
1/19 

G. Stefani
*
 and R. Scarpa

†
 

 

Solving the flip of the coin/unidentification dilemma : a 

Bayesian perspective on the incentive compatibility  

of hypothetical referenda  

 

 

Abstract  

We propose a Bayesian approach that overcomes the identification of scale in 

referendum contingent valuation data with experimental treatment. We apply this 

approach to the data originally collected by Cummings et al. (1997) and commented by 

Haab et al. (1999) and further rejoined by other studies. The results support the 

substantive findings of a higher rate of “yes” responses under hypothetical treatment, 
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1. Introduction 

We propose a Bayesian approach that overcomes the identification of scale in 

referendum contingent valuation data with experimental treatment. This issue has been 

raised in the literature following an initial paper in Cummings et al. (1995) where the 

authors reported results from an experiment devised to test the evidence of hypothetical 

bias in referendum contingent valuation for a private good. The rate of yes to no 

responses between hypothetical (84 percent) and real (27 percent) payment settings 

differed significantly from each other. However, as most of the CVM studies are carried 

out on public goods‡, in a subsequent paper Cummings, Elliot, Harrison and Murphy 

(1997) (henceforth CEHM) tried to replicate their result also for this type of goods.  

To test the incentive compatibility assumption for hypothetical referendum 

CEHM chose as a public good the support for an information campaign (a booklet to be 

distributed among citizens) about water contamination in New Mexico employing as 

payment vehicle a donation to a Charity. The public nature of the good stems from the 

fact that if the majority supports the proposal, then every participant in the referendum 

must pay for the provision of the good. CEHM found evidence in support of 

hypothetical bias also in the public good case. However, their paper soon was the object 

of two comments on the Journal of Political Economy. The first one by Smith (1999) 

was about the scope of the provisioned public goods, the second by Haab, Hang and 

Whithehead (1999) (henceforth HHW) criticised the method employed to test the 

incentive compatibility hypothesis. HHW claimed that CEHM results relied on the 

hypothesis of homoskedasticity between the real and hypothetical treatment. Failing to 

account for possible differences of variability of responses across treatments would 

have resulted in inconsistent parameter inference. In particular, once the higher 

variability of hypothetical responses is taken into account no significant difference 

appears between real and hypothetical response rate supporting the hypothesis of 

incentive compatibility.  

                                                 
‡ Differences in incentive compatibility of hypothetical referenda between 

private and public goods have been suggested on theoretical grounds by Carson and 

Groves (2007) and reviewed in empirical studies by List and Gallet (2001) and by Little 

and Berrens (2004). 
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HHW also stress that in order to test for the presence of hypothetical bias the 

referendum data employed by CEHM are not suitable since the scale parameters cannot 

be uniquely estimated. To overcome this problem they suggest employing multiple bids 

designs to examine the incentive compatibility issue.  In a paper by  Carlsson and 

Johansson-Stenman (2010) (abbreviated in what follows as CJ-S) the appropriateness of 

the methodology used by HHW is questioned and the difficulties arising when one 

attempts to properly identify the scale parameter in referendum data are highlighted. CJ-

S also address the broader issue of identification in this context revising the evidence 

stemming from the CEHM dataset.  

In this context we propose a Bayesian estimator for the heteroskedastic probit, 

based on plausible priors, could mitigate the problems encountered by maximum 

likelihood estimators thereby providing an alternative tool for the analysis of this type 

of data. The rest of the note is set out as follows: in the second section we review the 

methodological issues raised by the CEHM paper. In the next section a Bayesian 

version of the CEHM model is illustrated and the results are discussed. Finally, in the 

last section some conclusions are drawn. 

 

2. The CEHM model: methodological issues 

In CEHM the hypothesis of absence of hypothetical bias is tested by estimating a probit 

model where the probability of observing a “yes” vote is explained by some socio-

demographics and a dummy treatment variable (real vs. hypothetical). The results 

indicate that the only significant coefficient in the regression is the treatment variable 

either when considering the effect on the latent variable or the marginal effect of 

treatment on such probability (evaluated at sample means). 

In their comment HHW argue that the parameter estimate of the treatment 

variable is inconsistent because CEHM fail to account for the higher variability of 

responses in the hypothetical setting where the opportunity cost of deviating from 

rational responses is lower. Following Cameron and James (1987) HHW assume that 

WTP for the good is the latent variable behind the probit model, then if the WTP is 

specified as a linear function of socio-demographic covariates (X) and a normally 

distributed random error term (ε) the probability of a no response is given by: 

( )Pr( ) Pr i i i
i i i

u t t
WTP t u t P

σ σ σ

− −   
< = + < = < = Φ   

   

X β X β
X β    (1)  
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where σ is the standard deviation of the error term and ββββ is a vector of parameters for 

the linear function. As t is not varied across individuals (differently from most CVM 

dichotomous choice studies) it is absorbed into the constant (β0). According to HHW, 

ignoring differences in both scale and parameters across treatments and checking for 

significance of a treatment dummy within a pooled regression as CEHM did, results in 

testing the following hypothesis: 

0, 0,

0 : r h

r h

H
β β

σ σ
=  instead of 0 0, 0,:

r h
H β β=       (2)   

while maintaining equality of normalised parameters for other variables 

( , ,X r r X h h
σ σ=β β ) between the two treatments.  

In order to properly analyse the data HHW follow a procedure suggested by 

Swait and Louviere (1993) to test the joint and separate hypothesis of scale and 

parameter equality. First, the relative scale parameter 
r h

µ σ σ=  is estimated through a 

grid search procedure over possible values of µ in order to maximise the likelihood of 

the probit on the data matrix:  

h

r
µ

 
=  
 

X
X

X
          (3)  

Once a value for µ is obtained, estimation under the hypothesis of equality of beta 

parameters across treatments is achieved by estimating a probit on the data matrix 

where the data for the real treatment are scaled by the likelihood-maximizing µ*. The 

alternative of inequality of parameters with no restriction on scale is estimated by 

running independent probits on the public and private treatment data, and finally a LR 

test is performed.  If the hypothesis of equality of parameters is not rejected then the 

hypothesis of equality of variances can be tested by comparing the original pooled 

model with the rescaled pooled model. HHW find a relative scale parameter of 0.0406, 

and fail to reject the hypothesis of equality of parameters although the hypothesis of 

equality of variances was strongly rejected. Their result implies that the variance for the 

hypothetical subsample is about 600 times larger than for the real subsample: a very 

high value, which we argue to be empirically implausible when the context of choice is 

$10 for the provision of two citizen guides on the use of contaminated groundwater.   

CJ-S criticise the findings by HHW, arguing that the procedure they adopt is not 

the one originally proposed by Swait and Louviere (1993). The key point made by CJ-S 

is that the estimation of the relative scale parameter performed by HHW omitted the 
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treatment variable from the dataset. This results in violates the warning that the 

procedure will work only under a true model that includes all appropriate variables in 

the WTP function (Swait and Louviere, 1993, n.1 at page 307). CJ-S try to re-estimate 

the scale factor under the appropriate specification (i.e. including the treatment variable) 

and obtain a monotonic likelihood function increasing in the value of µ, a finding that 

we can replicate. This result is due to the very weak information content in the data, 

which makes it impossible to estimate the scale parameter since the only significant 

parameter of the CEHM model is the treatment variable, affecting both the WTP 

equation and the scale. The conclusions by CJ-S ( p. 9) are quite discouraging, as the 

invariance of the bid variable, together with that of other significant explanatory 

variables prevent the analyst from simultaneously identifying both the relative scale 

parameters and the shift variable. 

However, in a recent reply to HHW, (Harrison, 2006a, 2006b) it is argued that it 

is not the main effect on the latent variable that matters; rather it is the marginal effect 

on the probability to vote “no” in the referendum that is of relevance. Indeed, the latter 

“takes into account the joint effect of the experimental treatment variable on the mean 

response and on the residual variance”.  In a classical heteroskedastic probit model the 

marginal effect of a variable included both in the latent variable and in the variance 

equation is given: 

( )
( )

( )
( )γw

βx

γw

xβ
'

'

' expexp

)( kT

T

t

x

tWTPP γβ
φ

−







 −
==

∂

<∂
,     (4)  

as shown in Greene(2004). 

Results of a heteroskedastic probit on the CEHM dataset are reported in an 

unpublished study (Harrison, 2008) . The finding is that if group-wise heteroskedasticity 

for real and hypothetical treatments is taken into account then the parameter for the 

treatment dummy is not significant in the latent variable equation, yet the marginal 

effect on the probability to vote “yes” remains significant. This result contradicts the 

findings by HHW, who simulate response for each of the 275 individuals of the CEHM 

dataset employing 1,000 bootstrapped parameter vectors obtained from the split real and 

hypothetical samples. They find that the probability of a no response for each individual 

is the same for the real and hypothetical referenda.  

 However, when we reproduce this estimation in Nlogit (Greene, 2002), with the 

dummy variable for the treatment included in both the WTP and variance equations, we 
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find the coefficient estimate for such a variable in the latent WTP equation to be 

abnormally large, suggesting some problem in the convergence process of the max 

likelihood algorithm, probably due to the lack of identification emphasised by CJ-S.  

CEHM is certainly one of the studies in the environmental economics literature 

where the principle of replication of results has been duly applied. Analyses on those 

data have been carried out by several scholars, but the reliability and validity of the 

CEHM experiment is still questioned (and questionable) after ten years. We propose 

another approach to the analysis of the CEHM data under the Bayesian paradigm, which 

allows one to overcome the identification issue at the cost of invoking some mild prior 

assumptions. 

  

3. A Bayesian Analysis of the CEHM model 

Bayesian analysis of binary response data is particularly well equipped to deal with the 

sort of shortcomings highlighted by commentators of the CEHM study. In particular, 

the issue of identification in a Bayesian framework is less binding than in the classical 

approach since there is no need to impose exact restrictions to identify the model, rather, 

prior information is introduced by means of priors’ distributions (see for example: 

Leamer 1978 ; Zellner ,1971). By assuming proper priors a posterior can be defined for 

the unidentified parameter space from which one can sample using a Monte Carlo 

Markov chain (MCMC) (see Rossy, Allemby and McCulloch, 2005 for details). 

Afterwards one may derive the posterior distribution for identified functions of the 

unidentified parameters. The technique of augmenting the data by simulating the latent 

variable underlying the probit model allows us to sample the posterior distribution of 

sigmas conditional on the betas in a straightforward manner.  

The rest of this section is set out as follows: first the latent variable model is 

illustrated. Then the Gibbs’ sampler is introduced together with the prior and posterior 

distributions. A further subsection is devoted to the issue of identification. Then we 

describe the algorithm we use and test it on simulated data. The last two subsections 

deal with the CEHM dataset and the application of the Bayesian model to it. 

 

Data augmentation 

We model the decision to vote “yes” in the referendum through a latent variable 

approach that accounts for groupwise heteroskedasticity in the data. Partitioning 
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Cumming’s sample into the real (nr=95) and the hypothetical (nh= 178) subsamples§ a 

stacked latent variable regression is obtained: 
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where *

rz  and *

hz  , are latent variables, Xr and Xh are ni × k (with i=r, h) matrices of k 

explanatory variables (including a dummy variable for the treatment), and ur and uh are 

normally distributed errors with mean 0 and covariance matrix: 
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The observational equivalent of the latent variable is defined as follows: 
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y          (7)  

where yi = 0 and yi = 1 respectively refer to “no” or “yes” votes to the referendum. The 

unknown parameters in the model are hr σσ ,,β  together with the latent data 

* * * '
r h

 =  y z z .  

 

Gibbs’ sampler 

We use a Gibbs’ sampler with data augmentation to fit this model [1]. The method is 

standard for probit models, the only uncommon feature being the groupwise 

heteroskedasticity. With the Gibbs’ sampler we simulate from a block conditional 

distribution of a θ vector of parameters partitioned into four sub-components or blocks 

hr σσ ,,,βyθ
*= . This method is commonly employed when it is difficult to sample 

directly from the marginal posterior density, but  it is easy to sample from the 

conditional distributions for the individual blocks of parameters { }( )kjjk ≠,| θθπ . 

                                                 

§ We discarded two observations from the original CEHM database as they show 

a missed value for the variable “race”. Similar result are obtained setting to 1 the value 

for “race” (that is assuming the answer was “Caucasian”) and employing the whole 

dataset. 
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Starting with initial guesses for the parameters ( ))0()0()0()0( ,,, hr σσβz  the simulation goes 

on cyclically as follows, drawing in turn: 

)1(

iz  from ( )ihri yz ,,,| )0()0()0( σσπ β        (8)  

)1(β  from  ( )yzβ ,,,| )0()0()1(

hr σσπ        (9)  

)1(

rσ  from ( )yβz ,,,| )0()1()1(

hrr σσπ        (10)  

)1(

hσ  from ( )yβz ,,,| )1()1()1(

rrr σσπ        (11)  

and reiterating t steps. For t approaching infinity, the distribution of sampled values 

( ){ })()()()( ,,, t

h

t

r

tt σσβz  no longer depends on the initial guesses and it approximates the 

posterior distribution ( )yβz |,,, hr σσπ . So, if the simulation is run for t steps and the first 

t0 draws are dropped to reduce the effect of the initial values, the remaining t-t0 draws 

can be used to estimate posterior moments, the posterior probability density function, 

and other features of interest. 

 

Priors and Posterior conditional distributions 

Partitioning the n observation in n = nr + nh , with subscripts referring to the real and 

hypothetical sub-sample respectively, and assuming independence across observations, 

the likelihood function is given by: 
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We adopted the following prior distributions for 
hr σσ ,,β : 

( )βββ Vµ ,~ kN          (13)  

( )rrr baIG ,~σ  , ( )hhh baIG ,~σ       (14)  

With 100⋅= IVβ  , a=3 and b=4, we assume relatively diffuse priors to avoid imposing 

too restrictive a set of priors. The inverted gamma prior distribution for sigma with 

parameters a (shape) =3 and b (scale) =4 has mode equal to 1 and variance equal to 4. 

This prior distribution is centred on 1 and skewed to the right. It allows a substantial 

density over a large range of ratios of scale parameters. As such it represents a 

plausible, yet relatively diffuse, prior. The priors on βµ  are obtained from the work by 

CEHM. The following posterior conditional densities are then obtained: 
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where TN stands for truncated normal distribution. 

 

Identification 

The heteroskedastic probit model is still not identified in the stated form because the 

values of the dichotomous variable associated with the latent variable are identical if we 

the latter is multiplied by any arbitrary constant c, that is ( ) ( )zyzy c= . Therefore, as 

noted in the earlier discussion of the HHW model, the scale parameter is unidentified 

and: 
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  with parameters 2c c  β Σ     (19)  

describes the same observed yi values as the original model does. Following Rossi, 

Allemby and McCulloch (2005, p. 107) we choose to leave the model unidentified by 

assuming a prior on the full set of unidentified parameters and obtaining the identified 

parameters by normalisation with respect to rσ : 

x
r

h

h

r σ

σ
σ

σ
== ~~ β

β          (20)  

 

Algorithm 

The estimation algorithms is as follows: 

Step 1: Select starting values for β , rσ , hσ . We choose to use maximum likelihood 

probit estimates for β  in order to provide starting values of reasonable magnitude, 

while we set the initial values of rσ  and hσ  to 1. 
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Step 2: Draw initial vector of latent data ( z ). We use the conditional posterior 

distribution (19). To draw from the truncated normal we employed the inverse 

transform method (Koop, Poirier and Tobias, 2007  p. 157). 

Step 3: Draw β  from the multivariate normal in eq. (20). In order to retrieve βD  the 

data matrix X is scaled with the appropriate weighting matrix 1/ 2Σ  (as in a generalised 

least square estimator). 

Step 4: Draw rσ  and rσ  from the inverse gamma distributions eq. (21) and eq. (22) 

employing the original data matrix to retrieve the error vector βXy hh − . 

 

Simulated data 

In order to test the algorithm we run it with simulated data and with a sample of the 

same size as that used by CEHM. The simulated data was generated as follows: 
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with 

[ ]5,5~1 −Ux           (22)   
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Figure 1 illustrates the effect of scaling on the draws of parameters from the Gibb’s 

posterior simulator. The draws from the marginal posterior of the unidentified 1β  

wander erratically through the parameter space and do not show any tendency to 

converge while, the identified quantity 11 σβ  converge approximately on the true value 

of 1 used to generate the data set. 
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Figure 1: Gibbs sequence of 
11 σβ  and unscaled 1β  

 

Data 

We employed the same dataset used by CEHM that was kindly provided by Harrison, 

who also provided us with the selection criteria for the sub-sample of experiments on 

which the original analysis was conducted.** For a description of the data we refer to the 

original paper by CEHM. 

 

Results 

Three independent Markov chains of length 30,000 were run to derive the posterior 

distributions of the scaled parameters. Starting values for β were randomly selected 

using perturbed maximum likelihood estimates of a homoskedastic probit model, while 

initial values for rσ  and hσ  were set to 1. An initial 10,000 burn-in replications were 

discarded to deal with the effect of the initial values while, to reduce correlation, a 

thinning factor of 20 was employed.  

                                                 
** We note that we use 273 rather than the 275 observations used by Haab, 

Huang and Whitehead( 1999). The basic results, however, do not depend on these two 

missing observations. 



12/19 

Post estimation output analysis was performed with the CODA package (Plummer et 

al., 2007) The potential scale reduction factor R (Gelman, Carlin and Rubin, 2004) is 

acceptable for all parameters in the model. We also run the Geweke (1992) convergence 

diagnostic test  on each chain and CD values were lower than 1.96 for all parameters in 

the first chain, 7  and 11 out of 12 parameters in the second and third chain 

respectively††. The test for the parameter of  the “real”  dummy was always lower than 

1.50. Summary statistics are illustrated in table 1. For all β parameters the value 0 is 

included within the 2.5 and the 97.5 quantiles of the posterior distribution.  

 

Table 1. Descriptive statistics 

  Gelman's R Mean SD Naive SE Time series SE Q (0.025) Q(0.50) Q(0.975) 

constant 1.00 -0.459 1.996 0.0364 0.0411 -4.877 -0.358 3.430 

real 1.00 -0.492 0.261 0.0048 0.0048 -0.982 -0.502 0.019 

rh 1.00 0.116 0.352 0.0064 0.0061 -0.638 0.129 0.774 

age 1.00 0.012 0.010 0.0002 0.0002 -0.008 0.012 0.034 

male 1.00 -0.111 0.205 0.0037 0.0045 -0.561 -0.091 0.243 

race 1.00 -0.022 0.242 0.0044 0.0043 -0.468 -0.040 0.523 

income 1.00 -0.002 0.006 0.0001 0.0001 -0.012 -0.002 0.011 

married 1.00 0.133 0.224 0.0041 0.0040 -0.307 0.131 0.600 

earn 1.01 -0.008 0.165 0.0030 0.0034 -0.341 -0.015 0.347 

number 1.00 -0.005 0.023 0.0004 0.0005 -0.057 -0.003 0.038 

student 1.00 0.158 0.340 0.0062 0.0070 -0.503 0.137 0.917 

σh/σr 1.00 1.425 0.994 0.0182 0.0466 0.419 1.174 4.086 

Note: Descriptive statistics are based on 36,000 iterations (3 independent chains of 12,000 iterations each) 

 

 

However, we find mixed evidence that the coefficient for the "real" dummy is 

different from zero. Unlike the results obtained by HHW, who report a t-value of .39 in 

the rescaled probit, our results provide evidence in favour of some form of hypothetical 

bias, and hence in keeping with the original conclusions put forward by CEHM. This 

can be seen by noting that most of the posterior mass associated with the coefficient 

estimate for the "real" dummy is placed over negative values (fig.2). 

                                                 
†† Geweke convergence diagnostic test is reported in the appendix. 
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Figure 2. MCMC draws (3 chains) and posterior density for realβ  

 

Nevertheless our results are also consistent with the intuition driving the analysis 

by HHW. That is, responses to hypothetical questions tend to have a larger error 

variance, as shown by the skeweness of the posterior distribution of the ratio 

rh σσ displaying a mean value of 1.42 and a median value of 1.17. However, the 

values of this distribution are not consistent with the very low scale factor ratio used by 

HHW to rescale the real payment subsample, which is likely to be a consequence of the 

lack of identification. The Bayesian analysis, we argue, provides a more reasonable 

estimate for the ratio between the two standard deviations, although the ratio is not so 

distant from one, since the 2.5 percentile is 0.43, and the 97.5 percentile is 4.09. 

An overall measure of fit of the model is provided by the percentage of correctly 

estimated yes/no responses compared with those obtained by drawing from i.i.d. 

Bernoulli random variables with  the θ parameter set to the sample average of yes 

responses in the data. The distribution of the hit rate for the probit model only partially 

overlaps with the one obtained from the Bernoulli draws as shown by figure 3. This 

seems to confute the statement by HHW that "the experiment reported by CEHM 

provide both real and hypothetical responses that for an overwhelming number of 

respondents are statistically indistinguishable from a coin flip". 
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Figure 3 Distribution of model hit rate compared to a distribution of hit rate 

obtained drawing prediction for y from a Bernoulli distribution with parameter 

∑=
n

i ny
1

θ . 

 

Finally, we explored the posterior distribution of the marginal effect of the real 

dummy on the probability to choose “yes”, as suggested in Harrison (2006a, 2006b). 

The effect is calculated for each draw as the average over all individuals of the sample 

of the difference between the probability of obtaining a “yes” when the dummy takes 

the values 1 and 0, respectively: 

[ ] [ ]{ }
1

Pr Prob 1 | , 1, Prob 1 | , 0,
i i r i i h

i

y real y real
n

σ σ σ σ∆ = = = = − = = =∑ x x  (25)  

Figure 4 illustrates that there is good evidence that the marginal effect of a real 

treatment on the probability of a “yes” vote is negative and different from zero, 

endorsing the findings by  Harrison (2006a, 2006b).  
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Figure 4. MCMC draws  (3 chains) and posterior density for Marginal effect of 

treatment. 

 

4. Conclusions 

Since its publication the CEHM study has triggered an interesting debate over the 

reliability of the results initially reported by the authors. As far as the methodology is 

concerned, the initial debate was related to the issue of heteroskedasticity of the data 

conditional on the received treatment and the way to overcome the lack of identification 

of the relative scale parameters in single bid referendum data. The models employed so 

far (Carlsson and Johansson, 2010; Haab, Huang and Whitehead, 1999; Harrison, 

2006a, 2006b) have provided mixed evidence of the existence of a significant impact of 

the treatment (real vs hypothetical) variable on the probability to answer “yes” to a 

CVM referendum question. Moreover, the poor conditioning of the dataset employed by 

CEHM hinders identification of both treatment and scale parameters (Carlsson and 

Johansson, 2010). 

We proposed a Bayesian approach that overcomes the identification issue in these 

conditions, but at the cost of defensible assumptions on prior distributions of the scale 

parameters. Bayesian models are particularly suited to address problems of near-

unidentifiability as the use of even relatively diffuse priors provides sufficient structure 

to carry out the estimation. In our case the Bayesian analysis seems to support the view 

by CEHM and Harrison (2006a, 2006b) that the ratio of “yes” to “no” responses is, to 

some extent, different across treatment conditions and that the data collected in the 

experiment by CEHM has some explicative power, at least if compared with a simple 

series of Bernoulli random draws. 
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6. Appendix 

 

Tab. A1 Geweke Convergence Diagnostic Test 

 Chain 1 Chain 2 Chain 3 

ones 0.15 1.67 -1.89 

real -0.77 0.63 1.43 

rh 0.20 2.23 1.62 

age -1.62 0.88 -0.54 

male -0.43 0.40 0.57 

race 0.08 2.64 -0.77 

income 0.31 -1.14 -0.21 

married 1.27 -2.81 1.45 

earn 0.16 -1.97 2.06 

number -1.25 0.21 -0.44 

student 0.65 -2.02 0.15 

s21 0.29 0.18 -0.02 

 

Note: Fraction in first window =0.1, fraction in second window= 0.6 

 


