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Abstract

In this paper we focus on pricing of structured products in energy markets using
utility indifference pricing approach. In particular, we compute the buyer’s price of
such derivatives for an agent investing in the forward market, whose preferences are
described by an exponential utility function. Such a price is characterized in terms of
continuous viscosity solutions of suitable non-linear PDEs. This provides an effective
way to compute both an optimal exercise strategy for the structured product and a
portfolio strategy to partially hedge the financial position. In the complete market
case, the financial hedge turns out to be perfect and the PDE reduces to particular
cases already treated in the literature. Moreover, in a model with two assets and
constant correlation, we obtain a representation of the price as the value function of
an auxiliary simpler optimization problem under a risk neutral probability, that can
be viewed as a perturbation of the minimal entropy martingale measure. Finally,
numerical results are provided.

Keywords: Swing contract, virtual storage contract, utility indifference pricing, HJB
equations, viscosity solutions, minimal entropy martingale measure.

1 Introduction

Since the start of the energy market deregulation and privatization in Europe and in
the U.S., the study of energy markets became a challenging topic both for the practical
effects of energy availability, as well as in terms of the theoretical problems of pricing and
hedging the related contracts. In fact, these contracts are typically more complex than
the standard contracts present in financial markets such as bonds, stocks, options and
so forth, as they usually incorporate optionality features which can be exercised by the
buyer at multiple times. A notable example are swing contracts, which are one of the two
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main types of contract which are used in energy markets for primary supply, the other one
being forward contracts. Swing contracts give the buyer some degrees of freedom about
the quantity of energy to buy for each sub-period, usually with daily or monthly scale,
subject to a cumulated constraint in the contract period. This flexibility is much welcomed
by contract buyers, as energy markets are influenced by many elements such as peaks in
consumption related to sudden weather changes, breakdowns of power plants, financial
crises and so on. Apart from these standardized contracts, many other kinds of contract
are traded in the energy market and are often negotiated over-the-counter. Also some of
them, like virtual storage contracts, include an optionality component for the buyer which
can be exercised at multiple times as in swing contracts.

The pricing problem of these products has a consolidated tradition in discrete time (see
[18] and references therein), where the most used approach is based on multiple stopping
and optimal switching techniques as in, e.g., the papers [13] and [12]. A different method
to compute swing price based on optimal quantization has been proposed in [28] and [29].
Finally, a very recent paper on natural gas storage in discrete time is [24], where a new
joint model for spot and futures is developed and tested on real US market data.

In this paper, we will follow another approach, which consists in approximating the
contracts payoff with its time continuous counterpart, as it has been proposed in [4, 10]
for swing contracts and in [15, 19, 36] for virtual storage contracts. The advantage of
this approach is that it makes the pricing problem more tractable, since it allows to use
the stochastic control machinery based on HJB equations. In those papers, the price
of a structured contract is defined - in analogy with American options - as the value
function of some maximization problem, reducing the pricing issue to numerically solve a
suitable Bellman equation in discrete time, or a partial differential equation of Hamilton-
Jacobi-Bellman (HJB) type in continuous time. This approach relies on the fact that the
contract value is obtained by maximizing, over all the strategies available to the buyer, the
expected value of the sum of an intermediate and a final payoffs under a suitable equivalent
martingale measure, which is usually interpreted as “pricing” measure.

All those papers, however, suffer from the following two drawbacks: first, they lack
a sound financial justification to the definition of the price as the value function of a
stochastic control problem. Moreover, a theoretical justification of the “risk neutral”
pricing procedure cannot be found in the literature either, as the underlying of the contract
is either not traded in any official market (as for certain types of crude oil or natural gas),
or, even if it is traded, it is not storable in an efficient way. The second drawback of this
valuation technique is the absence of the hedging counterpart in the literature on energy
structured derivatives. This is a nontrivial problem, as the assets traded in the market
usually are forward contracts on the relevant commodity, and not on the spot itself. The
only exception is the paper [38] which focuses on gas storage contracts, using a delta
hedging approach. We end our discussion on related literature with the papers [26] and
[32], that deal with the pricing of a physical/industrial asset using a utility indifference
approach with an investment component. The optimization problems studied therein
are mathematically similar to the one arising from utility indifference pricing of energy
structured products, one difference being that the controls affecting the asset they price
are in switching form with finitely many states. The methods they used are based on
optimal switching, in [26], and on reflected BSDEs, in [32]. For an extensive review of
the existing literature with a detailed comparison of the main articles, we refer to the
forthcoming book [1].
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The main contribution of the paper consists in giving a sound financial justification
of the definition of price used in the papers previously cited, such as, e.g., [4, 10], and in
computing such price together with the corresponding hedging strategy for a buyer, who
can invests in quite a general incomplete market for forward contracts.

To do so, we will adopt the utility indifference pricing (henceforth UIP) approach,
which is one of the most appealing way of pricing in incomplete markets. Indeed, the
models of commodity markets are typically incomplete, meaning that there exist infinitely
many prices compatible with the no-arbitrage principle. This is due to the presence of non
tradable factors, the most notable example of which being spot electricity prices. The UIP
approach allows to select one of those prices, taking into account the risk aversion of the
agent. We refer to the survey [25]) and the references therein for an exhaustive treatment
of this topic.

We consider a large class of incomplete multivariate market models, with finitely many
risky assets (forward contracts on energy), with diffusive dynamics and whose coefficients
depend on a certain number of exogenous factors. This setting includes many models that
have been previously studied in the literature, e.g. the ones in [3, 11, 14, 35].

Within the UIP approach, we solve the problem of evaluating a class of structured
derivatives, such as swing and virtual storage contracts. We compute the UIP of such
products for an agent investing in the forward market and whose preferences are described
with an exponential utility function. The UIP is characterized as the unique viscosity
solution of a suitable nonlinear PDE. In the complete market case, this PDE reduces
to the particular cases treated for example in [4, 10, 15, 19, 36]. In both complete and
incomplete cases, the solution of this nonlinear PDE gives an effective way to compute
an optimal withdrawal strategy for the structured product, as well as a portfolio strategy
to partially hedge the financial position deriving from it. As expected, in the complete
market case, the financial hedge in terms of forward contracts turns out to be perfect.
Moreover, in a model with two assets and constant correlation, we obtain a representation
of the price as the value function of an auxiliary simpler optimization problem under a
risk neutral probability, that can be viewed as a perturbation of the minimal entropy
martingale measure. To our knowledge, that measure change has never been used before
in the incomplete markets literature.

The paper is organized as follows. In Section 2 we formulate the problem, by introduc-
ing the general form of the structured contracts that we want to price, and the exponential
utility indifference pricing approach, with a first result on the case of complete markets.
In Section 3 we characterize the UIP in terms of viscosity solutions of a suitable nonlinear
PDE; in the complete market case, this PDE is consistent with previous results found in
literature for swing and virtual storage contracts. In Section 4, we consider a particular
case of an incomplete market with one traded asset which is correlated with the under-
lying of the structured product. In this case, the price has a simpler form and it can be
expressed via the so-called minimal entropy martingale measure. Section 5 presents some
numerical results which illustrate the previous findings.

Notation. In what follows, unless explicitly stated, vectors will be column vectors, the
symbol “*” will denote transposition and the trace of a square matrix A will be denoted
by tr(A). Furthermore, 〈a, b〉 := a∗b stands here for the Euclidean scalar product and
a⊗b := ab∗ denotes the Kronecker product. We choose as matricial norm |A| =

√
tr(AA∗).

On the set Sn of all symmetric squared matrices of order n, we define the order A ≤ B
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if and only if B − A ∈ S+
n , the subspace of nonnegative definite matrices in Sn. We will

denote In the identity matrix of dimension n.

2 Formulation of the problem

We aim at finding the utility indifference price of a structured contract in energy markets,
e.g. a swing or a virtual storage contract, for a buyer whose preferences can be described by
an exponential utility function U with risk aversion parameter γ > 0, i.e., U(x) = − 1

γ e
−γx

for x ∈ R. We will always assume throughout the paper that the interest rate is zero.

2.1 Description of the products

In this section we are going to describe the class of products we are aiming to price using
the utility indifference approach. The payoff of a typical structured contract in energy
markets is, in general, given by a family of random variables

CuT :=
∫ T

0
L(Ps, Zus , us)ds+ Φ(PT , ZuT ), (2.1)

indexed by control processes u, which typically represents the marginal quantity of com-
modity purchased and it will belong to a suitable set of admissible controls U that we will
specify later. P in the above Equation (2.1) is the spot price of the commodity (e.g., gas)
and Zut := z0 +

∫ t
0 usds for all t ∈ [0, T ], for some nonnegative initial value z0 ≥ 0.

Two main products that we have in mind are, i.e., swing contracts and virtual storage
contracts. More details are given below.

Example 2.1 (Swing contract). For a swing contract one has (see, e.g., [4, 10])

L(p, z, u) = u(p−K),

where K is the purchase price, or strike price and the control u is any progressively
measurable process, such that ut ∈ [0, ū] for all t ∈ [0, T ] and some fixed threshold ū > 0.
These products usually include some additional features, such as inter-temporal constraints
on u or on the cumulated control Zu or some penalty function appearing in the payoff. More
precisely, constraints on u and Zu are typically of the form ZuT =

∫ T
0 usds ∈ [m,M ], with

0 ≤ m < M , with possibly further intermediate constraints on Zuti , ti < T , i = 1, . . . , k.
In the absence of such additional constraints, a penalty is usually present which can be
expressed as a function Φ of the terminal spot price PT and cumulated consumption ZuT .
A typical form of Φ could be

Φ(p, z) = −C((m− z)+ − (z −M)+)

for constants C > 0 and 0 ≤ m < M(see [4, 10] and references therein). We will focus on
the latter case, i.e., a non-zero penalty function Φ(PT , ZuT ) without any other contraints
on the admissible controls.

Example 2.2 (Virtual storage contract). These products replicate a physical gas storage
position, while being handled as pure trading contracts. In this case one has

L(p, z, u) = p(u− a(z, u)), Φ(p, z) = −C(M − z),
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with C,M > 0 suitable constants, a(z, u) := ā1u<0 and the control u is such that

ut ∈ [uin(Zut ), uout(Zut )], t ∈ [0, T ],

where uin, uout are suitable deterministic functions given by the physics of fluids: their
typical shapes are

uin(z) := −K1

√
1

z + Zb
+K2, uout(z) := K3

√
z

with Zb,Ki > 0, i = 1, 2, 3 given constants [15, 19, 36].

2.2 The market model

In this section we present a very general market model, which will typically be incomplete.
All the processes introduced below will be defined on a probability space (Ω,F ,P) equipped
with the natural filtration (Ft)t∈[0,T ] generated by a d-dimensional Brownian motion W .
Moreover, let F = FT .

We assume that the driver of the economy is an m-dimensional state variable Xt with
Markovian dynamics given by

dXt = b(t,Xt) dt+ Σ∗(t,Xt) dWt, X0 = x ∈ Rm, (2.2)

where the measurable functions b : [0, T ] × Rm → Rm and Σ : [0, T ] × Rm → Rd×m

are Lipschitz with respect to x uniformly in t ∈ [0, T ]. The process X is a state variables
vector, in the sense that the spot price underlying the structured contract is a deterministic
function of it, i.e., Pt = p(t,Xt) for all times t ≥ 0, where p : [0, T ] × Rm → R is a given
measurable function.

We also assume that n ≤ d forward contracts are traded in the market, with maturities
T1 < . . . < Tn, with T1 ≥ T . By calling F i the price of the forward contract with maturity
Ti, i = 1, . . . , n, we assume that the dynamics of F := (F 1, . . . , Fn) is

dFt = diag(Ft)(µF (t,Xt)dt+ σ∗F (t,Xt)dWt), F0 = f0 ∈ Rn, (2.3)

where µF : [0, T ] × Rm → Rn and σF : [0, T ] × Rm → Rd×n are continuous functions.
Under such assumptions, the SDEs (2.2) and (2.3) are well-known to admit a unique
strong solution (X,F ) such that X0 = x and F0 = f0. We will also make the following

Assumption 2.3. (i) The forward volatility is uniformly elliptic, i.e., for some ε > 0,

(σ∗FσF )(t, x) ≥ εIn, for all t ∈ [0, T ], x ∈ Rm. (2.4)

(ii) There exists a positive constant c such that, for a.e. x ∈ Rm, uniformly in t

|µF (t, x)|√
ς(t, x)

≤ c(1 + |x|), |σF (t, x)|√
ς(t, x)

≤ c, (2.5)

where ς(t, x) denotes the smallest eigenvalue of the matrix (σ∗FσF )(t, x), i.e.,

ς(t, x) := inf
π∈Rn,π 6=0

|σF (t, x)π|2

|π|2
, t ∈ [0, T ], x ∈ Rm.
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Remark 2.4. For sufficient conditions for (2.5) to hold, we refer to Remark 2.3 in [30].

Notice that the forward contracts are not necessarily written on the commodity with
spot price Pt, as they could be written also on a correlated commodity. For instance, P
could be the spot price of gasoline, while the F ’s are written on oil, as in [11, 20]). This can
be also due to illiquidity or non-existence of forward contracts relative to the commodity:
for a detailed discussion of this phenomenon, see [11, Section 2.3].

Example 2.5 (Linear dynamics). This example is a slight generalization of the model
used in [11]: set

dFt = Ft
(
(a− kXt)dt+ σdW 1

t

)
, (2.6)

dXt = δ(θ −Xt)dt+ ρσPdW
1
t +

√
1− ρ2σPdW

⊥
t , (2.7)

where a, k, σ, δ, θ, σP are real constants, the correlation ρ belongs to (−1, 1), and W 1, W⊥

are two independent Brownian motions. Here F represents the price of a forward contract
with maturity T written on a commodity, whose spot price is Pt := eXt . By letting
W := (W 1,W⊥), we obtain the situation above in the special case where the (log-)spot
price is the unique state variable. For k = 1 we obtain exactly the model in [11].

Example 2.6 (Cartea-Villaplana). The model introduced by Cartea and Villaplana in
[14] for the spot price of electricity is a two factor model: the logarithm of the electricity
spot price P at time t is decomposed into the sum of two stochastic factors XC and XD,
i.e.,

lnPt = h(t) + αCX
C
t + αDX

D
t

with αC < 0 and αD > 0, where h represents a seasonal deterministic component. The
factors Xi

t , i = C,D, are Ornstein-Uhlenbeck (OU) processes driving, respectively, the
capacity and the demand, with dynamics

dXi
t = −kiXi

t dt+ σi(t) dW i
t

where ki are constant coefficients, σi are deterministic measurable functions of time and
W i are one-dimensional Brownian motions such that d〈WC ,WD〉t = ρdt with a constant
ρ. If we now represent WD as WD = ρWC +

√
1− ρ2W⊥ with W⊥ independent of WC ,

then again W := (WC ,W⊥) is a bi-dimensional Brownian motion. Assuming that interest
rates are independent of the spot price, then the forward price Ft = EQ[PT |Ft] at time
t > 0, with T > t satisfies

dFt
Ft

= B(t, T )dt+ αCe
−kC(T−t)σC(t) dWC

t + αDe
−kD(T−t)σD(t) dWD

t ,

where B(t, T ) is a suitable function of time. This is clearly a particular case of our setting.
Notice that the Cartea-Villaplana model reduces to the Schwarz-Smith model [35] for
αC = αD = 1 and kC = 0 (or kD = 0).

Example 2.7 (Aı̈d-Campi-Langrené-Pham). Another model that can be included into
our setting is an uncontrolled version of the one proposed in the paper [3] for electricity,
where the spot price is given by Pt = p(t,Dt, Ct, St), with p a suitable real-valued Lipschitz
function linking the demand for electricity D, the capacities C = (C1, . . . , Cn) and the fuel
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prices S = (S1, . . . , Sn) with the spot price P . For the precise shape of such a function we
refer to [3].

The function p models the behavior of an electricity producer having n technologies at
his disposal and setting the spot price after looking at the levels of demand and capacities.
The demandDt and the i-th capacity, i = 1, . . . , n, are given respectively byDt = f0(t)+Z0

t

and Cit = fi(t)+Zit , where fi, i = 0, . . . , n, are bounded deterministic measurable functions
describing the seasonality effects, and Zi, i = 0, . . . , n, are OU processes

dZit = −αiZitdt+ βidW
Zi

t .

Finally, St is modelled as a multidimensional, cointegrated geometric Brownian motion,
i.e.,

dSt = ΞStdt+ diag(St)ΣdWS
t ,

where Ξ and Σ are n × n matrices with 1 ≤ rank(Ξ) ≤ n, and WS is a n-dimensional
Brownian motion. Under suitable conditions on the cointegration matrix Ξ, the prices Sit
are strictly positive whenever the initial prices are. In this model, the forward prices are
given by

F (t, T ) = EQ[p(T,CT , DT , ST ) | Ft], t ∈ [0, T ].

It turns out that, with a suitable choice of the market price of capacity and demand risk,
the dynamics of the forward prices under P has the same form as in Equation (2.3), with
X = (D,C, S). We refer to the original paper [3] for more details on the model and the
corresponding capacity control problem, and to the paper [8] for the pricing and hedging
of non-smooth Vanilla options using the UIP approach.

We suppose that the market model is arbitrage free, i.e., that there exists at least one
(local) martingale measure Q, equivalent to P.

We consider an agent (buyer) at time t ∈ [0, T ], who is exposed to a position q ≥ 0 in a
given structured product with global payoff CuT , depending on the control u ∈ U . Assume
that (s)he is able to trade in the financial market described above. Trading takes place by
the agent investing at time s the amount of wealth πis in the forward contract F i for all
i = 1, . . . , n, so that the stochastic differential of the agent’s portfolio can be expressed as〈

πs,
dFs
Fs

〉
=

n∑
i=1

πis
dF is
F is

= 〈πs, µF (s,Xs)ds+ σ∗F (s,Xs)dWs〉,

where we recall that 〈·, ·〉 denotes for the Euclidean scalar product in Rn and we use the
symbolic notation

dFs
Fs

:=
(
dF is
F is

)
i=1,...,n

= µF (s,Xs)ds+ σ∗F (s,Xs)dWs, s ∈ [0, T ].

In order to define the UIP of any structured product, we need to specify the set A of
admissible strategies (u, π) that the agent is allowed to use for maximising his expected
utility.

Definition 2.8. Let ū > 0 be a given threshold. The set of admissible controls A is the set
of all couples (u, π), where u is any adapted process such that ut ∈ [0, ū] for all t ∈ [0, T ],
and π is any progressively measurable Rn-valued process such that

sup
t∈[0,T ]

E [exp (ε|σF (t,Xt)πt|)] <∞, (2.8)
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for some ε > 0. We will denote by U the set of all admissible controls u. Moreover, At
(resp. Ut) will be the set of admissible controls (u, π) (resp. admissible controls u) starting
from t.

Now, we are in the position to define the utility indifference (buying) price of a given
structured product CT = (CuT )u∈U for an agent with an exponential utility function U(x) =
− 1
γ e
−γx, γ > 0, x ∈ R. We will use the notation Cut,T for the payoff of the structured

contract CuT starting at time t, i.e.,

Cut,T =
∫ T

t
L(Ps, Zus , us)ds+ Φ(PT , ZuT ).

Moreover, we set CuT = Cu0,T .

Definition 2.9. The utility indifference (buying) price at time t for a position q ≥ 0 in
the structured product, when starting from the initial portfolio value yt, is defined as the
unique solution vt ∈ R (whenever it exists) to

V (yt − vt, q) = V (yt, 0), (2.9)

where

V (yt, q) := sup
(u,π)∈At

Et
[
−1
γ

exp
(
−γ
(
yt +

∫ T

t

〈
πs,

dFs
Fs

〉
+ qCut,T

))]
, (2.10)

where Et stands for the conditional expectation given Ft.

Clearly, V (y0, q) represents the maximal expected utility from terminal wealth, com-
puted at time 0, that an agent with an exponential utility can obtain starting from an
initial wealth y0 and having a position q ≥ 0 in the structured product.

Remark 2.10. In principle, it seems that controls associated to the virtual storage con-
tract described in Example 2.2 do not satisfy Definition 2.8, where the control ut belongs
to [0, ū] with ū constant. However, this example can be reduced to our setting by simply
reparameterizing the control. In fact, one could define a new control c with values in [−1, 1]
such that the old control u satisfies ut = f(ct, Zt) for a suitable function f(c, z) given by

f(c, z) :=

{
cK1

√
1

z+Zb
+K2, 0 ≤ c ≤ 1,

cK3
√
z, −1 ≤ c ≤ 0,

and Z solves
dZt = f(ct, Zt) dt, Z0 = z0.

2.3 The complete market case

In this section, we will consider the complete market case. We say that our market model
is complete if there exists a unique equivalent (local) martingale measure Q for the forward
prices F .

To simplify the notation, we drop the arguments from the coefficients in the dynamics
of X and F . It is well known that in general there exists (not uniquely) a market price of
risk λ ∈ Rd such that

µF + σ∗Fλ = r1(= 0)
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where 1 = (1, . . . , 1), so that the dynamics of F and X, under the corresponding risk-
neutral measure Q, are 

dFt = diag(Ft)σ∗FdW
Q
t

dXt = (b+ Σ∗λ) dt+ Σ∗dWQ
t ,

(2.11)

where WQ is a Q-Brownian motion. However, if d = n and σF has full rank n, then the
market is complete and we obtain

λ = −(σ∗F )−1µF

and the dynamics of X under the unique equivalent martingale measure Q becomes

dXt = bQdt+ Σ∗dWQ
t .

where
bQ := b− Σ∗(σ∗F )−1µF . (2.12)

In the complete market case the UIP is straightforwardly characterized, as stated in
the following result.

Proposition 2.11. Assume that d = n and that σF has full rank. Moreover, suppose
that, for all u ∈ Ut, Cut,T ∈ L2(Q,FT ) and the replicating portfolio π̃u is admissible as in
Definition 2.8. Then the UIP vt of Ct,T = (Cut,T )u∈U is given by

vt = q sup
u∈Ut

EQ
t [Cut,T ], (2.13)

for all times t ∈ [0, T ], initial positions q ≥ 0 and t-time wealths yt.
Moreover, if the supremum in Equation (2.13) is attained by u∗, then there exists an

optimal hedging strategy π∗ for the structured product, which is the replication strategy of
qCu

∗
t,T .

Proof. By assumption, for every admissible control u ∈ Ut, there exists an admissible
strategy π̃u such that

Cut,T = cut +
∫ T

t

〈
π̃us ,

dFs
Fs

〉
,

with cut := EQ
t [Cut,T ]. For all yt ∈ R, substituting this expression into V (yt−vt, q) we obtain

V (yt − vt, q) = sup
(u,π)∈At

Et
[
U

(
yt − vt +

∫ T

t

〈
πs,

dFs
Fs

〉
+ qcut + q

∫ T

t

〈
π̃us ,

dFs
Fs

〉)]
= sup

(u,π)∈At

Et
[
U

(
yt − vt + qcut +

∫ T

t

〈
πs + qπ̃us ,

dFs
Fs

〉)]
= sup

u∈Ut

V (yt − vt + qcut , 0),

where we have used the fact that if (u, π) and (u, π̃u) belong to At, then (u, π+ qπ̃u) ∈ At.
As a consequence, vt is the unique solution to

sup
u∈Ut

V (yt − vt + qcut , 0) = V (yt, 0).
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To conclude, notice that V is strictly increasing in its first argument, thus the equation
above has vt = supu∈Ut

qcut as unique solution, and the conclusion follows. Furthermore, if
the supremum in Equation (2.13) is attained by u∗, then the replication strategy of Cu

∗
t,T

is a perfect hedging strategy for C.

Remark 2.12. Since in this case the UIP vt is the value function of the control problem
(2.13), it is also possible, under further regularity assumptions on the model coefficients,
to express it as a solution of a suitable HJB equation (see Corollary 3.7).

3 The incomplete market case: characterization of the UIP
with viscosity solutions

In this section we will, first of all, turn the maximisation problem (2.10) into a more
tractable stochastic control problem, by suitably changing the state variables. Secondly,
we will derive heuristically the HJB equations for the value functions in Equation (2.10),
indexed by the quantity q of structured product that the agent has in his portfolio, and
the PDE for the utility indifference price vt, as defined in Equation (2.9). Finally, we
will prove that the log-value functions can be characterized as unique continuous viscosity
solutions to suitable PDEs with the right terminal conditions. The UIP will be given by
the difference between the two log-value functions, corresponding to the problems with and
without the claim. This will be done by using techniques developed in Pham [30] together
with recent results on uniqueness for a class of second order Bellman-Isaacs equations,
established in Da Lio and Ley [16].

3.1 Reformulation of the problem and HJB equation

Let t ∈ [0, T ]. We rewrite the terminal wealth as follows, using Equation (2.1):

yt +
∫ T

t

〈
πs,

dFs
Fs

〉
+ qCut,T = yt +

∫ T

t

〈
πs,

dFs
Fs

〉
+ q

∫ T

t
L(Ps, Zus , us)ds+ qΦ(PT , ZuT ).

We now want to reformulate the maximization problem in Equation (2.10) in a more
standard way with a Markovian dependence. In order to do so, we first recall that Pt =
p(t,Xt) and to emphasize the dependence of the value function on X and Zu, we enlarge
the set of independent variables in V , so that we can define the running value function as:

V (t, y, x, z; q) := sup
(u,π)∈At

Et,y,x,z
[
G
(
Y u,π
T , XT , Z

u
T

)]
, (3.1)

where the process Y = Y u,π has dynamics

dY u,π
s :=

〈
πs,

dFs
Fs

〉
+ qL(p(s,Xs), Zus , us)ds, Y u,π

t := y,

and
G(y, x, z) := −1

γ
e−γ(y+qΦ(p(T,x),z)).

We have then obtained a stochastic control problem where the state of the system is
(Y u,π, X, Zu), the control is given by the pair process (u, π), the running cost function is
null, the terminal cost function is G and the dynamics of the state variables are

10




dY u,π

s = (〈πs, µF 〉+ qL(p(s,Xs), Zus , us)) ds+ 〈πs, σ∗FdWs〉,
dXs = b(s,Xs)ds+ Σ∗(s,Xs)dWs,
dZus = usds,

with initial conditions (Yt, Xt, Zt) = (y, x, z). Again, the UIP for a position q ≥ 0 in the
structured product is the unique solution (whenever it exists) vt ∈ R to Equation (2.9),
which we rewrite here with an explicit dependence on the new variables:

V (t, y − vt, x, z; q) = V (t, y, x, z; 0).

We conclude this subsection with a first preliminary rigorous result showing that the value
function V defined above is a (possibly discontinuous) viscosity solution of a Hamilton-
Jacobi-Bellman (HJB) equation in the interior of its domain. The connection between
such a PDE and the price will be examined in the next subsections.

Proposition 3.1. Assume that the functions L : R×R× [0, ū]→ R and Φ : R×R→ R are
bounded. Thus the value function V defined in (3.1) is a (possibly discontinuous) viscosity
solution of the HJB equation

Vt(t, y, x, z; q) + sup
(u,π)∈[0,ū]×Rn

Lu,πV (t, y, x, z; q) = 0, (t, y, x, z) ∈ [0, T )× R× Rm × R

(3.2)
with terminal condition V (T, y, x, z) = G(y, x, z), where

Lu,πV = (〈π, µF 〉+ qL)Vy + 〈b, Vx〉+ uVz +
1
2
|π∗σ∗F |2Vyy +

1
2

tr (ΣΣ∗Vxx) + π∗σ∗FΣ∗Vxy.

Proof. As it is now formulated, the maximisation problem (3.1) can be treated analogously
as in [31], in particular in Proposition 4.3.1 (viscosity supersolution property) and in
Proposition 4.3.2 (viscosity subsolution property). All the arguments there can applied
to our problem as well. For instance, it can be easily checked that the value function is
bounded since it is trivially nonpositive and, being (u, π) = (0, 0) an admissible strategy,
we have

V (t, y, x, z; q) ≥ −1
γ
e−γ[y+q infp∈R((T−t)L(p,0,0)+Φ(p,0))] > −∞

since the infimum above is finite by assumption. The rest of the proof is omitted since
it follows closely the ones in [31].

3.2 The pricing PDE: heuristics

In this section we derive, in a heuristic way, the PDE that the UIP of the structured
product CuT with running payoff L and penalty Φ is supposed to satisfy. In this case, as
it is classical with exponential utility functions (see, e.g., the papers [5, 6, 7, 25, 37]), we
have that

V (t, y, x, z; q) = e−γyV (t, 0, x, z; q),

for all y ∈ R. By using the definition of UIP, we obtain that

e−γ(y−v)V (t, 0, x, z; q) = V (t, y − v, x, z; q) = V (t, y, x, z; 0) = e−γyV (t, 0, x, z; 0)

11



so that the UIP v is given by

v = −1
γ

log
V (t, 0, x, z; q)
V (t, 0, x, z; 0)

.

Let us define the log-value function J as

J(t, x, z; q) := −1
γ

log (−V (t, 0, x, z; q)) . (3.3)

Notice that in the exponential utility case V < 0. Then we have that the UIP v, that is,
indeed, a function of t, x, z and q, can be represented as

v = v(t, x, z; q) = J(t, x, z; q)− J(t, x, z; 0). (3.4)

This representation allows us to formally derive a PDE for the UIP.
Recalling that V (t, y, x, z; q) = −e−γy−γJ(t,x,z;q), we compute all the partial derivatives

necessary to characterize the HJB equation for J (for simplicity, from now on we skip all
the arguments of the functions V and J):

Vt = −γV Jt; Vy = −γV ; Vx = −γJxV ; Vz = −γJzV
Vyy = γ2V ; Vxx = γV [γJx ⊗ Jx − Jxx]; Vyx = γ2JxV,

where we recall that ⊗ denotes the Kronecker product.
Substituting the above partial derivatives into the HJB Equation (3.2), after the sim-

plification for −γV , leads to

Jt + sup
(u,π)∈[0,ū]×Rn

[
〈π, µF 〉+ qL+ 〈b, Jx〉+ uJz −

1
2
γ|π∗σ∗F |2

−1
2γ|ΣJx|

2 + 1
2tr (Σ∗ΣJxx)− γπ∗σ∗FΣJx

]
= 0,

(3.5)

with the terminal condition J(T, x, z; q) := q Φ(p(T, x), z). The candidate optimal invest-
ment strategy π̂ is given by

π̂ = (σ∗FσF )−1

(
µF
γ
− σ∗FΣJx

)
. (3.6)

Substituting π̂ into the HJB Equation (3.5) leads to

Jt +
1

2γ
〈(σ∗FσF )−1µF , µF 〉+ 〈b̄, Jx〉+ sup

u∈[0,ū]

[
uJz + qL

]
−1

2γJ
∗
xBJx + 1

2tr (Σ∗ΣJxx) = 0,
(3.7)

where
b̄ := b− Σ∗σF (σ∗FσF )−1µF

and the m×m symmetric matrix B is defined as

B := Σ∗Σ− (σ∗FΣ)∗(σ∗FσF )−1(σ∗FΣ) = Σ∗(Id − σF (σ∗FσF )−1σ∗F )Σ. (3.8)

The terminal condition G for V translates into the terminal condition for J as

J(T, x, z; q) =
log γ
γ

+ qΦ(p(T, x), z), (x, z) ∈ Rm × [0, ūT ]. (3.9)
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In order to compute the UIP as in Equation (2.9), we first calculate J(t, x, z; 0), which
satisfies Equation (3.7) with the terminal condition J(T, x, z; 0) = log γ

γ . It is a classical
and intuitive result that, in this situation, J(t, x, z; 0) does not depend on z. Denoting
J(t, x, z; 0) by J0 for simplicity, we have that J0 fulfills

J0
t +

1
2γ
〈(σ∗FσF )−1µF , µF 〉+ 〈b̄, J0

x〉 −
1
2
γJ0,∗

x BJ0
x +

1
2

tr
(
Σ∗ΣJ0

xx

)
= 0. (3.10)

Thus, subtracting Equation (3.10) to Equation (3.7) and using the fact that

−1
2
γJ∗xBJx +

1
2
γJ0,∗

x BJ0
x = −1

2
γv∗xBvx − γJ0,∗

x Bvx

we obtain the following PDE for the UIP v:

vt + 〈b̄, vx〉+ sup
u∈[0,ū]

[
uvz + qL

]
+

1
2

tr (Σ∗Σvxx)− 1
2
γv∗xBvx − γJ0,∗

x Bvx = 0, (3.11)

with the terminal condition

v(T, x, z; q) = q Φ(p(T, x), z). (3.12)

Notice that solving the HJB equation for the UIP v(t, x, z; q) above requires the knowledge
of J0, which is the log-value function of the optimal investment problem with no claim.
This phenomenon is due to the presence of the non-tradable factors X in the dynamics of
the forward contracts F and it has been observed in a somewhat different model in [6],
where the non-tradable factors follow a pure jump dynamics. We show in Section 5 that,
in some relevant examples, the PDE for the log-value function J0 can be considerably
simplified.

Remark 3.2. In the specific case when J0 does not depend on x as in the Cartea-Villaplana
model, see Example 2.6, J0 satisfies

J0
t + sup

u∈[0,ū]

1
2γ
〈(σ∗FσF )−1µF , µF 〉 = J0

t +
1

2γ
〈(σ∗FσF )−1µF , µF 〉 = 0. (3.13)

Thus the PDE for v becomes

vt + 〈b̄, vx〉+
1
2

tr (Σ∗Σvxx)− 1
2
γv∗xBvx + sup

u∈[0,ū]

[
uvz + qL

]
= 0. (3.14)

3.3 Existence and uniqueness results

In this section we concentrate on Equation (3.7), together with the terminal condition in
Equation (3.9), and we show that the log-value function J is its unique continuous viscosity
solution with quadratic growth. From there, the UIP v is easily found via the following
equality

v(t, x, z; q) = −1
γ

log
V (t, 0, x, z; q)
V (t, 0, x, z; 0)

= J(t, x, z; q)− J(t, x, z; 0).

For this purpose, we need to make several assumptions on the coefficients of our PDE
as well as on the functions appearing in the terminal condition. We recall for reader’s
convenience that the matrix B = B(t, x) has been defined in (3.8) as

B = Σ∗(Id − σF (σ∗FσF )−1σ∗F )Σ.
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Assumption 3.3. The following properties hold:

(i) The functions L : R × [0, ūT ] × [0, ū] → R and Φ : R × [0, ūT ] → R are continuous
and bounded.

(ii) The function p : [0, T ]× Rm → R is continuous.

(iii) The matrix B is positive semidefinite and such that there exists a constant δ > 0
(uniform in t, x) such that

1
δ
|ξ|2 ≤ 〈ξ,Bξ〉 ≤ δ|ξ|2 (3.15)

for all vectors ξ ∈ Im(B), the image of B.

(iv) b, B and 〈(σ∗FσF )−1σ∗FΣ, µF 〉 are C1 and Lipschitz in x uniformly in t.

(v) 〈(σ∗FσF )−1µF , µF 〉 is C1, bounded and Lipschitz in x uniformly in t.

Some comments on the hypotheses above are in order. The continuity property of p will
be used to prove that the value function V satisfies the good terminal condition. Condition
(iii) on B is related to the coercivity hypothesis in Assumption A1 in [16], which has a
crucial role in the proof of their comparison theorem. Conditions (iv) and (v) will allow us
to use results from [30] to get the smoothness and the quadratic growth condition of the
log-value function J0 of the investment problem with no claim, which thanks to condition
(i) are inherited by the log-value function with the claim, J . More details on how these
assumptions come into play are given in the proof below. They will also be discussed on
few examples in Section 5.

Remark 3.4. The boundedness of L as in Assumption 3.3 is not immediately verified in
the two Examples 2.1 and 2.2, where L is linear in p, which can in principle take any real
value. In practice, one can artificially bound L, for example by introducing

L̃(p, z, u) := max(−`,min(L(p, z, u), `)),

so that |L̃(p, z, u)| ≤ ` for all (p, z, u), for a suitably chosen and large enough threshold
` > 0 such that the instantaneous profit should not be reasonably above ` in absolute
value. The same truncation argument can be applied to the penalty function Φ(p, z).

Now we are ready to state the main result of this section.

Theorem 3.5. Under Assumptions 3.3 the log-value function J , defined in Equation (3.3),
is the unique continuous viscosity solution with quadratic growth of Equation (3.7) with
terminal condition (3.9).

Proof. We consider the existence first. This is an easy consequence of Proposition 3.1,
which gives the result that the value function V is a viscosity solution of Equation (3.2).
It then suffices to use the definition of viscosity solution to check that the log-value function
J given by Equation (3.3) is a (possibly discontinuous) viscosity solution of the PDE (3.7)
above.

To complete the proof, it remains to show that J is unique in the class of all continuous
viscosity solutions with quadratic growth to the Cauchy problem given by (3.7) and (3.9).
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The main idea for uniqueness is to use the comparison theorem in [16, Th. 2.1]. For the
reader’s convenience, we split the rest of the proof into two steps.

(i) Reduction to Da Lio and Ley [16] setting. First, we use a Fenchel-Legendre trans-
form to express the quadratic term in our pricing PDE into an infimum over the image
of B of a suitable function. More precisely, we apply a classical result in convex analysis
(e.g. [34, Ch.III, Sect. 12]) to get

F (w) := −1
2
〈w,Bw〉 = inf

α∈Im(B)
{−L(α)− 〈α,w〉} = inf

α∈Rm
{−L(α)− 〈α,w〉}, (3.16)

for all vectors w ∈ Rm, where L is the conjugate of F and it is also given by L(α) =
−1

2〈α,B
−1α〉 when α ∈ Im(B) and −∞ otherwise. Notice that the first infimum is com-

puted over the image of B since the matrix B is not necessarily invertible in our framework.
Using (3.16), we can rewrite Equation (3.7) as

Jt +
1

2γ
〈(σ∗FσF )−1µF , µF 〉+ 〈b̄, Jx〉

+ supu∈[0,ū]

[
uJz + qL

]
+ γF (Jx) + 1

2tr (Σ∗ΣJxx) = 0,
(3.17)

with terminal condition J(T, x, z; q) = log γ
γ + qΦ(p(T, x), z). In order to reduce our

PDE to the one in [16, Eq. (1.1)], we need to perform the time reversal transformation
Ĵ(t, x, z; q) := J(T − t, x, z; q), which turns the PDE above into the following

−Ĵt +
1

2γ
〈(σ∗FσF )−1µF , µF 〉+ 〈b̄, Ĵx〉+ sup

u∈[0,ū]

[
uĴz + qL

]
+ γF (Ĵx) +

1
2

tr
(

Σ∗ΣĴxx
)

= 0,

(3.18)
with the initial condition

Ĵ(0, x, z; q) =
log γ
γ

+ qΦ(p(T, x), z). (3.19)

Notice that this Cauchy problem is a particular case of the one studied in [16]. Indeed,
our Assumption 3.3 implies assumptions (A1), (A2), (A3) in [16].1

(ii) Uniqueness. In order to prove that the log-value function J is the unique con-
tinuous viscosity solution satisfying the terminal condition, we argue by contradiction.
Assume that there exists another continuous viscosity solution J̃ of Equation (3.18) sat-
isfying the terminal condition (3.19) and with quadratic growth. Then, by calling J∗

and J̃∗ their u.s.c. envelopes and J∗ and J̃∗ their l.s.c. envelopes, we have, by defini-
tion of viscosity solution, that J∗, J̃∗ are u.s.c. viscosity subsolutions and J∗, J̃∗ are
l.s.c. viscosity supersolutions of Equation (3.18), obviously with J̃∗ = J̃∗ = J̃ . We
also have J∗(T, x, z; q) ≤ log γ

γ + qΦ(p(T, x), z) ≤ J∗(T, x, z; q), by definition of upper and

lower envelopes. We now want to prove that J∗(T, x, z; q) ≥ log γ
γ + qΦ(p(T, x), z) and

J∗(T, x, z; q) ≤ log γ
γ + qΦ(p(T, x), z) for all q ≥ 0, x, z. We only show the latter, as the

former can be proved similarly. First notice that we have

lim
t→T

J(t, x, z; q) =
log γ
γ

+ qΦ(p(T, x), z).

1In particular, Assumption 3.3(iii) implies the same property for B−1, giving (A1)(iii) in [16]. Indeed
on the image of B, B1/2 as well its inverse B−1/2 are well-defined. Since B−1/2 : Im(B) → Im(B), we
have that, e.g., the LHS in (3.15) implies δ−1|B−1/2y|2 ≤ 〈B−1/2y,BB−1/2y〉 for all y ∈ Im(B), leading to
〈y,B−1y〉 ≤ δ|y|2 for all y ∈ Im(B). The other inequality is obtained in a similar way.
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Thus, by the definition of u.s.c. envelope, we have

J∗(T, x, z; q) := lim sup
(x′,z′)→(x,z),t→T

J(t, x′, z′; q) ≤ lim sup
(x′,z′)→(x,z)

lim
t→T

J(t, x′, z′; q)

=
log γ
γ

+ lim sup
(x′,z′)→(x,z)

Φ(p(T, x′), z′) =
log γ
γ

+ Φ(p(T, x), z),

since the function J̄(t, x, z) := lim sup(x′,z′)→(x,z) limt′→t J(t′, x′, z′; q) is clearly u.s.c. and
Φ(p(T, ·), ·) is continuous, being Φ(·, ·) and p(T, ·) continuous by assumption. Moreover it
can be proved that J(t, x, z; q) has quadratic growth for all q ≥ 0 (ref. Lemma A.1 in the
Appendix). Then, by the comparison theorem [16, Theorem 2.1], we have that

J∗ ≤ J∗ ≤ J̃∗ ≤ J̃∗ ≤ J∗

on [0, T ]×Rm ×R. This implies that J∗ = J∗ = J = J̃ , and that J is continuous and the
proof is complete.

Notice that we worked on the log-value function’s PDE (3.7) instead of on the PDE for
the price v (cf. Equation (3.11)), because the latter is more delicate to handle due to the
fact that it contains the first derivative J0

x of the log-value function with no claim. Applying
Da Lio and Ley results directly to Equation (3.11) would require a Lipschitz continuity
for J0

x uniform in t, which is difficult to have in general. Nonetheless, when this condition
is satisfied as in Cartea-Villaplana and in the linear dynamics model (see Section 5), the
same arguments go through and one can prove that v is the unique continuous viscosity
solution with quadratic growth to Equation (3.11) with terminal condition (3.12), as the
following corollary explicitly states. Its proof is analogous to that of Theorem 3.5, it is
therefore omitted.

Corollary 3.6. Under Assumptions 3.3 and the additional assumption that J0
x is Lips-

chitz in x uniformly in t, then the UIP v is the unique continuous viscosity solution with
quadratic growth of Equation (3.11) with terminal condition (3.12).

In the complete market case, one can show that the UIP v is the unique viscosity
solution of the HJB equation for the control problem in Equation (2.13). This result
generalizes previous ones in [4, 10, 15, 19, 36], which were obtained for particular types of
structured contracts, e.g., swings and virtual storages.

Corollary 3.7 (Complete market case). Under Assumption 3.3(i),(ii),(iv), if d = n and
σF has full rank, then v(t, x, z; q) is the unique continuous viscosity solution with quadratic
growth of the HJB equation

vt + 〈bQ, vx〉+
1
2

tr (Σ∗Σvxx) + sup
u∈[0,ū]

[
uvz + qL

]
= 0, (3.20)

with terminal condition
v(T, x, z; q) = qΦ(p(T, x), z). (3.21)

As a consequence of the result in Theorem 3.5, we have a good candidate for the
optimal hedging strategy, which is given by

π̂ = (σ∗FσF )−1σ∗FΣvx, (3.22)
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where vx is the gradient with respect to the factor variables, when it exists, of the UIP.
Indeed, the candidate optimal strategy with or without the structured product in the
portfolio is given by Equation (3.22), where J = J(t, x, z; q) with q > 0 or q = 0 in the two
cases, respectively. Thus it is given by the difference of the two optimal portfolios, i.e.,

π̂ = (σ∗FσF )−1σ∗FΣ(Jx(t, x, z; q)− Jx(t, x, z; 0)) = ((σ∗FσF )−1σ∗FΣvx)(t, x, z; q),

in analogy with [5, 6].

4 A model with two assets and constant correlation

In this section we focus on the following incomplete market model which is a particular
case of our general setting,

dFt
Ft

= µF (t, Pt)dt+ σF (t, Pt)dW 1
t

dPt = µP (t, Pt)dt+ σP (t, Pt)dW 2
t ,

(4.1)

where W 1 and W 2 are two correlated one-dimensional standard Brownian motions with
constant correlation ρ ∈ (−1, 1), i.e., d〈W 1,W 2〉t = ρdt for all t ∈ [0, T ]. We will often use
the decomposition W 2 = ρW 1 +

√
1− ρ2W⊥, where W⊥ is another standard Brownian

motion, orthogonal to W 1. The obtained process W = (W 1,W⊥) is a bi-dimensional
Brownian motion with independent components. Notice that here Pt is the only state
variable. Hence in this section, with an abuse of notation, v(t, p, z; q) will replace v(t, x, z; q)
and all its partial derivatives will have subscript p instead of x.

The coefficients µF , µP , σF , σP are real valued functions defined on [0, T ] × R. We
assume that µF (t, p) and σF (t, p) are continuous in (t, p), while µP (t, p) and σP (t, p) are
Lipschitz continuous in p (uniformly in t). Notice that this class of models includes the
linear dynamics model in Example 2.5. We suppose that all the assumptions of the previous
section are in force, so that we will able to use the general results in Theorem 3.5.

Inspired by the results in Oberman and Zariphopoulou [33], which in turn extend El
Karoui and Rouge [17] to American options, we obtain a representation of the UIP of our
structured product CT as the value function of an auxiliary optimization problem with
respect to the control u only, under a suitable equivalent martingale measure involving
the derivative J0

p of the log-value function of the problem with no claim, and where γ is
replaced by a modified risk aversion γ̃ = γ(1− ρ2).

Let us consider the measure Q0 defined as

dQ0

dP

∣∣∣
Ft

:= D0
t := exp

(
−
∫ t

0
θ∗udWu −

1
2

∫ t

0
|θu|2du

)
, t ∈ [0, T ], (4.2)

where W = (W 1,W⊥)∗ and θ is given by

θt = (θ1
t , θ
⊥
t )∗ =

(
µF
σF

, γ
√

1− ρ2σPJ
0
p

)
(t, Pt)∗. (4.3)

Notice that the stochastic exponential is well defined, since Pt has continuous paths and
µF and σF are continuous, so that the stochastic integral

∫ t
0 θ

1
udW

1
u is well-defined for every
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t. Moreover, the second integral
∫ t

0 θ
⊥
u dW

⊥
u is also well-defined thanks to the continuity of

σP (t, Pt) and the linear growth of J0
p (cf. proof of Lemma A.1).

Finally, in order for the equation (4.2) to define a probability measure, we need to
impose that E[D0

T ] = 1.

Remark 4.1. In the case when the coefficients of F do not depend on the state variable
P , as in the standard Black-Scholes model with constant correlation, we have that J0

p ≡ 0,
and Q0 coincides with the minimal entropy martingale measure. Therefore the measure
Q0 can be viewed as a perturbation of the minimal entropy martingale measure where the
correction involves the log-value function J0 of the optimal pure investment problem.

In what follows we will need the following lemma, stating the dynamics of the spot
price under the martingale measure Q0. Its proof is based on a standard application of
Girsanov’s theorem, and is therefore omitted.

Lemma 4.2. Assume E[D0
T ] = 1. Then, the dynamics of the spot price P under Q0 is

given by

dPt =
(
µP − ρσP

µF
σF
− γ̃σ2

PJ
0
p

)
(t, Pt)dt+ σP (t, Pt)dW 0

t (4.4)

=: µ̃P (t, Pt)dt+ σP (t, Pt)dW 0
t , (4.5)

where

dW 0
t := dW 2

t +
(
ρ
µF
σF

+ γ̃σPJ
0
p

)
(t, Pt)dt

defines a Q0-Brownian motion and γ̃ = γ(1− ρ2).

The following proposition extends to our setting the characterisation in Oberman and
Zariphopoulou [33, Prop. 10]. Recall that when u ∈ Ut the (controlled) payoff Cut,T also
starts from time t.

Proposition 4.3. Under all our assumptions and if the derivative J0
p (t, p) is Lipschitz in

p uniformly in t, then the utility indifference price v = v(t, p, z; q) satisfies

v(t, p, z; q) = sup
u∈Ut

(
−1
γ̃

ln E0
t,p,z

[
e−γ̃qC

u
t,T

])
, (4.6)

where E0
t,p,z denotes the conditional expectation under Q0.

Proof. We prove the result by showing that the candidate function

ṽ = ṽ(t, p, z; q) := sup
u∈Ut

(
−1
γ̃

ln E0
t,p,z

[
e−γ̃qC

u
t,T

])
satisfies Equation (3.11) with terminal condition (3.12) and we conclude using the com-
parison theorem in Da Lio and Ley [16, Th. 2.1]. To this end, write ṽ as

ṽ(t, p, z; q) = −1
γ̃

ln(−w(t, p, z; q)), (4.7)

with
w(t, p, z; q) := sup

u∈Ut

E0
t,p,z

[
−e−γ̃qC

u
t,T

]
.
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The value function w above solves the following Cauchy problem in a viscosity sense{
wt(t, p, z; q) + sup

u∈[0,ū]
[Luw(t, p, z; q)− γ̃qL(p, z, u)w(t, p, z; q)] = 0

w(T, p, z; q) = − exp(−γ̃qΦ(p, z))

with
Luw = µ̃Pwp + uwz +

1
2
σ2
Pwpp.

The corresponding Cauchy problem for ṽ is immediately obtained: ṽt(t, p, z; q) + sup
u∈[0,ū]

[
L̃uṽ(t, p, z; q) + qL(p, z, u)

]
= 0

ṽ(T, p, z; q) = qΦ(p, z),
(4.8)

with

L̃uṽ = µ̃P ṽp + uṽz +
1
2
σ2
P

[
ṽpp − γ̃ṽ2

p

]
,

which is a particular case of Equation (3.11) in this case. To identify ṽ with the UIP
v, we need a uniqueness result for the PDE above.

Since J0
p is assumed to be uniformly Lipschitz, we can apply verbatim the same argu-

ments as in the uniqueness step of the proof of our Theorem 3.5 applied to the PDE for
v to get the existence of a unique continuous viscosity solution with quadratic growth to
the Cauchy problem (4.8). Finally, the boundedness of the payoff Cut,T clearly implies that
the value function ṽ(t, p, z) has quadratic growth. Thus the proof is complete.

The previous proposition suggests the following approach to compute the UIP and the
corresponding (partial) hedging strategy of a given structured product:

• solve the pure optimal investment problem V (t, y, x; 0) with no claim;

• compute the x-derivative of the log-value function J0 giving the new probability
measure Q0 as well as the corresponding dynamics of P ;

• solve the maximisation problem in (4.6), which is now computed with respect to the
control u only; its value function gives the UIP while its derivative with respect to
x gives the hedging strategy via (3.22).

Remark 4.4. As in the general case, the uniform Lipschitz continuity of the derivative
J0
p might be difficult to verify in this model as well. Nonetheless, in the case of the linear

dynamics model in Example 2.5 it turns out this derivative satisfies J0
p (t, p) = β(t)+2Γ(t)p,

where the coefficients β and Γ, given in the following Section 5.1, are continuous bounded
functions of time. Thus, at least in this case J0

p is indeed uniformly Lipschitz and the
previous result can be applied.

5 Examples

In this section we derive the PDEs for the log-value function J and for v in Examples 2.5
and 2.6.
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5.1 The linear dynamics model

We focus here on Example 2.5. As already pointed out, this model is a slight generalization
of Carmona-Ludkovski model [11]. In this setting we have m = n = 1, d = 2 and the
dynamics of the state variable X is characterized by b(t, x) = δ(θ − x) and Σ∗(t, x) =(
ρσP

√
1− ρ2σP

)
. Furthermore, the coefficients in the evolution of F are: µF (t, x) =

(a− kx) and σ∗F (t, x) = (σ 0). Here Equation (3.10) becomes:

J0
t +

1
2γ

(a− kx)2

σ2
− ρσP

σ
(a− kx)J0

x + δ(θ − x)J0
x −

1
2
γσ2

P (1− ρ2)
(
J0
x

)2 +
1
2
σ2
PJ

0
xx = 0.

Then, in analogy with [9], one guesses that the solution J0 has the general form

J0(t, x) = α(t) + β(t)x+ Γ(t)x2,

such that J0(T, x) ≡ log γ
γ . This ansatz, by collecting terms in x and x2, produces the

system of ODEs (apexes denoting the derivative in t)

α′ +
a2

2γσ2
− ρσP

σ
aβ + δθβ − 1

2
γσ2

P (1− ρ2)β2 + σ2
PΓ = 0,

β′ − ak

γσ2
− ρσP

σ
(2aΓ− kβ) + δ(2θΓ− β)− 2γσ2

P (1− ρ2)Γβ = 0,

Γ′ +
k2

2γσ2
+ 2ρk

σP
σ

Γ− 2δΓ− 2γσ2
P (1− ρ2)Γ2 = 0,

with final condition

α(T ) =
log γ
γ

, β(T ) = 0, Γ(T ) = 0.

The above system is solvable in closed-form, as the third equation is a Riccati equation in
Γ, the second one is a linear equation in β, which can be solved once that Γ is known, and,
finally, the first one can be solved in α just by integration. Notice that, if the parameter
k in µF is equal to zero (as in [10]), then the dynamics of the forward contract does not
depend on X, so that J0 does not depend on x, thus leading to β ≡ Γ ≡ 0 on [t, T ].

Finally, Equation (3.11) is given in this case by

vt +
(
δ(θ − x)− ρσP

σ
(a− kx)− γσ2

P (1− ρ2)(β + 2Γx)
)
vx +

1
2
σ2
P vxx

−1
2
γσ2

P (1− ρ2)v2
x + sup

u∈[0,ū]

[
uvz + qL

]
= 0,

with terminal condition
v(T, x, z; q) = q Φ(ex, z). (5.1)

5.2 The Cartea-Villaplana model

In the remaining part of this section we will focus on Example 2.6. We will deal separately
with two different cases (recall that here d = 2): the incomplete market setting, in which
only one forward contract is traded and the complete one, characterized by the presence
of two forward contracts.
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5.2.1 The case of one forward contract

The Cartea-Villaplana model reduces to our setting taking m = 2, i.e., X = (XC , XD)∗

and d = 2 and setting:

b(t, xC , xD) =
(
−kCxC
−kDxD

)
, Σ∗(t, xC , xD) =

(
σC(t) 0

0 σD(t)

)
·
(

1 0
ρ
√

1− ρ2

)
so that we can keep our convention that the bi-dimensional Brownian motion W has
independent components. Also, notice that Σ has full rank unless ρ = ±1, as also

Σ∗Σ =
(

σ2
C ρσCσD

ρσCσD σ2
D

)
.

Moreover, in the case n = 1, let us consider a generic forward contract F with maturity T .
Here σF (t,Xt) only depends on t, so that, with an abuse of notation, we will use σF (t):

σ∗F (t) =
(
αCe

−kC(T−t)σC(t) αDe
−kD(T−t)σD(t)

)
·
(

1 0
ρ
√

1− ρ2

)
.

First of all we notice that the correlation between the (logarithms of) spot and forward
prices is not constant, thus the results of Section 4 cannot be directly applied here. Indeed,
we have

Corr(logPt, logFt) =
Cov(logPt, logFt)√

Var(logPt)Var(logFt)

where the instantaneous (log-) covariance and variances are given by

Cov(logPt, logFt) = α2
Cσ

2
Ce
−kC(T−t) + α2

Dσ
2
De
−kD(T−t) + αCαDρσCσD(e−k

C(T−t) + e−k
D(T−t)),

Var(logPt) =
(
α2
Cσ

2
C + α2

Dσ
2
D + 2αCαDρσCσD

)
,

Var(logFt) =
(
α2
Cσ

2
Ce
−2kC(T−t) + α2

Dσ
2
De
−2kD(T−t) + 2αCαDρσCσDe−(kC+kD)(T−t)

)
.

Notice that, as expected, when T → t the correlation tends to 1, while when T → +∞ the
correlation goes to αCσC+ραDσD√

α2
Cσ

2
C+α2

Dσ
2
D+2ραCαDσCσD

if kC < kD, and to αDσD+ραCσC√
α2

Cσ
2
C+α2

Dσ
2
D+2ραCαDσCσD

if kC > kD.
We can see, then, that the 2×2 matrix B, apart from its analytic form, has rank equal

to one in the case when one uses only one forward contract for hedging. In fact, first of all
in this case one has (recall Equation (3.8))

B = Σ∗(I2 − σF (σ∗FσF )−1σ∗F )Σ,

with σ∗FσF being the real number

(σ∗FσF )(t) = α2
De
−2kD(T−t)σ2

D(t)+α2
Ce
−2kC(T−t)σ2

C(t)+2ραCαDe−(kC+kD)(T−t)σC(t)σD(t).

Define now x = Σ−1σF . Then x 6= 0 but we have

〈x,Bx〉 = σ∗F (I2 − σF (σ∗FσF )−1σ∗F )σF = σ∗FσF − σ∗FσF (σ∗FσF )−1σ∗FσF = 0.

For this reason, working on the image of B in Equation (3.16) is fully justified here, as
rank B = 1.
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We now come to the PDE satisfied by the log-value functions J0. Due to the fact that
the coefficients µF and σF do not depend on X, as already pointed out in Remark 3.2,
here J0 satisfies the simplified Equation (3.13), which here becomes

J0
t +

1
2γ
|µF |2

|σF |2
= 0, (5.2)

which gives

J0(t) =
log γ
γ

+
∫ T

t

1
2γ
|µF (u)|2

|σF (u)|2
du.

Of course here J0
x ≡ 0, and Equation (3.11) for the utility indifference price becomes

exactly the same as in Equation (3.14):

vt +
(
b∗ − 〈(σ∗FσF )−1σ∗FΣ, µF 〉

)
vx +

1
2

tr (Σ∗Σvxx)− 1
2
γv∗xBvx + sup

u∈[0,ū]

[
uvz + qL

]
= 0.

Finally, once we have computed the UIP v, in order to obtain the candidate optimal
hedging strategy π̂ in Equation (3.22), one has to compute

(σ∗FΣ)∗(t) =

(
αCe

−(T−t)kC
σ2
C(t) + ραDe

−(T−t)kD
σC(t)σD(t)

αDe
−(T−t)kD

σ2
D(t) + ραCe

−(T−t)kC
σC(t)σD(t)

)
which is the vector multiplier for the gradient vx.

5.2.2 The case of two forward contracts

Assume now that we can hedge our structured product with two forward contracts F 1 and
F 2 having, respectively, maturity T1 and T2, with T ≤ T1 < T2. Then, we have (notice
that here we do not insert T1 and T2 in the independent variables’ set)

σ∗F (t) =

(
αCe

−kC(T1−t)σC(t) αDe
−kD(T1−t)σD(t)

αCe
−kC(T2−t)σC(t) αDe

−kD(T2−t)σD(t)

)
·
(

1 0
ρ
√

1− ρ2

)
.

Of course, in this situation the matrix B = 0, since σF is invertible. As before in subsection
5.2.1, we now explicitly find J0, given that it satisfies the simplified Equation (3.13). This
leads to

J0(t) =
log γ
γ

+
∫ T

t

1
2γ
〈µF (u), (σ∗FσF )−1(u), µF (u)〉 du.

Here again J0
x ≡ 0 and Equation (3.11) for the utility indifference price becomes

vt +
(
b∗ − 〈(σ∗FσF )−1σ∗FΣ, µF 〉

)
vx +

1
2

tr (Σ∗Σvxx) + sup
u∈[0,ū]

[
uvz + qL

]
= 0.

Finally, given the UIP v, the candidate optimal hedging strategy π̂ is obtained as in
Equation (3.22): π̂ = (σ∗FσF )−1σ∗FΣvx, with

(σ∗FσF )−1(σ∗FΣ)(t) =


e(−t+T1)kC

αC
(
1− e(T1−T2)(kC−kD)

) e(−t+T1)kD

αD
(
1− e(T1−T2)(kD−kC)

)
e(−t+T2)kC

αC
(
1− e(T1−T2)(kD−kC)

) e(−t+T2)kD

αD
(
1− e(T1−T2)(kC−kD)

)

 .
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6 Numerical results

We now show a numerical implementation of the pricing of a structured contract.2 More
precisely, we compare our approach, giving the UIP through a PDE with a quadratic term
(the template being Equation (3.11)), with the standard approach in the literature (e.g.
[4, 10, 15, 19, 36]), which gives the price in terms of a PDE which is essentially linear apart
from the first derivative in z, which is the only one appearing in a nonlinear way, and has
the same form as Equation (3.20).

For the numerical implementation, we choose to price a swing contract for two reasons:
it is rather straightforward to implement, since, e.g., a virtual storage would have required
a reparameterization as in Remark 2.10; secondly, its numerical solution has already been
studied in [10], so that we have a benchmark to compare with. In order to make the
comparison meaningful, we choose a special case of the linear dynamics model of Example
2.5 with k = 0. We recall that in this case, the relevant dynamics for pricing purposes is
the one under the minimal entropy martingale measure Q0 and it is given by

dPt = b̄(Pt)dt+ σPPtdW
0
t , with b̄(p) := p

(
δ(θ − log p) +

1
2
σ2
P − ρa

σP
σ

)
,

which follows from Equation (4.4) with J0
p being 0 as k = 0. The numerical values for the

other coefficients are given by

δ = 0.4, σP = 0.55, θ = 3.5, σ = 0.3, a = 0.03, ρ = 0.5.

Here the first three coefficients are chosen equal to those in [10] for the spot price P for
consistency reason. The last three coefficients have realistic values and are relative to the
dynamics of the forward contract F , which does not appear in [10], and to the correlation
between (the logarithms of) P and F . Regarding the swing contract, we choose as in
[10] an intermediate payoff L(p, z, u) = u(p − K), with K = 0 and u ∈ [0, 1], i.e. we
choose ū = 1, a maturity of T = 1 and risk-free interest rate r = 0. Moreover, in order
to approximate the fact that Benth et al. [10] have a strict constraint on Zu, namely
ZuT ≤M = 0.5, here we use the terminal condition

Φ(p, z) = min(0,−C(z − 0.5)).

Indeed, in [4] is proved that, when C →∞, the price of a contract with penalty Φ converges
to the price of a contract with strict constraints, which is the kind that was priced in [10].
For this numerical experiment, we set C = 100. Finally, as risk-aversion parameter we
take γ = 1.

In Figure 1 we plot the prices of the swing contract with two different methodologies.
In more detail, in Figure 1(a), we compute the swing price with the classical approach in
the literature, as in, e.g., [10]. On the other hand, in Figure 1(b), we compute the swing
UIP by solving Equation (3.11). As we can see, the two price surfaces have similar shapes,
which shows that the approach in the literature is quite robust on the pricing side.

In order to show the difference between the two prices, in Figure 2 we plot the two
price surfaces, where the surface above is the “classical” price and the one below is ours.

We can thus see that the “classical” procedure slightly overprices contracts, in compar-
ison to the utility indifference pricing approach presented here. In more detail, the point

2All the numerical tests have been performed in Mathematica 9 with a 2GHz Intel Core 2 Duo Macintosh
with 2GB RAM.
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(a) “classical” approach
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(b) utility indifference price

Figure 1: Swing contract prices with the classical methodology (a) and with our UIP
approach (b). Here the prices are computed in t = 0.5 and the spot price P is in log-scale,
while Z ranges in [0, 0.5].
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Figure 2: Difference between the “classical” price (above) and the UIP (below): the two
price surfaces are the same as in Figure 1, with an axis rotation to highlight the prices’
difference.

where the difference between the prices is maximum is (log p, z) = (4.5, 0), where the linear
price (“classical” approach) is 42.175 while the UIP is 29.499. Of course, this difference is
basically due to our choice of risk aversion parameter γ. A dependence of the UIP on γ
can be seen in Table 1.

γ 1 0.5 0.2 0.1 0.01 0
price 29.499 33.630 37.681 39.666 41.899 42.175

Table 1: Dependence of the price on γ

It can be clearly seen that, as γ → 0, the UIP converges to the “classical” price. This
is not a surprise, as for γ = 0 Equation (3.11), which gives the UIP, simplifies to Equation
(3.20), which gives the linear price. The convergence of the solutions here is implied by
robustness properties of viscosity solutions. A rigorous analysis of this convergence is
beyond the scope of this paper.
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7 Conclusions

In this paper, we studied the price of structured products in energy markets from a buyer’s
perspective using the utility indifference pricing approach. In our setting the agent has the
possibility to invest in the forward market and his utility function is of exponential form.
We showed that the price is characterized in terms of continuous viscosity solutions of
suitable non-linear PDEs. As a consequence, this gave us both an optimal exercise strategy
for the structured product as well as a portfolio strategy to partially hedge the financial
position.

Moreover, in a setting with two assets and constant correlation, the UIP was found to
be the value function of an auxiliary simpler optimization problem under a risk neutral
probability, that can be interestingly interpreted as a perturbation of the minimal entropy
martingale measure. To our knowledge, this particular change of measure has never been
used before in the literature. We also checked in the numerical experiments that, in the
case of swing options, utility indifference prices are lower than the ones currently present
in the literature, as expected.

We intend to develop this work in several directions in the future: compute asymptotic
expansions for the UIP for small risk aversion; extend our numerical results, by including
the analysis of the optimal exercise curves and the candidate optimal hedging strategies;
enlarge our class of models to include jumps that would generate spikes in prices. This
latter feature would be particularly relevant in electricity markets.

A Regularity properties of the log-value function

Lemma A.1. Let q ≥ 0. Under Assumptions 2.3 and 3.3, the log-value function J(t, x, z; q)
defined as in (3.3) has quadratic growth in (x, z) uniformly in t.

Proof. Since the claim Cut,T is bounded in (x, z) uniformly in the controls u, it suffices to
prove that J0(t, x), the log-value function of the pure investment problem, has quadratic
growth in x uniformly in t. To do so, we follow closely the approach in Pham [30]. We
will only sketch the proof, pointing out the main differences.

First of all, repeating exactly the same arguments as in the proof of Theorem 3.1 in
[30], we get that if the PDE (3.10) with terminal condition J0(T, x) = log γ

γ admits a unique
solution belonging to C1,2([0, T ) × Rm) ∩ C0([0, T ] × Rm), whose x-derivative has linear
growth, then such a solution coincides with J0(t, x).

To conclude the proof, we need to show that the PDE (3.10) has a unique smooth
solution as above, whose x-derivative has linear growth. We will adapt to our setting the
arguments in the proof of [30, Th. 4.1] under his Assumptions (H3a), which corresponds
to our Assumptions (3.3)(iv) and (v).

First, consider the PDE (3.17) in the case q = 0, with F (w) replaced by

Fk(w) := inf
α∈Bk

{−L(α)− 〈α,w〉} , w ∈ Rm, (A.1)

where Bk is the centered ball in Rm with radius k ≥ 1. Proceeding as in the proof of
[30, Th. 4.1], we can apply Theorem 6.2 in [21], giving the existence of a unique solution
J0,k ∈ C1,2([0, T )×Rm)∩C0([0, T ]×Rm) with polynomial growth in x, for the parabolic
PDE

J0,k
t +

1
2γ
〈(σ∗FσF )−1µF , µF 〉+ 〈b̄, J0,k

x 〉+ γFk(J0,k
x ) +

1
2

tr
(

Σ∗ΣJ0,k
xx

)
= 0, (A.2)
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with terminal condition J0,k(T, x) = log γ
γ . Notice that the function L appearing in the

definition of Fk(w) in Equation (A.1) can take the value −∞, which is not a problem here
since this value does not contribute to the infimum over α.

The next step consists, as in [30], in using a stochastic control representation of the
solution J0,k to derive a uniform bound on the derivative, independently of the approxi-
mation. Indeed, from standard verification arguments we get that

J0,k(t, x) = inf
α∈Bk

EQ
[∫ T

t
L̃(s,Xs, αs)ds | Xt = x

]
,

where
L̃(s, x, α) =

1
2γ
〈(σ∗FσF )−1µF , µF 〉(s, x)− γL(α),

where Bk is the set of Rm-valued adapted processes α bounded by k, and the controlled
dynamics of X under Q is given by

dXs =
(
b̄(s,Xs)− γαs

)
ds+ Σ∗(s,Xs)dWQs ,

where WQ is a d-dimensional Brownian motion under Q. Notice that, since L̃ takes the
value −∞ outside the image of B, then the optimal Markov control evaluated along the
optimal path α̂(s, X̂s) will lie on Im B a.s. for every s ∈ [t, T ]. We can use Lemma 11.4 in
[22] and the same estimates as in [30, Lemma 4.1] to obtain

|J0,k
x (t, x)| ≤ C(1 + |x|), ∀(t, x) ∈ [0, T ]× Rm,

for some positive constant C, which does not depend on k. Now we argue as in the proof
of [30, Th. 4.1], Case (H3a), to deduce that |α̂k(t, x)| ≤ C for all t ∈ [0, T ] and |x| ≤M for
some positive constant C (independent of k) and an arbitrarily large M > 0. Therefore,
we get that, for k ≤ C, Fk(J

0,k
x ) = F (J0,k

x ) for all (t, x) ∈ [0, T ] × BM . Letting M tend
to +∞, we finally get that J0,k is a smooth solution with linear growth on derivative to
the PDE 3.17 (with q = 0). To conclude, we have that J0 = J0,k for k sufficiently large,
giving, in particular, that J0 has quadratic growth in x uniformly in t. Therefore the proof
is complete.
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