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Abstract

In this paper we present a spatial nonparametric analysis of local multipliers. In particu-
lar, we first present a spatial equilibrium model that clarifies the conditions under which
the local nontradable multiplier exists and, at the same time, suggests that the multiplier
of a city might depend on the size of the shock occurring to the local tradable sector in
a nonlinear fashion as well as on shocks in other cities of the system. We then estimate
the effect of an exogenous shock to tradable employment on the employment in the non-
tradable sector and, in order to achieve this, we first develop a two-step nonparametric
estimator that allows for spatial effects. Our analysis shows that spatial effects must be
allowed for and, when this is done, the local nontradable multiplier depends nonlinearly
on the size of the shock to the tradable sector.

Keywords: Local Multipliers, Spatial dependence

1 Introduction

State and local governments employ large amounts of public funds in economic develop-

ment policies aimed at attracting and fostering new economic activities or at retaining

existing ones. The outcomes of these efforts could be new or more stable jobs, higher
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income and wealth and an improved tax base. Indeed, it appears that job creation has

actually represented the primary goal sought after by policy makers (Eberts, 2005) possi-

bly because this may also lead to fiscal benefits in the form of an increase of tax revenue

net of public expenditure. In fact, due to multiplier effects, the total increase in local

jobs can be greater than the increase in jobs in assisted businesses when these businesses

produce tradable goods. For this reason, most of local development interventions are

actually targeted to the tradable sector.

In the US, a precise account of the total amount of resources involved in these activities

is almost an impossible task given the large number of agencies involved and the even

larger number of policies being implemented. However, a survey of state-funded programs

conducted in 1998 (Poole et al., 1999), calculated that the states allocated approximately

$4.6 billion in tax incentive programs and $6.3 billion in non-tax incentives. This figure

excludes tax and other financial incentives, as well as job training and infrastructure

incentives provided by local (substate) governments; it also excludes local development

efforts carried out under the leadership of non-governmental organizations. Eberts (2005)

reports an overall estimate of $30 billion a year devoted to local development initiatives

through direct and indirect funds which implies more than $2,000 per targeted job.

In a recent paper, Moretti (2010) proposes a simple methodology to assess the effective-

ness of local development interventions in creating new jobs. The theoretical framework

that underlies the empirical analysis builds on the traditional general equilibrium setting

by Rosen (1979) and Roback (1982). Differently from the original Rosen-Roback set-up,

in Moretti’s framework local shocks to local labor markets are not necessarily fully capi-

talized in the price of land as the local supply of labor is not necessarily infinitely elastic

and the local housing supply in not necessarily perfectly inelastic (see also Moretti, 2011).

Inside a city, a positive shock to the labor demand of an industry within the tradable

sector, possibly induced by a local development initiative, has positive indirect effects on

employment in the nontradable sector as well as in other industries within the tradable
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sector. There are however offsetting general equilibrium effects that pass through local

labor and housing markets. In particular, if the elasticity of the local supply of labor

is not elastic (which, in turn, depends on the degree of geographical mobility of workers

and on the elasticity of housing supply), the initial increase in employment crowds out

employment in other industries due to a local increase in real wages. Local multipliers

are thus the net effect of indirect and general equilibrium effects.

In the present paper, we develop a spatial equilibrium model that shares many fea-

tures with Moretti’s analysis while following in its set-up the models by Merrifield (1987

and 1990) and McGregor et al. (2000). In particular, our model shows that a positive

exogenous productivity shock in the tradable sector of a city may trigger a nontradable

multiplier in the same city. This same model, however, suggests the existence of other

interesting effects: on the one hand, a local nontradable multiplier might as well be trig-

gered by shocks occurring to other cities of the system; on the other hand, the size of the

local nontradable multiplier might nonlinearly depend on the size of the shock.

The effects suggested by the theoretical model might have very important implications

for the empirical analysis. To establish the magnitude of the local nontradable multiplier,

Moretti estimates a very simple model

y = α + βx+ ε (1)

in which y and x are the change in the log number of jobs in the nontradable and tradable

sectors respectively. Estimates of β can thus be interpreted as elasticities and from these

it also possible to derive, for each new job in the tradable sector, the number of additional

jobs created in the nontradable sector. These estimates are obtained either via OLS or, in

order to deal with endogeneity concerns, via instrumental variables estimation. According

the latter estimates, approximately 1.6 additional jobs are created in the nontradable

sector of a city for each new job in the tradable sector of the same city.1

1 De Blasio and Menon (2011) apply this same framework to data on Italian local labour markets
but find no significant effects on nontradable industries.
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Despite its simplicity, this approach appears to be able to provide rather meaningful

estimates. One particularly appealing feature is that the exogenous variation is directly

attributed to the tradable sector which is the one that attracts most of the local develop-

ment initiatives (De Blasio and Menon, 2011). More generally, as emphasized by Moretti,

this approach represents a valid alternative to the traditional methodology, local Input-

Output analysis, that tends to overlook the employment effect for nontradables as well as

the offsetting general equilibrium effects.

According to our model, however, in addition to endogeneity, two other crucial issues

must be addressed in the empirical analysis in order to avoid misleading results. Firstly,

the underlying relation between exogenous and induced variations in local employment

is not necessarily linear. Secondly, within our framework space clearly plays a key role

through labor flows. Focussing on this second issue, it must be recognized that, from an

econometric point of view, neglecting space might lead to omit spatially structured co-

variates thus running the risk of obtaining biased estimates. Under these circumstances,

identifying valid instrumental variables could be extremely difficult as the omitted factors

are often unobservable. In addition, from a more interpretative point of view, ignoring

space in the empirical model means overlooking that the exogenous variation that benefits

one city does not necessarily come exclusively from the tradable sector of the same city.

Consider, for example, a city in which there has been no local exogenous variation in

the tradable sector. Implicit in model (1), no changes in nontradable sector employment

should be observed. However, such changes could be induced by exogenous variations in

the tradable sectors of other cities, with an intensity that is possibly negatively correlated

with relative distance. To the extent in which this happens, the local multiplier esti-

mated through model (1) might be biased. In particular, a positive (negative) effect on

nontradable sector employment from additional tradable jobs in neighboring cities leads

to overestimate (underestimate) the local multiplier.

To estimate model (1) we opt for a nonparametric approach. Operatively, to do so
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we develop a two-step nonparametric regression estimator that, moving from the stan-

dard Local Linear regression Estimator (LLE), allows for spatial effects. More in details,

we draw on the work by Martins-Filho and Yao (2009) who establish a set of sufficient

conditions for the asymptotic normality of the LLE estimator and propose a two step pro-

cedure for nonparametric regression with spatially dependent data that does not require

a priori parametric assumptions on spatial dependence. Information on its structure is

in fact drawn from a nonparametric estimate of the errors spatial covariance matrix. The

finite sample performance of this estimator is then assessed via an extensive Monte Carlo

experiment. Finally, to address endogeneity concerns, we include this new estimator in

both steps of the nonparametric Instrumental Variable estimator proposed by Newey et

al. (1999).

The structure of the paper is as follows. In Section 2 we present our economic model.

In Section 3 we introduce our new nonparametric estimator as well as the Monte Carlo

experiment. In Section 4 we report the empirical analysis and Section 5 concludes.

2 The economic model

2.1 General set up

Consider two cities (A and B) within a system of many. Each city features two sectors:

one produces consumption goods which are exported to the rest of the system and the

other produces goods which are consumed locally. Residents in each city maximize utility

obtained by spending all their income either on goods imported from the rest of the system

or on locally produced ones. There are two factors of production, capital and labor; the

supply of capital is assumed to be infinitely elastic at an exogenously determined rental

rate, labor supply is instead an increasing function of real consumption wage due to

migrations between the two cities. Mobility across cities is not perfect as a consequence

of idiosyncratic preferences for location. Similar to most models of this type, city income
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is total wage income as capital is assumed to be owned and produced outside the cities.

Production takes place in both sectors according to a linearly homogeneous production

function with constant elasticity of substitution. In addition, both sectors are in perfect

competition thus implying profit maximization and zero profits.

Similar to Merrifield (1987, 1990) and McGregor et al. (2000) we first present the

fundamental relationships in levels and then solve the model in proportionate-change

terms.2 In the exposition we shall focus on the relationships characterizing city Abut

an analogous set of equations holds for city B with the only exception that in the latter

no exogenous efficiency shock occurs in the tradable sector. Demands for tradable and

nontradable goods produced in city A are

qA1 = q1(pA1 , p
x
1)

qA2 = q2(pA2 , n
A · wA)

where pA1 is the price of the tradable good produced in city A, pX1 is the price of the

tradable good in the external market, pA2 is the price of the nontradable good in city A,

nA is the population and wA is the wage rate in A. The price of the tradable good is

pA1 = p1(wA, eA)

where eA is the efficiency level in the tradable sector. The price of the nontradable good

is given by

pA2 = p2(wA)

that enters the consumer price index of city A

cA = c(pA2 )

Note that the price index depends only on the price of the nontradable good; this is

because the tradable good produced in A is fully exported and the (constant) price of the

imported tradable good, pX1 , is taken as the numeraire.

2 The notation adopted here borrows heavily from the set up in McGregor et al., 2000.
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Given cost-minimization behavior of firms, labor demands in the two sectors are

ndA1 = nd1

(
qA1 , e

A,
wA

pA1

)

ndA2 = nd2

(
qA2 ,

wA

pA2

)
while aggregate labor demand in city Ais

ndA = ndA1 + ndA2

Labor supply in city A is represented by

nsA = n(V A, V B, LAB, n̄) (2)

where V A and V B are indirect utility levels in the two cities, LAB is a parameter describing

the relevance of idiosyncratic preferences for location in mobility decisions3 and n̄ =

nA + nB is the total number of individuals residing in the two cities assumed, as in

Moretti (2011), to be constant. In order to understand the logic behind equation (2), in

line with Moretti (2010) (see also Maier and Fischer, 1985) we consider a random utility

framework in which the indirect utility of individual i in city A is

V iA = V
(
Vd(w

A, cA), exp(εiA)
)

where Vd is a deterministic component (which might also include local amenities as in

the Rosen-Roback framework; Rosen, 1982, Roback, 1979) while exp(εiA) is the random

component representing individual’s i idiosyncratic preferences for city A.

Assuming a Cobb-Douglas specification for the utility function, letting φ denote the

(constant, both in time and across cities) share of expenditure on nontradables and taking

logs we obtain

log V iA = log wA − φlog cA + εiA (3)

3 This parameter can be supposed to depend also on the physical distance between alternative
locations
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Under the utility maximization rule, individual i will choose Awith probability

PA = P (log V iA − log V iB) = P (εiB − εiA < log V iA − log V iB)

For iid Gumbell distributed random terms εi and under the Independence of Irrelevant

Alternatives) hypothesis, the difference εiB − εiA follows a logistic distribution with scale

parameter (LAB) and variance (LAB)2π2/3. The probability of choosing city A is

PA =
exp

(
log V iA

LAB

)
exp

(
log V iA

LAB

)
+ exp

(
log V iB

LAB

)
or, using equation (3) and the corresponding one for city B,

PA =

(
wA

cAφ

) 1

LAB(
wA

cAφ

) 1

LAB +
(
wB

cBφ

) 1

LAB

and

PB =

(
wB

cBφ

) 1

LAB(
wA

cAφ

) 1

LAB +
(
wB

cBφ

) 1

LAB

In equilibrium, the expected number of individuals moving from A to B and vice-versa

must be equal thus leading to the following spatial equilibrium condition

PA · nB = PB · nA

From this, substituting the just derived probabilities PA and PB, we obtain

nA = nB

wA
wB

(
cA

cB

)−φ 1

LAB

(4)

which underlies the labor supply equation (2).

Finally, the labor market clearing condition in city A

ndA = nsA = nA (5)
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closes the model.

As anticipated, we solve the model in proportionate change terms as this allows lin-

earization and the interpretation of the parameters of the model as elasticities or shares.4

The growth rate of the demand for tradable goods produced in city A is then represented

by

q̇A1 = −ηA(ṗA1 ) (6)

where ηA is the price elasticity of demand for city’s A exports. In spatial equilibrium

models within the Rosen-Roback framework, it is often assumed that the city or region is

a small supplier within a perfectly competitive interregional or international market for

tradable goods and, consequently, a single price is imposed to this market. In line with

McGregor et al. (2000), we instead consider a more general setting in which the price

of tradable goods realized in city A can differ from the price of tradable goods realized

elsewhere; clearly, the single price assumption represents a special case of this setting

that applies when η → ∞. However, here we explicitly consider the situation in which

the interregional demand for tradable goods is highly elastic and consequently we assume

that η takes on a large (although not infinite) value.

Given our assumption about the utility functional form, the growth rate of the demand

for nontradable goods in city A is

q̇A2 = −ṗA2 + ṅA + ẇA (7)

Assuming linearly homogeneous CES production functions, the growth rates of labor

demand in the two sectors are

ṅdA1 = q̇A1 − ėA − σA1 (ẇA − ėA − ṗA1 ) (8)

ṅdA2 = q̇A2 − σA2 (ẇA − ṗA2 ) (9)

4 The dot notation symbolizes variables in proportionate change terms.
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where σA1 and σA2 are the factor elasticities of substitution in the production of, respec-

tively, tradable and nontradable goods and ėA is the labor-augmenting efficiency increase

in the production of tradable goods in city A arising from local economic development

policies.

Given firms’ cost minimization behavior, the growth rates of prices are

ṗA1 = αA1 (ẇA − ėA) (10)

ṗA2 = αA2 (ẇA) (11)

in which αA1 and αA2 are, respectively, the share of labor in the output of tradable and

nontradable sectors in city A.

Denoting with βj, j = A,B the initial proportion of labor force employed in the

tradable sector of city j, the proportional change in total labor demand in city A is then

given by

ṅdA = βAṅdA1 + (1− βA)ṅdA2 (12)

Since the share of labor in the production of nontradable goods is

α2 =
n2w

p2q2

we can show that the growth rate of the consumer price index in city A is

ċA =

[
1− βA

αA2

]
ṗA2 (13)

Now, letting λ be the initial proportion of city A’s population in the overall (given)

number of individuals residing in the two cities, i.e.

λ =
nA

n̄

from equation (4) it is possible to derive the proportionate change in labor supply in city

A

ṅsA =
1− λ
LAB

(ẇA − ẇB)− φ1− λ
LAB

(ċA − ċB) (14)
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Finally, city A’s labor market clearing condition in proportionate change terms is

ṅdA = ṅsA = ṅA (15)

2.2 Model’s equilibrium

At the outset, we must stress that the model’s solution reached in the present Section

applies to the case of small disturbances whereby λ, βA and βB can be assumed to remain

constant. We shall see later how the equilibrium multiplier effect is modified when this

assumption is removed.

We start solving the model by concentrating on the labor market equilibrium of city

A. In particular, by substituting equations (6) and (10) into (8) and equations (7) and

(11) into (9) we obtain

ṅdA1 = −ẇAΛA
1 + ėA(ΛA

1 − 1) (16)

where

ΛA
1 =

[
(1− αA1 )σA1 + αA1 η

A
]

and

ṅdA2 = ẇAΛA
2 + ėA(ΛA

1 − 1) (17)

where

ΛA
2 =

1− αA2 − σA2 (1− αA2 )

βA
− ΛA

1

These, in turn, lead to the following growth rate for the general equilibrium total labor

demand in city A

ṅdA =
[
(1− βA)ΛA

2 − βAΛA
1

]
ẇA + ėA(ΛA

1 − 1) (18)

Note that Λ1 and Λ2 are the general equilibrium wage elasticities of labor demand in,

respectively, the tradable and nontradable sectors. While Λ1 is always positive, the sign

of Λ2 is potentially ambiguous. Here, however, since the price elasticity of the tradable
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goods η is assumed to be large, Λ1 is also large and Λ2 is negatively signed and large in

absolute terms.

Moving to the labor supply side, through equations (11) and (13) and the correspond-

ing ones for city B, equation (14) yields

ṅsA =
1− λ
LAB

(
ΓAẇA − ΓBẇB

)
(19)

where Γj = 1− φ(1− βj) with j = A,B.

Then, from the labor market clearing condition (15) we get the equilibrium growth

rates of wages in the two cities

ẇA =
(ΛA

1 − 1)ΩB

ΩAΩB − (1−λ)λ
(LAB)2

ΓAΓB
ėA (20)

ẇB =
(ΛA

1 − 1)ΓA λ
LAB

ΩAΩB − (1−λ)λ
(LAB)2

ΓAΓB
ėA (21)

where

ΩA = βAΛA
1 − (1− βA)ΛA

2 +
1− λ
LAB

ΓA

and

ΩB = βBΛB
1 − (1− βB)ΛB

2 +
λ

LAB
ΓB

which are both positively signed sincer Λj
1 > 0 and Λj

2 < 0, with j = A,B.

In order to ensure the stability of the system, in each city, as wage increases, labor

supply must increase more rapidly than labor demand. Given that ΩA > 0 and ΩB > 0,

this requirement can be shown to imply

ΩAΩB >
(1− λ)λ

(LAB)2
ΓAΓB

which, in turn, entails ẇA > 0 and ẇB > 0.

By substituting the growth rates of wages in the two cities in (19) it is possible to

show that

ΓAẇA − ΓBẇB > 0
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so that

ṅsA > 0 ṅsB < 0

In other words, a positive shock to the efficiency of production in the tradable sector of

city A induces a shift of population from B to A. Having established this, we can now

concentrate on the conditions under which a nontradable employment multiplier exists.

2.3 Local nontradable multiplier

Within this theoretical framework, the local employment multiplier in city A is

MA =
dnA1 + dnA2

dnA1
= 1 +

(1− βA)

βA
ṅA2
ṅA1

(22)

and therefore includes the elasticity of nontradable with respect to tradable employment

ṅA2 /ṅ
A
1

The first step is to assess the existence of MA which, in our framework, requires both

growth rates in the elasticity to be positive whenever a positive shock (ėA > 0) occurs.

Moving from equation (16), it is possible to show that

ṅA1 = ∆B

[
−(1− βA)(ΛA

1 + ΛA
2 ) +

1− λA
LAB

ΓA

]
− λA
LAB

(1− βA)(ΛA
1 + ΛA

2 ) (23)

where ∆B = βBΛB
1 − (1 − βB)ΛA

2 and ΛA
1 + ΛA

2 =
1−αA2 −σ

A
2 (1−αA2 )

βA
. Since in our setting

the elasticity η is assumed to be large, we have that ∆B is also large and positive; hence,

what determines the sign of (23) is ΛA
1 + ΛA

2 which is finite and whose sign depends on

σA2 : ΛA
1 + ΛA

2 ≤ 0 when σA2 ≥ 1; ΛA
1 + ΛA

2 > 0 when σA2 < 1. More specifically

• if ΛA
1 + ΛA

2 ≤ 0, then ṅA1 is always positive

• if ΛA
1 + ΛA

2 > 0, then
ṅA1 ≥ 0 if ΛA

1 + ΛA
2 ≤

(1−λA)ΓA
LAB(1−βA)

ṅA1 < 0 if ΛA
1 + ΛA

2 > (1−λA)ΓA
LAB(1−βA)
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The just derived conditions, therefore, ensure that a positive shock hitting the tradable

sector (ėA > 0) actually lead to the creation of new jobs in the same sector (ṅA1 > 0).

Having established this, we can now concentrate on the conditions for the existence of the

local multplier, i.e. the conditions under which ṅA2 > 0. Moving from equation (17), it is

possible to show that

ṅA2 = ∆B

[
βA(ΛA

1 + ΛA
2 ) +

1− λA
LAB

ΓA

]
− λA
LAB

βA(ΛA
1 + ΛA

2 ) (24)

Also in this case, what determines the sign of (24) is ΛA
1 + ΛA

2 . In particular,

• if ΛA
1 + ΛA

2 ≥ 0, then ṅA2 is always positive

• if ΛA
1 + ΛA

2 < 0, then
ṅA2 > 0 if ΛA

1 + ΛA
2 > − (1−λA)ΓA

LABβA

ṅA2 < 0 if ΛA
1 + ΛA

2 < − (1−λA)ΓA
LABβA

To sum up, therefore, the condition under which a positive shock effectively induces

the creation of new jobs in the tradable sector and, at the same time, ensures the existence

of the nontradable multiplier is

−(1− λA)ΓA
LABβA

< ΛA
1 + ΛA

2 ≤
(1− λA)ΓA
LAB(1− βA)

(25)

Moving towards the empirical analysis, two crucial aspects must be taken under con-

sideration. First, it is clear from equation (21) establishing a link between ėA and the

growth rate of wages in B, that a shock occurring in city A spreads its effects to city B as

well. More specifically, as emphasized above, a positive shock to the efficiency of produc-

tion in the tradable sector of city A induces a shift of population from B to A. Equation

(19) then tells us that the size of this population shift (and, therefore, of the effect induced

to city B as well) is, other things being equal, inversely related to the distance between

the two cities through LAB. This clearly reveals a potential spatial dependence issue in

the empirical analysis of the multiplier.

The second critical aspect to be addressed relates to the potential nonlinearities in

the relationship between tradable and nontradable employment growth. As previously
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emphasised, the employment effects of a productivity shock are derived under the as-

sumptions that shocks are small. However, when trying to empirically assess existence

and size of the nontradable multiplier it must be recognized that, given the rather long

time span required in empirical analyses in order to obtain interpretable results, it is quite

possible that the small disturbance assumption gets violated. When this occurs, λ and

βs cannot be regarded as constants any longer. As recalled above, a positive productivity

shock in the tradable sector of city A induces a migration flow from B to A, hence deter-

mining an increase in λ; in addition, equations (23) and (24) tell us that the employment

growth rates in the two sectors can be different thus altering the sector composition of

the local labor markets (β).

To consider how these changes might affect the elasticity, we focus on the difference

between the employment growth rates

ṅdA2 − ṅdA1 = (ΛA
1 + ΛA

2 )ẇA (26)

as this greatly simplifies the presentation without altering the implications. In addition,

we emphasize we assumed that the price elasticity of demand for city’s A exports ηA is

large and, consequently, that ΛA
1 is positive and large while ΛA

2 is negative and large in

absolute terms. For simmetry, we make an analogous assumption with respect to these

elasticities for city B.

Let us start from the effect of an increase in λ. Through partial differentiation it is

easy to show that
∂(ṅdA2 − ṅdA1 )

∂λ
> 0 iff ΛA

1 + ΛA
2 > 0

but also that the effect is, in absolute terms, quite small. Hence, whenever the difference

in general equilibrium elasticities is positive, the size of the multiplier in city A gets, to a

small extent, larger (smaller) as the relative size of its population increases.

We then move to the effects of the changes in the sectoral compositions of employment.

First, note from equation (26) that, whenever ΛA
1 + ΛA

2 is positive (negative), nontradable
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employment grows more (less) them tradable and, consequently, βA increases (decreases)

and, if city B shares the same structural parameters with A, βA decreases (increases).

Starting from the partial differentiation of (26) with respect to βA, we get

∂(ṅdA2 − ṅdA1 )

∂βA
> 0 iff ΛA

1 + ΛA
2 < 0

implying that, whenever ΛA
1 + ΛA

2 is positive (negative), the size of the elasticity in city

A gets smaller (larger) as βA increases.

Finally, it possible to show that

∂(ṅdA2 − ṅdA1 )

∂βB
> 0 iff ΛA

1 + ΛA
2 > 0

but also, as in the case of a variation in λ, that the effect is, in absolute terms, small. In

other words, whenever ΛA
1 + ΛA

2 is positive (negative), an increase in the relative size of

the nontradable sector of city B leads to a small decrease (increase) in the nontradable

employment elasticity of city A.

To sum up, it follows clearly from the above discussion that the tools employed in the

empirical investigation must allow for the possibility that the size of the local nontradable

multiplier in one city depends, on the one hand, on city size in a nonlinear fashion and,

on the other, on shock occurring elsewhere in the system. In the following section, we

therefore present a procedure to estimate model (1) that, being nonparametric, is flexible

with respect to the functional form and, at the same time, is specifically designed to allow

for spatial effects.

3 The spatial nonparametric regression estimator

3.1 Modeling spatial dependence

In the analysis of cross-section data quite often researchers have to face problems of

misspecifications arising from dependence across spatially organised observational units.
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Indeed, it is unlikely that the explanatory variables in a regression model can capture

spatial unobservable factors and neglecting them is configured as a typical omitted variable

scenario, difficult to treat with usual methods, like instrumental variables, because spatial

dependence is often due to latent, although relevant, influences. To deal with spatial

dependence the spatial econometrics literature offers variety of models (among others, Le

Sage and Pace, 2009), a general example of which is the Spatial Durbin Model

Y = ρWY + βX− λWXβ + ε (27)

where Y is an n × 1 vector, X is an n × p matrix5, ε ∼ N(0, σ2In) is a n × 1 vector of

innovations, −1 < ρ < 1, −1 < λ < 1, β is a p × 1 vector of parameters and W is a

n × n spatial weights matrix whose wij elements are non negative when i 6= j and zero

otherwise.

Analyses conducted resorting to models such as (27) have recently attracted a strong

critical attention (Corrado and Fingleton, 2012; Gibbons and Overman, 2012; McMillen,

2012; Pinske and Slade, 2010; Fingleton and Lopez–Bazo, 2006). In particular, concerns

concentrate on the set of very restrictive assumptions underlying commonly adopted mod-

els obtainable from (27) with appropriate constraints (e.g., the Spatial Autoregressive and

the Spatial Error models), on the difficulty in achieving identification and on the fact that

these models are often estimated in a rather mechanical way with the aim of producing

estimates with satisfactory statistical properties. Despite the fact that these alterna-

tive specifications may appear equally plausible in terms of statistical properties, they

usually have widely different economic meanings and often lead to contraddictory policy

implications.

In particular, Pinske and Slade (2010) and McMillen (2012) emphasize the dangers

arising from reling heavily on parametric representations of spatial relations when, in

fact, the functional form of these relations is, in general, unknown. As a promising

5 For simplicity’s sake we assume p = 1. All that follows can be generalised to the multivariate case
p ≥ 2.
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way to address these concerns, they then indicate the employment of semiparametric or

nonparametric models. Here, we follow this indication and generalize it so to include not

just the functional form of spatial relations but, more generally, the overall relationship

between regressand and regressor(s).

3.2 Nonparametric regression with dependent errors

Nonparametric regression has now become quite a standard statistical tool when the

functional form is possibly of an unknown type. Indeed, given a model such as

y = m(x) + ε

where ε is the i.i.d. error term and m(x) is a smooth function, linearity of m(x) can not

be always safely assumed. Under these circumstances, the parametric literature typically

offers Non Linear Least Squares Estimates, but this requires to conjecture a specific

functional form with respect to which the minimization problem have to be solved. When

making assumptions on the functional form of m is not possible or not recommended,

nonparametric methods represent a valuable solution.

In general, the estimate of a nonparametric regression can be obtained by means of

some smoothing methods. One of the most commonly adopted estimation technique is

the Nadaraya-Watson estimator (Nadaraya, 1964; Watson, 1964):

m̂(x) =

∑n
j=1K(x−Xj

h
)Yj∑n

j=1K(x−Xj
h

)
(28)

where h is the bandwidth, the parameter that controls the degree of smoothness. The

Nadaraya-Watson estimator is in fact a special case of local polynomial regression that

applies when the degree of the smoothing polinomial is 0 and for this reason the Nadaraya-

Watson is also know as the Local Constant Estimator (LCE). When the degree of the

smoothing polynomial is 1 instead of 0, the smoother becomes the local linear estimator
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(LLE):

m̂(x) =

∑n
j=1 K(x−Xj

h
)Yj∑n

j=1 K(x−Xj
h

)
+ (x− X̄w)

∑n
j=1K(x−Xj

h
)(Xj − X̄w)Yj∑n

j=1 K(x−Xj
h

)(Xj − X̄w)2
(29)

where

X̄w =

∑n
j=1 K(x−Xj

h
)Xj∑n

j=1K(x−Xj
h

)

Similarly to the parametric regression environment, nonparametric regression estima-

tors generally assume i.i.d. error terms. In case of lack of independence, Robinson (2008,

2009) derives consistency and asymptotic distribution theory for the local constant regres-

sion estimator in relation to various kinds of spatial data. Other authors (for example,

Xiao et al., 2003; Lin and Carroll, 2000; Ruckstuhl et al., 2000; Wang, 2003) study possi-

ble extensions of the nonparametric regression to a non i.i.d. errors setting, where errors

can be correlated and heteroschedastic. In all cases, however, a parametric structure for

the dependence must be assumed beforehand and this might represent a serious limita-

tion since, as highlighted by Martins-Filho and Yao (2009), most asymptotic results for

the LCE in case of dependent errors are unfortunately contingent on the assumptions

made on the covariance structure and it is not possible to generalize their application to

different parametric structures. Stimulated by this lack of generality, attention within

the nonparametric literature has focussed on estimators that, by incorporating the infor-

mation contained in the error covariance structure, outperform, both asymptotically and

in finite samples, traditional nonparametric ones. In particular, Martins-Filho and Yao

(2009) develop a two-step procedure whose asymptotic validity is proved under rather

general covariance structures.

More formally, Martins-Filho and Yao consider the following nonparametric regression:

Y = m(X) + u (30)

where the error term u is such that E(ui) = 0, ∀i = 1, ..., n, and E(ui, uj) = ωij(θ0),

θ0 ∈ Rp, p <∞.
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In their Theorem 2 (Martins-Filho and Yao, 2009; page 312), the authors demon-

strate the asymptotic normality and convergence rate of the traditional LLE of model

(30). In addition, they observe that the traditional LLE of (30), m̂, does not exploit

the information contained in the error term correlation structure. Therefore, to improve

its performance, they suggest a two-step procedure that incorporates this information in

order to yield spherical error terms. More in detail, let Ω(θ0) denote the n × n matrix

with elements ωij and P (θ0) be a n× n matrix such that Ω(θ0) = P (θ0)P (θ0)′. Now, by

defining the new regressand as Z = P (θ0)−1Y + (In − P (θ0)−1)m(X), Martins-Filho and

Yao replace the original regression with the following

Z = m(X) + ε (31)

where the error terms ε = P (θ0)−1u are now spherical by construction. The new estimator,

m̌(X), is simply the LLE of (31). With an additional assumption constraining the nature

of the stochastic process u to be a linear transformation of i.i.d. processes, the authors

show m̌(X) to represent an improvement over m̂(X) in terms of efficiency (Theorem 3).

To guarantee the bias from the first stage estimator to be smaller than the leading bias

coming from the second stage, as is usual in the literature on two-stage nonparametric

regression, undersmoothing in the first stage is required.

Since Z is not observed (it depends on the unknown m(X) and P (θ0)), Martins-Filho

and Yao propose a feasible version of the m̌(X) estimator. This estimator, ṁ(X), is based

on an observed regressand

Ż = P (θ̂)−1Y + (In − P (θ̂−1)m̂(X)

where a pilot local linear estimate m̂(X) is used in place of m(X) and P (θ̂) in place of

P (θ0). The authors also provide an asymptotic result (Theorem 4) that guarantees that,

as long as a consistent estimate θ̂ is plugged in the expression P (θ0), the feasible estimator

ṁ(X) is asymptotically equivalent to m̌(X).
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3.3 A new nonparametric regression estimator for spatially de-
pendent data

Building on the theoretical background of the two-step nonparametric regression estima-

tor by Martins-Filho and Yao, we can now introduce our proposal of a nonparametric

regression estimator for spatially dependent data (SNP).

Since spatial dependence has not been included among the forms of dependence con-

sidered by Martins-Filho and Yao, here further assumptions need to be made on the

form of the spatial covariance matrix of the error term. In particular, apart from adopt-

ing assumptions A1-A6 characterising the original framework developed by these authors

(Martins-Filho and Yao, 2009; page 311 and 313), we: i. suppose the error term to possess

a spatial covariance matrix such that the weighted average of the main diagonal elements

converge as n → ∞ and ii. impose spatial mixing conditions, as in Jenish and Prucha

(2009).6

A peculiar feature of our procedure is that the spatial covariance matrix is estimated

nonparametrically starting from a direct representation of spatial dependence. The logic

underlying the estimate of the covariance matrix of the error term is that, unless the

form of dependence is of interest itself, it is better not to parametrize it. From this

viewpoint, Robinson (1987) estimates the residuals variance, conceived as an unknown

function of the explanatory variables, by a nearest neighbours nonparametric regression

and proves that asymptotic properties of the estimated residuals variance (as well as the

other parameters involved in the multiple regression) are guaranteed if k the number of

nearest neighbours, increases slowly with the sample size. In developing our estimator, we

follow Robinson’s logic relatively to a multivariate regression with non spherical errors and

estimate consistently the spatial covariance matrix through a nonparametric methodology,

called spline correlogram, whose details will be presented in the next subsections.

6 Note that Cliff-Ord models trivially meet these assumptions.
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3.3.1 Nonparametric estimation of the spatial covariance matrix

A commonly adopted approach to express the elements of a generic spatial covariance

matrix Ω is through a direct representation of the dependence as some function of the

distance separating sites si and sj. In such an instance, the spatial autocovariance function

is defined by

γ(si, sj) = σ2f(dij, φ) (32)

and the spatial autocorrelation function by

ρ(si, sj) = f(dij, φ) (33)

where dij is the distance between sites i,j and f(.) is a decaying function such that
∂f
∂dij

< 0, |f(dij, φ)| ≤ 1 with φ being an appropriate vector of parameters. Within this

framework, the spatial covariance matrix Ω is positive definite and composed by elements

ωij, obtained through function γ(si, sj) in observed distances across sites. These features

of matrix Ω follow directly from the stationarity and isotropy assumptions underpinning

the existence of a spatial covariance function.7

Bjørnstad and Falck (2001) propose a nonparametric estimate of the spatial covari-

ance matrix moving from a continuous nonparametric positive semidefinite estimator of

f(dij, φ) in (33), called spline correlogram. In particular, they build on the seminal work

of Hall and Patil (1994) who, in turn, develop a kernel estimator of the spatial autocor-

relation function ρ(si, sj):

ρ̃(si, sj) =

∑n
i=1

∑n
j=1 K(dij/a)(ρ̂ij)∑n

i=1

∑n
j=1 K(dij/a)

(34)

where K is a kernel function, a is a bandwidth and ρ̂ij is the sample correlation

ρ̂ij =
(zi − z̄)(zj − z̄)

1/n
∑n
l=1(zl − z̄)2

(35)

7 These assuptions are certainly met when Ω represents the spatial covariance matrix of homoskedastic
errors of a Cliff-Ord type model.
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in which z̄ = 1/n
∑n
l=1 zl is the sample mean. Hall and Patil (1994) demonstrate that the

estimator in (34) can be tuned (by tuning a) so that ρ̃(d)→ 0 for any smooth functional

form of ρ(d).

Starting from the estimator in (34), Bjørnstad and Falck (2001) opt for a cubic B-

spline as a smoother8. Given N pairs (xi, yi), i = 1, ..., N , the smoothing spline solves the

fitting problem by selecting the function f that minimizes the penalized residual sum of

squares (RSS)

RSS(f(x), λ) =
N∑
i=1

{yi − f(xi)}2 + λ
∫ {

f
′′
(t)
}2
dt (36)

where λ is a fixed smoothing parameter (Hastie et al., 2009). The first term measures

closeness to the data, the second term penalizes curvature in the function; λ represents a

trade-off between the two, varying from very rough fits (λ = 0) to very smooth fits(λ =

∞). The asymptotic kernel, equivalent to a cubic B-spline is:

K(d/a) =
1

2
exp

(
−|d/a|√

2

)
sin

(
−|d/a|√

2
+
π

4

)
(37)

where, once more, d denotes a generic measure of distance. The advantage in using the

B-spline is in that this smoother adapts better to irregularly spaced data and produces a

consistent estimate of the covariance function (Hyndman and Wand, 1997). A standard-

ized way to express the degree of smoothing when a spline smoother is used is by the

equivalent degrees of freedom; in other words, λ can be specified by fixing the degrees of

freedom. It has been shown that fixing the degree of smoothing using the cross validation

(see Green and Silverman, 1994, and Hastie et al., 2009, for more details) and assuming

a true covariance function ρ(si, sj) that is C2-differentiable (i.e. with continuous 1st and

2nd derivatives) guarantees results with asymptotic properties.

In addition, since the estimator ρ̃(si, sj) must be not only consistent but also positive

semidefinite, and this is not necessarily guaranteed by the estimator in equation (34),

8 Silverman (1984) pointed out that the smoothing spline is essentially a local kernel average with a
variable bandwidth.
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Bjørnstad and Falck resort to a Fourier-filter method (Hall et al., 1994). The latter

works as follows: firstly the Fourier transform of ρ̃(si, sj) is calculated, then all negative

excursions of the transformed function are set to zero and, finally, a nonparametric positive

semidefinite estimate is obtained of the spatial correlation function by backtransformation.

3.3.2 The SNP estimator in practice

Consider the following general nonparametric model:

Y = M(X) + u
u = θWu + ε

(38)

Operatively, the SNP estimator of (38) can be described as follows:

0. Pilot fit : estimate m(X) with a local polynomial smoother, where the bandwidth h

is chosen following an optimal rule. As for the degree of the polynomial, we consider

p = 1. The output is û = Y − m̂(X).

1. Nonparametric covariance matrix estimation: using the spline correlogram, obtain

V̂ , the estimated spatial covariance matrix of û.

2. Final fit : feed the procedure with the information obtained from the estimate of the

spatial covariance matrix V̂ by running a modified regression where Y is replaced

by Z = m̂(X) + L−1û and L is obtained by taking the Cholevsky decomposition of

V̂ .

We emphasize that SNP allows to estimate models like (27) and all those specifications

obtainable from it with appropriate constraints (i.e., the traditional Spatial Autoregressive

and Spatial Error models). To see this, start from (38) and note that

• M(X) = Xβ and θ = λ in case of Spatial Error Model

• M(X) = (I − ρW )−1Xβ and θ = ρ in case of Spatial Lag Model
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• M(X) = (I − ρW )−1(I − λW )Xβ and θ = ρ in case of Spatial Durbin Model

The function M(X) in (38) consists of two components: one is m(x), the function that

characterizes the models in their original form9, the second is a spatial factor that depends

on the typology of spatial model that can possibly be the data generating process. We

stress that estimating function M via SNP does not require assumptions on the functional

form of M . This aspect is crucial since it means that no hypotheses are made neither on

m nor the spatial factor that, multiplied by m(X), generates M(X).

3.4 Monte Carlo study

This Section describes a Monte Carlo experiment10 that aims at showing, via simulations,

the finite sample performance of our procedure in comparison with a traditional non-

parametric method that does not take the presence of spatial dependence into account.

The purpose therefore is to investigate the effective improvement in regression estimation

results when spatial dependence is not neglected.

We carry out the Monte Carlo experiment considering several nonlinear specifications

for the Spatial Error Model
Y = m(X) + u
u = λWu + ε

(39)

In particular, we consider the following specifications:

• A m(x) = sin(5πx)

• B m(x) = 2 + sin(7.1(x− 3.2))

• C m(x) = 1− 48x+ 218x2 − 315x3 + 145x4

• D m(x) = 10exp(−10x)

9 m(X) is not necessarily required to be linear since we are estimating the regression with nonpara-
metric tools

10 The code has been written in Matlab (Matlab 7.7.0, R2008b).
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• E m(x) = (−1 + 2x) + 0.95exp(−40(−1 + 2x)2)

• F m(x) = 1/(1 + exp(−6 + 12x))

• G m(x) =

{
exp(x− 0.33) if x < 0.33
exp(−2(x− 0.33)) if x ≥ 0.33

the shapes of which are depicted in Figure 1.

The simulated data set length is N = 50, 100, 200 and the number of Monte Carlo

replications per experiment is 1000. The regressor is drawn from a uniform distribution,

X ∼ U(0, 1), while the disturbance term is generated as a vector of normally distributed

random variables, ε ∼ N(0, σ2), where σ is set to obtain three alternative levels for the

pseudo-R2 (0.2, 0.5, 0.8). In addition, units are assumed to belong to a circular world

and, similar to Kelejian and Prucha (1999 and 2007) and Kapoor et al. (2007), the

spatial weights matrix W is such that each observation is directly related to the six units

immediately surrounding it (three on each side) it in the ordering. Specifically, the matrix

is such that all nonzero elements are equal and, following common practice, the matrix is

row-normalized. Finally, λ takes on three alternative values (0.3, 0.5, 0.8) corresponding

to low, intermediate and strong spatial dependence, giving us a total of 189 (7×3×3×3)

experiments.

We employ two estimation methods: the traditional local linear estimator (NP) and

the procedure proposed in the previous Section (SNP), implemented with a local linear

estimator. For all simulations we use the gaussian kernel with bandwidths that minimize

the cross-validation criterion.11

An estimator’s performance is measured by calculating the median across replications

of the Mean Integrated Squared Error (MISE) obtained in each replication. A direct

comparison of the relative performance of the two estimators is then carried out through

the ratio between the median MISE of SNP with respect to the median MISE on NP. The

results of the complete set of experiments are reported in Table 1.

11 To guarantee the required degree of undersmoothing, the bandwith in the pilot estimate of the SNP
estimator is h = N (−1/10)g where g is optimal bandwith obtained via the cross-validatory criterion.
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Overall, results are quite good as median ratios are in almost all cases below 1, with

no appreciable differences across the different functional forms. Median ratios are close to

1 for low levels of spatial dependence (λ = 0.3) and for the smallest sample size (N = 50)

while they display significant reductions as the strength of spatial dependence and the size

of the sample increase. In particular, SNP procedure visibly outperforms the traditional

local linear estimator when λ reaches 0.8 and N = 200, obtaining median values of the

MISE that are approximately 25 percent smaller in several cases.

4 Empirical analysis

We estimate the following regression model:

∆NNT = m(∆NT ) + ε (40)

where ∆NNT and ∆NT are, respectively, the change in the log number of jobs in the

nontradable and tradable sector.

The period covered in the analysis runs from 1980 to 2010. Employment data are

estimated using the 5 percent samples from federal census data for 1980 and using the

1 percent samples from the American Community Survey for 2010 obtained from the

Integrated Public Use Microdata Series (IPUMS). We paid particular attention to the

distinction between tradable and non tradable sectors. As emphasied in Section 2.3,

the existence of a multiplier rests on the hypothesis that the parameter η, i.e., the price

elasticity of demand for tradable goods, is large. From a pratical point of view, this means

that the actual classification of tradable industries must be effectively able to identify

goods and services that share this distinctive feature. Consequently, rather that adopting

the traditional classification that identifies tradable industries with manufacturing, we use

the two-digit NAICS code classification provided by Hufbauer and Vieiro (2013) following

the approach developed by Jensen and Kletzer (2005). According to this approach, when

production is concentrated at a distance from consumption within the US, as inferable
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from a locational Gini coefficient exceeding 0.1, the activity is classified as ’tradable’.12

To isolate exogenous shifts in the demand for labor in the tradable sector, we use the

instrument suggested by Moretti (2010), i.e. a weighted average of nationwide employ-

ment growth by 84 industries (classified according to the 1990 Census Bureau industrial

classification scheme) within the tradable sector, with weights reflecting their location-

specific employment share in 1980.

The territorial unit of the analysis is the metropolitan area since this is considered

the most appropriate in approximating the boundaries of local labor markets. Due to

limitations in the availability of data on employment at the level of disaggregation required

for the construction of the instrument, we are forced to restrict the analysis to a subset

of 123 MSA.

We produce two sets of estimates. The first employs OLS and, among nonparametric

methods, the local linear estimator (NP) and the corresponding spatial nonparametric

estimator (SNP) described in Section 3. The second resorts to the Instrumental Variable

(IV) counterparts of the above methods.

Before proceeding with the empirical analysis, we need to clarify how the SNP esti-

mator has been included within the IV framework. In order to be consistent with the

nonparametric nature of the SNP estimator, we resort to the literature on nonparametric

IV estimators which offers various possibilities (see Horowitz (2011) for a good review

of them). In particular, we opted for the control function model (Newey et al., 1999).

Given a dependent variable Y , an explanatory variable X that may be endogenous and

an instrument W , the model is written as follows

Y = m(X) + u (41)

12 Since data in the Integrated Public Use Microdata Series are originally classified according to the
1990 Census Bureau industrial classification scheme, we mapped them into the two-digit NAICS code
classification using industry code crosswalks provided by the US Census Bureau. As in Moretti (2010)
we exclude agriculture, mining, government and the military.
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and

X = h(W ) + V (42)

where g and h are unknown functions and

E(V |W ) = 0

and

E(U |X, V )

and it follows that

E(Y |X, V ) = g(X) + k(V ) (43)

If V were observed, g could be estimated using a variety of estimators for nonpara-

metric additive models. However, (Newey et al., 1999) prove that V can be consistently

estimated by the residuals from the nonparametric regression of h in (42) and the esti-

mated V can be used in place of the true one to estimate g in (43). In sum, the method

proposed by Newey et al. (1999) consists of two steps. In the first step, the nonpara-

metric regression of X on Z generates a residuals set V̂ . The second step is then the

nonparametric regression of Y on X and V̂ .

Within this theoretical framework, we run the second step of the procedure by Newey

et al. (1999) by resorting to generalized additive models (Hastie et al., 1993). More

specifically, since in our case we also need to treat spatial dependence, we estimate the

generalized additive models (GAM, hereafter) by means of our SNP estimator.

The outcome of the first set of estimates is shown in Figure 2. In both panels the

horizontal dotted line represents the level of elasticity returned from the OLS estimate,

equal to 0.659 (and statistically highly significant) and higher than the value by Moretti

(2010).13

13 It must be clarified, however, that our analysis covers a longer time period and is based on a different
spatial unit.

29



In the left panel we compare this estimate to the one obtained through a traditional

local linear estimator. In addition, we report 5% confidence bands for the nonparametric

estimate in order to understand whether there are significant differences with the OLS.

It can be noted that confidence bands always include the OLS elasticity value, thus

suggesting the absence of any significant difference between the two estimates and, in

addition, that the linear specification might not be inappropriate.

It is also worth noting that the null hypothesis of spatial independence in the residuals

is strongly rejected by the Moran’s I test (based on an inverse of distance weight matrix

and 9999 permutations) both for the OLS and local linear estimate (Table 2). A radically

different picture then emerges when we move to the right panel in which we report the

outcome of the estimate that allows for spatial dependence. Here, the 5% confidence

intervals suggest that the elasticity obtained through the SNP estimator is significantly

different from the OLS over a large part of the domain. More in detail, the estimated

elasticity is approximately constant around a value of 0.55 (marginally different from the

OLS from a statistical point of view) up to a value just above 1 in terms of tradable

growth (corresponding approximately to a three-fold increase of this sector over a 30-year

period) and then increases at a rather constant rate up to a level of 1.1. As shown in

Table 2, as expected it is now possible to safely accept the null of spatial independence.

The outcome of the second set of estimates is reported in Figure 3. As explained

above, these estimates try to address endogeneity concerns via an Instrumental Variable

approach. In all estimates, we employed as instrument the growth rate in the tradable

sector that the local economy would have experienced had local sector grown at the

same rate of the national economy. Similar to what we have done before, the horizontal

dotted line represents the level of OLS-IV elasticity, which is now equal to 0.424 (and

statistically highly significant). Also in this case, the value we find is higher that the

corresponding one reported by Moretti; however, due to the different classification of

tradable and nontradable sectors, our elasticity yields an estimate of only 0.34 (rather
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than 1.59) jobs created in the nontradable sector of a given city for each additional job

in the tradable sector of the same city.

Moving to the nonparametric analysis, we observe that IV estimates of the elasticities

are, in general, lower that those found previously. Once again, the estimate obtained

though a local linear estimator is, to a large extent, non statistically distinguishable from

the OLS-IV elasticity (left panel of Figure 3). In addition, the estimated shape of the NP-

IV elasticity might suggest the presence of a threshold corresponding to a value just above

1 in terms of tradable growth (in line to the SNP estimate of Figure 2). However, also

in this case there is strong evidence against the null hypothesis of spatial independence

in the residuals as reported in Table 3. The right panel then report the outcome of an

estimate that explicitly allows for both endogeneity and spatial dependence concerns.

The SNP-IV elasticity is in general lower than the SNP one, but shares with the latter

the main features: the estimated elasticity is rather constant (but significantly different

from the OLS-IV elasticity) up to a level just in excess of 1 in tradable growth, and then

increases at an apparently constant rate, thus confirming the idea of a possible threshold.

Once more, the Moran’s test suggests that there should not spatial dependence in the

residuals.

Finally, exploiting the local nature of the nonparametric estimate, we calculate for

each metropolitan area in the dataset the jobs in the nontradable sector created by an ad-

ditional job in the tradable one. As shown in Figure 4, there is a wide variety of responses

to a shock in the tradable sector as the number of additional job in the nontradable sector

ranges between 0.1 to almost 0.8. In addition, coherently with the main features of the

SNP estimates, for shocks larger than a three-fold increase in the tradable sector over the

30-year horizon, the response from the nontradable sector appears to increase with the

size of the shock.
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5 Conclusions

In this paper we have presented a spatial equilibrium model that clarifies the conditions

under which the local nontradable multiplier exists and, consequently, a local economic

development policy implemented in the tradable sector of a city determines an employment

expansion in the local nontradable sector.

The model, however, also suggests that this local productivity shock produces effects

that depend nonlinearly on the size of the shock and, at the same time, may spread to

other cities. These indications raise some concerns about the validity of recent results

on the size of the multiplier. To address these concerns we have therefore suggested that

the simple methodology indicated by Moretti (2010) should be implemented through a

spatial nonparametric procedure, i.e., a procedure that, being nonparametric, is flexible

with respect to the functional form and, at the same time, is specifically designed to allow

for spatial effects. We have therefore developed a spatial nonparametric (SNP) estimator

and demostrated its consistence via Monte Carlo experiments.

To establish the size of the local nontradable multiplier have then applied the SNP

procedure to data on employment by narrowly defined industries for 123 US metropolitan

areas between 1980 and 2010, paying particular attention to the distinction between

tradable and non tradable sectors. In addition, to check whether spatial dependence

and nonlinearities might actually affect the results, we have employed the OLS and the

traditional nonparametric local linear estimator, while adopting an Instrumental Variable

approach to address endogeneity concerns.

Our results suggest that allowing for spatial dependence significantly modifies the

picture arising from more conventional estimators. In particular, using SNP we find that

the relationship between the change in tradable jobs and the change in nontradable jobs is

constant up to a threshold size of the shock and then increase at an approximately constant

rate. There results therofore appear to confirm suppositions arising from the theoretical

model with respect to the nonlinearity of the the response from the nontradable sector
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and to the existence of effects that spill outside the boundaries of the local labor market.
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Figures and Tables

Figure 1: Monte Carlo experiment: functional forms
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Figure 2: Elasticity estimates
     NP      SNP 

  
 

 

NOTE: The NP elasticity is obtained using a local linear estimator; the SNP estimate is obtained using a spatial
local linear estimator as described in the text. Bandwidths have been selected using the generalized cross validation method.
The distance matrix for the SNP estimator contains Euclidean distances across metropolitan areas centroids.
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Figure 3: Elasticity estimates (IV)
     NP      SNP 

  
 
 

 

NOTE: The NP elasticity is estimated through an additive model with a local linear estimator for each element; the
SNP estimate is obtained through an additive model with a spatial local linear estimator. Bandwidths have been selected
using the generalized cross validation method. The distance matrix for the SNP estimator contains Euclidean distances
across metropolitan areas centroids.
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Figure 4: Additional jobs (IV-SNP)
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Table 1: Monte Carlo results

A B C
pseudo-R2 N 0.3 0.5 0.8 0.3 0.5 0.8 0.3 0.5 0.8

0.2 50 0.98 0.97 0.95 0.98 0.99 0.94 1.02 1.00 0.95
0.2 100 0.98 0.94 0.89 1.02 0.98 0.88 0.98 0.94 0.87
0.2 200 0.97 0.93 0.79 0.98 0.93 0.79 0.97 0.90 0.83
0.5 50 1.00 0.98 0.94 1.00 0.98 0.89 1.02 1.01 0.92
0.5 100 0.99 0.93 0.81 1.01 0.95 0.81 0.99 0.96 0.82
0.5 200 0.98 0.93 0.75 0.98 0.92 0.73 0.97 0.91 0.79
0.8 50 1.00 0.98 0.89 1.00 0.97 0.90 1.02 0.99 0.89
0.8 100 1.00 0.95 0.81 0.99 0.96 0.78 1.01 0.96 0.82
0.8 200 0.98 0.92 0.73 0.98 0.93 0.77 0.98 0.93 0.76

D E F
pseudo-R2 N 0.3 0.5 0.8 0.3 0.5 0.8 0.3 0.5 0.8

0.2 50 1.02 1.00 0.94 0.99 0.97 0.92 1.01 0.96 0.95
0.2 100 1.01 0.95 0.88 0.98 0.96 0.88 0.99 0.97 0.84
0.2 200 0.98 0.96 0.85 0.99 0.96 0.79 0.98 0.94 0.79
0.5 50 1.01 0.98 0.94 1.00 0.97 0.90 1.02 0.98 0.97
0.5 100 1.02 0.95 0.88 1.00 0.95 0.89 1.01 0.97 0.87
0.5 200 0.99 0.92 0.78 0.99 0.92 0.86 0.99 0.94 0.82
0.8 50 1.01 0.98 0.94 1.00 0.98 0.92 1.00 0.98 0.98
0.8 100 0.99 0.97 0.82 1.00 0.97 0.84 1.01 0.96 0.89
0.8 200 0.99 0.93 0.74 0.98 0.92 0.77 0.99 0.94 0.78

G
pseudo-R2 N 0.3 0.5 0.8

0.2 50 0.99 0.98 0.89
0.2 100 0.99 0.96 0.87
0.2 200 0.98 0.96 0.82
0.5 50 1.00 0.98 0.92
0.5 100 0.98 0.94 0.88
0.5 200 0.99 0.92 0.80
0.8 50 1.01 0.97 0.91
0.8 100 1.00 0.95 0.87
0.8 200 0.98 0.94 0.77

NOTE: Ratio (SNP over NP) of the median across replications of the MISE
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Table 2: Spatial dependence diagnostics
p-level

OLS NP SNP
Moran’s I 0.0000 0.0003 0.3426
LM error 0.0000

Robust LM error 0.0002
LM lag 0.0393

Robust LM lag 0.8599

NOTE: Spatial dependence tests employ an inverse of distance weight matrix

Table 3: Spatial dependence diagnostics (IV estimates)
p-level

OLS NP SNP
Moran’s I 0.0000 0.0050 0.6979
LM error 0.0000

Robust LM error 0.0044
LM lag 0.0013

Robust LM lag 0.1586

NOTE: Spatial dependence tests employ an inverse of distance weight matrix
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