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Abstract

The present paper proposes a comprehensive comparison of methods to build a confi-

dence interval for willingness to pay/accept measures. The methods are compared on the

basis of simulation performed under different scenarios. All the scenarios considered re-

vealed a certain skewness in the estimated willingness to pay/accept distribution, which

should be reflected in the confidence interval. The commonly used Delta method, pro-

ducing intervals which are symmetric around the point estimate, fails to account for such

skewness. Other methods are found to deliver more realistic confidence intervals, namely

the method based on the t-test inversion, as well as the bootstap methods belonging to

the “percentile family”. The conclusions reached on the basis of the simulations are also

illustrated on empirical data.
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1 Introduction

In Economics, the willingness to pay (or accept) is the amount of money an agent would pay

in order to obtain a desired good or a service (or to accept in compensation to something

undesired). We will refer to this concept using the acronym WTP . In a choice modeling

framework, WTP for improvement in a certain attribute, can be obtained as the ratio of that

attribute and cost coefficients, when the model is linear in the attributes. However, since model

estimation yields an estimate of the true coefficients, the computed WTP is also an estimate,

coming from a certain probability distribution. When coefficients are estimated by means

of maximum likelihood, the distribution of the WTP is the ratio between two correlated,

asymptotically normal distributions. The distribution of the ratio of two normal variables

has been derived by ? and ?, and shown to be approximately normal when the coefficient of

variation of the denominator variate is negligible. More recently, ? study the distribution of

the estimate for WTP and give conditions for the finiteness of its moments, under different

distributions used for the cost coefficient in random coefficient models. ? consider, instead,

the more general problem of calculating standard errors for measures derived from parameter

estimation in a choice modeling framework.

Since the exact distribution of the WTP estimator is not known, different methods have

been proposed in literature to build confidence interval for the parameter value. For example,

under the Delta method, it is assumed that WTP is normally distributed and its variance

is obtained by taking a first order Taylor expansion around the mean value of the variables

involved in the ratio and calculating the variance for this expression. ?? suggest, instead,

using a sort of parametric bootstrap which is based on taking a large number of draws from a

multivariate normal distribution with means given by the estimated attribute coefficients and

covariance given by the estimated covariance matrix of the coefficients. From these draws,

simulated values of WTP are calculated and used to obtain the percentiles of the simulated

distribution reflecting the desired level of confidence. Other alternatives are the Jackknife
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(?) and the non parametric bootstrap (??), according to which the simulated distribution

of WTP is generated, respectively, by creating subsamples through deletion of observations

from the original sample and by generating subsamples randomly (with replacement) from

the original sample. Each of these subsamples is used to derive an estimate of WTP . The

confidence interval can then be derived in an analogous fashion to the Krinsky and Robb

percentile interval. Alternative methods based on generalizing Fieller’s theorem (??) have

recently been considered. ?, for example, proposes to use Fieller-based confidence regions,

formed by inverting a Wald-type test associated with a conveniently specified null hypothesis

on WTP . On the same line, ?, derives confidence intervals based on the inversion of the t-test

or the likelihood ratio test.

All these methods have advantages and drawbacks and different studies have been done

to compare some of them (e.g. ?????). However, the conclusions from these studies are not

always in accordance. Moreover, up to our knowledge, a comparison of all these methods

does not exist. We propose to fill such a lack by presenting a comprehensive Monte Carlo

study of all these procedures. In the study, we will also include methods which have not yet

been considered to build WTP confidence intervals in a choice model framework, such as the

bootstrap bias-corrected accelerated confidence interval (??) which is expected to be more

accurate than basic bootstrap intervals, as well as bootstrap inversion of test statistics (???).

In addition to the Monte Carlo study, the different approaches will also be applied to real data

coming from two surveys with specific characteristics and goals: measuring service quality in

local public transport and studying preference heterogeneity in airport choice behavior.

The paper is organized as follows: Section 2 briefly illustrates random utility models, com-

monly used in choice modeling, and WTP estimation; Section 3 is devoted to various methods

for estimating WTP confidence intervals; Section 4 describes the simulation study to compare

the various methods and comments its results; Section 5 applies the various methods to real

data; Section 6 gives the conclusions and some guidelines for the choice of the appropriate

method.
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2 Logit models and WTP estimation

We consider a sample of N decision makers, facing J different alternatives, in T different

choice experiments. Usual random utility formulations imply that the choice of individual n,

for n = 1, . . . , N , will be:

yint =

{
1 if Uint ≥ Ujnt for j = 1, . . . , J
0 otherwise

(1)

where

Uint = Vint + εint (2)

is the unobservable utility that individual n derives from alternative i (for i = 1, . . . , J), in

choice experiment t (for t = 1, . . . , T ), Vint is the observable utility and εint is an error term.

Observable utility is generally taken to be linear in the attributes so that

Vint = Xintβ, (3)

where Xint is a (1×K) vector of attributes and β is a (K× 1) vector of coefficients. It follows

that the choice probability associated with the alternative i chosen by individual n in choice

experiment t, is defined as:

Pint = P (Uint ≥ Ujnt, for j = 1, . . . , J) .

Many different sub-models can be obtained from the generic formulation in (2), according

to the assumptions made on the error term. For example, assuming that the error vector εn,

obtained by stacking the vectors εnt = (ε1nt · · · εJnt), is independent, identically distributed

(i.i.d.) according to a Gumbel density, leads to the well known Multinomial Logit (MNL)

model, for which the Pint are analytically tractable. Assuming, instead, that εn is i.i.d. mul-

tivariate normal gives the Multinomial Probit (MNP) model. In this case, the computation

of Pint requires the evaluation of multi-dimensional integrals, which may be analytically in-

tractable for large choice sets. In such situations, the choice probabilities are usually simulated.
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From now on, we will drop all the subscripts to lighten notation, unless they are really

required, and write the random utility simply as U = V + ε. When the observed utility is

specified to be linear in the alternative attributes, as in (3), the total derivative of U with

respect to changes in the k-th attribute Xk and the cost attribute XC is given by dU =

βkdXk + βCdXC . Setting this expression equal to zero and solving for dXC = dXk yields the

change in cost that keeps utility unchanged given a change in Xk:

dXC

dXk

= WTPk = − βk
βC
,

which is the willingness to pay for an improvement in Xk, WTPk.

A point estimate of WTP (dropping the subscript for simplicity) can be obtained from

sample data as:

ŴTP = − β̂k
β̂C
, (4)

where β̂k and β̂C are the maximum likelihood estimates of βk and βC , respectively. If the

sample size is sufficiently large, the maximum likelihood estimates of the coefficients in the

model are asymptotically normally distributed. Thus, in large samples, it seems reasonable to

assume that the estimator ŴTP is distributed according to the ratio of two gaussian variables.

The distribution of the ratio of two gaussians has been derived by ? and ?, who show that

the distribution is approximately normal when the coefficient of variation of the denominator

variable (the cost coefficient estimate, in our framework), is negligible. The distribution of

ŴTP is required to build interval estimates of the parameter. These are generally built using

the Delta method, briefly illustrated in Section 3.1, which relies on the double assumption of

normality of the maximum likelihood estimates of the attribute coefficients and normality of

their ratio. These two assumptions might not hold in small samples or whenever the coefficient

of variation of the cost coefficient is not negligible, making it worth to explore and compare

alternative solutions to build confidence intervals for WTP .
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3 WTP confidence intervals

In this section we briefly illustrate different approaches to build conference intervals for WTP .

Some of them have already been investigated in literature, while others have not been consid-

ered so far in the choice modeling framework. The illustration is mainly aimed at underlining

the peculiarity of each method, with special regard to the assumptions on which any of them

relies.

3.1 The Delta method

Assuming that the maximum likelihood estimates of the attribute coefficients are normally

distributed, the Delta method states that also ŴTP , being a function of normal variates, will

be asymptotically normal, i.e.

ŴTP ∼ N

(
− βk
βC

; var(ŴTP )

)
,

where

var(ŴTP ) = (ŴTP βk)2σ̂2
β̂k

+ (ŴTP βC )2σ̂2
β̂C

+ 2ŴTP βkŴTP βC σ̂β̂k,β̂C =

= (−1/β̂C)2σ̂2
β̂k

+ (β̂k/β̂
2
C)2σ̂2

β̂C
+ 2(−1/β̂C)(β̂k/β̂

2
C)σ̂β̂k,β̂C ,

with ŴTP βk and ŴTP βC being the partial derivatives of ŴTP with respect to βk and βC

respectively, evaluated at the maximum likelihood estimates, and with σ̂2
β̂k

, σ̂2
β̂C

and σ̂β̂k,β̂C

represent, respectively, the estimated variances of β̂k and β̂C and the estimated covariance of

β̂k and β̂C .Then, a confidence interval for WTP at the (1− α)-level is simply

ŴTP ± zα/2
√

var(ŴTP ), (5)

where zα/2 indicates the (1 − α/2)% percentile of the standard normal density, such that

zα/2 = Φ−1(1− α/2), with Φ being the cumulative standard normal density.

The Delta method is very simple and produces narrow confidence intervals. However, it

holds only for continuous functions, so that βC can never take the zero value. ? show that the
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effective coverage rate of confidence intervals built with this method deteriorates rapidly as

βC gets closer to 0, no matter how large the sample size is. In addition, it renders symmetric

confidence intervals around the point estimates ŴTP , while it has been shown that in practice

the distribution of ŴTP might be non-symmetric (?).

3.2 Methods based on test statistic inversion

The methods presented in this section exploit the duality between confidence intervals and

hypothesis testing. The advantage of these methods, over the Delta method, is that they do

not make assumptions on the distribution of ŴTP and thus might perform better in case the

assumption of normality does not hold for ŴTP . Moreover, they do not present discontinuity

points, as does the Delta method in βC = 0, and the confidence intervals are defined for all βC .

However, they require some more computational effort to calculate the confidence interval.

3.2.1 Asymptotic t-test inversion

The asymptotic t-test is generally used to test whether a parameter, whose estimator is nor-

mally distributed, is significantly different from zero. ? extend this test to a linear combination

of parameters. Recalling (4), we can postulate the following hypothesis:

H0 : βk +WTPβC = 0. (6)

The test statistic is (?):

T (WTP ) =
β̂k +WTPβ̂C√

WTP 2σ̂2
β̂C

+ 2WTPσ̂β̂k,β̂C + σ̂2
β̂k

.

The above test statistic is asymptotically standard normal, under the null hypothesis. The

corresponding confidence interval is given by the set of WTP values for which it is not possible

to reject H0 at a given significance level. Thus, the (1−α)-level confidence interval corresponds

to the values WTP0 such that |T (WTP0)| ≤ zα/2 or T 2(WTP0) ≤ z2α/2. ? derived upper and

lower bounds for the confidence interval for WTP and ? extended the result to simultaneous
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confidence intervals. Upper and lower bounds are obtained by solving the following second-

degree-polynomial inequality for WTP0:

A(WTP0)
2 + 2B(WTP0) + C ≤ 0,

where

A = β̂2
C − z2α/2σ̂2

β̂C
, B = β̂kβ̂C − z2α/2σ̂β̂k,β̂C , C = β̂2

k − z2α/2σ̂2
β̂k
. (7)

The following algorithm can be used to compute the confidence interval:

1. fit the model to obtain maximum likelihood estimates of the parameter vector β and

variance-covariance matrix of its estimate;

2. compute the quantities A, B and C as in (7) and let ∆ = B2 − AC;

3. calculate the confidence interval as:

[WTPL ; WTPU ] if ∆ > 0 and A > 0

(−∞ ; WTPL]
⋃

[WTPU ; ∞) if ∆ > 0 and A < 0 (8)

(−∞ ; ∞) if ∆ < 0 (which implies A < 0)

where WTPL =
−B −

√
∆

A
and WTPU =

−B +
√

∆

A
.

It is worthwhile noticing that the confidence interval in (8) can be either a bounded or an

unbounded interval, with the unbounded solution occurring only when |β̂C/σ̂β̂C | ≤ zα/2, i.e.

when the parameter βC is not significantly different from zero at level α. Thus, the coverage

rate provided by the asymptotic t-test method does not deteriorate as βC approaches zero.

Notice, also, that the bounded confidence interval in (8) is not symmetrical with respect to

ŴTP , with the interval’s mid-point being greater than ŴTP .

3.2.2 Likelihood ratio test inversion

The likelihood ratio test for the null hypothesis in (6) compares the likelihood of the unre-

stricted model with that of the restricted model, where the restriction is the one imposed
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under the null hypothesis. The test statistic is:

LR = −2[l(β̂R)− l(β̂)], (9)

where l(β̂R) and l(β̂) represent the logarithm of the likelihood at the maximum likelihood

estimates for the restricted and unrestricted model, respectively. Under the null hypothesis,

LR is distributed χ2 with one degree of freedom, corresponding to the single linear restriction

βk + WTPβC = 0. Inverting the test statistic (9) to obtain a confidence interval for WTP ,

requires a search for the maximum and minimum values of WTP for which −2[l(β̂R)− l(β̂)] ≤

χ2
1,α. The following algorithm (?) can be used to estimate the interval lower bound (a similar

one can be set for the upper bound). First of all, fit the model to the unconstrained systematic

utility function

V = βkXk + βCXC +
K∑
h=1

βhXh (10)

and obtain maximum likelihood estimates β̂, the corresponding ŴTP and the unrestricted

log-likelihood l(β̂). Then, initialize the algorithm by letting g = 1, Inf(0) = ŴTP − λ, with

λ being a sufficiently large positive value, Sup(0) = ŴTP , Tol = 1000 and ε be an arbitrarily

small tolerance limit, and perform the following steps until Tol > ε:

1. let WTP (g) =
Inf(g−1) + Sup(g−1)

2
;

2. fit the constrained model using the constrained utility function

Vcon = βC(−WTP (g)Xk +XC) +
K∑
h=1

βhXh, (11)

obtain maximum likelihood restricted estimates and the restricted log-likelihood and

then calculate LR(g) as in (9);

3. if LR(g) < χ2
1,α then let Sup = WTP (g) and WTP (g+1) =

Inf(g) + Sup(g)

2
, otherwise if

LR(g) > χ2
1,α let Inf = WTP (g) and WTP (g+1) =

Inf(g) + Sup(g)

2
;

4. set Tol = |LR(g) − χ2
1,α| and g = g + 1.
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When the algorithm stops, the lower bound of the interval is simply the last value WTP (g).

In addition to the advantages of test statistic inversion methods, the usage of this method

is not restricted to linear utility functions. As a drawback, it requires an iterative procedure

to obtain each interval limit and is computationally more demanding than the Delta method

and the method based on the t-test inversion but much less intensive than any bootstrap

method. To our knowledge, the potentiality of this method in computing confidence intervals

for WTP have not been investigated through an appropriate simulation study, so far. ? simply

compared it with other methods on the basis of real data.

3.3 Methods based on parametric and nonparametric bootstrap

The bootstrap approach to confidence intervals consists in using a simulated distribution of

the parameter estimator in place of its analytic distribution to obtain interval estimates for

the parameter of interest (??). Before we discuss the various methods for bootstrap confidence

interval construction, we give algorithms for non-parametric and parametric simulation, and

illustrate these in a regression context, which applies to our study.

3.3.1 Resampling plans

In the following we briefly illustrate different strategies to produce a bootstrap distribution of

ŴTP . Such a distribution is obtained on the basis of B bootstrap samples.

Parametric resampling. In parametric resampling we assume that a parametric model for

the data is known up to the unknown parameter vector, which is generally replaced

by its maximum likelihood estimates. In the regression context ‘assuming the model’

means treating the assumptions of the regression model as true, that is, assuming that the

predictors are known without error and that the error terms follow a specific distribution

(for example, the Gumbel distribution if we believe that the data have been generated

under a MNL model).
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Let β̂ be the maximum likelihood estimate of β obtained by fitting the logit model (the

MNL for example) to the original data. The algorithm to produce the bootstrap distri-

bution of ŴTP , according to the parametric resampling scheme performs the following

steps, for b = 1, . . . , B:

1. generate a vector of residuals (equal in size to the number of observations in the

original data set) parametrically, drawing each component independently from the

same specified distribution (the Gumbel distribution, if we assume a MNL model);

let this vector be e?(b);

2. compute Û?
int(b) = Xintβ̂+e?int(b) and, thus, yint according to (1), ∀i, n, t, and produce

a parametric bootstrap sample, y?(b);

3. regress the bootstrapped values y?(b) on the fixed predictors to obtain bootstrap

replications of the estimated regression coefficients, β̂?(b), and bootstrap replications

of the estimated WTP parameter, ŴTP
?

(b).

We stress that under this resampling plan, the predictors are treated as fixed, making this

scheme particularly suitable for designed experiments where the values of the predictors

are set by the experimenter. Notice that this is the natural framework of a stated

preference study.

Non-parametric resampling. Non-parametric resampling makes no assumptions concern-

ing the model behind the data. Let the original sample of observations be wint =

(yint , Xint), for i = 1, . . . , J , n = 1, . . . , N and t = 1, . . . , T . For b = 1, . . . , B the

sampling algorithm proceeds as follows:

1. resample the observations wint with replacement in order to generate a new sample

of observations; let this sample be w?(b) and have the same number of observations

as the original one;
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2. fit the logit model to the bootstrap sample w?(b) and obtain the estimated regression

coefficients, β̂?(b), and the estimated WTP parameter, ŴTP
?

(b).

Notice that under this sampling scheme, also the predictors are treated as random. As

stated before, thinking of the model matrix as fixed makes more sense in our stated

preferences framework. However we also considered this non-parametric random-x re-

sampling plan for the following reason. Fixed-x resampling enforces the assumption

that the errors are identically distributed by resampling residuals from a common dis-

tribution. Consequently, if the model is incorrectly specified – for example, if there is

unmodelled nonlinearity, non-constant error variance, outliers – these characteristics will

not carry over into the resampled data sets. For this reason, it may be preferable to

perform random-x resampling even when it makes sense to think of the model matrix

as fixed. As ? and ? stress, non-parametric simulation, in practice, gives results that

generally mimic the results obtained under the best fitting, not the simplest parametric

model.

Krinsky and Robb resampling. We conclude with a sampling scheme proposed by ??

specifically for estimating confidence intervals for elasticities. Under their simulation

scheme, many samples of the parameters of the model are generated by taking drawings

from a multivariate normal distribution with the mean and variance-covariance matrix

of the estimated parameters. Let β̂ and Σ̂β̂ be respectively the parameter estimates for

the original data set and their variance-covariance matrix. Then, for b = 1, . . . , B the

sampling algorithm proceeds as follows:

1. draw a vector β̂?(b) from a N(β̂, Σ̂β̂);

2. use the vector β̂?(b) to calculate ŴTP
?

(b).

This sampling scheme obviously relies on the assumptions that maximum likelihood

estimates β̂ are multivariate normal distributed and, thus, can be considered as a para-
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metric sampling scheme. Such an assumption might be inappropriate, particularly for

small samples. Moreover, the variance-covariance matrix of parameter estimates might

be incorrect in case of model misspecification.

3.3.2 Bootstrap confidence intervals

Once an appropriate bootstrap sample ŴTP
?

(b), for b = 1, . . . , B, as been drawn following one

of the sampling strategies illustrated in Section 3.3.1, bootstrap confidence intervals can be

obtained in many different ways. In this section, we briefly review nine different strategies.

These can be divided into three families. The first family is the pivotal family, in which the

confidence interval is constructed in the usual way, using a pivotal function, except that the

quantiles of known distributions (normal, Student’s-t etc.) are replaced by their bootstrap

estimates. In the Normal-theory interval described below, instead of the quantiles, is the

standard deviation of the estimator which is replaced by its bootstrap estimate. The second

family is that of non-pivotal methods, which all originate from the percentile method as

successively more complex analytical corrections for this. The third family is that of test-

inversion intervals, which exploits the duality between confidence intervals and tests. Different

methods are discussed in technical detail by ? and ?. The test-inversion intervals are reviewed

by ??. Practical examples of confidence interval construction are given by ? and ?, together

with some S-plus software. An alternative viewpoint is given by ?. Most of the methods

presented below have not been used, yet, to build confidence intervals for WTP and their

performances have not been explored through simulation studies. We will explicitly mention

the methods already studied in the literature.

Basic interval or non-Studentized bootstrap method (B). The most natural way of

constructing a confidence interval for WTP is to seek a function of the estimator ŴTP

and the parameter WTP whose distribution is known, and then use the quantiles of

this known distribution to construct a confidence interval for the parameter. When the
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distribution of the population from which the observations are drawn is unknown, it is

not clear which function of the parameter and estimator should be chosen. However,

since many estimators are asymptotically normally distributed about their mean, it is

reasonable to use

W = ŴTP −WTP (12)

as such a function. If the distribution of W were known, a (1 − α)-level confidence

interval for WTP would be
[
ŴTP − w1−α/2 ; ŴTP − wα/2

]
, where wα is the quantile

of W such that P (W < wα) = α. In case the distribution of W is unknown, the

bootstrap procedure suggests to replace the quantile, wα, with the appropriate quantile,

w?α, of W ?, calculated through the following algorithm:

1. set W ?
(b) = ŴTP

?

(b) − ŴTP , for b = 1, . . . , B;

2. estimate the α-th quantile of W ? as ŵ?α, the ordered value of {W ?
(b), b = 1, . . . , B}

which occupies the position α(B + 1).

3. calculate the (1− α)-level non-Studentized pivotal interval as:

[
ŴTP − ŵ?1−α/2 ; ŴTP − ŵ?α/2

]
. (13)

This procedure involves two distinct sources of error: the bootstrap error, arising from

the replacement of the quantile of W with that of W ? and the Monte Carlo error, arising

from Monte Carlo simulation used to estimate the α-th quantile of W ?. Provided the

number of simulations B is sufficiently large, the Monte Carlo error is usually negligible

compared to the bootstrap error. Unfortunately, the distributions of W and W ? might

differ markedly, leading to substantial coverage error in the confidence interval in (13).

Morover, if there is a parameter constraint (such as WTP > 0) then the interval might

include invalid parameter values. On the other hand, the advantage of this procedure

is to provide simple to calculate confidence intervals, which proved to be particularly

accurate for some parameters such as the median (?, p. 52).
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Bootstrap-t interval or Studentized pivotal (S). This method was first suggested in ?,

but some poor numerical results reduced its appeal. ? showed the bootstrap-t’s good

second-order properties, reviving interest in its use. The method tries to overcome the

shortcomings of the non-Studentized pivotal method, due to the difference often observed

between the distributions of W and W ?. Such a difference derives in most cases from

the difference between the variances of the two distributions. By analogy with Student’s

t-statistic, the bootstrap-t methodology suggests to replace the function (12) with

W =
ŴTP −WTP√

var(ŴTP )
, (14)

where
√

var(ŴTP ) is an estimate of the standard deviation of ŴTP . The endpoints of

a (1− α)-level two-sided confidence interval for WTP are:[
ŴTP − w1−α/2

√
var(ŴTP ) ; ŴTP − wα/2

√
var(ŴTP )

]
.

In the usual Student’s-t case, the percentiles wα are taken to be those of the Student

distribution. However, such a distribution might not be appropriate in the present case,

to approximate the distribution of W . The idea of the bootstrap-t is to estimate the

percentiles of W by bootstrapping, through the following algorithm

1. set W ?
(b) =

ŴTP
?

(b) − ŴTP√
var(ŴTP

?

(b))
, for b = 1, . . . , B, where var(ŴTP

?

(b)) must be numer-

ically computed for each bootstrap data set, using for example the Delta method

illustrated in Section 3.1;

2. estimate the α-th quantile of W ? as ŵ?α, the ordered value of {W ?
(b), b = 1, . . . , B}

which occupies the position α(B + 1).

3. calculate the (1− α)-level Studentized pivotal interval as:[
ŴTP − ŵ?1−α/2

√
var(ŴTP ) ; ŴTP − ŵ?α/2

√
var(ŴTP )

]
. (15)

In practice, the only difference between the confidence interval in (5) and the Studentized

pivotal interval consists in the quantiles used.
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Normal-theory interval (N). Assuming that ŴTP is approximately normally distributed,

another type of (1 − α)-level bootstrap confidence interval can be obtained as in (5),

where now var(ŴTP ) is estimated on the bootstrap sample. The following algorithm

delivers a normal-theory bootstrap confidence interval:

1. estimate var(ŴTP
?
) =

1

B − 1

B∑
b=1

(ŴTP
?

(b)−WTP
?
)2 whereWTP

?
=
∑B
b=1 ŴTP

?

(b)/B

is the mean of the B bootstrap replicates of ŴTP ;

2. calculate the (1− α)-level bootstrap confidence interval as:

[
ŴTP − zα/2

√
var(ŴTP

?
) ; ŴTP + zα/2

√
var(ŴTP

?
)
]
. (16)

Bootstrap percentile interval (P). The empirical percentiles of the bootstrap distribution

of ŴTP are used to obtain a (1 − α)-level confidence interval through the following

algorithm:

1. let ŴTP
?

[1], . . . , ŴTP
?

[B] be the ordered bootstrap replicates of ŴTP ;

2. calculate L = (B + 1)α/2 and U = (B + 1)(1 − α/2), round them to the nearest

integers and build the confidence interval for WTP as:

[
ŴTP

?

[L] ; ŴTP
?

[U ]

]
. (17)

The rationale for this interval, which is then pushed forward to get bias corrected and

bias corrected, accelerated confidence intervals given below, is as follows. Let g(·) be

a monotonically increasing function, and write φ = g(WTP ), φ̂ = g(ŴTP ) and φ̂? =

g(ŴTP
?
). Choose g(·), such that

φ̂− φ ∼ φ̂? − φ̂ ∼ N(0, σ2) (18)

delivering the following (1− α)-level confidence interval for WTP :

[
g−1(φ̂− σzα/2) ; g−1(φ̂+ σzα/2)

]
. (19)

16



However, (18) implies that φ̂ − σzα/2 = F−1

φ̂?
(α/2) and φ̂ + σzα/2 = F−1

φ̂?
(1 − α/2),

with F−1

φ̂?
(·) being the inverse of the cumulative distribution of φ̂?. Further, since g is

monotonically increasing F−1

φ̂?
(α/2) = g(F−1

ŴTP
?(α/2)) and analogously for F−1

φ̂?
(1−α/2)

where F−1

ŴTP
? is the bootstrap inverse cumulative distribution of ŴTP

?
. Interval (19)

then becomes [
F−1

ŴTP
?(α/2) ; F−1

ŴTP
?(1− α/2)

]
, (20)

which is exactly the interval in (17).

The simplicity of the percentile method is particularly appealing: neither the estimate of

var(ŴTP ) (unlike the bootstrap-t) nor the specification of the function g are required.

Further, no invalid parameter values can be included in the interval, an important ad-

vantage over the pivotal methods. Unfortunately, the coverage error is often substantial

if the distribution of ŴTP is not nearly symmetric. The reason is that the justifica-

tion of the method rests on the existence of a g(·) such that (18) holds, and for many

problems such a g does not exist.

? proposes a Monte Carlo study to compare the performance of percentile method

(based on both a non-parametric bootstrap sample and a parametric Krinsky and Robb

bootstrap sample) with that of the Delta method, in computing confidence intervals for

WTP .

Bias-corrected bootstrap percentile interval (BC). This method tries to improve over

the bootstrap percentile intervals, relaxing the assumption that ŴTP is symmetric

around WTP and considers a monotonically increasing function g(·), chosen in such a

way that

φ̂− φ ∼ φ̂? − φ̂ ∼ N(−cσ, σ2), (21)

for some constant c. An analogous argument than that used in the case of the percentile

17



interval determines the interval

[
F−1

ŴTP
?

(
Φ(2c− zα/2)

)
; F−1

ŴTP
?

(
Φ(2c+ zα/2)

)]
, (22)

which is a slightly more complex version of the interval in (20), with c being the bias-

correction parameter. The parameter c can be estimated as

c = Φ−1

#{ŴTP
?

(b) ≤ ŴTP}
B + 1

 (23)

where Φ−1(·) is the standard-normal quantile function, and
#{ŴTP

?

(b) ≤ ŴTP}
B + 1

is the

proportion of bootstrap replicates at or below the original-sample estimate ŴTP of

WTP . If the bootstrap sampling distribution is symmetric, and if ŴTP is unbiased,

then this proportion will be close to 0.5, and the correction factor c will be close to 0,

reducing the BC interval (22) to the percentile interval (20).

The algorithm to compute BC intervals is sketched below:

1. estimate c as in (23);

2. calculate L = (B + 1)Φ(2c − zα/2) and U = (B + 1)Φ(2c + zα/2) and build the

confidence interval for WTP as in (17).

As already said, the BC interval represents an improvement over the percentile interval

in non-symmetric problems. However, also the validity of this method depends upon the

existence of a g(·) such that (21) holds, and for many problems such a g does not exist.

Bias-corrected, accelerated bootstrap percentile interval (BCa). The BCa method al-

lows not only for the lack of symmetry in the distribution of ŴTP , but also for the fact

that its shape, or skewness, might change as WTP varies. It is defined in terms of

two numerical parameters: the bias-correction c and the acceleration a. This time, the

monotonically increasing function g(·) is chosen so that

φ̂− φ ∼ N(−cσ(φ), σ2(φ)) and φ̂? − φ̂ ∼ N(−cσ(φ̂), σ2(φ̂)), (24)
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where σ(x) = 1 + ax. An analogous argument to that used for the percentile and BC

interval gives the BCa interval

[
F−1

ŴTP
?

(
Φ

(
c+

c− zα/2
1− a(c− zα/2)

))
; F−1

ŴTP
?

(
Φ

(
c+

c+ zα/2
1− a(c+ zα/2)

))]
. (25)

The calculation of a depends on whether the simulation is non-parametric or parametric,

and in the latter case, whether nuisance parameters are present. In our study we use a

simple jackknife estimate of a obtained as:

a =

∑NT
h=1(ŴTP (−h) −WTP )3

6
[∑NT

h=1(ŴTP (−h) −WTP )2
] 3
2

, (26)

where ŴTP (−h) represents the estimate of WTP produced when the h-th observation is

deleted from the original sample (there are NT of these quantities) and WTP represents

the average of the ŴTP (−h), that is WTP =
∑NT
h=1 ŴTP (−h)/NT .

The following algorithm can be used to compute the BCa confidence interval:

1. estimate c as in (23) and a as in (26);

2. calculate L = (B+1)Φ

(
c+

c− zα/2
1− a(c− zα/2)

)
and U = (B+1)Φ

(
c+

c+ zα/2
1− a(c+ zα/2)

)
,

with both L and U rounded to the nearest integer, and build the confidence interval

for WTP as in (17).

When the correction factors a = 0 and c = 0.5, the BCa interval reduces to the percentile

interval. In all other cases, the BCa method generally has a smaller coverage error than

the percentile and BC intervals. However, coverage error of this method increases as

α → 0 and confidence intervals should be considered cautiously when α < 0.025 (?, p.

205, p. 231).

Test-inversion bootstrap method (TIB). The duality between confidence intervals and

hypothesis testing means that, if [WTPL ; WTPU ] are the correct endpoints of the

(1 − α)-level interval and a bootstrap sample is drawn after setting WTP = WTPL,
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then under some natural monotonicity conditions,

P
(
ŴTP

?
≥ ŴTP | WTP = WTPL

)
= α/2. (27)

Similarly, if a resample is taken under WTP = WTPU , then

P
(
ŴTP

?
≤ ŴTP | WTP = WTPU

)
= α/2. (28)

Solving (27) and (28) with respect toWTPL andWTPU respectively, delivers an estimate

for the (1 − α)-level confidence interval for WTP . Obviously, we need to be able to

simulate from the bootstrap distribution at different values of WTP and this is clearly

possible only within a parametric resampling scheme. Suppose, for example, that the

current estimate of the upper bound is ŴTP
(g)

U . Then a bootstrap sample can be

obtained according to the parametric resampling scheme described in Section 3.3.1,

where now the utility function is computed as Û? = Vcon + e?, with Vcon being the

utility function in the WTP space as given in (11), with WTP (g) replaced by ŴTP
(g)

U .

In addition to being able to sample at different values of WTP , a stochastic root finding

algorithm is needed to solve (27) and (28). Among the various algorithm proposed in the

literature at this purpose, the Robbins-Monro algorithm seems to be the most efficient

one (??). Let g = 1 and ŴTP
(g)

U be an initial reasonable estimate of WTP
(g)
U . Then,

the Robbins-Monro algorithm can be described as follows:

1. generate a bootstrap sample with WTP set equal to ŴTP
(g)

U and let ŴTP
(g)

be

the estimate of WTP from this sample;

2. set 
ŴTP

(g+1)

U = ŴTP
(g)

U − `
α/2

g
if ŴTP

(g)
> ŴTP

ŴTP
(g+1)

U = ŴTP
(g)

U + `
1− α/2

g
if ŴTP

(g)
≤ ŴTP

,

where ` is the step length constant.

Each step is expected to reduce the distance from WTPU and the algorithm is iterated

a predetermined number G of times, so that ŴTP
(G)

U is taken as an estimate of WTPU .
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Obviously, an independent search is needed for WTPL. If ŴTP
(g)

L is the estimate of

WTPL after g steps of the algorithm, then ŴTP
(g+1)

L is found as:
ŴTP

(g+1)

L = ŴTP
(g)

L + `
α/2

g
if ŴTP

(g)
< ŴTP

ŴTP
(g+1)

L = ŴTP
(g)

L − `
1− α/2

g
if ŴTP

(g)
≥ ŴTP

.

Details about choosing the step length constant `, the starting value estimates for WTPL

and WTPU , and the stopping rule can be found in ?.

Studentized test-inversion bootstrap method (STIB). This method is aimed at reduc-

ing the coverage error of the TIB confidence interval by replacing ŴTP in (27) and (28)

with a Studentized statistic. Then if [WTPL ; WTPU ] are the correct endpoints of the

(1− α)-level interval and a bootstrap sample is drawn after setting WTP = WTPL, we

have

P

ŴTP
?
− ŴTP√

var(ŴTP
?
)
≥ ŴTP −WTP√

var(ŴTP )
| WTP = WTPL

 = α/2

where the variances are estimated using, for example, the Delta method. Similarly, if a

resample is taken under WTP = WTPU , then

P

ŴTP
?
− ŴTP√

var(ŴTP
?
)
≤ ŴTP −WTP√

var(ŴTP )
| WTP = WTPU

 = α/2.

The same algorithm used to estimate TIB confidence interval can be used for STIB

confidence intervals, where now the estimates of WTPL and WTPU are updated at each

step g respectively as:

ŴTP
(g+1)

L = ŴTP
(g)

L + `
α/2

g
if

ŴTP
(g)
− ŴTP√

var(ŴTP
(g)

)

<
ŴTP − ŴTP

(g)

L√
var(ŴTP )

ŴTP
(g+1)

L = ŴTP
(g)

L − `
1− α/2

g
if

ŴTP
(g)
− ŴTP√

var(ŴTP
(g)

)

≥ ŴTP − ŴTP
(g)

L√
var(ŴTP )
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and

ŴTP
(g+1)

U = ŴTP
(g)

U − `
α/2

g
if

ŴTP
(g)
− ŴTP√

var(ŴTP
(g)

)

>
ŴTP − ŴTP

(g)

U√
var(ŴTP )

ŴTP
(g+1)

U = ŴTP
(g)

U + `
1− α/2

g
if

ŴTP
(g)
− ŴTP√

var(ŴTP
(g)

)

≤ ŴTP − ŴTP
(g)

U√
var(ŴTP )

.

Both the TIB and the STIB methods share the advantages of the inversion test methods

in Section 3.2 (no assumptions on the distribution of ŴTP , no discontinuity points,

no invalid parameter values included in the intervals) as well as those of the bootstrap

methods (no assumptions on the distribution of the test statistic). On the other hand,

they are computationally demanding, since different searches are needed for the lower

an the upper confidence limits, with a bootstrap sample being required at each search

step, and they require careful monitoring to assess convergence to interval limits (?).

4 Simulation study

In this section, we compare the different approaches considered in Section 3 on the basis of some

simulation studies. We construct a number of data sets which resemble as much as possible

an actual choice experiment, on the same line as ?. A number N of hypothetical subjects is

faced by T = 16 different scenarios, each one presenting J = 2 alternatives characterized by

three different attributes, denoted as X1, X2 and XC , with XC being the attribute ‘cost’. As

in ?, X1 and X2 have two levels, coded as 1 and 2, while XC has four different levels, coded as

1, 2, 3 and 4. Dropping all subscripts for simplicity, the observed difference in utility between

the two alternatives is:

V1 − V2 = β0 + β1(X11 −X12) + β2(X21 −X22) + βC(XC1 −XC2),

where the values of the parameters are opportunely set.

A single data set can be simulated by drawing, independently for each subject and for each

scenario, a value for the error difference ε1− ε2 from an appropriate distribution. If this value
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is less than the difference V1 − V2, than the first alternative is chosen and the choice variable

y is set equal to 1 for the first alternative and to 0 for the second one. Otherwise, the second

alternative is chosen.

To assess the performance of the various methods for computing confidence intervals, we

particularly explore the case of correct and uncorrect model specification, as well as the case

in which βC approaches zero, determining values of WTP close to its discontinuity point. In

all cases, we consider different sample sizes and different confidence levels for the intervals.

For each model specification and each sample size, M = 1000 different data sets are generated.

A MNL model is then fitted to each data set and its parameters are estimated via maximum

likelihood. Then, WTP1 and WTP2 are calculated as well as the various confidence intervals.

These M sample values of the confidence intervals are used to evaluate the coverage rates, the

average interval length and the average interval shape attaint by the various methodologies.

Let ŴTP
(m)

L and ŴTP
(m)

U represent, respectively, the lower and the upper limits of the

confidence interval, calculated with a certain method, for the m-th Monte Carlo data set, for

m = 1, . . . ,M . Coverage, length and shape of the intervals are evaluated as:

Coverage =
1

M

M∑
m=1

I
(
ŴTP

(m)

L ≤ WTP ≤ ŴTP
(m)

U

)

Length =
1

M

M∑
m=1

(
ŴTP

(m)

U − ŴTP
(m)

L

)

Shape =
1

M

M∑
m=1

ŴTP
(m)

U −WTP

WTP − ŴTP
(m)

L

where I(·) is the indicator function. In order to better understand the behaviour of the effective

coverage, it might be interesting to evaluate also the left rejection probability (LRP) and the

right rejection probability (RRP). For each confidence interval which fails to contain the true

value WTP , it was checked whether WTP lies on its left or on its right side, in the following

way:

LRP =
1

M

M∑
m=1

I
(
WTP ≤ ŴTP

(m)

L

)
and RRP =

1

M

M∑
m=1

I
(
WTP ≥ ŴTP

(m)

U

)
.
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Finally, we also give the Monte Carlo estimates of the confidence limits, derived by calcu-

lating the (α/2)% and (1 − α/2)% percentiles of the M estimates ŴTP
(m)

. Monte Carlo

confidence intervals serve as a benchmark for the accuracy of the other methods. The results

are illustrated in the following three sections.

4.1 Correct model specification

The M data sets are simulated from a MNL model, drawing the differences ε1 − ε2 from a

logistic distribution. The scale parameter is set to 1 so that the variance of the error differences

is π2/3. The correct MNL model is then fitted to the data sets.

Tables 1 and 2 are obtained by letting β0 = 0.5, β1 = 1, β2 = 0.5 and βC = −1. From these

settings it follows that WTP1 = 1 and WTP2 = 0.5. Table 1 gives length, shape, LRP, RRP

and coverage rate of the different confidence intervals at the 95% for a sample size N = 10.

Some interesting results can be noticed.

First of all, with such a small sample size, the coverage rates for some of the intervals are

significantly different from the expected levels. In all the tables presented, we choose to use the

bold typeface for coverage rates below the nominal level as well as for LRPs and RRPs above

the nominal level. Such departures from the nominal levels are considered more serious than

coverage rates above the nominal level or LRPs and RRPs below the nominal level, denoted in

italics in the tables. Looking at Table 1, most of the methods produce intervals for which the

real value of WPT is above the upper limit ŴTP
(m)

U with a frequency significantly higher than

α/2, i.e. intervals having a too high RRP. At the same time, for most of these methods, the

real value of WPT is below the lower limit ŴTP
(m)

L with frequency significantly lower than

α/2, giving intervals with a too small LRP. This means that most of the methods produce

interval limits which are smaller than they should, underestimating the value of WTP . The

problem is probably due to the fact that with such a small sample size, the distribution of

ŴTP is not symmetric, and probably shows positive asymmetry.
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The asymmetry of ŴTP can be noticed also looking at the value of the shape index for the

Monte Carlo confidence interval which is slightly larger than one, meaning that the distance

between the upper limit and the parameter is larger that the distance between the lower limit

and the parameter. Methods which produce confidence intervals which are symmetric around

the point estimate, such as the Delta method and the normal-theory interval (N) that have a

shape index exactly equal to 1, are not able to capture such asymmetry. All the other intervals

show a shape index slightly larger than one, reflecting the fact that they catch, at least partly,

the positive asymmetry of ŴTP . Only for some of them, though, the asymmetry of the

confidence interval translates into a correct coverage rate. Looking at Table 1, these are the

intervals based on the likelihood ratio test (L) and the asymptotic t-test inversion (T), on the

BC method and on the TIB method. On the contrary, the STIB method and the bootstrap-t

interval (S) perform poorly. The reason is probably that both of them require the estimates of

var(ŴTP
?

(b)) at each bootstrap sample b, and with such a small sample size, these estimates

might have a huge variability.

An other observation concerns the difference between the three sampling schemes. A

clear predominance of a sampling scheme over the others cannot be noticed. Perhaps, the

parametric sampling performs, overall, slightly better than the others, while the Krinsky and

Robb scheme performs somehow worst, notably for the BCa and the bootstrap-t intervals.

The performance of the parametric sampling scheme is probably due to the fact that we are

simulating under the correct model specification.

We conclude with a look at the interval length. Obviously, for a given confidence level,

shorter intervals are to be preferred as providing more precise information on the parameter.

The likelihood ratio test and the asymptotic t-test inversion methods seem to produce confi-

dence intervals with the correct coverage rate and with a length in line with the Monte Carlo

golden standard. Moreover, as conjectured in ?, confidence intervals based on likelihood ratio

test inversion are usually contained in those based on t-test inversion, making the first method

preferable to the second. A striking result is, on the contrary, the average length of the in-
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tervals produced with the Delta method and the bootstrap-t method under the Krinsky and

Robb sampling. The standard deviations of the length (in brackets) as well as the observation

of the single confidence intervals, reveal that the mean length is affected by some anomalously

wide confidence intervals. A deeper analysis of the simulation output explained the problem.

For some of the simulated Monte Carlo data sets, the estimates of the parameter βC were

not significantly different from 0, having large standard errors. This determined very large

estimates of the variance of ŴTP , estimated through the Delta method, and thus uselessly

wide confidence intervals. For these same data sets, the Krinsky and Robb scheme samples

values of the parameters from a multivariate normal distribution with very large values of σ̂2
β̂C

in the variance-covariance matrix. Thus, in the Krinsky and Robb bootstrap sample there

will be very few huge values of ŴTP
?

(b), with huge estimates of var(ŴTP
?

(b)) (obtained in

concurrence with those samples b with β̂?C(b) close to 0) and a lot of nearly-0 values of ŴTP
?

(b),

with very small estimates of var(ŴTP
?

(b)) (obtained in concurrence with all those samples b

with β̂?C(b) very large positive or negative value). Therefore, the bootstrap percentiles ŵ?α/2

and ŵ?1−α/2 will have very distant values, producing huge confidence intervals.

A general worsening in the performance of the methods can be seen when moving from

a 95% to a 99% confidence level (this last table is not given here for reason of space; it is

available from the authors upon request, as all the other tables only mentioned in the text).

This is quite natural since higher confidence levels are more sensitive to the exact nature of

the tails of the sample distribution of ŴTP . Notably, the t-test inversion method and, to

a less extent, the likelihood ratio test inversion method maintain a coverage rate, LRP and

RRP non significantly different from the nominal level.

Increasing the sample size to N = 25 determines a sensible improvement in the coverage

rates, at the 95% (see Table 2) as well as the 99% level (Table not reported here). In Table

2, some of the intervals still show coverage rates above the nominal level, which is though

less worrying than having coverage rates below the nominal level. Also the LRP is in some

cases significantly smaller than expected, revealing that some asymmetry is still present in the
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distribution of ŴTP and not completely caught by some of the methods. The reduction in the

asymmetry of ŴTP when moving from N = 10 to N = 25 is clearly witnessed by the decrease

in the values of the shape index for the Monte Carlo intervals. Finally, an obvious contraction

in the average length of all the intervals can be observed, as well as the disappearing of the

anomalous behavior sometimes observed for the intervals calculated through the Delta method

and the bootstrap-t method, for N = 10.

WTP1 WTP2

Method Length Shape LRP RRP Coverage Length Shape LRP RRP Coverage

Monte Carlo 0.9781 1.1045 0.0250 0.0250 0.9500 0.8651 1.1539 0.0250 0.0250 0.9500

D 1.7486 1.0000 0.0300 0.0410 0.9290 1.3642 1.0000 0.0150 0.0330 0.9520

(8.4380) (0.0000) (0.0054) (0.0063) (0.0081) (5.3775) (0.0000) (0.0038) (0.0056) (0.0068)

L 0.9295 1.1395 0.0350 0.0290 0.9360 0.8761 1.1350 0.0240 0.0310 0.9450

(0.1353) (0.2320) (0.0058) (0.0053) (0.0077) (0.1330) (0.3319) (0.0048) (0.0055) (0.0072)

T 0.9674 1.1692 0.0313 0.0172 0.9520 0.9064 0.1608 0.0192 0.0262 0.9550

(0.1174) (0.1116) (0.0055) (0.0041) (0.0068) (0.1210) (0.7869) (0.0044) (0.0051) (0.0066)

P
ar

a
m

et
ri

c
sa

m
p

li
n
g

B 1.0633 1.0446 0.0200 0.0260 0.9540 0.8824 0.9947 0.0090 0.0530 0.9380

(0.1734) (0.3637) (0.0044) (0.0050) (0.0066) (0.1410) (0.1228) (0.0030) (0.0071) (0.0076)

S 0.8858 1.0987 0.0540 0.0590 0.8870 0.8500 1.3236 0.0280 0.0340 0.9380

(0.1484) (0.0140) (0.0071) (0.0075) (0.0100) (0.2238) (5.5666) (0.0052) (0.0057) (0.0076)

N 1.0485 1.0000 0.0190 0.0250 0.9560 0.8895 1.0000 0.0090 0.0480 0.9430

(0.1444) (0.0000) (0.0043) (0.0049) (0.0065) (0.1305) (0.0000) (0.0030) (0.0068) (0.0073)

P 1.0633 1.0275 0.0340 0.0380 0.9280 0.8824 1.0186 0.0160 0.0440 0.9400

(0.1734) (0.2488) (0.0057) (0.0060) (0.0082) (0.1410) (0.1094) (0.0040) (0.0065) (0.0075)

BC 1.0792 1.0520 0.0280 0.0220 0.9500 0.8980 1.1733 0.0140 0.0320 0.9540

(0.1832) (0.2286) (0.0052) (0.0046) (0.0069) (0.1368) (0.2724) (0.0037) (0.0056) (0.0066)

BCa 1.0660 1.0084 0.0270 0.0310 0.9420 0.8913 1.1314 0.0140 0.0320 0.9540

(0.1722) (0.2347) (0.0051) (0.0055) (0.0074) (0.1373) (0.2205) (0.0037) (0.0056) (0.0066)

TIB 1.0066 1.1847 0.0230 0.0110 0.9660 0.9672 1.3322 0.0190 0.0340 0.9470

(0.1837) (0.5528) (0.0047) (0.0033) (0.0057) (0.1867) (0.6007) (0.0043) (0.0057) (0.0071)

STIB 0.9382 1.1134 0.0420 0.0590 0.8990 0.8942 1.1062 0.0230 0.0490 0.9280

(0.1974) (0.2873) (0.0063) (0.0075) (0.0095) (0.1847) (0.2595) (0.0047) (0.0068) (0.0082)

N
on

p
ar

am
et

ri
c

sa
m

p
li

n
g

B 1.0932 1.0584 0.0180 0.0250 0.9570 0.8982 0.9976 0.0090 0.0480 0.9430

(0.1798) (0.3767) (0.0042) (0.0049) (0.0064) (0.1500) (0.1421) (0.0030) (0.0068) (0.0073)

S 0.8833 1.1020 0.0550 0.0610 0.8840 0.8384 1.1818 0.0270 0.0470 0.9260

(0.1531) (0.1460) (0.0072) (0.0075) (0.0101) (0.1447) (1.3064) (0.0051) (0.0067) (0.0083)

N 1.0786 1.0000 0.0200 0.0240 0.9560 0.9061 1.0000 0.0090 0.0460 0.9450

(0.1493) (0.0000) (0.0044) (0.0048) (0.0065) (0.1382) (0.0000) (0.0030) (0.0066) (0.0072)

P 1.0932 1.0129 0.0340 0.0360 0.9300 0.8982 1.0206 0.0100 0.0430 0.9470

(0.1798) (0.2458) (0.0057) (0.0059) (0.0081) (0.1500) (0.1317) (0.0031) (0.0064) (0.0071)

BC 1.1115 1.0329 0.0220 0.0210 0.9570 0.9144 1.1775 0.0120 0.0310 0.9570

(0.1901) (0.2227) (0.0046) (0.0045) (0.0064) (0.1462) (0.2804) (0.0034) (0.0055) (0.0064)

BCa 1.0999 0.9878 0.0230 0.0350 0.9420 0.9082 1.1378 0.0120 0.0310 0.9570

(0.1807) (0.2279) (0.0047) (0.0058) (0.0074) (0.1472) (0.2375) (0.0034) (0.0055) (0.0064)
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B 0.9580 0.8392 0.0180 0.0480 0.9340 0.8974 0.8669 0.0050 0.0380 0.9570

(0.1500) (0.2214) (0.0042) (0.0068) (0.0079) (0.1491) (0.2321) (0.0022) (0.0060) (0.0064)

S 108.2669 -28.6955 0.0550 0.0410 0.9040 61.6306 -37.4626 0.0460 0.0400 0.9140

(1083.9918) (386.3830) (0.0072) (0.0063) (0.0093) (675.9360) (400.1996) (0.0066) (0.0062) (0.0089)

N 0.9574 1.0000 0.0260 0.0330 0.9410 0.8960 1.0000 0.0110 0.0360 0.9530

(0.1399) (0.0000) (0.0050) (0.0056) (0.0075) (0.1500) (0.0000) (0.0033) (0.0059) (0.0067)

P 0.9580 1.1563 0.0350 0.0230 0.9420 0.8974 1.1128 0.0210 0.0350 0.9440

(0.1500) (0.2490) (0.0058) (0.0047) (0.0074) (0.1491) (0.2075) (0.0045) (0.0058) (0.0073)

BC 0.9627 1.1501 0.0370 0.0220 0.9410 0.9008 1.1027 0.0250 0.0310 0.9440

(0.1585) (0.2828) (0.0060) (0.0046) (0.0075) (0.1468) (0.2636) (0.0049) (0.0055) (0.0073)

Bca 0.9610 1.0885 0.0390 0.0320 0.9290 0.8999 1.0564 0.0210 0.0340 0.9450

(0.1567) (0.2847) (0.0061) (0.0056) (0.0081) (0.1458) (0.2637) (0.0045) (0.0057) (0.0072)

Table 1: Length, shape, LRP, RRP and coverage of 95%-level confidence intervals (standard

errors given in brackets). Model simulated: MNL model. Sample size: N = 10.
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WTP1 WTP2

Method Length Shape LRP RRP Coverage Length Shape LRP RRP Coverage

Monte Carlo 0.5540 1.0351 0.0250 0.0250 0.9500 0.5482 1.0831 0.0250 0.0250 0.9500

D 0.5715 1.0000 0.0180 0.0270 0.9550 0.5402 1.0000 0.0180 0.0330 0.9490

(0.0372) (0.0000) (0.0042) (0.0051) (0.0066) (0.0419) (0.0000) (0.0042) (0.0056) (0.0070)

L 0.5766 1.0852 0.0270 0.0310 0.9420 0.5444 1.0556 0.0230 0.0300 0.9470

(0.0714) (0.2369) (0.0051) (0.0055) (0.0074) (0.0552) (0.1460) (0.0047) (0.0054) (0.0071)

T 0.5849 1.0913 0.0210 0.0150 0.9640 0.5526 1.0686 0.0210 0.0270 0.9520

(0.0384) (0.0332) (0.0045) (0.0038) (0.0059) (0.0430) (0.0209) (0.0045) (0.0051) (0.0068)
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B 0.5802 0.9619 0.0140 0.0270 0.9590 0.5436 0.9714 0.0150 0.0320 0.9530

(0.0412) (0.0608) (0.0037) (0.0051) (0.0063) (0.0433) (0.0509) (0.0038) (0.0056) (0.0067)

S 0.5808 1.0740 0.0210 0.0170 0.9620 0.5446 1.0821 0.0200 0.0280 0.9520

(0.0375) (0.0586) (0.0045) (0.0041) (0.0152) (0.0424) (0.0530) (0.0530) (0.0052) (0.0068)

N 0.5807 1.0000 0.0170 0.0260 0.9570 0.5432 1.0000 0.0170 0.0310 0.9520

(0.0373) (0.0000) (0.0041) (0.0050) (0.0064) (0.0428) (0.0000) (0.0041) (0.0055) (0.0068)

P 0.5802 1.0442 0.0210 0.0220 0.9570 0.5436 1.0322 0.0210 0.0310 0.9480

(0.0412) (0.0807) (0.0045) (0.0046) (0.0064) (0.0433) (0.0524) (0.0045) (0.0055) (0.0070)

BC 0.5815 1.0576 0.0190 0.0190 0.9620 0.5452 1.0699 0.0230 0.0310 0.9460

(0.0415) (0.0879) (0.0043) (0.0043) (0.0060) (0.0432) (0.0710) (0.0047) (0.0055) (0.0071)

Bca 0.5813 1.0339 0.0160 0.0200 0.9640 0.5450 1.0589 0.0210 0.0310 0.9480

(0.0416) (0.0892) (0.0040) (0.0044) (0.0059) (0.0432) (0.0699) (0.0045) (0.0055) (0.0070)

TIB 0.5960 1.0449 0.0180 0.0310 0.9510 0.5599 1.0686 0.0160 0.0280 0.9560

(0.0713) (0.2242) (0.0042) (0.0055) (0.0068) (0.0704) (0.2186) (0.0040) (0.0052) (0.0065)

STIB 0.5993 1.1106 0.0160 0.0190 0.9650 0.5707 1.1106 0.0220 0.0260 0.9520

(0.0759) (0.2340) (0.0040) (0.0043) (0.0058) (0.0735) (0.2370) (0.0046) (0.0050) (0.0068)
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B 0.5851 0.9610 0.0150 0.0260 0.9590 0.5467 0.9708 0.0110 0.0340 0.9550

(0.0443) (0.0647) (0.0038) (0.0050) (0.0063) (0.0443) (0.0550) (0.0033) (0.0057) (0.0066)

S 0.5814 1.0753 0.0200 0.0170 0.9630 0.5448 1.0843 0.0240 0.0290 0.9470

(0.0415) (0.0572) (0.0044) (0.0041) (0.0060) (0.0441) (0.0542) (0.0048) (0.0053) (0.0071)

N 0.5856 1.0000 0.0160 0.0210 0.9630 0.5463 1.0000 0.0150 0.0340 0.9510

(0.0408) (0.0000) (0.0040) (0.0045) (0.0060) (0.0436) (0.0000) (0.0038) (0.0057) (0.0068)

P 0.5851 1.0455 0.0210 0.0200 0.9590 0.5467 1.0333 0.0190 0.0340 0.9470

(0.0443) (0.0798) (0.0045) (0.0044) (0.0063) (0.0443) (0.0565) (0.0043) (0.0057) (0.0071)

BC 0.5862 1.0575 0.0200 0.0180 0.9620 0.5483 1.0764 0.0170 0.0300 0.9530

(0.0448) (0.0911) (0.0044) (0.0042) (0.0060) (0.0443) (0.0759) (0.0041) (0.0054) (0.0067)

Bca 0.5860 1.0347 0.0200 0.0200 0.9600 0.5482 1.0656 0.0160 0.0300 0.9540

(0.0445) (0.0923) (0.0044) (0.0044) (0.0062) (0.0444) (0.0738) (0.0040) (0.0054) (0.0066)
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B 0.5849 0.9166 0.0140 0.0330 0.9530 0.5517 0.9333 0.0110 0.0330 0.9560

(0.0409) (0.0503) (0.0037) (0.0056) (0.0067) (0.0451) (0.0462) (0.0033) (0.0056) (0.0065)

S 0.5595 1.0898 0.0250 0.0240 0.9510 0.5282 1.0651 0.0220 0.0330 0.9450

(0.0384) (0.0553) (0.0049) (0.0048) (0.0068) (0.0432) (0.0501) (0.0046) (0.0056) (0.0072)

N 0.5825 1.0000 0.0160 0.0240 0.9600 0.5495 1.0000 0.0160 0.0280 0.9560

(0.0397) (0.0000) (0.0040) (0.0048) (0.0062) (0.0439) (0.0000) (0.0040) (0.0052) (0.0065)

P 0.5849 1.0943 0.0220 0.0160 0.9620 0.5517 1.0741 0.0210 0.0260 0.9530

(0.0409) (0.0600) (0.0046) (0.0040) (0.0060) (0.0451) (0.0535) (0.0045) (0.0050) (0.0067)

BC 0.5862 1.0887 0.0210 0.0190 0.9600 0.5530 1.0705 0.0210 0.0270 0.9520

(0.0410) (0.0814) (0.0045) (0.0043) (0.0062) (0.0454) (0.0733) (0.0045) (0.0051) (0.0068)

Bca 0.5854 1.0638 0.0190 0.0200 0.9610 0.5527 1.0593 0.0200 0.0270 0.9530

(0.0409) (0.0755) (0.0043) (0.0044) (0.0061) (0.0453) (0.0719) (0.0044) (0.0051) (0.0067)

Table 2: Length, shape, LRP, RRP and coverage of 95%-level confidence intervals (standard

error given in brackets). Model simulated: MNL model. Sample size: N = 25.

4.2 Uncorrect model specification

We now assume some form of heteroscedasticity in the data. In particular, we consider an

hypothetical population made up of two equal sized groups, such that unobserved factors have

different variance for decision makers in the first and in the second group. We accomplished
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this by letting the scale parameter of the first group being equal to 1, that is the variance

of the error term equal to π2/6, and the scale parameter of the second group being equal to

σ2, corresponding to a variance of the error term equal to σ2 × π2/6. Different simulations

were performed setting σ2 = 22 and σ2 = 42, with N = 10 and N = 25. Obviously, the scale

parameter does not affect the ratio of any two coefficients, since it drops out in the ratio, so

that WTP and other measures of marginal rates of substitution are not affected. Only the

magnitudes of all coefficients is affected. We estimated a MNL model on the simulated data

set without taking into account such a form of heterogeneity in the data, in order to study the

performance of the different methods for confidence intervals in case of model mispecification.

The heterogeneity in the data should not affect the correctness of the coefficient estimates,

but will affect the correctness of their standard error estimates.

Tables 3 and 4 show that the confidence intervals for WTP are more skewed than those

in Table 1 and the skewness increases with σ2. Looking at Table 3 reveals that the LRP of

most intervals are below α/2 and, more worryingly, for some of them the RRP is significantly

above α/2, namely the Delta methods and all the bootstrap methods belonging to the pivotal

family. When increasing the value of σ2 (Table 4), also the method based on likelihood

ratio test inversion fails to account for this skewness, determining a confidence interval for

WTP1 with a coverage rate significantly lower than the nominal level. On the other hand,

the method based on the inversion of the t-test keeps showing good performances, as well as

all the bootstrap methods belonging to the percentile family, no matter the sampling scheme

used.

Some of the values were removed from Table 4, since they were too large and made it

impossible to fit the table in the page, and were replaced by “–”. These values are simply

due to few anomalous bootstrap samples which produced huge values of ŴTP , with huge

standard deviations.

Also in this case, increasing N (results are not reported) determines a reduction in the

skewness of the distribution of ŴTP and, thus, an amelioration in the performance of the
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various methods.

4.3 Cost coefficient approaching zero

The M data sets are again simulated from a MNL model, setting the scale parameter equal

to 1 for all the decision makers and letting β0 = 0.5, β1 = 1, β2 = 0.5 and βC = −0.5. From

these settings it follows that WTP1 = 2 and WTP2 = 1.

Also in Table 5, some values, due to few anomalous bootstrap samples with huge ŴTP and

standard deviations, were too large and thus replaced by “–”. The S and the STIB methods

are not affected by these values, since they are both studentized and divide by var(ŴTP
?

(b)).

The B and P methods are also not affected, since the huge values of ŴTP are very few and

are far right in the queue of the distribution.

The distribution of ŴTP in this case is quite skewed, as can be seen from the shape index

of the Monte Carlo interval. For the interval based on the Delta method, as well as for other

Bootstrap based confidence intervals, this determines a LRP significantly lower and a RRP

significantly higher than expected. Overall the coverage rate is not significantly different from

1 − α, but the examination of LRP and RRP reveals confidence intervals underestimating

WTP . On the contrary, likelihood ratio test and t-test inversion methods, as well as all

the methods belonging to the bootstrap percentile family, are characterized by reasonable

LRP, RRP and coverage rate. Similar results (not reported here) were obtained at the 99%

confidence level.

This time, increasing N (results not reported) does not determine any improvement: even

if the shape index for the Monte Carlo interval is smaller than that in Table 5, the only

intervals with correct LRP, RRP and coverage rate are still those based on likelihood ratio

test and t-test inversion methods and those belonging to the bootstrap percentile family.
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5 Real data application

In this section we compare WTP confidence intervals computed for two real data set, accord-

ingly to the methods described in Section 3. In both cases we fitted a MNL model to the data.

The comparison is driven by the results of the simulation study, and looks at the differences

produced by the various methods in monetary terms, for easiness of interpretation. The em-

pirical examples allow a more-in-depth analysis of the implications that arise in practice when

choosing the method to construct WTP confidence intervals.

5.1 Data description

The first data set refers to a study conducted in five geographical areas of the Marche, a

region in central Italy, for measuring and integrating service quality in local public transport

contracts (?). The stated preference exercise was prepared by asking the interviewee to make

repeated choices between three alternatives, one representing his current trip (status quo) and

two hypothetical trips (different bundles of trip attribute level). We used five attributes as the

most appropriate dimensions to characterize service quality from a user’s perspective: Cost

(bus fare); Delay (amount of delay at bus stop); Trip Length (bus travel time); Frequency (bus

frequency as number of buses per hour); Availability (elapse of time between service inception

and service closure). The attribute levels were selected as percentage changes from the status

quo. A fractional factorial design was constructed, in which profiles for each respondent are

formed using the least often previously used attribute levels for that respondent, subject to

minimal overlap. Each one-way level frequency within attributes is balanced. Through this

formal experimental design, the attribute levels were combined into bus options and we con-

structed 8 choice sets per interview. One of these choice sets had a control function, formed

by three fixed-design alternatives: the best, the worst and the current one. To allow for a

rich variation in the combination of attribute levels we use a blocking strategy, preparing 25

different versions of the survey form. Overall for the five geographical service segments, we
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administered 264 paper-and-pencil interviews either on board or at the bus stops associated

with the main routes. We used a random sampling strategy to select the sample. For econo-

metric analysis, we ignored all the interviews in which the agents failed to answer correctly

the control choice exercise (14 out of 264).

The second data set refers to a study of airport choice in a multi-airport region with

the intent of testing different methods to account for preference heterogeneity (?). Data

acquisition was based on a stated preference choice experiment describing a potential choice

situation among four regional airports. The interviews were carried out by trained university

students as computer assisted personal interviews. Each interview included five hypothetical

choice exercises in which respondents were asked to evaluate the four airports and choose the

preferred one. The study area considered includes two regions in central Italy, Marche and

Emilia-Romagna, and four airports: Ancona, Rimini, Forl̀ı and Bologna which are all located

within the same catchment area. A total of 1,419 interviews generating 6,839 observations were

gathered at both the four airports and their respective catchment areas. A fractional factorial,

full profile, experimental design with complete enumeration was planned. The structural

variables used were: A MIN (continuous variable measuring access time in minutes); P AIRL

(binary variable coded 1 when representing the preferred airline company and 0 otherwise);

F EURO (continuous variable measuring ticket cost in euros); NONSTOP (binary variable

coded 1 when the flight is non-stop from origin to destination and 0 otherwise); BAL M AV

(continuous variable measuring the absolute value of the difference between desired and actual

departure time in minutes).

5.2 WTP confidence intervals

A first general consideration concerns the total number of observations. In both empirical

examples, sample size is very large and thus all various methods produce very similar WTP

confidence intervals. Table 6 reports the upper and lower bounds of the WTP interval for the
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different attributes considered in the local public transport data set. To facilitate interpre-

tation we calculate the amount of money the interviewees are willing to pay for ameliorative

conditions defined by using the appropriate attribute levels adopted in the experimental de-

sign. In particular, the WTP point estimates are: 0.18 euro for a 100% reduction in delay;

0.16 euro for a 50% reduction in trip length; 0.27 euro for a 50% increase in frequency; 0.40

euro for a 20% increase in availability. At a first glance, for each attribute, the confidence

intervals estimated with the different methods seem quite small. However when turning to a

policy perspective, having in mind that average cost of the ticket is about 1 euro, the interval

lengths become substantial. In fact, on average, we have the following distances between up-

per and lower bound: 0.10 euro for delay; 0.10 euro for trip length; 0.13 euro for frequency;

0.16 euro for availability. When comparing the upper and lower bounds obtained under the

different methods we find a slight variability (coefficient of variation equal to 1.3% and 2.5%,

respectively). Consistently with the findings of the simulation study, the Delta method un-

derestimates both lower and upper bounds producing intervals shifted to the left with respect

to those obtained through the t-test inversion method and other reliable methods such as the

inversion of the likelihood ratio test and the bootstrap methods of the percentile family P,

BC, BCa. Such a shift is due, as already discussed in Section 4 to the fact that the Delta

method, by construction, delivers symmetric confidence intervals. However, this is not a de-

sirable characteristic, since the distribution of ŴTP is often positively skewed, and this seems

to hold true also for the data at hand, as witnessed by the confidence intervals obtained with

the other methods, for which the shape index is always larger than one. On the basis of the

simulation study, if we take the t-test inversion method as benchmark, we can evaluate how far

are the intervals obtained through each method from this benchmark, for example by simply

summing the distances, in absolute value, between the respective lower and upper bounds.

In particular, the methods belonging to the bootstrap percentile family determine the confi-

dence intervals which are the closest to the benchmark. The Delta method intervals are in the

middle, between these ones and those which show the most relevant differences, namely the
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basic bootstrap, TIB and STIB intervals. Notwithstanding the relevance and pertinence of the

considerations reported, from a purely policy perspective, these differences are less valuable.

In fact, the highest difference is equals to 0.02 euro which represents a small difference in this

context.

Table 7 reports the results for the airport choice data set. Here, the interviewees are willing

to pay 75 euro to reduce by 60 minutes the access time; 14 euro for the presence of the preferred

airline; 92 euro for a nonstop flight; 30 euro to reduce the difference between desired and actual

departure times to 120 minutes. Similarly to the first example, the distances between upper

and lower bound are, on average, nearly 15 euro which represents a 10% of the average cost.

When comparing WTP confidence intervals with the benchmark, as in the first data set, the

highest distance is found for TIB, STIB and B methods; while method D is now the one with

the lowest distance (about 0.2 euro), which is negligible from a policy perspective. A possible

explanation relates to the sample size that is larger than for the first example. Thus in this

case the distribution of ŴTP is closer to symmetry (as witnessed by all the shape indexes

being close to one) and the D method performs as fine as methods producing not-necessarily

symmetric intervals.

6 Conclusions

In this paper, we compared different methods to compute confidence intervals for the WTP

parameter. We used Monte Carlo simulations to draw a large number M of data sets under

different scenarios and used these data sets to assess the performances of the different methods.

In particular, we considered, as possible scenarios, the case of correct model specification (data

were generated under a MNL model), the case of uncorrect model specification (data were

generated under a MNL model with two different scale parameter values in the sample) and

the case of cost coefficient approaching zero. Our findings are briefly summarized below.

1. All the scenarios considered revealed a certain degree of skewness in the distribution
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of the estimate of WTP , which should be translated into an asymmetric confidence

interval. The Delta method and the bootstrap normal-theory method N produce, by

construction, intervals which are symmetric around the point estimate of WTP . Thus,

they fail to take into account the asymmetry in the sample distribution of ŴTP . Since

in empirical situation the mean values of the intervals are generally greater than the

point estimates, as stressed by ?, symmetric intervals based on Delta method would

undervalue how much the individually are actually willing to pay, if used in project

evaluation.

2. The skewness of ŴTP is more relevant in case of model mispecification and for values

of the cost parameter approaching zero. It tends, instead, to decrease as the sample size

increases, so that using symmetric confidence intervals becomes less misleading if the

sample size is reasonable. As illustrated in ?, however, very large sample sizes would be

required to compensate for very small values of the cost parameter.

3. Bootstrap methods belonging to the pivotal family seem to be not too accurate, giving

sometimes confidence intervals with coverage rates significantly lower than the nominal

level. On the other side, bootstrap methods belonging to the percentile family, and in

particular the BC and the BCa methods, proved to be more accurate and performed

generally well in the situations considered. Both of the families, however, might be

affected in their performances by values of the cost parameter close to zero. We could

not observe this in our simulation, probably because we did not go further enough in

decreasing the value of the cost parameter. Simulations in ? seem to show, however, that

smaller values of the cost parameters are necessary to make coverage rates of bootstrap

methods break down, than those sufficient to make the Delta method coverage rate

break down. Bootstrap inversion methods are not affected by small values of the cost

parameters but show in some cases not completely satisfactory results, probably due to

the fact that they require careful convergence monitoring.
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4. The scenarios considered did not highlight relevant differences between the parametric,

the non-parametric and the Krinsky and Robb sampling scheme. However, this last one,

relies on the estimated standard errors of the coefficients, which are generally biased if

the model is mispecified, and thus is somehow felt as less reliable than the other two,

even if much less time consuming. In theory, the Krinsky and Robb sampling scheme

may even determine confidence intervals not containing the WTP point estimate.

5. Methods based on test inversion, such as the likelihood ratio test and the t-test inversion

methods have good performances, are not affected by small values of the cost parameter

and are very simple and time-saving to calculate. Monte Carlo simulations also allow

us to confirm the intuition in ?, namely that confidence intervals based on likelihood

ratio inversion are usually contained in those based on t-test inversion, making the first

method preferable to the second. However, we found the method based on the likelihood

ratio test inversion more sensitive to departures from homoscedasticity and in general,

it might be supposed, to departure from correct model specification, making the other

method preferable.

In summary, on the basis of the simulation study, we would suggest always using the t-test

inversion method as producing confidence intervals not necessarily symmetric, not affected by

small values of the cost parameter and having the correct coverage rate under all the scenarios

considered. If we are sure that the model is correctly specified the method based on the

inversion of the likelihood ratio test can be considered a valid alternative as producing, on

average, shorter confidence intervals with the right coverage rate. Also bootstrap methods

of the percentile family could be taken into account, provided the cost parameter is not too

small, as producing, as a byproduct, the entire simulated distribution of ŴTP , which might

be of interest in policy evaluation, at the cost of a greater computational time required for

their implementation.

36



The conclusions drawn from the simulation study are supported by the results of the

empirical application in that all the methods produce fairly similar confidence intervals, due

to the large sample size. However, the Delta method, delivering a symmetric interval, produce

a confidence interval which is slightly shifted on the left with respect to those produced by the

likelihood-ratio test and t-test inversion method, as well as those produced by the bootstrap

methods belonging to the percentile family. In any case, when translated into monetary terms,

the difference between results produced through the various methods appear to be irrelevant,

for the data set considered.
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WTP1 WTP2

Method Length Shape LRP RRP Coverage Length Shape LRP RRP Coverage

Monte Carlo 1,1435 1,1608 0,0250 0,0250 0,9500 1,1199 1,0379 0,0250 0,0250 0,9500

D 1,1619 1,0000 0,0090 0,0430 0,9480 1,1014 1,0000 0,0150 0,0370 0,9480

( 0,2157 ) ( 0,0000 ) ( 0,0030 ) ( 0,0064 ) ( 0,0070 ) ( 0,1795 ) ( 0,0000 ) ( 0,0038 ) ( 0,0060 ) ( 0,0070 )

L 8,7132 0,9290 0,0150 0,0180 0,9670 8,6720 0,8735 0,0120 0,0160 0,9720

( 9,2039 ) ( 0,5010 ) ( 0,0038 ) ( 0,0042 ) ( 0,0056 ) ( 9,2362 ) ( 0,4054 ) ( 0,0034 ) ( 0,0040 ) ( 0,0052 )

T 1,2656 1,2960 0,0140 0,0210 0,9650 1,1909 0,3963 0,0210 0,0240 0,9550

( 0,2737 ) ( 0,1542 ) ( 0,0037 ) ( 0,0045 ) ( 0,0058 ) ( 0,2173 ) ( 2,2048 ) ( 0,0045 ) ( 0,0048 ) ( 0,0066 )

P
ar

am
et

ri
c

sa
m

p
li
n
g

B 1,2380 0,8619 0,0000 0,0390 0,9610 1,1457 0,9056 0,0040 0,0330 0,9630

( 0,2669 ) ( 0,1482 ) ( 0,0000 ) ( 0,0061 ) ( 0,0061 ) ( 0,2165 ) ( 0,0890 ) ( 0,0020 ) ( 0,0056 ) ( 0,0060 )

S 1,1538 1,2553 0,0290 0,0390 0,9320 1,0913 1,1486 0,0330 0,0370 0,9300

( 0,1986 ) ( 0,1605 ) ( 0,0053 ) ( 0,0061 ) ( 0,0080 ) ( 0,1661 ) ( 0,1161 ) ( 0,0056 ) ( 0,0060 ) ( 0,0081 )

N 1,2357 1,0000 0,0040 0,0370 0,9590 1,1420 1,0000 0,0100 0,0350 0,9550

( 0,2851 ) ( 0,0000 ) ( 0,0020 ) ( 0,0060 ) ( 0,0063 ) ( 0,2174 ) ( 0,0000 ) ( 0,0031 ) ( 0,0058 ) ( 0,0066 )

P 1,2380 1,1907 0,0130 0,0360 0,9510 1,1457 1,1155 0,0220 0,0300 0,9480

( 0,2669 ) ( 0,1920 ) ( 0,0036 ) ( 0,0059 ) ( 0,0068 ) ( 0,2165 ) ( 0,1165 ) ( 0,0046 ) ( 0,0054 ) ( 0,0070 )

BC 1,2430 1,2179 0,0140 0,0320 0,9540 1,1506 1,1485 0,0220 0,0290 0,9490

( 0,2669 ) ( 0,1916 ) ( 0,0037 ) ( 0,0056 ) ( 0,0066 ) ( 0,2149 ) ( 0,1339 ) ( 0,0046 ) ( 0,0053 ) ( 0,0070 )

Bca 1,2395 1,1806 0,0130 0,0350 0,9520 1,1487 1,1317 0,0210 0,0290 0,9500

( 0,2662 ) ( 0,1931 ) ( 0,0036 ) ( 0,0058 ) ( 0,0068 ) ( 0,2137 ) ( 0,1261 ) ( 0,0045 ) ( 0,0053 ) ( 0,0069 )

TIB 1,2174 1,0806 0,0100 0,0290 0,9610 1,1243 1,1298 0,0100 0,0120 0,9780

( 0,2506 ) ( 0,2534 ) ( 0,0031 ) ( 0,0053 ) ( 0,0061 ) ( 0,2056 ) ( 0,1324 ) ( 0,0031 ) ( 0,0034 ) ( 0,0046 )

STIB 1,2746 1,2678 0,0200 0,0310 0,9490 1,1984 1,1134 0,0200 0,0180 0,9620

( 0,3256 ) ( 0,3334 ) ( 0,0044 ) ( 0,0055 ) ( 0,0070 ) ( 0,2214 ) ( 0,1678 ) ( 0,0044 ) ( 0,0042 ) ( 0,0060 )

N
on

p
ar

am
et

ri
c

sa
m

p
li
n
g

B 1,2591 0,8690 0,0000 0,0400 0,9600 1,1601 0,9090 0,0030 0,0320 0,9650

( 0,2767 ) ( 0,1608 ) ( 0,0000 ) ( 0,0062 ) ( 0,0062 ) ( 0,2207 ) ( 0,1026 ) ( 0,0017 ) ( 0,0056 ) ( 0,0058 )

S 1,1483 1,2658 0,0280 0,0410 0,9310 1,0872 1,1492 0,0300 0,0420 0,9280

( 0,2025 ) ( 0,1619 ) ( 0,0052 ) ( 0,0063 ) ( 0,0080 ) ( 0,1679 ) ( 0,1159 ) ( 0,0054 ) ( 0,0063 ) ( 0,0082 )

N 1,3125 1,0000 0,0010 0,0380 0,9610 1,1644 1,0000 0,0070 0,0320 0,9610

( 1,5435 ) ( 0,0000 ) ( 0,0010 ) ( 0,0060 ) ( 0,0061 ) ( 0,3012 ) ( 0,0000 ) ( 0,0026 ) ( 0,0056 ) ( 0,0061 )

P 1,2591 1,1871 0,0150 0,0340 0,9510 1,1601 1,1146 0,0200 0,0300 0,9500

( 0,2767 ) ( 0,2139 ) ( 0,0038 ) ( 0,0057 ) ( 0,0068 ) ( 0,2207 ) ( 0,1313 ) ( 0,0044 ) ( 0,0054 ) ( 0,0069 )

BC 1,2649 1,2199 0,0160 0,0290 0,9550 1,1658 1,1515 0,0210 0,0300 0,9490

( 0,2782 ) ( 0,2156 ) ( 0,0040 ) ( 0,0053 ) ( 0,0066 ) ( 0,2200 ) ( 0,1533 ) ( 0,0045 ) ( 0,0054 ) ( 0,0070 )

Bca 1,2610 1,1821 0,0160 0,0310 0,9530 1,1643 1,1342 0,0190 0,0300 0,9510

( 0,2769 ) ( 0,2160 ) ( 0,0040 ) ( 0,0055 ) ( 0,0067 ) ( 0,2195 ) ( 0,1451 ) ( 0,0043 ) ( 0,0054 ) ( 0,0068 )

K
ri

n
sk

y
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d
R

o
b
b

sa
m

p
li
n
g

B 1,2687 0,7785 0,0000 0,0460 0,9540 1,1901 0,8685 0,0030 0,0230 0,9740

( 0,2808 ) ( 0,0916 ) ( 0,0000 ) ( 0,0066 ) ( 0,0066 ) ( 0,2236 ) ( 0,0901 ) ( 0,0017 ) ( 0,0047 ) ( 0,0050 )

S 1,0928 1,2797 0,0330 0,0430 0,9240 1,0286 1,1502 0,0430 0,0490 0,9080

( 0,1983 ) ( 0,1513 ) ( 0,0056 ) ( 0,0064 ) ( 0,0084 ) ( 0,1596 ) ( 0,1151 ) ( 0,0064 ) ( 0,0068 ) ( 0,0091 )

N 1,2708 1,0000 0,0010 0,0390 0,9600 1,1850 1,0000 0,0090 0,0240 0,9670

( 0,3719 ) ( 0,0000 ) ( 0,0010 ) ( 0,0061 ) ( 0,0062 ) ( 0,2450 ) ( 0,0000 ) ( 0,0030 ) ( 0,0048 ) ( 0,0056 )

P 1,2687 1,3044 0,0170 0,0240 0,9590 1,1901 1,1647 0,0210 0,0240 0,9550

( 0,2808 ) ( 0,1750 ) ( 0,0041 ) ( 0,0048 ) ( 0,0063 ) ( 0,2236 ) ( 0,1310 ) ( 0,0045 ) ( 0,0048 ) ( 0,0066 )

BC 1,2661 1,2608 0,0160 0,0250 0,9590 1,1915 1,1451 0,0190 0,0220 0,9590

( 0,2788 ) ( 0,1797 ) ( 0,0040 ) ( 0,0049 ) ( 0,0063 ) ( 0,2229 ) ( 0,1362 ) ( 0,0043 ) ( 0,0046 ) ( 0,0063 )

Bca 0,7541 0,3579 0,0130 0,0310 0,9560 0,7092 0,2925 0,0130 0,0290 0,9580

( 0,6498 ) ( 1,1163 ) ( 0,0036 ) ( 0,0055 ) ( 0,0065 ) ( 0,6012 ) ( 1,0628 ) ( 0,0036 ) ( 0,0053 ) ( 0,0063 )

Table 3: Length, shape, LRP, RRP and coverage of 95%-level confidence intervals (standard

error given in brackets). Model simulated: heteroscedastic model (σ2 = 22). Sample size:

N = 10.
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WTP1 WTP2

Method Length Shape LRP RRP Coverage Length Shape LRP RRP Coverage

Monte Carlo 1.5186 1.4656 0.0250 0.0250 0.9500 1.3855 1.1408 0.0250 0.0250 0.9500

D 1.5477 1.0000 0.0030 0.0440 0.9530 1.4422 1.0000 0.0120 0.0340 0.9540

(0.4631) (0.0000) (0.0017) (0.0065) (0.0067) (0.3547) (0.0000) (0.0034) (0.0057) (0.0066)

L 1.7777 1.4978 0.0260 0.0400 0.9340 1.6253 1.2458 0.0260 0.0310 0.9430

(0.8723) (0.5970) (0.0050) (0.0062) (0.0079) (0.8170) (0.3758) (0.0050) (0.0055) (0.0073)

T 1.8100 1.4937 0.0210 0.0280 0.9510 1.6526 0.2998 0.0250 0.0280 0.9470

(0.8008) (0.4286) (0.0045) (0.0052) (0.0068) (0.6176) (9.9119) (0.0049) (0.0052) (0.0071)

P
ar

a
m

et
ri

c
sa

m
p
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n

g

B 1.7572 0.7412 0.0000 0.0460 0.9540 1.5928 0.8470 0.0010 0.0230 0.9760

(0.8625) (0.1447) (0.0000) (0.0066) (0.0066) (0.6099) (0.1390) (0.0010) (0.0047) (0.0048)

S 1.4907 1.4354 0.0550 0.0380 0.9070 1.3788 1.2153 0.0470 0.0460 0.9070

(0.4200) (0.3348) (0.0072) (0.0060) (0.0092) (0.2968) (0.2372) (0.0067) (0.0066) (0.0092)

N – 1.0000 0.0000 0.0380 0.9620 – 1.0000 0.0040 0.0300 0.9660

(–) (0.0000) (0.0000) (0.0060) (0.0060) (–) (0.0000) (0.0020) (0.0054) (0.0057)

P 1.7572 1.4221 0.0230 0.0350 0.9420 1.5928 1.2231 0.0250 0.0350 0.9400

(0.8625) (0.4147) (0.0047) (0.0058) (0.0074) (0.6099) (0.2869) (0.0049) (0.0058) (0.0075)

BC 1.7798 1.4558 0.0210 0.0340 0.9450 1.5998 1.2346 0.0250 0.0340 0.9410

(1.0925) (0.5546) (0.0045) (0.0057) (0.0072) (0.6296) (0.3124) (0.0049) (0.0057) (0.0075)

Bca 1.7745 1.4275 0.0210 0.0350 0.9440 1.5972 1.2184 0.0250 0.0340 0.9410

(1.0934) (0.5652) (0.0045) (0.0058) (0.0073) (0.6325) (0.3110) (0.0049) (0.0057) (0.0075)

TIB – – 0.0040 0.0410 0.9550 – – 0.0130 0.0350 0.9520

(–) (–) (0.0020) (0.0063) (0.0066) (–) (–) (0.0036) (0.0058) (0.0068)

STIB 1.7565 1.4517 0.0340 0.0320 0.9340 1.6371 1.2336 0.0300 0.0310 0.9390

(0.6541) (0.4719) (0.0057) (0.0056) (0.0079) (0.5257) (0.3637) (0.0054) (0.0055) (0.0076)

N
o
n

p
ar

am
et

ri
c

sa
m

p
li

n
g

B 1.8005 0.7354 0.0000 0.0440 0.9560 1.6102 0.8527 0.0020 0.0230 0.9750

(1.0420) (0.1510) (0.0000) (0.0065) (0.0065) (0.6153) (0.1491) (0.0014) (0.0047) (0.0049)

S 1.4820 1.4380 0.0570 0.0370 0.9060 1.3733 1.2183 0.0490 0.0500 0.9010

(0.4176) (0.3354) (0.0073) (0.0060) (0.0092) (0.2951) (0.2330) (0.0068) (0.0069) (0.0094)

N 6.3433 1.0000 0.0000 0.0360 0.9640 4.9632 1.0000 0.0030 0.0290 0.9680

(75.2829) (0.0000) (0.0000) (0.0059) (0.0059) (57.4517) (0.0000) (0.0017) (0.0053) (0.0056)

P 1.8005 1.4400 0.0210 0.0330 0.9460 1.6102 1.2197 0.0260 0.0310 0.9430

(1.0420) (0.4282) (0.0045) (0.0056) (0.0071) (0.6153) (0.2934) (0.0050) (0.0055) (0.0073)

BC 1.8149 1.4740 0.0220 0.0320 0.9460 1.6178 1.2284 0.0240 0.0330 0.9430

(1.0556) (0.5390) (0.0046) (0.0056) (0.0071) (0.6311) (0.3167) (0.0048) (0.0056) (0.0073)

BCa 1.8110 1.4451 0.0220 0.0330 0.9450 1.6146 1.2126 0.0240 0.0330 0.9430

(1.0875) (0.5629) (0.0046) (0.0056) (0.0072) (0.6307) (0.3142) (0.0048) (0.0056) (0.0073)

K
ri

n
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y
an

d
R

ob
b

sa
m

p
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n
g

B 1.8239 0.7010 0.0000 0.0430 0.9570 1.6590 0.8267 0.0000 0.0170 0.9830

(0.9442) (0.1347) (0.0000) (0.0064) (0.0064) (0.6219) (0.1445) (0.0000) (0.0041) (0.0041)

S 1.4270 1.4329 0.0590 0.0450 0.8960 1.3123 1.2163 0.0490 0.0530 0.8980

(0.4202) (0.3173) (0.0075) (0.0066) (0.0097) (0.2929) (0.2299) (0.0068) (0.0071) (0.0096)

N 6.5380 1.0000 0.0000 0.0340 0.9660 4.6809 1.0000 0.0020 0.0260 0.9720

(51.9470) (0.0000) (0.0000) (0.0057) (0.0057) (34.4329) (0.0000) (0.0014) (0.0050) (0.0052)

P 1.8239 1.4984 0.0230 0.0310 0.9460 1.6590 1.2563 0.0250 0.0260 0.9490

(0.9442) (0.4059) (0.0047) (0.0055) (0.0071) (0.6219) (0.2917) (0.0049) (0.0050) (0.0070)

BC 1.8233 1.4928 0.0220 0.0290 0.9490 1.6654 1.2550 0.0250 0.0290 0.9460

(0.9055) (0.4456) (0.0046) (0.0053) (0.0070) (0.6376) (0.3196) (0.0049) (0.0053) (0.0071)

BCa 1.8200 1.4627 0.0220 0.0300 0.9480 1.6622 1.2385 0.0230 0.0270 0.9500

(0.9391) (0.4653) (0.0046) (0.0054) (0.0070) (0.6382) (0.3158) (0.0047) (0.0051) (0.0069)

Table 4: Length, shape, LRP, RRP and coverage of 95%-level confidence intervals (standard

error given in brackets). Model simulated: heteroscedastic model (σ2 = 42). Sample size:

N = 10.
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WTP1 WTP2

Method Length Shape LRP RRP Coverage Length Shape LRP RRP Coverage

Monte Carlo 2,4038 1,7780 0,0250 0,0250 0,9500 1,8588 1,4622 0,0250 0,0250 0,9500

D 2,3178 1,0000 0,0000 0,0510 0,9490 1,8428 1,0000 0,0040 0,0300 0,9660

(3,0024) (0,0000) (0,0000) (0,0070) (0,0070) (1,7322) (0,0000) (0,0020) (0,0054) (0,0057)

L 2,8793 2,0992 0,0310 0,0230 0,9460 2,2084 1,6822 0,0290 0,0200 0,9510

(2,0577) (0,8784) (0,0055) (0,0047) (0,0071) (1,4798) (0,7872) (0,0053) (0,0044) (0,0068)

T 3,3293 2,2810 0,0241 0,0221 0,9510 2,4591 0,4249 0,0251 0,0120 0,9620

(9,2766) (3,3164) (0,0049) (0,0047) (0,0068) (6,2061) (1,8161) (0,0050) (0,0035) (0,0060)

P
a
ra

m
et

ri
c

sa
m

p
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n
g

B 3,2783 0,5379 0,0000 0,0700 0,9300 2,3832 0,6695 0,0000 0,0330 0,9670

(7,7144) (0,1520) (0,0000) (0,0081) (0,0081) (4,7720) (0,1574) (0,0000) (0,0056) (0,0056)

S 2,3542 2,0644 0,0820 0,0360 0,8820 1,8075 1,6161 0,0770 0,0270 0,8960

(5,9061) (1,5462) (0,0087) (0,0059) (0,0102) (3,1211) (1,1554) (0,0084) (0,0051) (0,0097)

N – 1,0000 0,0000 0,0410 0,9590 – 1,0000 0,0000 0,0260 0,9740

(–) (0,0000) (0,0000) (0,0063) (0,0063) (–) (0,0000) (0,0000) (0,0050) (0,0050)

P 3,2783 2,0651 0,0230 0,0280 0,9480 2,3832 1,6130 0,0280 0,0190 0,9530

(7,7144) (0,8449) (0,0047) (0,0052) (0,0070) (4,7720) (0,5789) (0,0052) (0,0043) (0,0067)

BC – – 0,0280 0,0260 0,9460 – – 0,0310 0,0190 0,9500

(–) (–) (0,0052) (0,0050) (0,0071) (–) (–) (0,0055) (0,0043) (0,0069)

Bca – – 0,0300 0,0290 0,9410 – – 0,0310 0,0190 0,9500

(–) (–) (0,0054) (0,0053) (0,0075) (–) (–) (0,0055) (0,0043) (0,0069)

TIB – – 0,0020 0,0530 0,9450 – – 0,0060 0,0310 0,9630

(–) (–) (0,0014) (0,0071) (0,0072) (–) (–) (0,0024) (0,0055) (0,0060)

STIB 2,8019 2,0422 0,0570 0,0300 0,9130 2,2158 1,5644 0,0450 0,0160 0,9390

(4,5397) (0,7880) (0,0073) (0,0054) (0,0089) (3,7248) (0,5708) (0,0066) (0,0040) (0,0076)

N
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m
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ri
c

sa
m

p
li

n
g

B 3,4508 0,5361 0,0000 0,0710 0,9290 2,4945 0,6677 0,0000 0,0280 0,9720

(10,6034) (0,1552) (0,0000) (0,0081) (0,0081) (6,5799) (0,1646) (0,0000) (0,0052) (0,0052)

S 2,3240 2,0689 0,0850 0,0340 0,8810 1,7920 1,6171 0,0750 0,0290 0,8960

(5,0822) (1,3449) (0,0088) (0,0057) (0,0102) (2,7050) (1,0276) (0,0083) (0,0053) (0,0097)

N 20,0046 1,0000 0,0000 0,0400 0,9600 12,1190 1,0000 0,0010 0,0230 0,9760

(166,1420) (0,0000) (0,0000) (0,0062) (0,0062) (99,1889) (0,0000) (0,0010) (0,0047) (0,0048)

P 3,4508 2,0811 0,0200 0,0260 0,9540 2,4945 1,6265 0,0260 0,0180 0,9560

(10,6034) (0,8797) (0,0044) (0,0050) (0,0066) (6,5799) (0,6009) (0,0050) (0,0042) (0,0065)

BC 5,6093 2,3963 0,0250 0,0260 0,9490 4,2091 1,9539 0,0280 0,0160 0,9560

(70,0261) (6,6081) (0,0049) (0,0050) (0,0070) (57,4945) (8,7702) (0,0052) (0,0040) (0,0065)

BCa 5,7454 2,4537 0,0260 0,0280 0,9460 4,2165 1,9597 0,0280 0,0160 0,9560

(70,3736) (6,7851) (0,0050) (0,0052) (0,0071) (57,4941) (9,0044) (0,0052) (0,0040) (0,0065)

K
ri

n
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d
R
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b

sa
m

p
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n
g

B 3,3315 0,5227 0,0000 0,0730 0,9270 2,4327 0,6466 0,0000 0,0300 0,9700

(8,3729) (0,1419) (0,0000) (0,0082) (0,0082) (4,4944) (0,1521) (0,0000) (0,0054) (0,0054)

S 2,2942 2,0183 0,0840 0,0380 0,8780 1,7325 1,5997 0,0770 0,0340 0,8890

(5,6635) (1,3793) (0,0088) (0,0060) (0,0103) (3,0300) (1,1135) (0,0084) (0,0057) (0,0099)

N 20,0132 1,0000 0,0000 0,0380 0,9620 8,4012 1,0000 0,0000 0,0200 0,9800

(149,7747) (0,0000) (0,0000) (0,0060) (0,0060) (45,0835) (0,0000) (0,0000) (0,0044) (0,0044)

P 3,3315 2,1030 0,0210 0,0240 0,9550 2,4327 1,6615 0,0250 0,0120 0,9630

(8,3729) (0,8179) (0,0045) (0,0048) (0,0066) (4,4944) (0,5571) (0,0049) (0,0034) (0,0060)

BC 7,6728 2,5308 0,0230 0,0250 0,9520 3,8845 1,8997 0,0270 0,0140 0,9590

(141,4618) (12,0342) (0,0047) (0,0049) (0,0068) (48,2656) (6,8794) (0,0051) (0,0037) (0,0063)

BCa 7,7294 2,5845 0,0240 0,0280 0,9480 3,8938 1,9041 0,0280 0,0140 0,9580

(141,4576) (12,5029) (0,0048) (0,0052) (0,0070) (48,2672) (7,0942) (0,0052) (0,0037) (0,0063)

Table 5: Length, shape, LRP, RRP and coverage of 95%-level confidence intervals (standard

error given in brackets). Model simulated: MNL model with βC = −0.5. Sample size: N = 10.
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Delay Trip length Frequency Availability

D [−0.1140;−0.0658] [−0.0213;−0.0115] [0.2118; 0.3363] [0.0020; 0.0030]

L [−0.1161;−0.0670] [−0.0215;−0.0116] [0.2057; 0.3412] [0.0020; 0.0031]

T [−0.1154;−0.0668] [−0.0216;−0.0117] [0.2150; 0.3406] [0.0021; 0.0031]

P
ar

a
m

et
ri

c

sa
m

p
li
n
g

B [−0.1111;−0.0623] [−0.0213;−0.0113] [0.2062; 0.3321] [0.0020; 0.0030]

S [−0.1137;−0.0661] [−0.0216;−0.0117] [0.2153; 0.3396] [0.0021; 0.0031]

N [−0.1140;−0.0658] [−0.0213;−0.0116] [0.2115; 0.3366] [0.0020; 0.0030]

P [−0.1175;−0.0686] [−0.0216;−0.0116] [0.2160; 0.3419] [0.0021; 0.0031]

BC [−0.1175;−0.0686] [−0.0216;−0.0116] [0.2143; 0.3383] [0.0021; 0.0031]

BCa [−0.1176;−0.0688] [−0.0216;−0.0116] [0.2143; 0.3383] [0.0021; 0.0031]

TIB [−0.1155;−0.0638] [−0.0210;−0.0130] [0.2038; 0.3349] [0.0022; 0.0030]

STIB [−0.1184;−0.0650] [−0.0206;−0.0122] [0.2009; 0.3430] [0.0021; 0.0032]

N
on

p
ar

am
et

-

ri
c

sa
m

p
li
n
g

B [−0.1127;−0.0651] [−0.0214;−0.0113] [0.2060; 0.3327] [0.0020; 0.0030]

S [−0.1153;−0.0683] [−0.0217;−0.0115] [0.2163; 0.3400] [0.0021; 0.0031]

N [−0.1136;−0.0662] [−0.0214;−0.0115] [0.2114; 0.3367] [0.0020; 0.0030]

P [−0.1147;−0.0671] [−0.0215;−0.0115] [0.2154; 0.3421] [0.0021; 0.0031]

BC [−0.1139;−0.0664] [−0.0216;−0.0115] [0.2150; 0.3414] [0.0021; 0.0031]

BCa [−0.1140;−0.0665] [−0.0215;−0.0115] [0.2150; 0.3414] [0.0021; 0.0031]

K
ri

n
sk

y
a
n
d

R
ob

b
sa

m
p
li
n
g B [−0.1127;−0.0651] [−0.0214;−0.0113] [0.2060; 0.3327] [0.0020; 0.0030]

S [−0.1153;−0.0683] [−0.0217;−0.0115] [0.2163; 0.3400] [0.0021; 0.0031]

N [−0.1136;−0.0662] [−0.0214;−0.0115] [0.2114; 0.3367] [0.0020; 0.0030]

P [−0.1147;−0.0671] [−0.0215;−0.0115] [0.2154; 0.3421] [0.0021; 0.0031]

BC [−0.1139;−0.0664] [−0.0216;−0.0115] [0.2150; 0.3414] [0.0021; 0.0031]

BCa [−0.1140;−0.0665] [−0.0215;−0.0115] [0.2150; 0.3414] [0.0021; 0.0031]

Table 6: Local public transport data set: 95% confidence intervals of WPT for the various

attributes of the service.
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A MIN P AIRL NONSTOP BAL M AV

D [−1, 3565;−1, 1588] [7, 2097; 20, 4778] [84, 0203; 99, 7497] [−0, 2847;−0, 2233]

L [−1, 3578;−1, 1612] [7, 1250; 20, 4844] [84, 1506; 99, 6975] [−0, 2854;−0, 2238]

T [−1, 3594;−1, 1614] [7, 2316; 20, 5176] [84, 2062; 99, 9617] [−0, 2853;−0, 2239]

P
ar

a
m

et
ri

c

sa
m

p
li
n
g

B [−1, 3499;−1, 1544] [6, 8436; 20, 5904] [83, 5852; 99, 2945] [−0, 2844;−0, 2230]

S [−1, 3558;−1, 1579] [6, 8724; 20, 7013] [83, 9460; 99, 6783] [−0, 2851;−0, 2243]

N [−1, 3567;−1, 1586] [7, 0291; 20, 6585] [83, 8946; 99, 8753] [−0, 2845;−0, 2235]

P [−1, 3610;−1, 1654] [7, 0972; 20, 8440] [84, 4755; 100, 1848] [−0, 2851;−0, 2237]

BC [−1, 3666;−1, 1672] [6, 9333; 20, 8103] [84, 3460; 100, 1788] [−0, 2861;−0, 2246]

BCa [−1, 3666;−1, 1672] [6, 9333; 20, 8103] [84, 3460; 100, 1788] [−0, 2861;−0, 2246]

TIB [−1, 3415;−1, 1905] [5, 8319; 20, 2506] [81, 9890; 101, 6963] [−0, 2873;−0, 2204]

STIB [−1, 3597;−1, 1675] [7, 3181; 22, 1669] [83, 0714; 99, 3709] [−0, 2808;−0, 2211]

N
on

p
ar

am
et

-

ri
c

sa
m

p
li
n
g

B [−1, 3585;−1, 1540] [7, 1219; 20, 2241] [83, 9143; 99, 6879] [−0, 2845;−0, 2224]

S [−1, 3664;−1, 1585] [7, 1595; 20, 3316] [84, 2423; 100, 0542] [−0, 2862;−0, 2238]

N [−1, 3599;−1, 1554] [7, 2128; 20, 4747] [83, 9171; 99, 8528] [−0, 2857;−0, 2224]

P [−1, 3613;−1, 1568] [7, 4635; 20, 5656] [84, 0821; 99, 8557] [−0, 2856;−0, 2235]

BC [−1, 3610;−1, 1542] [7, 6215; 20, 7207] [84, 0345; 99, 8418] [−0, 2860;−0, 2238]

BCa [−1, 3610;−1, 1542] [7, 6215; 20, 6885] [84, 0345; 99, 8418] [−0, 2860;−0, 2238]

K
ri

n
sk

y
an

d

R
ob

b
sa

m
p
li
n
g B [−1, 3585;−1, 1540] [7, 1219; 20, 2241] [83, 9143; 99, 6879] [−0, 2845;−0, 2224]

S [−1, 3664;−1, 1585] [7, 1595; 20, 3316] [84, 2423; 100, 0542] [−0, 2862;−0, 2238]

N [−1, 3599;−1, 1554] [7, 2128; 20, 4747] [83, 9171; 99, 8528] [−0, 2857;−0, 2224]

P [−1, 3613;−1, 1568] [7, 4635; 20, 5656] [84, 0821; 99, 8557] [−0, 2856;−0, 2235]

BC [−1, 3610;−1, 1542] [7, 6215; 20, 7207] [84, 0345; 99, 8418] [−0, 2860;−0, 2238]

BCa [−1, 3610;−1, 1542] [7, 6215; 20, 6885] [84, 0345; 99, 8418] [−0, 2860;−0, 2238]

Table 7: Airport choice data set: 95% confidence intervals of WPT for the various structural

variables considered.
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