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AbstractAbstractAbstractAbstract    

This paper proposes four unit-price auction procedures with multiple heterogeneous items: the pay 

your bid auction, the lowest winner’s bid auction, the highest loser’s auction, and the pay the next 

highest bid to yours auction.  Our model is the same as the one analyzed by Varian (2007) and 

Edelman, Ostrovsky, and Schwarz (2007) and is a special case of Baba (1997) and Baba (1998) which 

assumes that the value of the item is supermodular with respect to a bidder’s type and a public signal 

and multiplication is a special example of supermodularity.  All four unit-price auction procedures 

yield the same expected revenue to the seller and implement the optimal auction under the 

assumptions of unit demand, indivisible items, no collusive behavior, and risk-neutrality of bidders 

and the seller.  Further, the lowest winner’s auction and the highest loser’s auction satisfy a fair 

criterion in the sense that each winner pays the same unit-price regardless of the item s/he wins.  In 

addition to internet keyword auctions, wide range of procurement auctions such as road repair 

contracts and school districts’ milk procurement are applications of our model.  The lowest winner’s 

bid auction and the highest loser’s bid auction are desirable for public procurement contracts because 

of their satisfying fair criterion and robustness against collusion in addition to their achieving efficient 

allocation and implementing the optimal auction mechanism. 
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1.1.1.1. IntroductionIntroductionIntroductionIntroduction    

Auctioning sponsored links is almost the only source of Google’s revenue.  The annual 

revenues of Google were 23,651, 29,321, 37,908 million dollars in 2009, 2010, and 2011 

respectively and the advertisement revenue were 22,989, 28,236, and 36,531 million 

dollars in 2009, 2010, and 2011 respectively, which means that Google earned more than 

95% of its revenue from auctioning keywords to companies which would like to 

advertise their products or service on Google’s sites.  Not only Google, but other 

internet search engines such as Microsoft and Yahoo! also sell sponsored links by 

auctions.  Sponsored links are the advertisement of private companies which appear 

on the top and on the right of the search results when a consumer types keywords to 

acquire relevant information before making his/her consumption decision.  When a 

consumer clicks one of these sponsored-links, s/he jumps to the advertiser’s web page.  

A search engine usually charges per click fee on the advertiser.  All big three search 

engines use a similar auction procedure to sell sponsored links, which is called the 

generalized second price (hereafter, the GPS) auctions by Edelman, Ostrovsky, and 

Schwarz (2007).  A search engine auctions off several advertisement positions where 

the winner of the th position pays th highest bid.  An advertiser’s (a bidder’s) 

value to win the th position is assumed to be his1 per click profit multiplied by the 

number of clicks he expects when he wins the th position.  It is assumed that a 

bidder’s profit per click is the same regardless of his position and the expected number 

of clicks for the th position is exogenously given and commonly known by bidders and 

the seller.  This structure is a special case of Baba (1997) and Baba (1998) where she 

considers the optimal privatization scheme.  In her model, the government auctions off 

multiple heterogeneous items and a bidder’s value of the th item is a supermodular 

function of a bidder’s type and a public signal.  She characterizes the Bayesian perfect 

equilibrium of the sequential first and second price auctions and show that they 

implement the optimal auction mechanism.  Her model includes a multiplicative 

function as a special case and sponsored link auctions are practical examples of her 

model when we interpret a bidder’s type as a bidder’s profit per click and a public signal 

as the number of clicks a bidder expects when he wins the certain position.  Varian 

(2007) calls the same problem as position auctions and independently obtains similar 

results to those obtained by Edelman et al. (2007).  Both Varian (2007) and Edelman et 

al. (2007) characterize the Nash equilibrium under perfect information and show that 

the difference and the equivalence between the GSP auction and the VCG mechanism.  

                                                   
1 Female pronouns are used for the seller and male pronouns are used for bidders without any 
intension of sexual discrimination. 



It is shown that truth-telling is not a dominant strategy in the GSP auction while it is in 

the VCG mechanism, but the outcomes of the GSP auction and the VCG mechanism are 

the same.  Edelman et al. (2007) also examine the generalized English auction which 

corresponds to the GSP auction under incomplete information and show the difference 

and the equivalence between the GSP auction and the VCG mechanism under perfect 

information also hold under incomplete information.  

Edelman et al. (2007) and Varian (2007) focus on the special feature of sponsored link 

auctions: bidders initially have private information about their types, can gradually 

learn the values of their competitors, and can respond over time by updating 

information.  Therefore, they modelize sponsored link auctions as infinitely repeated 

games although they do not explicitly analyze the equilibrium of infinitely repeated 

games.  We treat situations simpler and treat them as one shot static games.  

Therefore, we formalize the problem as sealed-bid auctions.  Although the view of 

Edelman et al. (2007) and of Varian (2007) might be suitable to position auctions, our 

model might be appropriate to procurement auctions such as road repair service, 

garbage collection service, school districts’ milk procurement, and so on.  As Milgrom 

(1987) pointed out, the governments use sealed-bid auctions because English auctions 

are vulnerable to collusion.  Rene (2011) reports that the governments use unit-price 

auction procedures to auction off road repair contract of the next year when no one 

know how many holes to be repaired in the following year.  Other procurement auctions 

such as garbage collection service and school districts’ milk procurement are essentially 

per household and per capita service and they can fit to our model.  All of the four 

unit-price auction procedures we propose in this paper are more robust to collusion than 

English auctions because they are sealed-bid auctions.  Further, two of four auction 

procedures satisfy a    fair criterion in the sense that each winner pays the same 

per-unit-price regardless of the item he wins.  Note that the GSP auction does not 

satisfy a fair criterion.  In position auctions, this means that each winner pays the 

same per-click price to the search engine regardless of the position he wins.  Although 

we do not need to worry about a    fair criterion in sponsored link    auctions because they 

are private auctions, it is an important criterion when we consider public procurement 

auctions.  Due to robustness against collusion and fairness, the highest loser’s bid and 

the lowest winner’s bid unit-price auctions are desirable for public procurement 

auctions. 

As related literature in position auctions, Athey and Ellison (2011) and Chen and He 

(2011) introduce consumer search into the model proposed by Edelman et al. (2007) and 

endogenize the value per click to a bidder when he wins the th position and 



characterize the Bayesian Nash equilibrium under incomplete information.   

Ostorovsky and Schwarz (2009) conduct a field experiment and showed that introducing 

reserve prices increase the seller’s revenue.  Chen, Liu, and Whinston (2009) use a 

share auction structure into position auctions with unit-price auctions where slots are 

not exogenously given and the seller can endogenously determines the optimal share 

structure to maximize her expected revenue.  Chen, Feng, and Whinston, (2010) 

introduce intermediate information available to the seller into unit-price scoring 

positions auctions.  In addition to position auctions, Ewehart and Fieseler (2003) 

report practical examples of unit-price auctions both in public and private contracts.  

Public contracts with unit-price auctions include highway contracting (Stark 1974), 

pipeline construction (Diekmann, Mayer, and Stark 1982), defense contracts 

(Samuelson 1983), and internationally supported governmental procurement in 

developing countries (World Bank 2000).  Recently, Rene (2011) analyzes scoring 

unit-price auctions in road repair contracts.  Timber auctions (Athey and Levin 2001) 

and marketing of publishing rights for books (McAfee and McMillan 1986) are examples 

of unit-price auctions in private contracts. We can add one more interesting practical 

example to unit-price auctions.  Japanese paintings are priced by the size (21 SEIKI 

KOKUSAI CHIHO TOSHI BIJYUTSU BUNKA SOZO IKUSEI KASSEIKA 

KENNKYUUKAI 2005), where one unit is called “gou 2 ” and per-gou price is 

traditionally adopted in auctioning Japanese paintings. 

    

2.2.2.2. The The The The model.model.model.model.    

The basic environment we analyze is the same as the one proposed by Baba (1997), 

Baba (1998), Edelman et al. (2007), and Varian (2007).  A special application of our 

model is sponsored link auctions; however, we explain the model in general terms 

because there are wide range of applications which fit to our model such as road repair 

contract, garbage collection service, school districts’ milk procurement, timber auctions, 

Japanese paintings, and so on.  The risk-neutral seller auctions off  heterogeneous 

items to  risk-neutral bidders. We denote the set of auctioned items by 

 and the set of bidders by .  The valuation of the item 

 for bidder  is denoted by  and is expressed as .  In sponsored 

link auctions,  is bidder  per click profit and  is the number of clicks he 

expects when he wins the  position.  We assume ,  and that the 

probability distribution function  is differentiable and its density is denoted by 

                                                   
2 One gou is 220mm 160mm for figure, 220mm 140mm for paysage, and 220mm 120mm for 
marine. 



.  We also assume that the support of  is  without loss of generality.  

Further, we impose the unit demand assumption and the items are indivisible.  The 

timing of the game is described in figure1. 

 

Figure1. (Timing of the game) 

 

  t=0        The seller announces the auction procedure and she commits to it. 

 

  t=1       Bidder  observes the realized value of   and submits a single bid,  

            . 

  t=2       The allocation and the payment are carried out by    the auction procedure 

announced by the seller in period 0. 

 

We consider four unit-price auction procedures which are simpler than the mechanisms 

proposed by    Baba (1997), Baba (1998), Edelman et al. (2007), and Varian (2007) in the 

sense that they are static auctions and a bidder submits only one bid instead of  bids, 

one for each different item.  The unit-price auction procedures work well when a 

bidder’s private signal is one dimensional.  Now, we explain four unit-price auction 

procedures in detail and characterize their symmetric Bayesian equilibrium bidding 

functions. 

The first one is the pay your bid auction.  The second one is the lowest winner’s bid 

auction.  The third one is the highest loser’s bid auction.  The fourth one is the pay the 

next highest bid to yours auction.  Hereafter, we focus on the case of =2 for 

simplicity, but all the arguments are straightforwardly applicable to general case of  

items.  First, we assume that a bidder’s utility function is quasi linear with respect to 

money.  Therefore, bidder   utility when his type is , he wins the 

item , and pays  is expressed as  and his utility is 

zero when he loses the auction and acquires no item.  Each bidder submits only 1 bid 

and the final allocation and the payments are determined by  bids, one from each 

bidder. 

Suppose bidder  submits a bid of  in the pay your bid auction.  He acquires the 

first item if his bid of  is the highest among  bids, one from each bidder, that is, if 

.  Then, his payment to the seller is .  He wins the second item if 

his bid of  is the second highest among  bids, one from each bidder, that is, if 

.  Then, bidder  wins the first item and pays  

and bidder  wins the second item and pays .  The second one is the lowest 



winner’s bid auction.  Suppose bidder  submits a bid of  in the lowest winner’s 

bid auction.  Then the allocation rule is the same as the one in the pay your bid auction 

and bidder  wins the first item if  is the highest among  bids, one from each 

bidder and wins the second item if  is the second highest among  bids, one from 

each bidder.  The only difference is the payment function.  Now, bidder  pays  

if he wins the first item when bidder  submits the second highest bid of  among 

 bids.  Bidder   pays  if he wins the second item.  The highest loser’s bid 

auction works in the following way.  Suppose bidder  submits a bid of .  Again, 

the allocation rule is the same as the one in the pay your bid auction and the lowest 

winner’s bid auction, but the payment rule is as follows.  Now, bidder  pays  if 

he wins the first item and pays  if he wins the second item, where  is the 

third highest bid among  bids, one from each bidder.  Lastly, consider the pay the 

next highest bid to yours auction and suppose bidder  submits a bid of .  The 

allocation rule is the same as the other three auction procedures, but the payment rule 

is as follows.  When bidder  wins the first item, he pays  , where  is the 

second highest bid among  bids, one from each bidder.  When bidder  wins the 

second item, he pays  where  is the third highest bid among  bids.  The 

payment rule of the pay the next highest bid to yours auction is similar to that of the 

GSP auction proposed by Edelman et al. (2007) and Varian (2007).     Since we formalize 

it as a sealed-bid auction instead of an ascending auction, we can characterize the 

symmetric Bayesian equilibrium bidding function easily.  Although our set up is more 

appropriate to procurement auctions because the governments actually use sealed-bid 

unit-price auctions to avoid collusion among bidders and fairness is important, our 

model can explain sponsored link auctions.  We characterize the Bayesian equilibrium 

of each auction procedure in the following section. 

 

3.3.3.3. AnalysisAnalysisAnalysisAnalysis    

This section consists of four subsections.  3-1 characterizes the symmetric Bayesian 

equilibrium bidding function of the pay your bid auction, 3-2 characterizes the 

symmetric Bayesian equilibrium bidding function of the lowest winner’s bid auction, 3-3 

characterizes the symmetric Bayesian equilibrium bidding function of the highest 

loser’s bid auction, and 3-4 characterizes the symmetric Bayesian equilibrium bidding 

function of the pay the next highest bid to yours auction. 

 

3333----1. The pay your bid auction.1. The pay your bid auction.1. The pay your bid auction.1. The pay your bid auction.    

This subsection characterizes the symmetric Bayesian equilibrium bidding function of 



the pay your bid auction.  As being explained in the previous section, bidder  

submits only one bid of .  He wins the first item if his bid,  is the highest among 

 bids and pays .  He wins the second item if his bid is the second highest among 

 bids and pays .  He wins nothing if his bid is lower than the second highest bid 

among  bids.  We assume that tie is broken randomly without loss of generality.  

We omit subscript  from now on if there is no risk of confusion especially because we 

focus on the symmetric equilibrium bidding function.  We need to consider two cases 

separately depending on a bidder bids higher or lower than the bid corresponding to his 

true type. 

 

Case A.  

Since we assume a quasi linear utility function as explained in section2, bidder  

expected payoff when his type is  and he submits a bid of  is expressed as 

follows as long as there exists a symmetric equilibrium bidding function w.r.t. a bidder’s 

type.  We know that there exists a symmetric equilibrium bidding function which is 

increasing in a bidder’s type due to supermodularity of the objective function w.r.t. a 

bidder’s type and his bid. 

 

Bidder  solves the following problem in the pay your bid auction. 

       

…(3-1-1) 

F.O.C. of (3-1-1) w.r.t.  is expressed as follows. 

 

=0                   …(3-1-2) 

Evaluate (3-1-2) at  becomes 

 

=0                    

…(3-1-3) 

 



Case B.  

It is easily shown that the F.O.C. of this case evaluated at  is exactly the same as 

(3-1-3) in case A.  Therefore, it suffices to solve (3-1-3) for . 

 

To do so, we rewrite (3-1-3) as follows. 

 

=                            

…(3-1-4) 

Let us define 

                                      

…(3-1-5) 

By using (3-1-5), we can rewrite (3-1-4) as follows. 

                                                 

…(3-1-6) 

(3-1-6) is a first order linear differential equation w.r.t.  and the solution takes the 

form of 

, 

where is a constant of integration. 

Since our equilibrium bidding function satisfies the initial condition of , we 

obtain . 

Next, we need to show the global optimality condition holds.  To do so, it suffices to 

show the following formula holds. 

 =                                

…(3-1-7) 

We can rewrite l.h.s. of (3-1-7) as follows. 

 

=



 

=  

=                       …(3-1-8) 

= . 

We apply (3-1-2) to each term of  and use the fact 

that =0 to obtain the first equality.  The last equality is 

obtained due to our assumption of . 

(3-1-8) implies that the global maximization condition is satisfied. 

 

The result is summarized in the following proposition. 

Proposition1. Proposition1. Proposition1. Proposition1. (The symmetric Bayesian equilibrium bidding function of the pay your bid 

auction) 

The symmetric Bayesian equilibrium bidding function of the pay your bid auction is 

characterized as follows. 

, where  

 

3333----2. The2. The2. The2. The lowest winner’s bid auctio lowest winner’s bid auctio lowest winner’s bid auctio lowest winner’s bid auctionnnn    

This subsection characterizes the symmetric Bayesian equilibrium of the lowest 

winner’s bid auction.  Suppose bidder  submits a bid of .  Now bidder  

pays  when he wins the first item, pays  when he wins the second 

item, and pays nothing if he does not acquire either item, where we denote the highest 

bid among ,  by .  We assume that tie is broken randomly without 

loss of generality.  As in the previous subsection, we need to consider two cases 

separately depending on a bidder bids higher or lower than the bid corresponding to his 

true type.   

 

Case A. . 



In this case, bidder  expected utility when his type is  and he submits a bid of 

 is expressed as follows as long as there exists a symmetric equilibrium bidding 

function which is increasing in a bidder’s type.  We know that there exists a symmetric 

equilibrium bidding function which is increasing for a bidder’s type due to 

supermodularity of the objective function w.r.t. a bidder’s type and his bid. 

 

+ , 

Therefore, bidder  solves the following problem in the lowest winner’s bid auction. 

 

      + , 

where we denote the second highest bid among ,  by         

…(3-2-1) 

Note that the following formula holds. 

 

 

=  

=                                                       

…(3-2-2) 

We can rewrite (3-2-1) by using (3-2-2). 

 

                                          

…(3-2-3) 

F.O.C. of (3-2-3) w.r.t.  yields 

 

+  

 



=0                                            ...(3-2-

4) 

Evaluate (3-2-4) at  becomes 

 

+  

) 

=0                                           

…(3-2-5) 

Simplifying (3-2-5) yields 

 

+  

=                         …(3-2-6) 

Dividing both sides of (3-2-6) by  yields 

 

=                                        

…(3-2-7) 

We can further rewrite (3-2-7) as 

, 

where                     

…(3-2-8) 

 

Case B.  

It is easily shown that the F.O.C. of this case evaluated at  is exactly the same as  

(3-2-5) in case A.  Therefore, it suffices to solve (3-2-8) for . 

 

(3-2-8) is a linear differential equation for and the solution takes the following 

form. 

              …(3-2-9) 



is a constant of integration and is equal to 0 by the initial condition of . 

Next, we check the global optimality condition holds.  To do so, we need to show the 

following equation. 

 =                   

…(3-2-10) 

The l.h.s. of (3-2-10) takes the following form. 

 

====

 

=  

=                                                         …(3-2-11) 

To obtain the first equality of (3-2-11), we apply (3-2-4) to each term of 

use the fact that 

.  The last equality follows from our assumption 

of . 

The result is summarized in the following proposition. 

 

Proposition2. Proposition2. Proposition2. Proposition2. (The symmetric Bayesian equilibrium bidding function of the highest 

winner’s bid auction) 

The symmetric Bayesian equilibrium of the lowest winner’s bid auction, , is 

characterized as follows. 

, 

where . 

3333----3. 3. 3. 3. The highest loser’s bid auctionThe highest loser’s bid auctionThe highest loser’s bid auctionThe highest loser’s bid auction    

This subsection characterizes the symmetric Bayesian equilibrium bidding function of 

the highest loser’s bid auction. In the highest loser’s bid auction, as in the your bid 

auction and the lowest winner’s bid auction, bidder  wins the first item if his bid 

 is the highest among  bids, one from each bidder and wins the second item if 

his bid,  is the highest among  bids, one from each bidder.  Bidder  pays 



 when he wins the first item and pays  if he wins the second item, 

where we denote the second highest bid among ,  by .  He pays 

nothing if he does not acquire any item at all.  We assume that tie is broken randomly 

without loss of generality.  As in the previous two subsections, we need to consider two 

cases separately depending on a bidder bids higher or lower than the bid corresponding 

to his true type.   

 

Case A. . 

In this case, bidder  expected utility when his type is  and he submits a bid of 

 is expressed as follows as long as there exists a symmetric equilibrium bidding 

function which is increasing for a bidder’s type.  We know that there exists a 

symmetric equilibrium bidding function which is increasing for a bidder’s type due to 

supermodularity of the objective function w.r.t. a bidder’s type and his bid. 

 

+  

Therefore, bidder  solves the following problem in the highest loser’s bid auction. 

 

+  

This is equivalent to 

 

+                         

…(3-3-1) 

F.O.C. of (3-3-1) w.r.t.  yields 

 



+  

 

                               

(3-3-2) 

Evaluate (3-3-2) at  becomes 

 

+  

 

                             

…(3-3-3) 

Rearrange (3-3-3) yields 

=0     

…(3-3-4) 

Since (3-3-4) holds for , we can differentiate (3-3-4) w.r.t.  and obtain the 

following expression. 

 

 

+ =0               …(3-3-5) 

Rearranging (3-3-5) yields 

 

 

=

 

                                 

…(3-3-6) 

Now, we consider the other case. 

 



Case B.  

It is easily shown that the F.O.C. of this case evaluated at  takes exactly the 

same form as (3-3-3) in case A.  Therefore, it suffices to slove (3-3-6) for . 

 

Dividing both sides of (3-3-6) by  yields 

, 

where 

 

  and                        

…(3-3-7) 

(3-3-7) is a first order linear differential equation w.r.t.   and the solution takes 

the form of 

 , 

where  is a constant of integration and  =0 because of the initial condition of 

. 

Next, we check the global optimality condition holds. 

 =       

(3-3-8) 

The l.h.s. of (3-3-8) is expressed as follows. 

 

=

 

=  

=  



=  

=                                                           …(3-3-9) 

To obtain the first equality of (3-3-9), we apply (3-3-2) to each term of 

 and use the fact that 

.  The last equality holds because of our 

assumption of  

 

The result is summarized in the following proposition. 

 

PrPrPrProposition3. oposition3. oposition3. oposition3. (The symmetric Bayesian equilibrium bidding function of the highest 

loser’s bid auction) 

The symmetric Bayesian equilibrium of the highest loser’s bid auction, , is 

characterized as follows. 

, 

 

and  

 

3333----4. The pay the next highest bid to yours4. The pay the next highest bid to yours4. The pay the next highest bid to yours4. The pay the next highest bid to yours auction auction auction auction    

Lastly, this subsection characterizes the symmetric Bayesian equilibrium bidding 

function of the pay the next highest bid to yours auction.  As in the previous three 

subsections, bidder  wins the first item if his bid,  is the highest among  

bids, one from each bidder and wins the second item if his bid,  is the second 

highest among  bids, one from each bidder.  Now bidder  pays  if he 

wins the first item and pays  if he wins the second item, where we denote the 

highest bid among   by  and the second highest among  

 by . Bidder  pays nothing if he does not acquire either item.  We 

assume that tie is broken randomly without loss of generality.  As in the previous three 

subsections, we need to consider two cases separately depending on a bidder bids higher 

or lower than the bid corresponding to his true type.  



 

Case A. . 

In this case, bidder  expected utility when his value is  and he submits a bid, 

 is expressed as follows as long as there exists a symmetric equilibrium bidding 

function which is increasing w.r.t. a bidder’s type.  We know that such an equilibrium 

bidding function exists due to supermodularity of the objective function w.r.t. a bidder’s 

type and his bid. 

 

+   

Therefore, bidder  solves the following problem. 

 

+                      

…(3-4-1) 

F.O.C. of (3-4-1) w.r.t.  yields 

 

+  

                           …(3-4-2) 

Evaluate (3-4-2) at   becomes 

 

+  

                                …(3-4-3) 

Now, we consider the other case. 

 

Case B.  

It is easily shown that the F.O.C. of this case evaluated at  is exactly the same as 



(3-4-3) in case A.  Therefore, it suffices to solve (3-4-3) w.r.t.  

 

Re arranging (3-4-3) becomes 

 

=0                                      …(3-4-4) 

Since (3-4-4) holds for , we can differentiate it w.r.t.  and obtain the 

following result. 

 

 

=0, 

where we use the initial condition of              …(3-4-5) 

Rewrite (3-4-5) becomes 

 

=                                    

…(3-4-6) 

Dividing both sides of (3-4-6) by becomes 

, 

where,   and                     

…(3-4-7) 

(3-4-7) is a first order linear differential differential equation w.r.t.  and the 

formula gives us the following solution. 

, 

where  is a constant of integration and  =0 because of the initial condition of 

. 

Next, we check the global optimality condition holds.  To do so, we need to show the 

following formula holds. 

 =                        

…(3-4-8) 

The l.h.s. of (3-4-8) takes the following form. 

=

 



=

      …(3-4-9) 

=  

To obtain the first equality of (3-4-9), we apply (3-4-2) for each term of 

 and use the fact that 

.  The last equality holds because of our 

assumption of . 

The result is summarized in the following proposition. 

 

Proposition4. Proposition4. Proposition4. Proposition4. (The symmetric Bayesian equilibrium bidding function of the pay the next 

highest bid to yours auction) 

The symmetric Bayesian equilibrium of the pay the next highest bid to yours auction, 

, is characterized as follows. 

,  

  and . 

 

4.4.4.4. Comparison of the four auction proceduresComparison of the four auction proceduresComparison of the four auction proceduresComparison of the four auction procedures    

Based on the results of the previous section, this section compares the seller’s expected 

revenue of the pay your bid auction, the lowest winner’s auction, the highest loser’s 

auction, and the pay the next highest bid to yours auction.  We can apply Myerson’s 

(1981) arguments and obtain the following proposition. 

 

Proposition5.Proposition5.Proposition5.Proposition5.  (The revenue equivalence theorem) 

The pay your bid auction, the lowest winner’s bid auction, the highest loser’s bid auction, 

and the pay the next highest bid to yours auction yield the same expected revenue to the 

seller and they implement the optimal auction mechanism when the seller sets the 

reserve price,   to satisfy . 

 

Proof of proposition5.Proof of proposition5.Proof of proposition5.Proof of proposition5.    

This is a simple application of the arguments to obtain corollary1 (the revenue 



equivalence theorem) in Myerson (1981) because the assumptions of (1) PIV , (2) risk 

neutral bidders and the risk neutral seller, (3) unit demand, (4) indivisible items, and 

(5) quasi linear utility function hold in our model.  Further, the allocation rules of the 

four unit-price auction procedures are the same and the bidder with the highest type 

wins the first item and the bidder with the second highest type wins the second item.  

Therefore, the revenue equivalence theorem holds3. 

 

5.5.5.5. ConclusionConclusionConclusionConclusion    

This paper proposes four unit-price auction procedures and characterizes their 

symmetric Bayesian equilibrium bidding functions.  Further, it is shown that the 

revenue equivalence theorem holds and all four unit-auction procedures implement the 

optimal auction mechanism if the seller sets appropriate reserve prices.  Among four 

unit-price auctions of the pay your bid auction, the lowest winner’s bid auction, the 

highest loser’s bid auction, and the pay the next highest bid to yours auction, the lowest 

winner’s bid auction and the highest loser’s bid auction satisfy a fair criterion in the 

sense that each winner pays the same unit-price regardless of the item he wins.  A fair 

criterion is important when the governments design auctions because they are public 

auctions.  Since our model includes various procurement auctions such as road repair 

service contract in the next year as analyzed in Rene (2011), garbage collection service, 

school districts’ milk procurement, and so on.  We can interpret these auctions as 

auctioning off per hole in the road or per capita service.  For example, when milk 

supply service in a school district is auctioned off, it can be considered per capita price of 

milk supply service multiplied by the expected number of students in a corresponding 

school district.  Since the expected number of students in the relevant school district is 

common knowledge, it is reasonable to formalize the situation as a unit-price auction.  

It is also important that four unit-price auction procedures are sealed-bid auction 

procedures and more robust to collusions compared with the ascending price auction 

procedure analyzed by Edelman et al. (2007).  Although our model also includes 

sponsored link auctions as a special example, they are private auction and a fair 

criterion might not be an issue there.  Nevertheless, the unit-price auction procedures 

are very simple in the sense that each bidder submits only one bid for  

heterogeneous items and simplicity is a critical criterion for practical use.  In addition,  

all four unit-auction procedures proposed in this paper achieve efficiency, implement the 

optimal auction mechanism, and are robust to collusion.  Furthermore, the lowest 

winner’s bid auction and the highest loser’s bid auction satisfy a fair criterion, which is 

                                                   
3 A detailed proof is available upon request to the author. 



desirable for public procurement auctions.  Therefore, we believe unit-price auction 

procedures are very effective especially when the governments auctioning off per unit 

service contract such as road repair service, garbage collection service, school districts’ 

milk procurement contracts, and so on.  
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