while leaving other factors to get
their initial values. Viceversa, it assigns µ(R) when there is too much to share. This
appears to be a way to take e�ciently into account the value assigned to each factor by
types' preferences.

Theorem 1. The weakly uniform rule Ψ satis�es F, E, TA, PM, ETNS and LD.

Proof. The axiom F is satis�ed by Ψ by De�nition 8. E is satis�ed as well because
in the former case Ψj = min{vj∗, λ(R)} implies Ψj ≤ vj∗, whereas in the latter case
Ψj = max{vj∗, λ(R)} implies Ψj ≥ vj∗. As far as TA is concerned, we have to prove
the invariance of Ψ with respect to any permutation of preference between types. Each
permutation corresponds to a swap between the rows of matrix U , and since any matrix
Ũ obtained from a permutation over N leads to a matrix Ṽ containing the sums of all
entries of U , also Ṽ can be obtained from V by swapping its rows. Hence, the vector ṽ∗(R)
coincides with v∗(R) because it contains the sum of all entries of U as well. Consequently,
the solutions to the two problems coincide.

The validity of axiom PM requires some more investigation: if CA(YF1,...,FM ) ≤ v∗(R),
it trivially holds, because if factor Fj is not preferred by any type, vj∗ = 0 entails
min{0, λ(R)} = 0, and Ψj = 0 cannot exceed any other coordinate. On the other hand, if
CA(YF1,...,FM ) ≥ v∗(R), then the coordinate Ψj corresponding to each non-preferred source
is µ(R), which cannot exceed max{vk∗, µ(R)} which is Ψk for each preferred factor. The
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axiom ETNS holds as well, because when CA(YF1,...,FM ) ≤ v∗(R) all the non-preferred
sources correspond to coordinates of Ψ which are equal to 0, whereas in the opposite case
they are all equal to µ(R), hence the weakly uniform rule always assigns the same share
to them.

What remains to prove is the Lorenz dominance (axiom LD). If we rearrange the
coordinates of Ψ and of v∗ in increasing order, achieving the vectors Ψ̂ = (Ψ̂1, . . . , Ψ̂M )
and v̂∗ = (v̂1∗, . . . , v̂M∗), we can consider the cases of non-preferred sources separately:

• if CA(YF1,...,FM ) ≤ v∗(R), for all the non-preferred factors, the contributions are 0 in
both vectors, so they do not a�ect the respective sums. If we denote the preferred
ones with Fp, . . . ,FM , the related Ψ̂j may be either λ(R) or v̂j∗. If p > r ≥ 0 is the
number of sources whose contributions are equal to λ(R) we will have:

1
CA(YF1,...,FM )


rλ(R) +

l∑

j=r+1

v̂j∗


 ≥ 1

v∗(R)

l∑

j=p

v̂j∗ ⇐⇒

⇐⇒
M∑

j=p

v̂j∗


rλ(R) +

l∑

j=r+1

v̂j∗


 ≥


rλ(R) +

M∑

j=r+1

v̂j∗




l∑

j=p

v̂j∗ ⇐⇒

⇐⇒ rλ(R)
M∑

j=l+1

v̂j∗ ≥ 0

which holds for all l = p, . . . ,M − 1.

• if CA(YF1,...,FM ) ≥ v∗(R), for each non-preferred factor

Ψ̂j

CA(YF1,...,FM )
=

µ(R)
CA(YF1,...,FM )

≥ 0

hence the Lorenz dominance criterion is veri�ed; if we indicate the preferred ones
with Fp, . . . ,FM , we have:

1
CA(YF1,...,FM )


(p− 1)µ(R) +

l∑

j=p

v̂j∗


 ≥ 1

v∗(R)

l∑

j=p

v̂j∗ ⇐⇒

⇐⇒
M∑

j=p

v̂j∗


(p− 1)µ(R) +

l∑

j=p

v̂j∗


 ≥


(p− 1)µ(R) +

M∑

j=p

v̂j∗




l∑

j=p

v̂j∗ ⇐⇒

⇐⇒ (p− 1)µ(R)
M∑

j=l+1

v̂j∗ ≥ 0

which holds for all l = p, . . . ,M − 1.

So, LD is veri�ed too.

13

ECINEQ WP 2014 - 322 February 2014



The weakly uniform rule attributes an equal share to not preferred factors. This share
is lower than the one imposed to the preferred factors. The rule guarantees an allocation
which is less unequal than the vector collecting aggregated preferences. The application
of this procedure to vector v, as a result of the aggregation process of preferences, involves
some relevant properties collected below.

Proposition 2. If CA(YF1,...,FM ) > v∗(R), and if

1. there exist s ≥ 1 factors F1, . . . ,Fs such that v1∗, . . . , vs∗ = 0;

2.
CA(YF1,...,FM )− v∗(R)

s
< min vj∗ for all vj∗ 6= 0;

then Ψj = vj∗ for all Fj /∈ {F1, . . . ,Fs}, and Ψj =
CA(YF1,...,FM )− v∗(R)

s
for all

j = 1, . . . , s.

Proof. If CA(YF1,...,FM ) > v∗(R) =
∑
Fj /∈{F1,...,Fs} vj∗, we are supposed to determine

Ψj = max{vj∗, µ(R)} subject to
∑M

j=1 max{vj∗, µ(R)} = CA(YF1,...,FM ). Because µ(R)
is nonnegative, the equation boils down to:

sµ(R) +
∑

Fj /∈{F1,...,Fs}
max{vj∗, µ(R)} = CA(YF1,...,FM )

Suppose that the assertion is false, hence there exists Fk /∈ {F1, . . . ,Fs} such that Ψk =
µ(R), which means that µ(R) > vk∗. The equation becomes

(s+ 1)µ(R) +
∑

Fj /∈{F1,...,Fs}\Fk
max{vj∗, µ(R)} = CA(YF1,...,FM )

implying

(s+1)µ(R)+v∗(R)−vk∗ = CA(YF1,...,FM ) ⇐⇒ CA(YF1,...,FM )− v∗(R)
s

=
(s+ 1)µ(R)− vk∗

s

By the second assumption,
(s+ 1)µ(R)− vk∗

s
< vk∗, but on the other hand µ(R) > vk∗

entails
(s+ 1)µ(R)− vk∗

s
>

(s+ 1)vk∗ − vk∗
s

= vk∗, which is a contradiction.

Proposition 3. If CA(YF1,...,Fm) < v∗(R), and if there exist s ≥ 1 factors F1, . . . ,Fs such
that v1∗, . . . , vs∗ = 0, then Ψj = 0 for all j = 1, . . . , s.

Proof. It is straightforward to see that for all factors Fj such that vj∗ = 0, the nonnega-
tivity of λ(R) implies min{0, λ(R)} = 0, hence Ψj = 0.

Proposition 2 ensures that when the overall cost exceeds the aggregate values of factors,
not preferred sources still obtain a positive share although smaller than the one achieved
by the other factors. Proposition 3 claims that when the aggregate values attached to
factors exceed the cost, not-preferred sources do not receive any share. What follows is
an example helpful to clarify the procedure:
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Example 1. Imagine a society composed by 3 di�erent types and 4 di�erent factors A,
B, C, D. The respective evaluations are collected in the following 3× 4 matrix:

U =




u1
A u1

B u1
C u1

D

u2
A u2

B u2
C u2

D

u3
A u3

B u3
C u3

D


 =




0 0 0.1 0.15
0.1 0 0.2 0
0.1 0 0.2 0




Consider a preference system such that in compliance with R1, type 1 has a peak value

u1
∗ = u1

D = 0.15, and by R2 and R3 the remaining peak values are u2
∗ = u2

C = 0.2 and

u3
∗ = u3

C = 0.2. In this case, the matrix V reads as:

V =




0 0 0 0.25
0 0 0.3 0
0 0 0.3 0




and we have that

vA∗ = 0, vB∗ = 0, vC∗ = 0.6, vD∗ = 0.25

v∗ = (0, 0, 0.6, 0.25), v∗(R) = 0 + 0 + 0.6 + 0.25 = 0.85

If the overall cost of inequality is CA(YF1,...,F4) = 0.9, we can explicitly compute the value

of Ψ. Since 0.85 < CA(YF1,...,F4) = 0.9, we determine µ(R) such that

max{0, µ(R)}+ max{0, µ(R)}+ max{0.6, µ(R)}+ max{0.25, µ(R)} = 0.9

The unique value for which such equation is veri�ed is µ(R) = 0.025, entailing the following
weakly uniform rule:

Ψ = (0.025, 0.025, 0.6, 0.25)

We can even calculate the value of Ψ in the minimization case. If we suppose to have the

same matrices U and V and the overall cost of inequality is CA(YF1,...,F4) = 0.8, in this

case we must �nd λ(R) such that:

min{0, λ(R)}+ min{0, λ(R)}+ min{0.6, λ(R)}+ min{0.25, λ(R)} = 0.8

The unique solution is λ(R) = 0.55, yielding the following weakly uniform rule:

Ψ = (0, 0, 0.55, 0.25)

The next results intend to investigate the occurrence of egalitarian solutions to the
problem in the two cases.

Proposition 4. If CA(YF1,...,FM ) > v∗(R), and for all j = 1, . . . ,M , there exists a type i
such that uij = ui∗ 6= 0, i.e., vj∗ 6= 0 for each factor Fj, then

CA(YF1,...,FM )
M

≥ max vj∗ =⇒ Ψ1 = Ψ2 = · · · = ΨM =
CA(YF1,...,FM )

M
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Proof. Since CA(YF1,...,FM ) > v∗(R), there must be at least one k ∈ {1, . . . ,M} such that
vk∗ < µ(R) so that the equation becomes µ(R) +

∑
j 6=k max{vj∗, µ(R)} = CA(YF1,...,FM ).

If µ(R) = vj∗ for all j 6= k, the proof is complete. If there exists l ∈ {1, . . . ,M}, l 6= k,
such that µ(R) 6= vl∗, then max{vl∗, µ(R)} must be equal to µ(R). By iterating the
process, we �nd that each vj∗ must be smaller than µ(R). Since each coordinate Ψj is

equal to
CA(YF1,...,FM )

M
in the egalitarian solution, the su�cient condition to achieve it is

CA(YF1,...,FM )
M

≥ max vj∗.

Proposition 5. If CA(YF1,...,FM ) < v∗(R), and if for all j = 1, . . . ,M there exists a type

i such that uij = ui∗ 6= 0, i.e. vj∗ 6= 0 for each factor Fj, then

CA(YF1,...,FM )
M

≤ min vj∗ =⇒ Ψ1 = Ψ2 = · · · = ΨM =
CA(YF1,...,FM )

M

Proof. It su�ces to repeat the proof of Proposition 4 with simple modi�cations.

The example below illustrates a setup where the weakly uniform rule is egalitarian.

Example 2. Suppose now 4 di�erent types and 4 di�erent factors A, B, C, D in the

society. The respective evaluations are collected in the following 4× 4 matrix:

U =




u1
A u1

B u1
C u1

D

u2
A u2

B u2
C u2

D

u3
A u3

B u3
C u3

D

u4
A u4

B u4
C u4

D


 =




0 0.03 0.04 0.03
0.1 0 0 0.06
0.05 0.02 0.03 0.01
0.07 0.01 0.06 0.04




Consider a preference system such that in compliance with their respective preferences, R1,

the peak values are u1
∗ = 0.04, u2

∗ = 0.1, u3
∗ = 0.01 and u4

∗ = 0.01, leading to the following

matrix:

V =




0 0 0.1 0
0.16 0 0 0

0 0 0 0.11
0 0.18 0 0




and to

v∗ = (0.16, 0.18, 0.1, 0.11), v∗(R) = 0.16 + 0.18 + 0.1 + 0.11 = 0.55

If the cost of inequality is CA(YF1,...,F4) = 0.8, Proposition 6 is veri�ed and we determine

µ(R) such that

max{0.16, µ(R)}+ max{0.18, µ(R)}+ max{0.1, µ(R)}+ max{0.11, µ(R)} = 0.8

i.e. µ(R) = 0.2, entailing the following weakly uniform rule:

Ψ = (0.2, 0.2, 0.2, 0.2)
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In the minimization case if CA(YF1,...,F4) = 0.39, then Proposition 7 holds. In this case

the equation:

min{0.16, λ(R)}+ min{0.18, λ(R)}+ min{0.1, λ(R)}+ min{0.11, λ(R)} = 0.39

is solved by λ(R) = 0.097, yielding the following weakly uniform rule:

Ψ = (0.097, 0.097, 0.097, 0.097)

3.3 The nucleolus vs the weakly uniform rule

Now we want to shed some light on the connections between the nucleolus and the weakly
uniform rule. The aim is to link the costs induced by the coalitions and the types' prefer-
ences on factors. The subadditivity of the inequality cost CA(·) is the su�cient property
to satisfy the solution concept. In general the nucleolus is computed by solving a standard
sequence of linear programs (see [19] and [22]):

max αi (9)

s.t. e(S,x) ≥ αi for all S ∈ 2P

M∑

j=1

xj = CA(YF1,...,FM )

where αi ∈ R are the minimizers of each optimization program to be maximized.
To avoid the treatment of all cases in the implementation, we �x our attention on some
clear-cut applications. Initially, we consider the 2−factor case, where we observe that the
nucleolus coincides with the intersection point between the two excess lines, as shown by
the example below.

Example 3. Consider the cost game CA : 2P −→ R on the factor set P = {F1, F2} such
that:

CA(YF1,F2) = 0.8, CA(YF1) = 0.7, CA(YF2) = 0.6

Let us de�ne x = (x1, 0.8− x1) as the general allocation vector. The conditions verifying

individual rationality are:

{
x1 ≤ 0.7
0.8− x1 ≤ 0.6

=⇒ 0.2 ≤ x1 ≤ 0.7 (10)

and the two relevant excesses:

e(F1, x) = 0.7− x1, e(F2, x) = −0.2 + x1

The coordinate x1 can be computed as the intersection of the two lines. x1 = 0.45 veri�es

(10) and corresponds to the imputation which maximizes the minimal excess, i.e. x =
(0.45, 0.35), as can be observed in the �gure.
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-

e(F2, x) = −0.2 + x1

e(F1, x) = 0.7− x1

Figure 1: The nucleolus of (CA,P) is given by x = (0.45, 0.35).
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We can derive an alternative formula for the nucleolus:

x =
(CA(YF1,F2) + CA(YF1)− CA(YF2)

2
,
CA(YF1,F2) + CA(YF2)− CA(YF1)

2

)
(11)

We characterize the relation between it and the weakly uniform rule as follows19:

Proposition 6. Given a 2-factor cost of inequality game, where v∗ = (v1∗, v2∗) ∈ R2 is

the vector of the aggregated preferences and v∗(R) =
∑2

j=1 vj∗, the nucleolus x and the

weakly uniform rule Ψ coincide if and only if one of the following conditions holds:

1. v1∗ =
CA(YF1,F2) + CA(YF1)− CA(YF2)

2
;

2. v2∗ =
CA(YF1,F2) + CA(YF2)− CA(YF1)

2
.

Proof. It immediately follows from the procedure described in Subsection 3.2 and from
formula (11).

We show that the nucleolus and the weakly uniform rule do coincide as follows in the
case of 3-factor cost of inequality..

Example 4. Consider the subadditive cost game CA : 2P −→ R on P = {F1, F2, F3}
such that:

CA(YF1,F2,F3) = 0.75, CA(YF1,F2) = 0.6, CA(YF1,F3) = 0.5, CA(YF2,F3) = 0.7

CA(YF1) = 0.2, CA(YF2) = 0.45, CA(YF3) = 0.4
19Note that from (11), the nucleolus is egalitarian if and only if the cost game is symmetric, i.e.,
CA(YF1) = CA(YF2).
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In a society in�uenced by factors F1,F2,F3, consider 3 di�erent types with the following

contribution and preferences:

U =




u1
F1

u1
F2

u1
F3

u2
F1

u2
F2

u2
F3

u3
F1

u3
F2

u3
F3


 =




0.07 0.045 0.01
0.2 0.05 0.1
0.15 0.04 0.1




Suppose that types' preference system is: type 1 has the peak value u1
∗ = u1

F1
= 0.07, type

2 has u2
∗ = u2

F2
= 0.05 and type 3 has u3

∗ = u3
F2

= 0.04. The matrix V is:

V =




0.125 0 0
0 0.35 0
0 0.29 0




hence v∗(R) = 0.765 > CA(YF1,F2,F3). The related weakly uniform rule, computed as in

the previous Subsection, amounts to Ψ = (0.125, 0.35, 0.275).
We determine the nucleolus of the game. The candidate nucleolus can be written as

x = (x1, x2, 0.75 − x1 − x2), and we are supposed to maximize the minimum of the 6
involved excesses or, in other words, to maximize α1 subject to the following system of

inequalities: 



0.6− x1 − x2 ≥ α1

−0.25 + x2 ≥ α1

−0.05 + x1 ≥ α1

0.2− x1 ≥ α1

0.45− x2 ≥ α1

−0.35 + x1 + x2 ≥ α1

and to the types' rationality constraints:





x1 ≤ 0.2
x2 ≤ 0.45
x1 + x2 ≥ 0.35

α1 = 0.075 is the value such that x∗1 = 0.125. The following step consists in solving the

next constrained optimization problem:





0.475− x2 ≥ α2

−0.25 + x2 ≥ α2

0.45− x2 ≥ α2

−0.225 + x2 ≥ α2

subject to 0.225 ≤ x2 ≤ 0.45.
The solution is α2 = 0.1 corresponding to x∗2 = 0.35, which belongs to the interval

satisfying the individual rationality condition. Hence the nucleolus of the game turns out

to be x = (0.125, 0.35, 0.275).
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The above Example provides some further information about the possible coinci-
dence between the weakly uniform rule and the nucleolus. Basically, when v∗(R) >
CA(YF1,...,FM ), if the sequence of linear programs returns M − 1 coordinates of the vector
v∗, the remaining one must be equal to the corresponding coordinate of the nucleolus.

4 Welfare loss game

Since (CA, P) is a cost cooperative game, we convert it into a cost savings game. We
therefore take into account a cooperative structure (LA, P), involving the multi-factor
Atkinson inequality index IA(.) of coalition S for ∀S ⊆ P:

IA(YS) = 1− ŷS
µS

=





1−
|S|− ε

1−ε N−
ε

1−ε
[∑|S|

j=1

∑N
i=1 y

1−ε
ij

] 1
1−ε

∑|S|
j=1

∑N
i=1 yij

if ε ∈ (0, 1)

1−
|S|N

[∏|S|
j=1

∏N
i=1 yij

] 1
T

∑|S|
j=1

∑N
i=1 yij

if ε = 1

(12)

hence, the ede-income is:





ŷS =
[

1
|S|N

∑|S|
j=1

∑N
i=1 y

1−ε
ij

] 1
1−ε

if ε ∈ (0, 1)

ŷS =
[∏|S|

j=1

∏N
i=1 yij

] 1
S

if ε = 1

We consider ŷS as the ede income associated to coalition S. KA(YS) :=
µS − ŷS
µS

is the

cost of inequality associated to S, for ∀S ⊆ P.

De�nition 9. We call welfare loss function the following characteristic value:

LA(S) =
∑

j∈S
CA(YFj )−KA(YS)

for all S ⊆ P.

where LA(∅) = 0. Modeling welfare is crucial since it allows us to measure the het-
erogeneity of factor components in the income distribution. It is de�ned as the di�erence
between the costs of inequality originated by sources Fj and the aggregate cost KA for
each S ⊆ P. We investigate some basic properties of LA(S). First, we should remark that
LA({j}) = 0, i.e., it trivially vanishes at each 1−factor coalition. We can characterize its
positivity property as:

Proposition 7. If
ŷS
µS
≥ min

{
ŷ1

µ1
, . . . ,

ŷ|S|
µ|S|

}
, then LA(S) is positive.

20

ECINEQ WP 2014 - 322 February 2014



Proof.

LA(S) =
|S|∑

j=1

(
1− ŷj

µj

)
− 1 +

ŷS
µS

= |S| − 1− ŷ1

µ1
− · · · −

ŷ|S|
µ|S|

+
ŷS
µS

where it su�ces that
ŷS
µS

be larger than one of the remaining fractions to ensure positivity.

We assess the marginal contribution of factor Fj to the welfare loss function. First we
evaluate the trivial case where S = ∅. For each Fj ∈ P, it follows that:

LA(∅ ∪ Fj)− LA(∅) = CA(YFj )−KA(YFj ) = 0

For each coalition S and factor Fj /∈ S, the ede and the arithmetic mean are characterized
by: 




ŷS∪Fj =

(
|S|ŷ1−ε

S + ŷ1−ε
j

|S|+ 1

) 1
1−ε

µS∪Fj =
|S|µS + µj
|S|+ 1

(13)

After some manipulations, this leads to:





|S|ŷ1−ε
S∪Fj + ŷ1−ε

S∪Fj = |S|ŷ1−ε
S + ŷ1−ε

j

|S|µS∪Fj + µS∪Fj = |S|µS + µj

⇐⇒





|S|
(
ŷ1−ε
S∪Fj − ŷ

1−ε
S

)
= ŷ1−ε

j − ŷ1−ε
S∪Fj

|S|(µS∪Fj − µS) = µj − µS∪Fj
(14)

It implies that only 4 possible cases may occur:

1.





ŷj > ŷS∪Fj > ŷS

µj < µS∪Fj < µS

2.





ŷj < ŷS∪Fj < ŷS

µj > µS∪Fj > µS

3.





ŷj > ŷS∪Fj > ŷS

µj > µS∪Fj > µS

4.





ŷj < ŷS∪Fj < ŷS

µj < µS∪Fj < µS
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The marginal contribution of each source to the welfare loss is strictly positive under
some conditions.

Proposition 8. Given a factor Fj ∈ P and a coalition S ⊆ P \Fj, if any of the following
conditions holds:

1.





ŷj > ŷS∪Fj > ŷS

µj < µS∪Fj < µS

2.





ŷj < ŷS∪Fj < ŷS

µj > µS∪Fj > µS

then LA(S ∪ Fj) > LA(S).

Proof. The marginal contribution of Fj to any coalition S ⊆ P\Fj is expressed as follows:

LA(S ∪ Fj)− LA(S) = CA(YFj )−KA(YS∪Fj ) +KA(YS) =

= 1− ŷj
µj
− 1 +

ŷS∪Fj
µS∪Fj

+ 1− ŷS
µS

= 1− ŷj
µj

+
ŷS∪Fj
µS∪Fj

− ŷS
µS

(15)

We are going to carry out a separate analysis for each of them.

1. Since
ŷS∪Fj
µS∪Fj

>
ŷS
µS
, this entails:

LA(S ∪ Fj)− LA(S) > 1− ŷj
µj
≥ 0

2. Since
ŷS∪Fj
µS∪Fj

>
ŷj
µj
, this entails:

LA(S ∪ Fj)− LA(S) > 1− ŷS
µS
≥ 0

In the remaining two cases, the sign of the contributions is not uniquely determined.
The next Example describes a situation where also negative contributions are generated.

Example 5. Let us consider a setup with 2 heterogeneous types and 4 di�erent factors,

A, B, C, D. The set of all feasible coalitions is:

2P = {{A,B,C,D}, {A,B,C}, {A,B,D}, {A,C,D}, {B,C,D}

{A,B}, {A,C}, {A,D}, {B,C}, {B,D}, {C,D}, {A}, {B}, {C}, {D}, ∅}
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If the aversion parameter is ε =
1
2
, the ede incomes ŷS are:

ŷS =


 1

2|S|

|S|∑

j=1

2∑

i=1

y
1
2
ij




2

(16)

whereas µS are the arithmetic means. The table below collects the income pro�les:

Factor A Factor B Factor C Factor D

Type 1 400 900 3600 100

Type 2 1600 2500 100 400

First, we simply compute all coalitions' arithmetic means:

µ{A,B,C,D} =
400 + 1600 + 900 + 2500 + 3600 + 100 + 100 + 400

8
= 1200

µ{A,B,C} = 1516.6, µ{A,B,D} = 983.3

µ{A,C,D} = 1033.3, µ{B,C,D} = 1266.6

µ{A,B} = 1350, µ{A,C} = 1425, µ{A,D} = 625

µ{B,C} = 1775, µ{B,D} = 975, µ{C,D} = 1050

µA = 1000, µB = 1700, µC = 1850, µD = 250

and ede incomes:

ŷ{A,B,C,D} =
[

1
8

(20 + 40 + 30 + 50 + 60 + 10 + 10 + 20)
]2

= 900

ŷ{A,B,C} = 1225, ŷ{A,B,D} = 802.7

ŷ{A,C,D} = 711.1, ŷ{B,C,D} = 900

ŷ{A,B} = 1225, ŷ{A,C} = 1056.25, ŷ{A,D} = 506.25

ŷ{B,C} = 1406.25, ŷ{B,D} = 756.25, ŷ{C,D} = 625

ŷA = 900, ŷB = 1600, ŷC = 1225, ŷD = 225

The values of the welfare loss are:

LA(S) = |S| −
|S|∑

j=1

ŷ{j}
µj
− 1 +

ŷS
µS

such that

LA({A,B,C,D}) = 4− 900
1000

− 1600
1700

− 1225
1850

− 225
250
− 1 +

900
1200

= 0.3468

LA({A,B,C}) = 0.3045, LA({A,B,D}) = 0.0752
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LA({A,C,D}) = 0.226, LA({B,C,D}) = 0.2073

LA({A,B}) = 0.0663, LA({A,C}) = 0.1791, LA({A,D}) = 0.01

LA({B,C}) = 0.189, LA({B,D}) = −0.065, LA({C,D}) = 0.0331

LA({A}) = 0, LA({B}) = 0, LA({C}) = 0, LA({D}) = 0

Some negative contributions emerge:

LA({B,D})− LA({B}) = −0.065 < 0

LA({B,D})− LA({D}) = −0.065 < 0

meaning that negativity occurs when S = {B} and j = {D}, and the veri�ed conditions

are: 



ŷD < ŷ{B,D} < ŷB

µD < µ{B,D} < µB

i.e. case 4 in the previous list. If we swapped S with j, we would recover case 3 with

|S| = 1.

4.1 An inequality-reducing policy: a preference ordering among factors

The possible occurrence of a negative contribution of some sources is a relevant feature.
We can observe the impact of each factor to the welfare of the society. In accordance
with the preference ordering on P, the policy maker is able to choose a policy aimed at
reducing the level of inequality.

De�nition 10. If there exists a coalition S ∈ 2P , |S| ≥ 2, such that LA(T ) ≤ 0 for all

T ⊆ S, we denote with P− the L−A-subset, i.e. the subset of P with factors belonging to S.
If no such coalition S exists, then P− = ∅. We denote with P+ = P \ P− the L+

A-subset.

According to De�nition 10, in the above Example, the subsets are respectively P− =
{B,D} and P+ = {A,C}. If LA maps each coalition of 2P to a positive value, then the
L+
A-subset is P and the L−A-subset is empty.
We determine an impact ranking of sources in the L−A-subset. We evaluate the coali-

tions of factors of L+
A-subset and the ones of L−A-subset, i.e., the values of LA(S ∪ Fj),

where S ⊆ P+ and Fj ∈ P−. The L−A-subset is either empty or contains at least two
factors. We claim a preference ordering on P in accordance with their contribution to
welfare loss.

De�nition 11. �LA is a social preference ordering on P such that:

1. Fg �LA Fj if Fg ∈ P− and Fj ∈ P+;

2. Fg �LA Fj if Fg,Fj ∈ P− and if, for all S ⊆ P+, LA(S ∪ Fg) < LA(S ∪ Fj);

3. Fg �LA Fj if Fg,Fj ∈ P+ and there exists a coalition S, |S| > 1, such that Fg ∈ S
and Fj /∈ S, with LA(S) < LA(T ) for all T 3 Fj, |T | > 1.

24

ECINEQ WP 2014 - 322 February 2014



The following properties can be simply derived:

• If LA(·) is a positive game, P− = ∅ and P+ = P. If P− is not empty, then it
necessarily contains at least 2 factors.

• If S is the maximal coalition in P−, LA(S ∪Fj)−LA(S) is strictly positive, i.e., the
contribution of each Fj ∈ P+ on the L−A-subset triggers a welfare loss.

• The preference ordering �LA is partial since two factors Fi,Fj could be into P+ and
included in the coalition S such that LA(S) < LA(T ) for all T 3 Fj . In this case,
they cannot be compared on the basis of �LA .

• If Fg,Fj ∈ P− and for each S ⊆ P+, LA(S ∪ Fg) = LA(S ∪ Fj), no preference
exists between Fg and Fj . This happens when the L+

A-subset is empty, i.e. when
S ∪ Fg = Fg and the same happens for Fj , so that welfare loss functions vanish
evaluated at these points.

On the basis of the preference ordering to P−, a connection between the L−A-subset
and the characteristics of its factors can be established. The following Proposition allows
us to re�ne our interpretation of �LA .

Proposition 9. If Fg,Fj ∈ P−, then Fg �LA Fj if, for all S ⊆ P+, we have:

CA(YFj )− CA(YFg) > KA(YS∪Fj )−KA(YS∪Fg) (17)

Proof. If Fg,Fj ∈ P−, then Fg �LA Fj if the following di�erence is positive for all S
belonging to the L+

A-subset:

LA(S ∪ Fj)− LA(S ∪ Fg) = · · · = 1− ŷj
µj
− 1 +

ŷS∪Fj
µS∪Fj

− 1 +
ŷg
µg

+ 1− ŷS∪Fg
µS∪Fg

=

= CA(YFj )−KA(YS∪Fj )− CA(YFg) +KA(YS∪Fg) > 0

which yields the condition (17), after rearranging terms.

Such inequality enlightens the nature of this preference ordering. (17) holds when the
reduction in the cost of inequality (related to the entire inequality) generated by Fj is
higher than the reduction produced by Fg. A su�cient condition can be provided such
that the ordering �LA is connected to the Shapley and Banzhaf values of LA(·).

Proposition 10. If Fg,Fj ∈ P− and for all coalitions S ⊆ P, LA(S ∪Fg) < LA(S ∪Fj)
holds, then {

φg(LA) < φj(LA)
βg(LA) < βj(LA)

and Fg �LA Fj (18)

Proof. If for all coalitions S ⊆ P, LA(S ∪ Fg) < LA(S ∪ Fj) holds, then

LA(S ∪ Fg)− LA(S) + LA(S)− LA(S ∪ Fj) < 0 ⇐⇒

⇐⇒ LA(S ∪ Fg)− LA(S) < LA(S ∪ Fj)− LA(S)
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consequently computing the Shapley and the Banzhaf values yields:
{
φg(LA) < φj(LA)
βg(LA) < βj(LA)

And since the assumption holds for all S ∈ P+, then by de�nition of �LA we have that
Fg �LA Fj .

In compliance with De�nition 11, in the above Example,D �LA B since LA({A,C,D}) <
LA({A,B,C}), LA({A,D}) < LA({A,B}) and LA({C,D}) < LA({B,C}). Moreover,
LA({A,D}) is the minimum positive value attained by LA, A �LA C. Consequently, the
preference ordering induced by LA on the income factors is:

D �LA B �LA A �LA C

Note that it is neither coherent with the order on arithmetic means, where µC > µB >
µA > µD, nor coherent with the order on ede incomes, where ŷB > ŷC > ŷA > ŷD.

Instead, the Shapley value of LA yields:

Φ(LA) = (φA, φB, φC , φD) = (0.09341, 0.07618, 0.16187, 0.01492)

which points out that by arranging the Shapley value coordinates in the increasing order,
the result is coherent with �LAand is valid for each source, not only the ones contained
in the L−A-subset as shown by Proposition 10.

The same e�ect takes place when computing the Banzhaf value of LA, i.e.:

β(LA) = (βA, βB, βC , βD) = (0.03477, 0.02876, 0.05756, 0.0039)

4.2 Type and source preferences

Finally we propose a further criterion on inequality-reducing policy on the basis of the
type preferences suggested in Subsection 3.2. By De�nition 11, �LA is not a complete
ordering. We therefore propose an ordering �VLA by taking into account the matrices U and
V which collects the preferences of types. Suppose that types' single-peaked preferences
are revealed by U and V . Intuitively, a policy maker which intends to be compliant with
such preferences should choose the suitable factors according to the revealed information,
i.e., the ones attaining higher values in V . On the other hand, when each pair of factors
are comparable, the ordering induced by �VLA must coincide with the order induced by
�LA .
De�nition 12. �VLA is a preference ordering on P such that, for any factors Fg,Fj:

1. if Fg �LA Fj, then Fg �VLA Fj;

2. if neither Fg �LA Fj nor Fj �LA Fg hold, then Fg �VLA Fj if and only if vg∗ > vj∗.

As suggested by De�nition 12, this order is not always complete whether neither
Fg �LA Fj nor Fj �LA Fg hold and vg∗ = vj∗, factors Fg and Fj are equivalent (or
indi�erent) with respect to order �VLA .
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5 Concluding remarks

The novel results in this paper point out that a new approach can be adopted and generates
a more complete understanding of the distribution of income sources. This investigation
makes a well-known preference ranking of types compatible with the egalitarian redistri-
bution of resources. Our aim is not only to take into account the marginal contributions
in the typical Banzhaf or Shapley fashions, but we determine an allocation rule exploiting
the information that society guarantees about income sources and types' preferences-based
contributions.

In particular our idea is to propose a rule able to safeguard some egalitarian prop-
erties, to reduce the cost of inequality among sources and to satisfy e�ciency in the
income distributions without violating the types' preferences. A solution concept which
we called weakly allocation rule is therefore developed and axiomatized by relying on the
well-known properties of the traditional uniform rule (feasibility, e�ciency and anonymity)
plus new axioms on preferences monotonicity, Lorenz dominance and equal treatment for
not-preferred contributions. Su�cient conditions are established under which this uniform
rule may coincide with the preference-based nucleolus of the game.

This analysis has some policy consequences. It allows for an evaluation of each income
source to discover its impact on income inequality and welfare of the society. We arrange
a preference-based scheme on the welfare loss game in order to rank income sources. In
other words, a re�nement of the policy maker's preference according to types' choices
would increase equality and shrink meanwhile their possible disapproval about potential
policy reallocations in the society. We provide some hints about this social ordering since
potential extensions are left for future research.
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