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1 Introduction

Today�s primary energy sources are mainly non-renewable: natural gas, oil,
coal and conventional nuclear power. There are also renewable sources, includ-
ing biomass, moving water, geothermal, solar, tidal, wind and wave energy. In
general, all the various energy sources can contribute to the future energy mix
worldwide. But each has its own direct in�uence on health, welfare, food secu-
rity, climate change and other factors in the improvement of living conditions
and the quality of life for the world�s population.
In terms of pollution risks, natural gas is by far the cleanest of all the fossil

fuels, with oil next, and coal is the most polluting one. But they all pose three
interrelated pollution problems: global warming, urban industrial air pollution,
and acidi�cation of the environment. Some of the wealthier industrial countries
may possess the economic capacity to cope with such threats. Most developing
countries do not.
On the other side, modern renewable energy systems are estimated to have

the technical potential to provide all global energy services in sustainable ways
and with low or virtually zero GHG emissions. For example, the total solar en-
ergy absorbed by earth�s atmosphere, oceans and land masses is approximately
4 Million EJ (exajoules) per year. The amount of solar energy reaching the
surface of the planet is so vast that in one year it is about twice as much as will
ever be obtained from all of the earth�s non-renewable resources of oil, natural
gas and mined coal combined. There are some disadvantages, which are linked
to the physical properties of natural resources and to the process of converting
natural resources into electricity. One limit to the solar energy production is
that solar energy is not available at night. Other limits include the reliance
on weather patterns to generate electricity and a lack of space for solar cells in
areas of high demand, such as cities. Like the production with non-renewable
resources, the activity of extracting and converting renewable energies into elec-
tricity can be subject to capacity constraints. Indeed, there is a maximum rate
at which energy can be extracted from the �owing water and this rate is related
to the kinetic energy �ux in the water turbines. In wind energy production, the
Betz Limit states that no wind turbine can convert more than about 60% of the
kinetic energy of the wind into mechanical energy turning a rotor1 .
And yet there is an increasing demand for sustainable energy services. The

planners of the "2012 International Year of Sustainable Energy for All"2 have
set three main objectives to be achieved in the next twenty years: (i) to ensure
access to everyone to sustainable energy (also known as modern energy) services;
(ii) to double the rate of improvement in energy e¢ ciency; and (iii) to make 30%
of the world�s energy renewable. The goal is the development and promotion of
strategies, commitments and activities to encourage a programme of switching
to alternative renewable and non-polluting energy sources.

1The e¤ects of capacity constraints on the optimal rates of extraction of natural (but
exhaustible) resources is studied in Ghoddusi (2010) and Mason (2001).

2See the United Nations General Assembly Resolution A/RES/65/151,
http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/65/151.
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The focus of this paper is on the optimal timing of switching from non-
renewable to renewable resources and the role of emission taxes, subsidies on
renewable resources and abatement costs. We assume that non-renewable re-
sources are "dirty" inputs and create environmental degradation, while renew-
able resources are more environmentally friendly, although they may be more
or less productive than the exhaustible resources. The setup is a real option
model where the optimal extraction rates of renewable and non-renewable nat-
ural resources are determined by solving the �rm�s pro�t maximization under
emission taxes and abatement costs. Our work endogenously takes into account
the level of emissions before and after the adoption of the renewable resource.
The �rm solves an optimal stopping problem in order to �nd the critical thresh-
old of switching from an exhaustible polluting input to a low carbon renewable
resource. Closed form solutions for the optimal switching timing and the value
of the option to switch, are found. Our numerical applications show that an
increase in emission taxes, abatement costs or demand elasticity slows down the
adoption of alternative renewable resources, while an increase in the natural
rate of resource regeneration, the stock of the renewable resource or the relative
e¢ ciency parameter speeds up the investment in the green �rm.
Our paper improves on the current literature in several dimensions. To

the best of our knowledge, this is the �rst paper where the emission tax rate,
subsidies on low carbon renewable resources and the cost of carbon abatement
are embedded in a real option framework about the timing of switching to
renewable resources. Moreover, in our model the renewable resource can be
more or less e¢ cient than the non-renewable resource. This feature is most
relevant in practical applications. In electricity generation an electric generator
is a device that converts energy inputs into electrical energy. Converting fossil
fuels into electricity can be more or less e¢ cient than converting renewable
inputs into electricity. For example, converting biomass into electricity is less
e¢ cient than converting oil into electricity (see Mosiño, 2012), while, depending
on the water turbines, converting hydro energies into electricity can be more or
less e¢ cient then converting fossil fuels into electricity. In general, large hydro
power stations are by far the most e¢ cient method of large scale electric power
generation. Our main results suggest that the option to switch will be exercised,
depending on values of the unit abatement cost and on the relative productivity
parameter. The data used for the numerical applications are in keeping with
the empirical evidence and show that our results are robust to the modelling
and to various relevant parameters.
The paper is organized as follows. Section 2 provides a literature review.

Section 3 describes the setup of the model and characterizes the case when the
energy producer uses a non-renewable resource (Proposition 1) or a renewable
resource (Proposition 2). Section 4 solves the optimal stopping problem of the
energy producer and �nds the value of the switching option and the optimal
switching time (Proposition 3). Numerical results are presented in Section 5.
In particular, a detailed sensitivity analysis is shown as to deepen our under-
standing of the e¤ects of emission taxes, unit abatement costs, natural resource
regeneration rates and the stock of renewable resources on the optimal timing
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of switching from non-renewable to renewable resources and on the �rm�s value.
Section 6 concludes the paper.

2 Literature review

There have been many studies on e¤ective policy solutions to environmental
degradation based on approaches that di¤er from the present paper. Acemoglu
et al. (2012) develop a two-sector model of directed technical change to study
the e¤ects of environmental policies on di¤erent types of technologies. The
unique �nal good is produced by combining the inputs produced by the two
sectors (clean and dirty inputs). They characterize the structure of equilibria
and the dynamic tax/subsidy policies that achieve sustainable growth or max-
imize intertemporal welfare. Their main results focus on the types of policies
that can prevent environmental disasters, the structure of optimal environmen-
tal regulation and its long-run growth implications, and the costs of delay in
implementing environmental regulation. In particular, they show that without
intervention, the economy would rapidly head towards an environmental dis-
aster, while the use of carbon taxes or research subsidies would be su¢ cient
to (re)direct technical change toward the clean sector and avoid environmental
disasters. Chakravorty et al. (2012) study how environmental policy in the
form of a cap on aggregate emissions from a fossil fuel interacts with the arrival
of a clean substitute (e.g., solar energy). They show that the price of energy
under such a target may exhibit cyclical trends driven by scarcity of the non-
renewable resource, the e¤ect of environmental constraints and potential cost
reductions in the clean technology. The seminal work by Dasgupta and Heal
(1974, 1979) and Dasgupta and Stiglitz (1981) examine the e¤ects of economic
and technological uncertainties on the dynamics of non-renewable resource de-
pletion. Pindyck (1980) studies the e¤ects of two sources of uncertainty (of the
future demand and the resource reserves) on the market-price evolution, the
optimality of the competitive market and the value of exploration. Pindyck
(1984) examines the implication of ecological uncertainty on the optimal ex-
traction rate of a renewable resource. In Pindyck (2000, 2002) the e¤ects of
irreversibilities and uncertainties on the optimal timing of adoption of policies
for emission reductions are analyzed.
Our paper employs real option methodology. There are important reasons

to use real options when dealing with the choice of policy options for emission
reductions. Some papers have employed a cost�bene�t analysis, where the social
planner maximizes expected bene�ts from some policy to calculate the optimal
level of current abatement of greenhouse gases, and hence the current social
cost of carbon. However, as pointed out by Pindyck (2000, 2002), standard
cost�bene�t analysis fails to simultaneously capture the irreversibilities and un-
certainties about climate change and environmental policy intervention. Real
options are also the appropriate methodology to incorporate the role of timing
in adoption of alternative renewable energies. Recently, a number of studies in
the real options literature have examined the implications of irreversibility and
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uncertainty for the optimal timing problem in environmental economics in dif-
ferent contexts (see, for example, Conrad, 1997, 2000; Saphores and Carr, 2000;
Xepapadeas, 2001; Insley, 2003; Requate, 2005; Van Soest, 2005; Wirl, 2006;
Ohyama and Tsujimura, 2006; Kumbaro¼glu et al., 2008; Nishide and Ohyama,
2009; Balikcioglu et al., 2011; Travaglini and Saltari, 2011; Agliardi and Sereno,
2011, 2012). However, none of them deal with the case of non-renewable vs
renewable resources.
In our paper we study the e¤ects of emission taxes, subsidies on renewable

resources and abatement costs as instruments to accelerate the switching to
renewable and clean resources. Also other papers have dealt with the impact
of environmental taxes, although in a di¤erent context. Van Soest (2005) ana-
lyzes the impact of environmental taxes and quotas on the timing of adoption of
energy-saving technologies under irreversibility and stochastic arrival rate of the
new technologies, and shows that: (i) increased environmental stringency (mea-
sured in tax and its equivalent in terms of quota) does not necessarily induce
early adoption, and (ii) there is no unambiguous ranking of policy instruments
in terms of the length of the adoption lag. While Van Soest (2005) studies
the investment decisions of a single �rm under environmental regulations that
impose sunk costs on the �rm, we consider two types of �rms: one uses a dirty
exhaustible resource and the other uses a low carbon renewable resource and we
characterize the optimal timing to adopt the renewable resource in a setting with
emission taxes and abatement costs. In Van Soest (2005) innovation is driven
by an exogenous jump process, while in our model market demand is stochastic.
Agliardi and Sereno (2011, 2012) study the e¤ects of alternative environmental
policy options for the reduction of pollution emissions. Their models endoge-
nously take into account the level of emissions before and after the adoption
of the new environmental policy. The level of emissions is determined by solv-
ing the �rm�s pro�t maximization problem under taxes, standards and permits.
They �nd rankings for the adoption of environmental policies in a setting char-
acterized by economic and ecological uncertainties and ambiguity over future
costs and bene�ts over adopting environmental policies. Our model is not con-
cerned with the regulator�s behavior about the timing of policy for emission
reductions but analyzes the response of �rm�s investment decisions to changes
in environmental regulation, cost of abatement, exhaustibility of resources and
the relative e¢ ciency of the energy generators.
Our paper is mainly related to Mosiño (2012) who �rstly studies the determi-

nants of switching from non-renewable natural resources to renewable resources
in a real option framework. In Mosiño (2012) the stock of both resources is
stochastic. In particular, the stock of a renewable resource follows a geomet-
ric Brownian motion and the resource�s self regeneration function (i.e. the drift
component of the process) is a modi�ed version of the logistic equation proposed
by P.F. Verhulst in 1838. Since there is no closed form solution for the optimal
switching time and the value of the option to switch he provides a numerical so-
lution using the projection method. Di¤erently from Mosiño (2012) we develop
a model of optimal timing to switch to renewable energy sources with endoge-
nous extraction choices under emission taxes, subsidies and abatement costs.
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In our model the stock of a renewable resource regenerates naturally following
the same di¤erential equation used by Acemoglu et al. (2012) for the modelling
of the environmental quality. This seems particularly adequate when valuing
investment in hydropower plant where a reservoir is slowly replenished or forest
biomass where it takes many years for the forest to redevelop. Moreover, this
allows us to �nd a closed form solution for the optimal switching timing and the
value of the option to switch. In Mosiño (2012) only renewable resources that
are less e¢ cient than fossil fuel are considered, while we consider also the case
of renewable resources which are more e¢ cient than fossil fuels.
Taschini and Urech (2010) develop a model of real options to evaluate the

value of a generation system consisting of a coal-�red and a gas-�red power plant
in the presence of expected windfall pro�ts under the EU Emission Trading
Scheme, but are not concerned with timing issues. Siddiqui et al. (2007),
Siddiqui and Fleten (2010), and Davis and Owens (2003) consider investment
in renewable energy R&D and deployment of the new technology using real
options. These papers focus on technologies requiring costly R&D and staged
commercialization, but, in comparison to our paper, do not deal with polluting
emissions and various policy interventions. Finally, our model is also related
to Ghoddusi (2010) who studies the option to expand the capacity of a plant
under capacity constraints. However, he does not consider the option to switch
to a low carbon renewable resource.

3 The model

Suppose that the �rm is currently using a non-renewable source to produce
energy but has the option to switch to a renewable (perfect substitute) input.
Switching is available at a �xed and irreversible cost I > 0: We suppose that,
once the irreversible investment is undertaken, there is no incentive to turn back
to the use of the non-renewable resources. For example, once the oil platform
decides to become a wind farm, almost all of the previously installed capital
needs to be dismantled, and very few parts of the old facility can be reutilized.3

The renewable resource can be more or less productive than the fossil fuel. How-
ever, the non-renewable energy source is "dirty", while the renewable resource
is cleaner, or more environmentally friendly.
In the next subsections we �rst describe the model and develop the pro-

grammes to be solved by the �rm when using the non-renewable resource as an
input without switching (Section 3.1) or assuming that it already switched to
the renewable resource (Section 3.2). Then in Section 4 we analyze the problem
when the switching opportunity is taken into account.

3As Mosiño (2012) pointed out this process is very expensive in terms of time and money,
and so is the reverse procedure, making it di¢ cult for the �rm even to consider the possibility
of switching back.
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3.1 Non-renewable and dirty energy sources

A risk-neutral �rm is endowed with a deposit of exhaustible natural resources.
At time t the �rm is assumed to extract q1;t units of the natural resource to
produce Et units of energy according to the following production function:

Et = ��1;t (a1q1;t)
1��

; 0 < � < 1; (1)

where �1;t is the �ow of GHG emissions related to the activity of energy pro-
duction4 and a1 is the the parameter that re�ects the e¢ ciency of power plants
to convert a fuel into electricity.5 No uncertainty is assumed regarding the re-
sources and no exploration costs, therefore the dynamics of resource depletion
is given by:

dR1;t = �q1;tdt; with R1;0 given, (2)

where R1;0(> 0) is the initial stock of fuel and R1;t is the residual stock at any
time t. There is no storage, so all extracted fuel is instantly used to produce
energy.
The spot price of energy at time t is a function of the instantaneous rate of

energy production, Et and an exogenously given random process Xt:

Pt = P�1 (Xt; Et)

@P�1

@E
< 0:

Extraction costs are assumed to be negligible, which is a realistic assumption
(see for example Ghoddusi, 2010 p. 363). Finally, we assume that the level of
emission �ow �1;t can be reduced by setting an emission tax rate (�) which must
be paid for each unit of carbon emitted. Therefore the instantaneous pro�t rate
is determined by:

�1 (Xt; Et) = P�1 (Xt; Et)Et � ��1;t:

In order to analyze the behavior of the energy producer, we need to specify a
functional form for the inverse demand function and the dynamics of the demand
shock. We consider the case where the demand is of a constant elasticity type,
Pt = XtE

�

t , (0 < 
 < 1 is the elasticity of market demand) and the stochastic

demand parameter Xt follows a geometric Brownian motion with the following
dynamics:

dXt = �Xtdt+ �XtdZt; (3)

4As in Ono (2002), let us start with a production function of the form: Et = zta1q1;t,
where zt is the intensity of pollution. The activity of energy production leads to a �ow of
environmentally harmful emissions �1;t = Etz�t ; where � > 0 is constant. Elimination of zt
between the production function and the emission production function leads to (1), i.e. we
denote � = 1

1+�
.

5Mosiño (2012) used a di¤erent de�nition where a1 = 1
�1

and �1 is the fabrication coe¢ -
cient for oil, i.e. how many units of q1 are needed to produce one unit of energy.
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where � and � are the drift and volatility parameters of the demand process
and dZ is an increment to a Wiener process. In particular, reasons for demand
�uctuations may be due for example to variations in the price of substitute
products, climate change, technology improvements, etc.6

Throughout, we assume that:

E0

24 1Z
0

j�1 (Xt; Et)j e�rtdt

35 <1;
where r > 0 is the discount rate. This condition guarantees that the problem is
bounded.7

The objective of the energy producer is to choose the optimal rate of extrac-
tion q1;t and emission �1;t to produce Et units of energy such that the expected
net present value of the future pro�t streams from energy production is maxi-
mized:

V (X0; R1;0) = max
�1;t;q1;t

E0

1Z
0

�1 (Xt; Et) e
�rtdt;

subject to Eq. (2) for the evolution of the resource depletion and (3) for the
evolution of demand shock Xt.

The following proposition holds:

Proposition 1 When the �rm uses the non-renewable resource forever, the op-
timal resource extraction rate is a linear function of the remaining reserves, that
is, q�1 = q1;t = R1;t

r���

 , and the reserves evolve as follows: R1;t = R1;0e

� r���

 t:

Moreover, the optimal level of emissions is ��1 (q
�
1) =

h
(1��)X(a1q�1 )

��


�

i 1
�

; while

�1 (X;E (�
�
1 (q

�
1))) = 
X

1
�

�
a1

r���

 R1;t

� ��

�
�
1��
�

� 1��
�

is the operating pro�t

that can be obtained from an additional unit of the non-renewable resource ex-
tracted, processed and sold as energy, and � = 1� �(1� 
).

Proof. of Proposition 1: In the Appendix.

It is bene�cial to compare our result with the results in the literature on
the optimal extraction of non-renewable resources. In this literature the well-
known Hotelling rule suggests that in the absence of pollution emissions (i.e.,

6 It is well-known that the price of electricity is best modelled using complex stochastic
processes exhibiting mean-reverting paths with jumps (see for instance Lucia and Schwartz,
2002; Cartea and Figueroa, 2005 and Geman and Roncoroni, 2006) and a geometric Brownian
motion is a simpli�cation. However, the choice described here is a long-run investment decision
and the geometric Brownian motion assumption seems an adequate approximation for the
long-term price process (see for instance Schwartz and Smith, 2000).

7See the discussion in Section 4.
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� = 0), emission taxes (i.e. � = 0) and production costs, the marginal rev-
enue of the �rm will grow with the interest rate8 , yielding q1;t = r��


 R1;t, and

R1;t = R1;0e
� r��


 t. Thus, the optimal extraction rate is a linear function of the
remaining stock and declines exponentially.
Pindyck (1980) shows that even with stochastic demand shocks, the basic

Hotelling rule for the expectation of marginal revenue holds. Using dXt =
�Xtdt + �XtdZt, straightforward calculations yield q1;t = r��


 R1;t, and again
the optimal extraction rate is a linear function of the remaining reserves and
declines exponentially9 . Substituting the optimal extraction rate into �rm�s

pro�t we obtain, �1 (Xt; Et) = Xt

�
a1

r��

 R1;t

�1�

; in the absence of environ-

mental regulation and pollution emissions.
Proposition 1 shows that the optimal extraction rate is always a linear func-

tion of the remaining reserves and declines exponentially. Initially, at t = 0 the
extraction rate q1;0 = R1;0

r���

 is less than the extraction rate q1;0 = R1;0

r��



that is obtained in the Pindyck�s model in the absence of emissions, taxes and
extraction cost. The reason is that the environmental regulation a¤ects �rm�s
production through a reduction of �rm�s emissions and pro�t �ows. However,
as t increases the optimal extraction rate q1;t = R1;t

r���

 increases above the

extraction rate obtained in the Pindyck�s model in the absence of emissions
since the depletion rate e�

r���

 t is greater than the depletion rate e�

r��

 t for

any 0 < � < 1: Hence, the impact of an emission tax is to �atten the extraction
path of fossil fuels. We illustrate the e¤ect of the environmental policy on the
stock of natural resource in the following numerical example.

Numerical Example 1. Using these results, one can calculate the time it takes
for a producer with a given reserve R1;0 to exhaust its resources. Let us
assume: R1;0 = 100 Billions (reserves of crude oil in barrels),10 r = 0:05
(risk-free interest rate); � = 0:01 (drift-rate of demand shock); � = 0:25 (en-
ergy elasticity of emissions); 
 = 0:5 (elasticity of market demand): We have

8The derivation of this result can be found in the Appendix.
9Using dXt = �Xtdt+ �XtdZt,

E (dMR)

MR
= rdt; E (dMR) = (1� 
)

h
�a1�
1 q�
1 Xdt� 
Xa1�
1 q

�(1+
)
1 dq1

i
:

Accordingly,

E (dMR)

MR
= rdt =) �dt� 
q�11 dq1 = rdt =) q1;t = q1;0e

� r��



t
:

Straightforward calculations yield:

q1;t =
r � �



R1;t:

10This example might refer to a monopolistic �rm with a property right over the re-
serves of crude oil of Kuwait. Estimations of the stock of proved reserves of crude
oil in barrels can be found here: https://www.cia.gov/library/publications/the-world-
factbook/rankorder/2178rank.html.
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� � 1 � � (1� 
) = 1 � 0:25 (1� 0:5) = 0:875: Since the extraction rate is a
linear function of the remaining reserves and declines exponentially, the non-
renewable resource (R1;t) will be truly exhausted only in in�nite time. Thus, to
make comparisons, we assume that the resource is (practically) exhausted when
the stock of reserve reaches a negligible level, say 1 (measured in oil barrels).
This is not a particularly strong assumption and ensures that the resource is
exhausted in �nite time. Hence:

R1;0e
� r���


 t = 1 =) 100 � 109 � e�
0:05�0:875�0:01

0:5 t = 1 ' 375 years,

while, in the absence of emissions and environmental regulation:

R1;0e
� r��


 t = 1 = 100 � 109 � e�
0:05�0:01

0:5 t = 1 ' 317 years.

Hence, in the absence of emissions and taxes the resource will exhaust 58 years
earlier.

3.2 Production with renewable resources

Suppose that the �rm has access to a renewable (perfect substitute) input. The
renewable resource can be more or less productive than the fossil fuel. Let a2
be the parameter of e¢ ciency of generators using hydro, solar, or wind energy.
We assume that a2 =  a1, where the energy e¢ ciency factor  is such that
0 <  < 1 if the renewable resource is less productive than the fossil fuel, while
 > 1 if the renewable resource is more productive.11

Denote by �2;t the �ow of emissions related to the renewable energy produc-
tion. Unlike fossil fuel technologies, the vast majority of GHG emissions from
renewable energies occur upstream of the plant operation, typically for the pro-
duction and construction of the technology and its supporting infrastructure.12

For biomass power plants the majority of emissions can arise during the fuel-
cycle depending on the choice of biomass fuel. Also for hydroelectric reservoirs
a huge amount of gases is released when the water is passing the turbine and
the spillway. Hence, the production function is:

Et = ��2;t (a2q2;t)
1��

:

11For the energy e¢ ciency in various generation technolo-
gies see the Union of the Electricity Industry�Eurelectric�s report:
http://www.eurelectric.org/Download/Download.aspx?DocumentID=13549. As we can
see from the graph at page 13 the e¢ ciency in converting oil into electricity may be up to
44%, while the e¢ ciency of a biomass may be up to 40%.
12For most renewable energy technologies upstream GHG emissions can account for

over 90% of cumulative emissions. See the International Atomic Energy Agency�s report,
available at: http://www.iaea.org/OurWork/ST/NE/Pess/assets/GHG_manuscript_pre-
print_versionDanielWeisser.pdf .
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Here, we assume that �2;t < �1;t since renewable energy does not produce toxins
or pollutants that are harmful to the environment in the same manner that
non-renewable energy does.13 To manage this emission, the �rm installs an
abatement technology. The total cost of abatement can be described as c�2;t
where c is the exogenous unit abatement cost.14

As for the non-renewable resource case, we assume that the stock of the
renewable natural resource, R2, is deterministic, but now evolves according to
the di¤erential equation:

dR2;t = (�R2;t � �q2;t) dt; with R2;0 given, (4)

where R2;0(> 0) is the initial stock of renewable resources, R2;t is the residual
stock at any time t, � (> 0) is the rate of the resource regeneration and � (> 0)
is the rate of decrease of the resource stock due to the activity of extraction
q2;t.15 Since there is no storage in this version of model, the spot price of energy

13A comparison of GHG emissions for various energy generating technology (i.e. nuclear, fos-
sil and renewables) can be found in Frans H. Koch (2002) "Hydropower �Internalised costs and
externalised bene�ts", available at: http://www.oecd-nea.org/ndd/reports/2002/nea3676-
externalities.pdf#page=131. Table 1 shows the emissions produced by 1 kWh of electricity
based on life cycle analysis. The amount of noxious emissions (i.e., SO2, NOx, etc.) and
greenhouse gas emissions are much smaller for hydropower, nuclear, and wind, than they are
for fossil fuels.
14 In our model �rms with renewable resources are the only ones engaging in abatement

because our objective is to study the timing of switching from dirty and non-renewable re-
sources to less polluting and renewable resource. This will allow us to get �2;t < �1;t which is
in keeping with the empirical evidence (see Sims et al. 2003). Alternatively, we can consider
both �rms engaging in abatement activities. The unit abatement costs in this case are c1 and
c2 where c1 < c2: However, this does not change our results substantially. Hence, we avoid to
make this assumption for an easier exposition.
15A similar process is used by Acemoglu et al. (2012) to describe the dynamics of environ-

mental quality. In particular, let St be the quality of environment which evolves according to
the di¤erence equation:

St+1 = ��Ydt + (1 + �)St
where � measures the rate of environmental degradation resulting from the production of dirty
input Ydt and � > 0 is the rate of environmental regeneration. Our framework is related to
Mosiño (2012). However, in his model a stochastic logistic growth function is proposed:

dR =

�
�R

�
1� R

K

�
� q

�
dt+ �dZt;

where K is the carry capacity or the saturation level of the resource. In particular, it is shown

that there exists a maximum sustained yield MSY at qMSY = max
h
�R
�
1� R

K

�i
with the

property that any larger harvest rate will lead to the depletion of the resource. As noted by
the author such processes are very appropriate in the case of biomass energy. In our model
we adopt a deterministic dynamics for the renewable resource depletion and assume that the
growth/regeneration rate is simply �; instead of the more complex logistic version. It seems to
us that this model is more general and well �ts the property of renewable energy inputs such
as hydropower where the production of energy depends on moving water into reservoir and
where the risk of resource extinction is negligible. This might also be true for forest biomass
where it takes many years for the forest to redevelop, but it seems less appropriate for other
prevalent renewable sources such as solar, wind, or nuclear that act less like a stock and more
like a �ow. A more generalizable form would be to allow the rate of decrease � in Eq. (4) to
go to zero for the case of a renewable resource �ow. In this case the available amount of the
renewable would be �R2;t.
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is:
Pt = P�1 (Xt; Et) ;

where Xt is the same geometric Brownian motion as Eq. (3). We assume that
extraction costs of the renewable resource equal zero (see Mosiño, 2012) and
that the �rm pays the emission tax rate � for each unit of pollutant emitted.
Therefore the �rm�s pro�t rate is:

�2 (Xt; Et) = P�1 (Xt; Et)Et � (c+ �) �2;t:

As usual:

E0

24 1Z
0

j�2 (Xt; Et)j e�rtdt

35 <1;
to guarantee that the problem is bounded.
The objective of the energy producer is to choose the optimal levels of emis-

sion �2;t and extraction q2;t of the renewable natural resource to produce Et
units of energy such that the expected net present value of the future pro�t
streams from energy production is maximized:

W (X0; R2;0) = max
�2;t;q2;t

E0

8<:
1Z
0

�2 (Xt; Et) e
�rtdt

9=; ;

s:t: :

dR2;t = (�R2;t � �q2;t) dt;
dXt = �Xtdt+ �XtdZt:

Following the same argument of the proof of Proposition 1, we obtain the
following proposition:

Proposition 2 When the �rm uses the renewable resource forever, the optimal
resource extraction rate is a linear function of the remaining reserves, that is,
q�2 =

r�����(��
)
�
 R2;t, and the reserves evolve as follows R2;t = R2;0e

� r������

 t:

Moreover, the optimal level of emissions is ��2 (q
�
2) =

h
(1��)X(a2q�2 )

��


c+�

i 1
�

, while

�2 (X;E (�
�
2 (q

�
2))) = 
'X

1
�

�
a2

r�����(��
)
�
 R2;t

� ��

�
�
1��
c+�

� 1��
�

is the operating

pro�t that can be obtained from an additional unit of the renewable resource
extracted, processed and sold as energy and where ' = (1��)�


 + (r���)�
r�����(��
)

and � = 1� �(1� 
).

Proof. of Proposition 2: In the Appendix.
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Notice that in this case the depletion factor e�
r������


 t is greater than the
factor e�

r���

 t that is obtained when the �rm uses a non-renewable input. Since

the natural resource regenerates continuously over time, the �rm can extract
more input than if the resource depletes over time without regenerating natu-
rally.
Renewable resources are continuously available, unlike non-renewable re-

sources which depletes over time. A simple comparison is an oil reserve and a
hydroelectric plant. The quantity of water into a reservoir can be used up but,
if carefully managed, it represents a continuous source of energy, contrarily to
the oil reserve which, once it has been exhausted, is gone. Let us consider the
following numerical experiment.

Numerical Example 2. Let us assume: R2;0 = 105 Billions (reserves of water in
a reservoir in barrels),16 r = 0:05 (risk-free interest rate); � = 0:01 (drift-rate
of demand shock); � = 0:25 (energy elasticity of emissions), 
 = 0:5 (elasticity
of market demand), � = 0:038 (rate of replenishment of water into reservoir17).
We compute � = 1� � (1� 
) = 1� 0:25 (1� 0:5) = 0:875: We obtain the time
it takes for a producer with a given reserve R2;0 to reach the exhaustion of the
resource:

R2;0e
(� r������


 t) = 1 =) 105 � 109 � e(�
0:05�0:875�0:01�0:038�0:875

0:5 t) = 1 ' 25:328.

The quantity of water in the reservoir will take about 25:328 years to be ex-
hausted given the initial stock levelR2;0 = 105 Billions and � = 0:038. Moreover,
note that if the current replenishment rate would be � = 0:0385714, the residual
stock at time t = 1:000:000 (given t = 0 i.e., 14/06/2013) is:

R2;1:000:000 = R2;0e
(� r������


 t)

=) 105 � 109 � e(�
0:05�0:875�0:01�0:0385714�0:875

0:5 �106) ' 105 � 109.

The remaining stock after 1 million years is about as its initial stock level at
14/06/2013.

4 The value of the switching option and the op-
timal switching time

Having found the optimal extraction rates of non-renewable and renewable re-
sources, let us go back to the optimal decision to switch from a non-renewable

16For example, we use the total reservoir storage capacity of the Gordon Dam in Tasmania.
See http://www.hydro.com.au/energy/our-power-stations/gordon-pedder, for some technical
details about the Hydro Tasmania�s system.
17This is the di¤erence between the river�s in�ows and out�ows or the reusing rate

of water. For further details see: http://www.usbr.gov/power/edu/pamphlet.pdf and
http://ga.water.usgs.gov/edu/hyhowworks.html.
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resource to a renewable resource and characterize the determinants of the opti-
mal switching time � .
We �rst compute the value of the "dirty �rm" at t = 0 when the possibility

of switching to a lower emission renewable input is not available:

V0 = E0

1Z
0

�1 (Xt; Et (�
�
1 (q

�
1))) e

�rtdt (5)

= 
 (a1q1;0)
��

� X

1
�

0

�
1� �
�

� 1��
�

1Z
0

e

�
�r+�

�+
1��
2�2

�2
�
t
�
e�

r���

 t
� ��


�

dt

= 
 (a1q1;0)
��

�

�
1� �
�

� 1��
� X

1
�

0

�
:

In the same way, we can compute the value of the "green �rm" at t = 0 after
the switching to a lower emission renewable input:

W0 = E0

1Z
0

�2 (X;E (�
�
2 (q

�
2))) e

�rtdt

= 
' (a2q2;0)
��

�

�
1� �
c+ �

� 1��
� X

1
�

0

�� �(��
)



;

where �� �(��
)

 > 0 and � = r���


 � 1��
2�2 �

2.18 Notice that we make two eco-
nomically natural assumptions which ensure convergence of the above integral:
r� � � � ��,19 which guarantees the integrability of the present value of the
extraction rates q1;t and q2;t; and r � �

� �
1��
2�2 �

2 > 0 for � > �2; (0 < �2 < 1);
which guarantees the integrability of the expected present value of the shock

�ow X
1
�

t :
20

18 It is immediate to show that � > �� �(��
)



> r � �
�
� 1��

2�2
�2 > 0:

19This ensures that the stock of natural resources decreases over time. We can also assume
r��� = �� which means that the stock of renewable resources is inexhaustible (constant over
time) as for the case of the reserves of water in a reservoir. See the numerical example 2 and
the numerical application for more intuitions.

20The intuition for this condition is as follows. Applying Itô�s Lemma, we �nd that Yt = X
1
�
t

follows the geometric Brownian motion:

dYt=Yt =

�
�

�
+
1� �
2�2

�2
�
dt+

�

�
dZt:

For convergence of the expected present value of Yt the discount rate must exceed the trend
growth rate of Yt (no-bubble condition). Hence, r� �

�
� 1��

2�2
�2 > 0: The roots of the quadratic

r � �
�
� 1��

2�2
�2 are: �1 =

2���2�
p
8r�2+(�2�2�)2
4r

< 0 and �2 =
2���2+

p
8r�2+(�2�2�)2
4r

< 1: Notice that 0 < � � 1 � � (1� 
) < 1, hence we require that � > �2 for convergence of

expected present value of the shock �ow X
1
�
t :
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Since we assume that the level of emissions �ow ��2 (q
�
2) is less than �

�
1 (q

�
1)

we require that:

c > �

"�
 R2
'R1

���


� 1
#
, (6)

where ' = (1��)�

 + (r���)�

r�����(��
) .

4.1 The optimal stopping problem

The objective of the energy producer is to choose the optimal timing � of switch-
ing to a lower emission renewable resource such that the expected net present
value function of the di¤erence between the pro�t stream � (Xt; Et) and the
switching cost I, is maximized:

J (X0; R1;0; R2;0) = sup
�2T

E

8<:
1Z
0

e�rt� (Xt; Et) dt� Ie�r�
������F0

9=; ; (7)

subject to Eq. (3) for the evolution of demand shock Xt and to Eqs. (2)
and (4) for the evolution of the natural resource depletions. Here, T is the
class of admissible implementation times conditional to the �ltration generated

by the stochastic process Xt: Here, � (Xt; Et) = 
X
1
�

t (a1q
�
1)

��

�

�
1��
�

� 1��
�

for

0 � t < � and � (Xt; Et) = 
'X
1
� (a2q

�
2)

��

�

�
1��
c+�

� 1��
�

for t � � :

To simplify the notation, let us set � = 1, which does not change our results
substantially. Applying the Dixit and Pindyck (1994) methodology, we can
derive the optimal timing of switching to a lower emission renewable resource.
In particular, we can compute the critical threshold X̂, such that it is optimal
to switch for X > X̂. We obtain Proposition 3:

Proposition 3 If the relative e¢ ciency parameter  is su¢ ciently large and
for some appropriate values of the unit cost of abatement, the �rm will switch
from non-renewable resources to renewable resources as soon as X > X̂, where

X̂ =

266664
I��1

�
�� �(��
)




�
'̂
 (��1 � 1) (a2q2;0)

��

�

�
1��
c+�

� 1��
�

 
1� 1

'̂

�
1
 

� ��



�
c+�
�

� 1��



�
�� �(��
)




�

� �



!
377775
�

;
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where � � �(��
)

 > 0; '̂ = r���

r�����(��
) > 1 and � = 1 � � (1� 
) < 1: The
switching option is valued SWO, where:

SWO = X
�1
0

�
�1�� 1

I

���1�1
266664

'̂ (a2q2;0)

��

�

�
1��
c+�

� 1��
�

 
1� 1

'̂

�
1
 

� ��



�
c+�
�

� 1��



�
�� �(��
)




�

� �



!
��1

�
�� �(��
)




�
377775
��1

:

Proof. of Proposition 3: In the Appendix.

Note that SWO is positive if c < c�, where:

c� � �

24('̂) 

1��  

��

1��

 
�

�� �(��
)



! �
1��

� 1

35 :
By condition (6) computed at the level of the non-renewable resource at which
the marginal value with a non-renewable resource equals the marginal value
function with a renewable resource we must have c > c , where:

c � �

24 ��

1+
��

 
�

�� �(��
)



! ��

1+
��

� 1

35 ;
If  >  �, where:

 � �
�� �(��
)




�

then 0 < c < c < c�. These parameter restrictions on c and  ensure that the
critical switching threshold and the value of the option to switch are positive,
meaning that it will be optimal to exercise the option to switch at the critical
threshold X̂. Otherwise, the option to switch SWO will never be exercised and
will expire worthless.
Proposition 3 gives us a policy indication. If the goal of the government is to

provide incentives towards switching to alternative renewable and non-polluting
energy sources, then it should subsidize the cost of abatement and increase the
productivity of the renewable resource (for example, relying on research and
innovation subsidies). However, such subsidies for the renewable energy with
the intention of encouraging substitution away from fossil fuels may accentuate
climate change damages, by increasing �rm�s emissions. Such an outcome has
been termed a "Green Paradox" (see Sinn, 2008). Some recent papers have
addressed this issue in a framework that di¤ers from our model. Whether a
subsidy results in greater environmental damage (i.e. a "Green Paradox") or
not, depends on the relationship among parameters a¤ecting the time pro�le
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of the returns to investments in the substitute and the costs21 . In our model
such a paradox does not occur since the subsidy has no e¤ect on the time path
of extraction of the fossil fuel resources, but on the emissions of the clean �rm.
Moreover, as it is shown in Section 3.1 the tax works as intended, because it
extends the extraction period. Finally, at the switching time the non-renewable
resource stock is not exhausted, in contrast with most models where the paradox
arises.
A further policy intervention refers to the parameter I , that is, the cost

of investment in the green technology. The regulator can provide switching
incentives by decreasing I through a subsidy s, where s is a fraction of the
revenues generated by the pollution taxes. We can substitute I 0 = I � s in the
formulas above. It is immediate to show that: (i) the critical switching threshold
X̂ is decreasing in s, (ii) the value of the option SWO is increasing in s and
(iii) the level of emissions is neutral to such an environmental policy option.
Regulators caring about global warming damages might prefer such a policy,
which outperforms a policy of subsidizing the cost of abatement or increasing
the productivity of the generators, since it does not a¤ect total emissions.
In the next section we study the impact of the relevant parameters on the

critical threshold X̂ above which it is optimal to switch to the renewable and
environmentally friendly resource.

5 Numerical application

In this section we provide some numerical results and sensitivity analysis for
the optimal threshold of switching from a non-renewable resource to a renew-
able resource. Base case parameters used for the computation of the optimal
switching time and the value of the switching option are illustrated as follows.

Energy E¢ ciency of Generators. One measure of the e¢ ciency of power
plants that convert a fossil fuel into electricity is the heat rate, which is the
amount of energy used by a power plant to generate one kilowatt-hour (kWh) of
electricity. The lower the heat rate, the more e¢ cient the plant. A comparison
of the e¢ ciency of di¤erent types of power plants (i.e. coal, natural gas and
oil) is provided by the U.S. Energy Information Administration (EIA).22 EIA
expresses heat rates in British thermal units (Btu) per net kWh generated. To
express the e¢ ciency of a generator or power plant as a percentage, EIA divides
the equivalent Btu content of a kWh of electricity (which is 3,412 Btu) by the

21Grafton et al. (2012) show that subsidies for renewable resources with the intention of
encouraging substitution of biofuels to fossil fuels may accentuate climate change damages by
hastening fossil fuel extraction in some cases, and provide necessary and su¢ cient conditions
for the Green Paradox to hold. Van der Ploeg and Withagen (2012) provide examples where
following an increase in the subsidy of the clean renewable resource (i) welfare increases, if
it is optimal to leave some of the fossil fuels reserves unexploited, or (ii) welfare decreases, if
fossil fuel is fully exhausted in �nite time.
22Estimations of the historical average annual heat rates

for fossil fuel and nuclear power plants can be found here:
http://www.eia.gov/totalenergy/data/annual/showtext.cfm?t=ptb1206.
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heat rate. For example, if the heat rate is 10,140 Btu, the e¢ ciency is 34%; if
the heat rate is 7,500 Btu, the e¢ ciency is 45%.23 In general, the best fossil fuel
plants are only about 60 percent e¢ cient. Unfortunately, the EIA does not have
estimates for the e¢ ciency of generators using hydro, solar, and wind energy.
Hence, we use estimates from the Union of the Electricity Industry-Eurelectric.24

Hydroelectric power generation is by far the most e¢ cient method of large scale
electric power generation. The conversion e¢ ciency of a hydroelectric power
plant depends mainly on the type of water turbine employed and can be up to
95% for large plants. Smaller plants with output powers less than 5 MW may
have e¢ ciencies between 80 and 85 %. In the following simulations we assume
a1 = 0:5 (e¢ ciency of the fossil fuel power plant) and a2 = 0:9 (e¢ ciency of
a hydroelectric power plant). Therefore the e¢ ciency of renewables relative to
non-renewables,  � a2

a1
= 1:8:

Parameters related to the installed capacity of the green �rm.
As for the previous numerical examples we assume that the reserves of crude
oil is R1;0 = 100 � 109 barrels.25 Moreover, we assume that the reserves of
water in a reservoir is R2;0 = 105 � 109 barrels.26 The Investment costs of large
(>10 MWe) hydropower plants range from $1750/kWe to $6250/kWe, with an
average investment cost of $4000/kWe US$. The investment costs of small (1�
10 MWe) and very small (�1 MWe) hydro power plants may range from $2000
to $7500/kWe and from $2500 to $10,000/kWe, respectively, with indicative,
average investment costs of $4500/kWe and $5000/kWe.27 Assuming 432 MWe
of generating capacity,28 we have I �= 2 � 109; that is the cost of installment of
the hydropower plant in Euros. Fig. 1 shows a typical hydroelectric power plant
diagram.

23Source: http://www.eia.gov/tools/faqs/faq.cfm?id=107&t=3.
24See also footnote 10.
25A barrel of oil is 42 US gallons or 160 liters. A cubic meter is 1000 liters. Hence,

1000/160 = 6.25 barrels/m3: In the numerical simulations below we use a �uid barrel as unit
of volume where a �uid barrel is 119 liters. Implementing a straightforward conversion we
obtain R1;0 = 134 � 109 in unit of �uid barrel.
26This is approximately 12.5 km3 of water. For this calculation a �uid barrel as unit of

volume is used. In the US a �uid barrel is 31.5 US gallons or 119 liters. 1 cubic metre is
equivalent to 1000 liters. Hence, 1000/119 = 8.4 barrels/m3: Using this value we obtain the
initial stock of renewable natural resource, that is, R2;0 = 8:4� 125� 108 = 105 � 109 barrels:
27Souce International Energy Agency (IEA): http://www.iea-etsap.org/web/E-

TechDS/PDF/E07-hydropower-GS-gct.pdf.
28For example this the installed capacity of the Gordon Dam which consists of 3�144 MWe

turbines.
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Hydroelectric power plant diagram.

Remaining parameter values. The other parameter values are assumed
as follows: r = 0:05 (risk-free interest rate); � = 0:01 (drift-rate of demand
shock); � = 0:25 (energy elasticity of emissions); 
 = 0:5 (elasticity of market
demand), � = 0:037 (rate of replenishment of water into reservoir), � = 0:2
(emission tax rate), � = 0:3 (volatility of the demand shock), � = 1 (rate of
decrease of the resource stock due to the activity of extraction) and X = 1
(initial level of the shock of the market demand).

We have: � � 1 � � (1� 
) = 0:875 > �2; �2 �
2���2+

p
8r�2+(�2�2�)2
4r =

0:661187; '̂ � r���
r�����(��
) = 1:69811 and  � � �� �(��
)




� = 0:538677. Note
that  � < 1:8. The unit cost of abatement can be computed easily by using the
inequality:

c < c < c� ) 0:21 < c < 736:7

Let us assume a unit abatement cost of 40e per tCO2e (ton of Carbon Dioxide
equivalent). It is also in keeping with some empirical evidence, where the cost
of abating emissions may rise up to 40 Euros per tCO2e. To compare the unit
abatement cost with the emission tax rate we express c as a percentage, and we
assume c = 0:4 in the following numerical simulations.
We can compute the critical level of the non-renewable resource at which the

marginal value function with a non-renewable resource is equal to the marginal
value function with a renewable resource, we obtain: 17:7 � 109 barrels.29 Any
additional unit of resource extracted, processed and sold as energy will reduce
the marginal value function with a non-renewable resource (dashed curve) below
the marginal value function with a substitute renewable resource (solid curve)
as shown in Figure 1 below.

[Insert Figure 1 here]
29For this calculation we use Eq. (34).
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Figure 2 shows the relation between the value function, JN , the the value
of reward, JS � I and the shock of market demand X: The dashed curve refers
to the value function in the no-switching region (or value of continuation) while
the solid curve refers to the value function in the switching region minus the
cost of installment of the hydropower plant (value of reward or value of termi-
nation). We consider values of the shock of market demand X ranging from 0
to 20000: The critical threshold X̂ is found at the point of tangency of JN with
the curve JS � I: We found X̂ ' 9948:4. For values of the shock of market
demand belonging to the interval (0; 9948:4) the renewable resource should not
be adopted, while for values of X greater than 9948:4 the renewable resource
should be immediately adopted. At the optimal adoption threshold, the value
of the option to switch, �1X�1 ; is about 6:18476 � 109e. As R2;0 increases (and
so the value of the hydropower plant) the value functions before the switch and
after the switch increase (the curves shift upwards); the dynamics are illustrated
thoroughly in Figure 3 below.

[Insert Figure 2 about here]

Figure 3 shows the relation between the critical switching threshold X̂ and
the initial stock of the renewable resource R2;0. We consider values of R2;0
ranging from 0 to 700 � 1010 barrels of water: The critical switching threshold is
downward sloping with respect to the initial stock of renewable natural resource
R2;0: The reason is that a higher R2;0 will increase both the �rm�s extraction
rate and the pro�ts rate. Moreover, a higher stock of renewable resource will
increase the value of the option to switch and hence speed up the investment
in the hydropower plant. Let us consider the following numerical example.
Let us assume that the initial stock of resource is R2;0 = 55 � 109 barrels of
water. At this level of the stock of renewable resource the critical switching
threshold is X̂ �= 12678:3; the value of option to switch is 3852:34e, the value
function before the switch JN = 37880e and JS � I = �1:9998 � 109e. Now,
let us assume that the stock of renewable resource R2;0 increase from 55 � 109 to
105 � 109 barrels of water. For example let us assume that the energy producer
chooses a greater hydropower plant, i.e. a greater dam with a larger reservoir.
With this new level of the stock of the renewable resource the critical switching
threshold decreases from 12678:3 to about 9948:4, the value of the option to
switch increases to 5559e, also the value functions JN and JS � I increase, to
50452:9 and �1:9997 � 109e, respectively.

[Insert Figure 3 about here]

Figure 4 shows the relation between the critical switching threshold X̂ and
the abatement cost c. We consider values of c ranging from 0 to 1: The critical
switching threshold is upward sloping with respect to the abatement cost c: The
reason is that a higher c reduces �rm�s pro�ts and thus necessitates a higher
X for the investment in the hydropower system to take place. The intuition is
as follows. The optimal switching time is de�ned as that level of X at which
the value function before the switch and the value function after the switch
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are equivalent. Evaluating both values at X̂ and increasing the cost of carbon
abatement, decreases both the value function before the switch and the value
function after the switch (the curves in Figure 2 shift downward). On one hand,
a larger c would reduce the pro�ts of the hydropower farm (through a reduction
in the level of emission �ow), while render the dirty �rm more pro�table (the
value function before the switch increases while the value function after the
switch decreases). On the other hand, the value of the option to switch decreases
because there is less incentive to switch to renewable resources since the pro�ts
of the green �rm decrease (the value function before the switch decreases). Thus,
the �nal e¤ect on the timing to switch depends on which e¤ect is the strongest.
Overall, the e¤ect on the green �rm seems to dominate. That means that when
faced with a higher cost of abatement, the value of continuation is greater than
the value of termination, and hence the producer will decide to wait longer for
adopting the more environmental-friendly renewable technology.

[Insert Figure 4 about here]

Figure 5 shows the relation between the critical switching threshold X̂ and the
rate of the renewable resource regeneration �. We consider values of � ranging
from 0:01 to 0:0385714: This value is chosen so as to have the depletion term
e�

r������

 t very close to zero.30 This guarantees that the renewable resource

never depletes over time. The critical switching threshold is downward sloping
with respect to rate of resource regeneration �. The intuition is as follows. As �
increases the renewable resource becomes more inexhaustible and thus increases
the value of the hydropower plant (through a decrease in the discount term ��
�(��
)

 ); also the value of the option to switch to the renewable resource increases

since there is more incentive to adopt an inexhaustible natural resource. Both
the value function before the switch and the value function after the switch
increase (the curves in Figure 2 shift upwards). Thus, the �nal e¤ect on the
timing to switch depends on which e¤ect is the strongest. Overall, the e¤ect
on the value of the clean �rm seems to dominate. That means that when faced
with a higher rate of resource regeneration, the value of continuation is lower
than the value of termination, and hence the producer will decide to hasten the
adoption of the environmental-friendly renewable technology.

[Insert Figure 5 about here]

Figure 6 shows the relation between the critical switching threshold X̂ and
the emission tax rate �. We consider values of the emission tax rate � ranging
from about 0:2 to 1: The critical switching threshold is upward sloping with
respect to �: The reason is that a higher � reduces �rm�s pro�ts and thus ne-
cessitates a higher X for the investment in the hydropower plant to take place.
The intuition is as follows. The optimal adoption time is de�ned as that level of
X at which the continuation and the termination values are equal. Evaluating
both values at X̂ and increasing the level of stringency of environmental pol-
icy, decreases both the value function before the switch and the value function
30See for example the computation provided in the numerical example 2.
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after the switch (the curves in Figure 2 shift downwards). Indeed, a larger �
would reduce the emissions and pro�ts of both types of �rms. The value of the
option to switch both decreases and increases. On one hand, the value of the
option to switch decreases because there is less incentive to switch to renewable
resources since the pro�ts of a green �rm decrease; on the other hand, there
is more incentive to switch to a renewable resource since the pro�ts of a dirty
�rm decrease. Thus, the �nal e¤ect on the timing to switch depends on which
e¤ect is the strongest. Overall, the e¤ect on the green �rm seems to domi-
nate. That means that when faced with a more stringent environmental policy,
the value function before the switch is larger than the value function after the
switch, and hence the producer will decide to wait longer for adopting the more
environmental-friendly renewable technology.
The result that the more stringent the policy, the more the �rm delays

the adoption of lower emission technologies, was also highlighted in Van Soest
(2005), however, using a di¤erent model with a di¤erent objective function.
Also Agliardi and Sereno (2011) obtain the same sensitivity results with respect
to the stringency of environmental policy, although they consider a di¤erent
problem of regulator�s behavior with alternative environmental policy options
and the �nance requirements of the environmental protection.
Figure 7 shows the relation between the critical switching threshold X̂ and

the relative e¢ ciency parameter  . We consider values of the relative e¢ ciency
parameter  ranging from 0 to 2:5: The critical switching threshold is downward
sloping with respect to  : The reason is that a higher  increases the pro�ts of a
green �rm and thus necessitates a lower X for the investment in the hydropower
plant to take place. The intuition is as follows. As  increases the generator
using a renewable resource becomes more e¢ cient in converting that resource
into electrical energy than the generator converting fuels into electrical energy.
Thus, an increase in  increases both the value of the hydroelectric plan, through
an increase in the �rm�s pro�t �ow, and the value of the option to switch to the
substitute renewable resource. Both the value functions before the switch and
after the switch increase (the curves in Figure 2 shift upwards). Thus, the �nal
e¤ect on the timing to switch depends on which e¤ect is the strongest. Overall
the e¤ect on �rm�s pro�t seems to dominate. That means that when faced with
a more e¢ cient renewable resource, the value function before the switch is lower
than the value function after the switch, and hence the dirty �rm will decide to
hasten the adoption of the substitute renewable resource.
Finally, Figure 8 shows the relation between the critical switching threshold

X̂ and the elasticity of market demand 
. We consider values of the elasticity of
market demand ranging from about 0 to 0:6: The critical switching threshold is
upward sloping with respect to 
: The intuition is as follows. The elasticity of
demand is the same at every point along a constant elasticity demand curve. A
perfectly inelastic demand curve, where 
 = 0 everywhere, is a vertical straight
line. A larger 
 means that the market demand is �atter (more responsive to
price changes) than the inelastic demand curves. As expected, a larger 
 would
reduce the pro�ts of both the dirty �rm and the clean �rm, since the market
power of the energy producer reduces. The e¤ects on the option to switch is more
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ambiguous. On one hand, the value of the option to switch decreases because
there is less incentive to switch to a renewable resource when the pro�ts of using
that resource decrease (both the value function before the switch and the value
function after the switch decrease); on the other hand, there is more incentive
to switch to a renewable resource since the pro�ts of using a non-renewable
resource decrease (hence, the value function before the switch increases). Thus,
the �nal e¤ect on the timing to switch depends on which e¤ect is the strongest.
Overall, the e¤ect on the green �rm seems to dominate. That means that when
faced with a more elastic demand for electricity, the value of continuation is
greater than the value of termination, and hence the producer will decide to
wait longer for adopting the more environmental friendly renewable technology.

[Insert Figure 6 about here]

FIGURE 1: Relation between the marginal value function JNR1
and

the initail stock of non-renewable resource (dashed curve). Relation
between the marginal value function JSR2

, and the initail stock of
non-renewable resource (solid curve).Values of the initail stock of
non-renewable resource ranges from 0 to 50 � 109:
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FIGURE 2: Relation between the value function JN and the shock
of market demand X (dashed curve). Relation between the value
function JS minus the cost of installment of the green farm, and
the shock of market demand X (solid curve).Values of the shock of
market demand ranges from 0 to 20000:

FIGURE 3: Relation between the critical switching threshold X̂
and the initial stock of renewable natural resource R2;0. Values of
the initial stock of renewable resource ranges from 0 to 700 � 1010:
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FIGURE 4: Relation between the critical switching threshold X̂
and the cost of carbon abatement c. Values of the abatement cost
c ranges from 0 to 1:

FIGURE 5: Relation between the critical switching threshold X̂
and the rate of natural resource regeneration �. Values of � ranges
from 0:01 to 0:0385714:
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FIGURE 6: Relation between the critical switching threshold X̂
and the emission tax rate �. Values of the emission tax rate ranges
from about 0:2 to 1:

FIGURE 7: Relation between the critical switching threshold X̂
and the relative e¢ ciency parameter  . Values of the relative e¢ -
ciency parameter ranges from 0 to 2:5:
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FIGURE 8: Relation between the critical switching threshold X̂
and the elasticity of market demand 
. Values of the elasticity of
market demand ranges from 0 to 0:6:

6 Conclusion

It is well known that in the debate about environmental policy intervention
either an immediate government action is prescribed (Stern, 2007) or a more
gradualist approach is suggested (Nordhaus, 2007) to contrast and control emis-
sions and climate change. Our paper gives some indication on the optimal tim-
ing of switching and the types of policies that can implement environmental
regulation, encouraging alternative sustainable energy services. We consider a
model of switching from non-renewable and dirty resources to renewable and
less polluting energy sources. It is found (Proposition 3) that the option to
switch will be exercised, depending on values of the unit abatement cost and on
the relative productivity parameter. The optimal switching time is sensitive to
emission taxes, abatement costs, demand elasticity - whose increases slow down
the adoption of substitutable renewable resources - and the natural rate of re-
source regeneration, the stock of renewable resources, the relative productivity
parameter - whose increases speed up the investment in the green technology.
These results have some implications for environmental policy. The government
may want to accelerate the switching to a less polluting and renewable energy
source. Then, it should provide subsidies to decrease the cost of investment in
the green technology and to increase the productivity of renewable resources.
Our framework illustrates also the e¤ects of exhaustibility of resources on the
structure of optimal policy. Timing is crucial in policy intervention too: indeed,
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delaying intervention is costly, not only because of the resulting continued envi-
ronment degradation, but also because it may widen the gap between dirty and
clean technologies.
Some extensions and further directions of research might be fruitful. One

is to incorporate environmental risk, either modelling uncertainty in the regen-
eration rate or in the future costs of environmental damage. Deep structural
uncertainty could be modelled by fat tailed distributions or multiple priors. An-
other extension is to study alternative mix of policies and the impact of di¤erent
types of environmental regulation on the timing and direction of innovation in
the energy sector. Finally, the possibility of reversible switching and of gradual
transition toward a clean renewable backstop can be considered.
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Appendix
* Optimal extraction rate and resource dynamics in the absence of pollution

emissions, emission taxes and production costs.

In the absence of pollution emissions (i.e., � = 0), emission taxes (i.e. � = 0)
and production costs, the marginal revenue of the �rm will grow with the interest
rate. Thus:

dMR

MR
= rdt, MR � @�1 (X; q1)

@q1
= (1� 
)Xa1�
1 q�
1 :

dMR = (1� 
)
h
a1�
1 q�
1 (dX)� 
Xa1�
1 q

�(1+
)
1 dq1

i
:

If the demand shift parameter has a deterministic dynamics, dXt = �Xtdt and
the resource depletion R1;t = �q1;tdt we have �(1 � 
)a1�
1 q�
1 Xdt � 
(1 �

)Xa1�
1 q

�(1+
)
1 dq1: Accordingly,

dMR

MR
= rdt =) �dt� 
q�11 dq1 = rdt:

Hence,
dq1
q1

= �r � �



dt =) q1;t = q1;0e
� r��


 t:

The solution of Eq. (2) is:

tZ
0

dR1;s =

tZ
0

�q1;0e�
r��

 sds) R1;t = R1;0 �


q1;0
r � � +


q1;t
r � �:

Since:
R1
0
dR1;t =

R1
0
�q1;0e�

r��

 tdt =) R1;0 =


q1;0
r�� , straightforward calcula-

tions yield:

q1;t =
r � �



R1;t:

We can compute the remaining reserves of fossil fuel at any time t

dR1;t = �q1;tdt

= �r � �



R1;tdt =) R1;t = R1;0e
� r��


 t:

* Proof of Proposition 1
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We follow Pindyck (1980) and de�ne the optimal value function as:

V0 = V (X0; R1;0) = max
�1;t;q1;t

E0

1Z
0

�1 (Xt; Et) e
�rtdt:

The fundamental equation of optimality for the producer of energy is:31

rV (X;R1) dt = max
�1;q1

[�1 (X;E) dt+ Ed (V )] ;

where E = ��1 (a1q1)
1��

: We use the label "dirty-�rm" to indicate the �rm
producing energy with a non-renewable resource input. The rate of return
consists of the instantaneous pro�t �ow �1 (X;E) plus the expected change in
the value of the dirty �rm. Optimality requires that the total expected return
of the dirty �rm equals the required return r. To calculate the expected change
in the value of the dirty �rm, Ed (V ), we apply Ito�s Lemma to obtain:

Ed (V ) =
�
VXdX + VR1

dR1 +
1

2
VXX (dX)

2
+
1

2
VR1R1

(dR1)
2
+ VXR1

dXdR1

�
:

(8)

Substituting (2) and (3) in (8) and recognizing that E(dZ) = (dt)2 = (dt)(dZ) =
0, we get the expected change in the value of the "dirty �rm" over the time
interval dt

Ed (V ) =
�
�XVX � q1VR1 +

1

2
�2X2VXX

�
dt:

Hence:

rV (X;R1) = max
�1;q1

�
�1 (X;E)� q1VR1 + �XVX +

1

2
�2X2VXX

�
; (9)

where �1 (X;E) = X
h
��1 (a1q1)

1��
i1�


� ��1 and the subscripts denote partial
derivatives i.e., VR1

= @V / @VR1
, VX = @V / @VX etc. This equation contains

two state variables X and R1 and it seems hard to �nd out a closed form
solution. Nonetheless, this expression can be simpli�ed. First, we calculate the
amount of emissions used as a function of the extraction rate �1 (q1). Hence:

@�1 (Xt; Et)

@�1
= 0 =) �1 (q1) =

"
(1� �)X (a1q1)��


�

# 1
�

; (10)

where � = 1� � (1� 
), (0 < � < 1) :

31We suppress time subscripts unless they are needed for clarity.
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It is useful to rewrite Eq. (9) as:

rV (X;R1) = max
q1

�
�1 (X;E (�1 (q1)))� q1VR1 + �XVX +

1

2
�2X2VXX

�
; (11)

where �1 (X;E (�1 (q1))) = �X
1
� (a1q1)

��

�

�
1��
�

� 1��
�

:

The �rst order conditions (FOC) for the problem (11) is:

@�1 (X;E (�1 (q1)))

@q1
= VR1

: (12)

The marginal value function VR1 equals the incremental pro�t that can be ob-
tained by extracting, processing and selling one unit of the non-renewable re-
source as energy.
To get the optimal extraction rate, we eliminate V from the problem (11).

First, we di¤erentiate Eq. (11) with respect to R1; we obtain:

@�1 (X;E (�1 (q1)))

@R1
� q1VR1R1

+ �XVR1X +
1

2
�2X2VR1XX = rVR1

: (13)

Note that @�1(X;E(�1(q1)))@R1
= 0: Now using Ito�s Lemma Eq. (13) can be rewritten

as:
(1=dt)Ed (VR1

) = rVR1
: (14)

Applying the Ito�s di¤erential operator (1=dt)Ed (�) to both side of Eq. (12)
we obtain:

(1=dt)Ed
�
@�1 (X;E (�1 (q1)))

@q1

�
= (1=dt)Etd (VR1

) : (15)

Hence, we can combine equations (14) and (15) to obtain:

(1=dt)Ed
�
@�1 (X;E (�1 (q1)))

@q1

�
= r

@�1 (X;E (�1 (q1)))

@q1
;

which is the stochastic version of the Euler equation. Substituting the expression
for �1 (X;E (�1 (q1))) ; we have:

Ed

"
(�� 
)X

1
� a

��

�

1 q
� 


�

1

�
1� �
�

� 1��
�

#
= r (�� 
)X

1
� a

��

�

1 q
� 


�

1

�
1� �
�

� 1��
�

dt:

Hence, di¤erentiating the left-hand side of the equation above with respect to
X and q1 and after straightforward calculations we �nally arrive at:
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dq1
q1

= �r�� �



dt =) q1;t = q1;0e
� r���


 t:

Since
R1
0
q1;0e

� (r���)

 tdt = R1;0 =


q1;0
r��� , it is easy to show that:

q�1 = q1;t = R1;t
r�� �



: (16)

Finally, we can compute the remaining reserves of fossil fuel at any time t :

dR1;t = �q�1dt = �R1;t
r�� �



dt =) R1;t = R1;0e
� r���


 t:

Substituting the optimal extraction rate (16) into (10) we �nd the optimal
level of emissions:

��1 (q
�
1) =

"
(1� �)X (a1q�1)

��


�

# 1
�

;

while the �rm�s pro�t is �X
1
� (a1q

�
1)

��

�

�
1��
�

� 1��
�

:

By substituting (16) into the FOC (12) we �nd:

(�� 
)X
1
� (a1)

��

� (q�1)

� 

�

�
1� �
�

� 1��
�

= VR1 :

This allows us to rewrite Eq. (11) as:

rV (X;R1) = �1 (X;E (�
�
1 (q

�
1))) + �XVX +

1

2
�2X2VXX : (17)

where �1 (X;E (�
�
1 (q

�
1))) = 
X

1
�

�
a1

r���

 R1;t

� ��

�
�
1��
�

� 1��
�

is the operating

pro�t that can be obtained from an additional unit of the non-renewable resource
extracted, processed and sold as energy.

* Proof of Proposition 2

We follow the same argument as in the previous section and de�ne the optimal
value function as:

W0 =W (X0; R2;0) = max
�2;t;q2;t

E0

1Z
0

�2 (Xt; Et) e
�rtdt:
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The fundamental value of the �rm satis�es the following Bellman equation (we
suppress time subscripts unless they are needed for clarity):

rW (X;R2) dt = max
�2;q2

[�2 (X;E) dt+ Ed (W )] ;

where E = (�2)
�
(a2q2)

1��. We use the label "green-�rm" to indicate the �rm
producing energy with a renewable resource. As before:

Ed (W ) =
�
(�R2;t � �q2;t)WR2

+ �XWX + �
2X2 1

2
WXX

�
dt;

is the expected change in the value of the "green-�rm" over the time interval
dt: Hence, the fundamental equation of optimality is:

rW (X;R2) = max
�2;q2

�
�2 (Xt; Et) + (�R2;t � �q2;t)WR2

+ �XWX +
1

2
�2X2WXX

�
:

(18)

First, we calculate the amount of emissions used as a function of the extraction
rate. Straightforward calculations yield:

�2 (q2) =

"
(1� �)X (a2q2)��


c+ �

# 1
�

: (19)

It is useful to rewrite Eq. (18) as:

rW (X;R2) = max
q2

�
�2 (Xt; Et (�2 (q2))) + (�R2;t � �q2;t)WR2

+ �XWX +
1

2
�2X2WXX

�
;

(20)

where the instantaneous pro�t �ow �2 (X;E (�2 (q2))) = �X
1
� (a2q2)

��

�

�
1��
c+�

� 1��
�

:

The FOC for the problem (20) is:

@�2 (X;E (�2 (q2)))

@q2
=WR2

: (21)

The marginal value function WR2 equals the incremental pro�t that can be
obtained by extracting, processing and selling one unit of the renewable resource
as energy.
Di¤erentiating Eq. (18) with respect to R2 yields:

@�2 (X;E (�2 (q2)))

@R2
+�WR2

+(�R2;t � �q2;t)WR2R2
+�XWR2X+

1

2
�2X2WR2XX = rWR2

:

(22)
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Again @�2(X;E(�2(q2)))
@R2

= 0: Now using Ito�s Lemma we can rewrite Eq. (22) as
follows:

(1=dt)Ed (WR2
) = (r � �)WR2

: (23)

Applying the Ito�s di¤erential operator (1=dt)Etd (�) to both side of Eq.
(21) we have:

(1=dt)Ed
�
@�2 (X;E (�2 (q2)))

@q2

�
= (1=dt)Etd (WR2

) : (24)

Hence, we can combine equations (23) and (24) to obtain:

(1=dt)Ed
�
@�2 (X;E (�2 (q2)))

@q2

�
= (r � �)WR2

:

Since (�� 
)X
1
� a

��

�

2 q
� 


�

2

�
1��
c+�

� 1��
�

= WR2
, a simple substitution into the

above equation yields:

Ed

"
(�� 
)X

1
� a

��

�

2 q
� 


�

2

�
1� �
c+ �

� 1��
�

#
= (r � �) (�� 
)X

1
� a

��

�

2 q
� 


�

2

�
1� �
c+ �

� 1��
�

dt:

Di¤erentiating the left-hand side of the equation above with respect to X and
q2 and after straightforward calculations we obtain:

q�12 dq2 = �
r�� �� ��



dt =) q2;t = q2;0e

� r������

 t:

De�ne the function, f(R2;t; t) = R2;te
��t and di¤erentiate this with respect

to R2;t and t: We get:

df(R2;t; t) = e��tdR2;t � �R2;te��tdt;

by substituting Eq. (4) into the above expression we obtain:

df(R2;t; t) = ��q2;te��tdt:

Integrating from 0 to t we get:

R2;te
��t = R2;0 � �

Z t

0

q2;se
��sds:

where q2;t = q2;0e
� r������


 t, hence:

R2;te
��t = R2;0 �

�q2;0


r�� �� �(�� 
) +
�q2;0


r�� �� �(�� 
)e
� r�����(��
)


 t:
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Since R2;0 = �
R1
0
q2;te

��tdt =
�q2;0


r�����(��
) ; substituting this into the above
equation we have:

R2;te
��t =

�q2;0


r�� �� �(�� 
)e
� r�����(��
)


 t:

A straightforward calculation leads to the following expression of the optimal
extraction rate:

q�2 =
r�� �� �(�� 
)

�

R2;t: (25)

Finally, we can compute the level of remaining stock of renewable resource at
any time t :

dR2;t = (�R2;t � �q�2) dt = �
r�� �� ��



R2;tdt

=) R2;t = R2;0e
� r������


 t:

Substituting the optimal extraction rate (25) into (19) we �nd the optimal
level of emissions:

��2 (q
�
2) =

"
(1� �)X (a2q�2)

��


c+ �

# 1
�

;

while the instantaneous pro�t �ow is �X
1
� (a2q

�
2)

��

�

�
1��
c+�

� 1��
�

:

Substituting (25) into the FOC (21) we obtain:

(�� 
)X
1
� (a2)

��

� (q�2)

�

�

�
1� �
c+ �

� 1��
�

=WR2
;

while Eq. (18) can be rewritten as:

rW (X;R2) = �2 (X;E (�
�
2 (q

�
2))) + �XWX +

1

2
�2X2WXX ;

where �2 (X;E (�
�
2 (q

�
2))) = 
'X

1
�

�
a2

r�����(��
)
�
 R2

� ��

�
�
1��
c+�

� 1��
�

is the op-

erating pro�t that can be obtained from an additional unit of the renewable
resource extracted, processed and sold as energy.

* Proof of Proposition 3

Let V = JN (X;R1) denote the value function for the "no-switching" region 0 �
t < � , in which � (Xt; Et) = �1 (Xt; Et (�

�
1 (q

�
1))). Substituting J

N (X;R1) for
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V into (17) we �nd that the corresponding Hamilton-Jacobi-Bellman di¤erential
equation is:

rJN = �1 (Xt; Et (�
�
1 (q

�
1))) + �XtJ

N
X +

1

2
�2X2

t J
N
XX :

It has the following general solution:

JN = �1X
�1 +�2X

�2 +

24
 (a1q1;0) ��
� �
1� �
�

� 1��
� X

1
�

0

�

35 ; (26)

where �1 and �2 are unknowns to be determined: Here, �1 and �2 are the
solutions to the following characteristic equation:

1

2
�2�(�� 1) + ��� r = 0;

and are given by:

�1 =
1

2
� �

�2
+

s�
1

2
� �

�2

�2
+
2r

�2
> 1;

�2 =
1

2
� �

�2
�

s�
1

2
� �

�2

�2
+
2r

�2
< 0:

The term between the squared parentheses in (26) is a particular solution, which
captures the expected present value of future stream of pro�ts in the case the
energy producer has not switched to the renewable resource and is calculated in
(5). Therefore, the parenthesis in (26) represents the fundamental term and the
exponential terms account for the perpetual American switching option value.

Next, let W = JS(X;R2) denote the value function for the "switching re-
gion" t � � , in which � (Xt; Et) = �2 (X;E (�

�
2 (q

�
2))) : The corresponding

Hamilton-Jacobi-Bellman di¤erential equation is:

rJS = �2 (X;E (�
�
2 (q

�
2))) + �XtJ

S
X +

1

2
�2X2

t J
S
XX :

Since it is not worthwhile to switch back to the non-renewable resource,
there is no option term after the �rm has switched to the renewable resource.
So in this case the solution to the above equation is given by:

JS = E0

1Z
0

�2 (X;E (�
�
2 (q

�
2))) e

�rtdt = 
'̂ (a2q2;0)
��

�

�
1� �
c+ �

� 1��
� X

1
�

0

�� �(��
)



;
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The solutions for JN and JS must satisfy the following set of boundary
conditions:

JN (0; R1) = 0; (27)

JN (X̂; R1) = JS
�
X̂; R2

�
� I; (28)

@JN (X̂; R1)

@X
=
@JS

�
X̂; R2

�
@X

; (29)

@JN (X̂; R1)

@R1
=
@JS

�
X̂; R2

�
@R2

; (30)

and
lim

R1!1

�
JN (X;R1)� V (X;R1)

�
= 0: (31)

Here, X̂ is a free boundary, which must be found as part of the solution, and
which separates the switching from the no-switching regions. It is also the
solution to the stopping problem (7):

� = inf
n
t > 0; X � X̂

o
:

The renewable resource should be adopted the �rst time the process Xt crosses
the threshold X̂ from below. Boundary condition (27) re�ects the fact that if
Xt is ever zero, it will remain at zero thereafter. Condition (28) is the value
matching condition which says that the value function of the dirty �rm at the
time of switching is equal to the payo¤ from adopting the renewable input (which
is equal to the value function of the green �rm minus the installment cost of
the green farm). In addition, to ensure that renewable resource adoption occurs
along the optimal path, the value function satis�es the smooth-pasting condition
(29) at the endogenous adoption threshold (see Dixit and Pindyck 1994) and the
smooth-pasting condition (30) which is the tangency condition of the derivative
of the value function with a non-renewable resource with respect to the stock
of non-renewable resource (marginal value function) and the derivative of the
value function with a renewable resource with respect to the stock of renewable
resource. Finally, Eq. (31) is the transversality condition. It implies that if the
initial stock of non-renewable resource is in�nite, the �rm does not care about
having the renewable resource as an input substitute in production.
In our problem boundary condition (27) implies that �2 = 0 leaving the

solution:

JN = �1X
�1 + 
 (a1q1;0)

��

�

�
1� �
�

� 1��
� X

1
�

0

�
:
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The value matching condition (28) can be rearranged in the following manner:

�1

�
X̂
��1

+


�
X̂
� 1
�

(a1q1;0)
��

�

�
1��
�

� 1��
�

�
=

'̂
�
X̂
� 1
�

(a2q2;0)
��

�

�
1��
c+�

� 1��
�

�� �(��
)



�I:

(32)

The smooth-pasting condition (29) yields:

�1 =


�
X̂
� 1
���1

�1�

2664 '̂ (a2q2;0)
��

�

�
1��
c+�

� 1��
�

�� �(��
)



�
(a1q1;0)

��

�

�
1��
�

� 1��
�

�

3775 : (33)
Moreover, the smooth-pasting condition (30) yields:

cR1 = R2;0
1

'̂

�
1

 

� ��



�
c+ �

�

� 1��



 
�� �(��
)




�

! �



: (34)

(34) is the critical level of the non-renewable resource at which the marginal
value function with a non-renewable resource is equal to the marginal value
function with a renewable resource. Any additional units of the non-renewable
resource extracted, processed and sold as energy will make the marginal value
function of a dirty �rm lower than that of a clean �rm.32 The reason is that an
additional unit of resource extracted, processed and sold as energy will increase
the event of exhaustion of the non-renewable resource. Hence, cR1 can also
be interpreted as the critical level of the stock of non-renewable resource which
makes the decision to switch to a substitute renewable resource optimal. Finally,
notice that we evaluate the optimal switching time and the option to switch at
the critical level cR1 which means that their values are driven only by the other
economic factors.
Plugging (34) into (33), we get the expression:

�1 =



�
X̂
� 1
���1

'̂ (a2q2;0)
��

�

�
1��
c+�

� 1��
�

 
1� 1

'̂

�
1
 

� ��



�
c+�
�

� 1��



�
�� �(��
)




�

� �



!
��1

�
�� �(��
)




� :

(35)

Plugging (35) into (32), we get the expression:

(1� ��1) 

�
X̂
� 1
�

'̂ (a2q2;0)
��

�

�
1��
c+�

� 1��
�

 
1� 1

'̂

�
1
 

� ��



�
c+�
�

� 1��



�
�� �(��
)




�

� �



!
��1

�
�� �(��
)




� = �I:

32See Figure 1.
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It is easy to show that �1� > 1
33 so that the critical switching threshold can be

written as:

X̂ =

266664
I��1

�
�� �(��
)




�
'̂
 (��1 � 1) (a2q2;0)

��

�

�
1��
c+�

� 1��
�

 
1� 1

'̂

�
1
 

� ��



�
c+�
�

� 1��



�
�� �(��
)




�

� �



!
377775
�

:

(36)

where �� �(��
)

 > 0; '̂ = r���

r�����(��
) > 1 and � = 1� � (1� 
) < 1:
Substituting (36) into (35), we get:

�1 =

�
��1 � 1

I

���1�1
266664

'̂ (a2q2;0)

��

�

�
1��
c+�

� 1��
�

 
1� 1

'̂

�
1
 

� ��



�
c+�
�

� 1��



�
�� �(��
)




�

� �



!
��1

�
�� �(��
)




�
377775
��1

:

(37)

The value of the option to switch is de�ned by the exponential term �1X
�1
0 ; so

that a simple substitution of (37) allow us to �nd:

SWO = X
�1
0

�
�1�� 1

I

���1�1
0BBBB@

'̂ (a2q2;0)

��

�

�
1��
c+�

� 1��
�

 
1� 1

'̂

�
1
 

� ��



�
c+�
�

� 1��



�
�� �(��
)




�

� �



!
��1

�
�� �(��
)




�
1CCCCA
��1

:

Note that SWO should be positive. Hence, c < c� (and c� > 0 if  >�
1
'̂

� 

��


�
�� �(��
)




�

� �
��


), where:

c� � �

24('̂) 

1��  

��

1��

 
�

�� �(��
)



! �
1��

� 1

35 :
By condition (6) computed at the level of the non-renewable resource at which
the marginal value function with a non-renewable resource equals the marginal
value function with a renewable resource we must have c > c . If  >  � where

 � � �� �(��
)



� , then c > 0, where:

c � �

24 ��

1+
��

 
�

�� �(��
)



! ��

1+
��

� 1

35 :
33Straightforward calculations yield 1

2
� �

�2
+

r�
1
2
� �

�2

�2
+ 2r

�2
> 1

�
. Hence, r���

�
�

1��
2�2

�2 > 0 as assumed in section 4.
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Note that c� > c if  >
�
1
'̂

� 1+
��
��
 �

�� �(��
)



�

� 1
��


. Since  >
�� �(��
)




�

straightforward calculations show that

�
1

'̂

� 1+
��
��
  

�� �(��
)



�

! 1
��


<
�� �(��
)




�

if '̂ >
�� �(��
)




�
:

By de�nition '̂ > 1 while
�� �(��
)




� < 1; hence the inequality holds true. Finally,

notice that
�
1
'̂

� 

��


�
�� �(��
)




�

� �
��


<
�� �(��
)




� since
�� �(��
)




� < '̂:
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