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Abstract

In this paper we provide a novel approach to identify the effect of growth deter-

minants on the distribution dynamics, that integrates the counterfactual analysis of, e.

g., Beaudry et al. (2005) with the estimation of conditioned stochastic kernels of Quah

(1996b) and Quah (1997). The counterfactuals are constructed from a nonparametric

growth regression in which the cross-section heterogeneity in the variable of interest is

removed. The methodology also allows for measuring the marginal effect of individual

variables on the distribution of per capita income (labor productivity), and to test for

the possible presence of distributional effects in the residuals of growth regression, as a

means to assess the goodness of fit of the initial growth regression. The methodology

is applied to the analysis of productivity dynamics across European regions. We show

its capacity to highlight aspects of the identified tendency for polarization, otherwise

missed by existing methods.
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2 METHODOLOGY

1 Introduction

The world income distribution has been largely studied over the last two decades and a new stylized

fact appears: the distribution of per capita income has moved from a unimodal shape in the 1960s to

a twin-peaks shape in the 1990s (see, e.g., Quah (1996a), and Durlauf et al. (2005)). The same twin-

peaked distribution also characterizes the regional distribution of productivity in Europe (see, e.g.,

Fiaschi and Lavezzi (2007), and Basile (2009)). However, it is still unclear whether these twin-peaks

are a persistent phenomenon (see Galor (2007)) and which factors drive the formation of the two

peaks.

This paper aims at analyses the factors driving convergence and divergence processes in the

growth dynamics. To this purpose, we propose a methodology to measure the distributional effect

of individual growth determinants, which combines a semiparametric growth regression approach

with the approach based on estimation of stochastic kernels, i. e. of the operators that map current

distributions into future distributions of income or productivity.1 Specifically, we exploit the idea of

performing a counterfactual analysis (see, e.g. Beaudry et al. (2005)) to evaluate the distributional

impact of a given variable. That is, we estimate and compare actual and counterfactual distributions to

estimate short-run effects, and the implied actual and counterfactual ergodic distributions to identify

long-run tendencies.

In addition, our methodology allows: i) to measure the marginal effect of a variable of interest on

the distribution, which provides information on the direction of the effect of the variable in differ-

ent ranges of per capita income (or labour productivity) distribution, and ii) to test for the possible

presence of distributional effects of the residuals of the growth regression, which we will utilize to

assess the specification of the regression model. The advantage of studying the distributional effect

of a growth determinant resides in the possibility to identify whether the same factor favors conver-

gence in some range of the per capita income (productivity) distribution and divergence in another,

an aspect which cannot be captured by the estimation of a single parameter as in standard growth

regressions.

The paper is organized as follows: Section 2 describes the methodology for the empirical analysis

and clarifies the relations with existing approaches; Section 3 presents an empirical application to

European regions; Section 4 concludes. The appendices contain details on data and on the method-

ology.

2 Methodology

In this section we present the method for the empirical analysis and clarify the aspects of its nov-

elty with respect to other approaches. Our method can be summarized as follows: we first estimate

1See, e.g., Quah (1997) for details.
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2.1 Related Literature 2 METHODOLOGY

a semiparametric growth regression, and then utilize the results to estimate counterfactual distri-

butions with respect to individual variables of interest; this allows to identify their contribution to

convergence or divergence, that we denote as marginal growth effect.

2.1 Related Literature

Two main approaches to study convergence exist in the literature: the “growth regression approach”

(GRA) and the “distribution dynamics approach” (DDA). By applying GRA, it is possible to analyze

whether economies are, on average, converging towards their steady-state level of per capita income

or productivity, and to identify the average effect of growth determinants. The DDA, instead, aims

at understanding how the whole cross-sectional distribution evolves over time.2

The most representative examples of the GRA are the so-called “Barro regressions” (see, e. g.,

Barro (1991), and Barro and Sala-i Martin (2004)), which generally found evidence of conditional con-

vergence across different economies, that is of a negative relation between the growth rate and initial

income levels, after controlling for other growth determinants.

De La Fluente (2003), in the spirit of the present paper, extends the GRA approach by decom-

posing the measures of σ and β-convergence (Barro and Sala-i Martin, 2004) into sums of partial σ

and β-convergence measures, in order to assess the individual contribution to convergence of the ex-

planatory variables included in a growth regression. De La Fluente (2003) defines such methodology

“convergence accounting”.

The alternative DDA proposed by Danny Quah in a number of papers (see, e. g., Quah (1993,

1996a,b, 1997)) stems from criticism to the GRA for not being able to capture phenomena such as

mobility, stratification and polarization in the world income distribution.3 On the contrary, operators

such stochastic kernels (or transition matrices) may reveal information on these aspects of the growth

process. A further step, aiming at evaluating the effects of individual explanatory variables on the

distribution dynamics is taken by Quah (1996b) and Quah (1997), by introducing conditioned stochas-

tic kernels. In particular, in Quah (1996b) conditioned stochastic kernels are based on residuals from

two-sided regressions of labor productivity on human capital, physical capital, and country dum-

mies. Differently, Quah (1997) introduces conditioned stochastic kernels as operators mapping un-

conditioned income levels into conditioned income levels, that is incomes normalized: “on the basis of

incomes relative to one’s neighbours appropriately weighted” (Quah, 1997, p. 47), where weights are

calculated with respect to a variable suspected to affect the income dynamics.

Another strand of literature proposes counterfactual analysis as an alternative methodology to

2See Quah (1997) for a more detailed discussion, and Durlauf et al. (2005) for an exhaustive survey of dif-

ferent empirical methodologies adopted in empirical analyses of economic growth.
3In addition to these types of criticism, Bernard and Durlauf (1996) show that a negative sign of the coeffi-

cient of initial income in a growth regression does not necessarily imply absolute or conditional convergence,

as the data-generating process may be characterized by multiple, locally stable, equilibria.
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2.2 Modeling Growth 2 METHODOLOGY

identify the impact of individual explanatory variables on distributions (see e.g. DiNardo et al. (1996)

and Machado and Mata (2005)). In particular, Beaudry et al. (2005) apply this analysis in a study of

economic growth. In particular, they analyze in a cross-country setting the distributional effects of

some growth determinants over two periods, 1960-1978 and 1978-1998, by estimating linear growth

regressions. They build counterfactual distributions for the second period by assuming that the vari-

able of interest (a coefficient of the estimated growth regression or the distribution of a variable, e. g.,

investment rates) maintains in the second period the same value taken in the first.

Our methodology is close to that of Cheshire and Magrini (2005), who combine the GRA with

the DDA in the analysis of factors driving convergence in a large cross-section of European urban re-

gions in the period 1978-1994. In particular, they estimate a linear growth regression model, compute

counterfactual distributions under different assumptions on explanatory variables, and compare a

“predicted” stochastic kernel (computed on the basis of fitted values of growth regression) with the

“simulated” stochastic kernel (computed on the basis of alternative values of the explanatory vari-

ables in the growth regression).

However, we differ from the current literature in two crucial aspects: i) the estimate of “condi-

tioned” stochastic kernels (denoted counterfactual stochastic kernels), and ii) of counterfactual distri-

butions. A further difference is that the preliminary step will be based on a semiparametric growth

regression, to take into account the presence of nonlinearities which, as many recent studies show,

strongly characterize economic growth (see Durlauf et al. (2005), for discussion and references).

In the following we detail our methodology, which is based on six steps: i) estimation of a semi-

parametric growth regression model (Section 2.2); ii) calculation of counterfactual productivity (Sec-

tion 2.3.1); iv) estimation of counterfactual stochastic kernels (Section 2.3.1); v) estimation of counter-

factual ergodic distributions (Section 2.3.1); vi) evaluation of the distsributional effects of a variable

and estimation of its marginal growth effect (Section 2.3.2); ii) test on the distributional effects of

growth residuals (Section 2.4).

2.2 Modeling Productivity Growth

Assume there exist N regions, and define by yi(t) labour productivity of region i at time t. Labour

productivity of region i at time T > 0, therefore, can be expressed as:

yi(T ) = yi(0)e
giT , (1)

where gi is the annual rate of growth of productivity in region i, between periods 0 and T .

Assume that gi is a function of K explanatory variables, collected in vector Xi = (Xi,1, ...,Xi,K),

and of a residual component υi accounting for unobservable factors, that is:

gi = ϕ(Xi, υi). (2)
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Differently from other approaches to counterfactual analysis, we model the growth rate gi by a semi-

parametric model, that is:4

gi = m(Xi) + υi = α+
K∑

j=1

µj(Xi,j) + υi (3)

where α is a constant term, µj(·) are one-dimensional nonparametric functions operating on each of

the K elements of Xi, and υi is an error term with the properties: E(υi|Xi) = 0, var(υi|Xi) = σ2(Xi)

(i. e. the model allows for heteroskedasticity).5

2.3 Distributional Effects of Individual Variables

Denote by Xi,k the vector of all explanatory variables but Xi,k for region i, i. e.:

Xi,k = (Xi,1, ...,Xi,(k−1),Xi,(k+1), ...,Xi,K)

Eq. (3) can be rewritten as:

gi = α+ µk(Xi,k) +
∑

j 6=k

µj(Xi,j) + υi. (4)

Substituting Eq. (4) into Eq. (1) leads to the following expression for productivity:

yi(T ) = yi(0)e
[α+µk(Xi,k)+

∑
j 6=k µj(Xi,j)+υi]T =

= yi(0)e
[α+

∑
j 6=k µj(Xi,j)]T

︸ ︷︷ ︸

yi,k(T )

eµk(Xi,k)T
︸ ︷︷ ︸

e
gM
i,k

T

eυiT
︸︷︷︸

e
gR
i

T

, (5)

where yi,k(T ) = yi(0)e
[α+

∑
j 6=k µj(Xi,j)]T is the level of productivity in period T obtained by “factoring

out” the effect of Xi,k; gMi,k = µk(Xi,k) is the part of the annual growth rate of yi explained by Xi,k,

capturing the “marginal” effect of Xi,k on gi and, finally, gRi = υi is the annual “residual growth”,

not explained by the variables in Xi. The modelling of growth in Eq. (5) will be the basis for the

identification of the distributional effects of the k-th variable.

2.3.1 Counterfactual Stochastic Kernels and Ergodic Distributions

We define the counterfactual productivity yCF
i,k (T ), the productivity level that a region would attain at

time T if there were no differences within the sample in terms of the k-th variable (whose values

4Notation refers to Härdle et al. (2004).
5Durlauf et al. (2001) consider a growth regression framework in which the impact of the explanatory vari-

ables is nonlinear. Specifically, they condition the marginal impact of a variable to the initial level of per capita

income (as we do in the following), and find significant nonlinearities. However, the main difference with

respect to the present analysis is that Durlauf et al. (2001) do not embed this exercise into a counterfactual

analysis of the distribution dynamics of labour productivity.
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are collected in the N-dimensional vector Xk). That is, yCF
i,k (T ) aims at capturing the effect on the

productivity distribution of the cross-sectional distribution of the k-th variable. To isolate this effect,

we will impose to each region the cross-section average value of the variable.6

Hence, the counterfactual growth rate of region i with respect to the k-th variable, gCF
i,k , is defined

as:

gCF
i,k ≡ α+

∑

j 6=k

µj(Xi,j) + µk(X̄k) + υi, (6)

where X̄k = N−1
∑N

j=1Xk,j , and µk(·) is the smoothed function relative to the k-th variable, obtained

from the estimation of Eq. (3). The counterfactual productivity of region i in period T , relative to

variable k, is therefore defined as:

yCF
i,k (T ) ≡ yi(0)e

gCF
i,k

T = yi(0)e
[α+

∑
j 6=k µj(Xi,j)+µk(X̄k)+υi]T . (7)

Counterfactual productivities are the bases to compute counterfactual stochastic kernels. Specif-

ically, the actual and counterfactual stochastic kernels are respectively defined as φ(y(T )|y(0)) and

φCF (yCF
k (T )|y(0)), where y(0), y(T ) and yCF

k (T ) are the vectors collecting regional productivities at

times 0 and T .7

The actual stochastic kernel φ(·) maps the distribution of (relative) productivity in period 0 into

the distribution of (relative) productivity in period T . The counterfactual stochastic kernel φCF (·),
instead, maps the distribution of (relative) productivity in period 0, into the distribution of counter-

factual relative productivities in period T . Therefore, the counterfactual stochastic kernel highlights,

for every initial productivity level, the probability distribution over productivity levels at time T if

the cross-region heterogeneity in the variable k is suppressed. This implies that the possible differ-

ences with respect to the probability distribution based on the actual stochastic kernel depends on

the k-th variable, in particular on its distribution across regions.

For actual and counterfactual stochastic kernels we estimate the corresponding ergodic distri-

butions, i.e. the actual and the counterfactual ergodic distribution, following the procedure proposed

by Johnson (2005).8 The ergodic distribution highlights whether the estimated distribution dynamics

6Beaudry et al. (2005) isolate the effects of the distribution of a variable by imposing on the second period

the values of the variable in the first period.
7In general, a stochastic kernel is an operator mapping the density of a variable at time t into its density at

time t+τ , τ > 0, and indicates for each level of the variable in period t its the probability distribution in period

t + τ . That is, the relation between the densities and the stochastic kernel is: ft+τ (z) =
∫
∞

0
gτ (z|x) ft (x) dx,

where z and x are two levels of the variable, and gτ (z|x) is the stochastic kernel. To estimate the stochastic

kernel gτ (z|x) = g (z, x) /f (x) we estimated the joint density of z and x, g (z, x), and the marginal density of x,

f (x). In the estimation of g (z, x) we followed Johnson (2005), who used the adaptive kernel estimator discussed

by (Silverman, 1986, p. 100), in which the window of the kernel (Gaussian in our case) increases when the

density of observations decreases.
8Specifically, the ergodic distribution solves f∞ (z) =

∫
∞

0
gτ (z|x) f∞ (x) dx.
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2.3 Distribution Effect 2 METHODOLOGY

over the period of interest has completely exhausted its effects or, otherwise, significant distributional

changes are expected in the future.

2.3.2 The Distributional Effect of Individual Variables and the Marginal Growth Effect

To evaluate the distributional effect of individual variables, we consider two aspects: i) we assess the

capacity of an individual variable to make actual and counterfactual stochastic kernels differ; ii) we

highlight its marginal growth effect with respect to initial productivity. This will allow us to identify

whether a variable is as source of convergence or divergence, in particular by identifying which parts

of the productivity distribution it affects.

To analyze possible differences between actual and counterfactual kernels, we express the value

of (log) actual productivity in period T , yi(T ), in terms of the counterfactual productivity, yCF
i,k (T ):

log (yi(T )) = log
(
yCF
i,k (T )

)
+
[
µk(Xi,k)− µk(X̄k)

]
T + υiT. (8)

The expected value of (the log of) actual productivity of region i in period T conditional to actual

productivity in period 0, E[log(yi(T ))|yi(0)], is obtained from the actual stochastic kernel with τ = T .

In particular, its relation with the expected value from the counterfactual kernel can be expressed as:

E [log (yi(T )) |yi(0)] = E[log(yCF
i,k (T ))|yi(0)] + E[µk(Xi,k)− µk(X̄k)|yi(0)]T. (9)

From Eq. (9), we can derive a condition for the equality of the expected values of productivity based

on actual and counterfactual kernels. Specifically, these values are equal, i. e.:

E [log (yi(T )) |yi(0)] = E[log(yCF
i,k (T ))|yi(0)] (10)

if:

E[µk(Xi,k)|yi(0)] = µk(X̄k). (11)

The result in Eq. (11) depends on the fulfilment of the following two conditions:

1. E[µk(Xi,k)|yi(0)] = E[µk(Xi,k)], i. e. µk(Xi,k) and yi(0) are independent, that is the impact of

the k-th variable on productivity in region i is independent from the initial productivity level.

2. E[µk(Xi,k)] = µk(E[Xi,k]) = µk(X̄), i. e. µk(·) = βkXi,k, that is the marginal impact of the k-th

variable is constant, i.e. the term Xi,k has a linear effect on growth.

Therefore, if Conditions 1 and 2 hold, we obtain the condition in Eq. (11), i. e.:

E[µk(Xi,k)|yi(0)] = E[µk(Xi,k)] = µk(E[Xi,k]) = µk(X̄k). (12)

Eq. (12) represents a necessary condition for the equality of the actual and counterfactual stochastic

kernels and, therefore, for the absence of distributional effects of the k-th variable.
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Notice that, given our choice to base counterfactual analysis on cross-section averages, the use

of a semiparametric specification that allows for nonlinearities, is necessary to identify possible dif-

ferences between the actual and counterfactual stochastic kernels, even when the marginal effect of

the k-th variable is independent of the initial productivity level (i.e. when the condition in Eq. (1) is

fulfilled).

As a second step to evaluate the impact of the individual variables on the distribution dynamics,

in particular whether it is a source of convergence or divergence, we need to identify the specific

relation between the contribution of that variable to productivity growth and initial productivity

levels. To this purpose, we define the marginal growth effect of the k-th variable in Eqq. (3)-(5), i.e.

gMi,k = µk(Xi,k). It may be observed that the estimation of Eq. (3) must include all the explanatory

variables in order to avoid omitted-variable problems and obtain unbiased estimates.

The marginal effect of the k-th variable on the distribution dynamics is identified by estimat-

ing the marginal growth gM
k conditioned on the initial level of productivity, i. e. by estimating

φM (gM
k |y(0)). If the estimate of the marginal effect does not result statistically different from its un-

conditional mean, i. e. φM (gM
k |y(0)) = E[gM

k ] ∀y(0), then the k-th variable has no distributional

effects. On the contrary, if φM (gM
k |y(0)) is statistically different from its unconditional mean and,

in particular, it is an increasing (decreasing) function of y(0), then the k-th variable is a source of

divergence (convergence).

Since the estimation of the marginal effect in semiparametric models is performed through the

backfitting technique, it requires as identification assumption that: EXk
[µk(Xk)] = 0 (see Härdle et al.,

2004, pp. 212-222). Therefore, the unconditional mean of marginal growth will always be equal to

zero in the estimation of the semiparametric terms in the growth regression.

Having detailed our methodology, let us finally remark that, with respect to the mentioned exist-

ing methods of estimating the effect of individual variables on the distribution dynamics, especially

through the estimation of “conditioned” stochastic kernels: i) our method is based on a multivariate

analysis to identify the effect of a specific variable, while the method proposed by Quah (1997) is

based on the consideration of one variable at the time. Here, by excluding the variables of interest one

by one, we are able to control more precisely for the effects on growth of other variables, different

from the “conditioning” ones, avoiding the omitted variable bias. Quah (1996b), on the contrary,

performs a multivariate analysis, but only considers the residuals from this analysis to condition the

stochastic kernel, and therefore may only obtain an estimate of the joint effect of these variables; ii)

in particular with respect to Cheshire and Magrini (2005), we use a semiparametric method, instead

of a linear regression, for the baseline estimation.

2.4 Test of Distributional Effects of Residual Growth

As a final step, we propose a test for the goodness of fit. In particular, we elaborate a measure of

goodness of fit of the growth regression conditional on the initial level of productivity, i. e. of the
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3 EMPIRICAL APPLICATION

presence of possible misspecifications of the model for some ranges of initial productivity.

Eq. (5) suggests to consider ĝR, defined as ĝR ≡ log
(
y(T )
ŷ(T )

)

, to test that:

E[ĝR|y(0)] = E[ĝR] = 0 ∀ y(0). (13)

If y(0) is included in the set of regressors, the condition in Eq. (13) ensures that there is no omitted

variable inconsistency related to y(0) (see Wooldridge, 2002, pp. 61-63). This condition in Eq. (13)

will be used as a test of misspecification of the growth model.

3 An Empirical Application to European Regions

To demonstrate the practical use of our methodology, we provide an empirical application to the

labour productivity of a sample of European regions already studied in Fiaschi and Lavezzi (2007)

and Fiaschi et al. (2011).910

Specifically, in Section 3.1 we estimate the growth model of Eq. (3); in Section 3.2 we test for

the presence of distribution effects in residual growth; in Section 3.3 we study the unconditional

distribution dynamics of labour productivity that we will use as benchmark; finally, in Section 3.4 we

present the distributional impact of selected regressors.

3.1 The Estimation of a Growth Model for European Regions

Following Fiaschi and Lavezzi (2007) and Fiaschi et al. (2011), in the estimation of Eq. (3) the annual

average growth rate of per worker GVA of a region is regressed on:11 i) the initial productivity level,

normalized with respect to sample average (PROD.REL.1992); ii) the average annual investment rate

(INV.RATE); iii) the average annual employment growth rate (EMP.GR); iv) the initial density of eco-

nomic activity (ECO.DEN.1992), measured by GVA per km2, to control for the possible presence of

agglomeration effects; v) the share on regional GVA of EU Structural Funds allocated to Objective

1, and of Cohesion Fund, over the period 1989-1999 (OB1.CF); vii) some variables controlling for the

initial regional output composition, such as the initial share of GVA in Agriculture (AGRI.1992), Man-

ufacturing (MANU.1992), Construction (CON.1992), Non Market Services (NON.MKT.SER.1992),

9In particular Fiaschi and Lavezzi (2007) show that the distribution dynamics of productivity in 191 Eu-

ropean regions over the period 1980-2002 displays polarization, and find that regional output composition

crucially accounts for the characterization of twin peaks. Fiaschi et al. (2011), instead, analyses the impact

of the European Union regional policy on the productivity growth of a subsample of 173 European regions

for the same period 1980-2002, and find that EU funds have a positive and significant effect on productivity

growth. Here we use the same variables and sample used in Fiaschi et al. (2011) but we focus on the subperiod

1992-2002 in order to avoid problems of spatial dependence.
10A cross-country application can be found in Fiaschi and Parenti (2012)
11Appendix A contains the regions’ list while Appendix B contains the descriptive statistics of the explana-

tory variables.
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3.1 Estimation of Growth Model 3 EMPIRICAL APPLICATION

Dep. Var: γi Preferred Specification

COUNTRY DUMMIES YES

Parametric coefficients: Estimate

CONST 0.0048

µ̂1(log.PROD.REL.1992) -0.0095**

µ̂2(log.INV.RATE) 0.0105***

µ̂7(MANU.1992) 0.0302***

µ̂14(OTHER.SERV.1992) 0.0960***

Non parametric coefficients: EDF

µ̂3(log.EMP.GR) 7.292***

µ̂4(OB1.CF) 3.961***

µ̂6(AGRI.1992) 4.127**

µ̂10(FIN.1992) 2.225**

µ̂11(HOT.1992) 2.169***

µ̂12(TRANS.1992) 6.070***

µ̂13(WHOLE.1992) 5.486***

Deviance explained 96.1%

GCV score (*105) 1.95

Scale est.(*105) 1.41

Obs. 173

Moran Test (B=1000)

W1, sym I=-0.0205 (p-value=0.412)

W1, asym I=-0.0205 (p-value=0.398)

W2, sym I=0.0021 (p-value=0.320)

W2, asym I=0.0021 (p-value=0.264)

Table 1: Estimation of Eq. (3). Significance codes: 0.01”***” 0.05”**” 0.1”*”.

Finance (FIN.1992), Hotel and Restaurants (HOT.1992), Transport (TRANS.1992), Wholesales and

Retails (WHOLE.1992), Other Market Services (OTHER.SERV.1992);12 finally, viii) country dummies

to capture the effects of variables whose dimension is typically national, like political institutions,

labour markets, educational systems, etc., for which no data at regional are available.13

Results of the estimated model are reported in Table 1. The choice of the preferred specification

is based on the iterative elimination of nonsignificant terms from the initial specification with all

regressors, in order to improve the goodness of fit. All regressors initially enter as nonparametric

terms. However, if their effect results to be linear, they are substituted by linear terms.

We also tested for the possible presence of spatial effects across the regions of our sample, as

12Data on EU funds come from different publications of the European Commission and represent total Com-

mitments, while data on regional GVA and employment are from Cambridge Econometrics (2004). All data

are transformed in 1995 constant prices. See Fiaschi et al. (2011) for details.
13In the definition of country dummies, we consider Germany as the benchmark.
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3.2 Test of Residual Growth 3 EMPIRICAL APPLICATION

growth at regional level is likely to be characterized by spillovers, in particular technological (see,

among others, Fingleton and López-Bazo (2006) and Dall’erba et al. (2009)).14 In order to do this

we compute a bootstrap Moran’s I test with two different specifications for the spatial weights ma-

trix (W1, based on geographical contiguity and W2, based on the inverse of the distance between

regions)15, and two different auxiliary distributions for the wild bootstrap (symmetric and asymmet-

ric), (see Appendix C for details on the implementation of the test in semiparametric models). From

Table 1 we see that the Moran’s I test can never reject the null hypothesis of no spatial dependence at

the usual levels of confidence.

3.2 Test of Residual Growth

Figure 1 reports the estimated density of the annual residual growth ĝR conditioned on the initial

level of productivity. We also report the conditional mean (thick line) with the corresponding confi-

dence bands, and a vertical line representing the unconditional mean, which is approximately zero

as expected. Figure 1 shows that for any initial level of productivity most of the mass of the condi-

tional distribution of residual growth is concentrated around the unconditional mean, and that the

conditional mean is never statistically different from the unconditional mean. We conclude that the

residual growth deriving from the estimation of Model (3) (see Section 2.4) has not significant distri-

butional effects, i.e. the model appears correctly specified, at least conditioning on the initial level of

productivity (see Eq. 13).

14In Fiaschi et al. (2011) we find that over the subperiod 1992-2002 spatial dependence only appears in the

form of spatial lags in the exploratory variables for two out of four models. Therefore, here we decided to

estimate a semiparametric model without spatial lags in the explanatory variables and to conduct a test on the

residuals for the possible presence of spatial effects.
15See Appendix C and Fiaschi et al. (2011) for details.
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Figure 1: Conditional distribution of residual growth, the condi-

tional mean (thick line), its confidence bands (dotted lines) and the

unconditional mean (thin vertical line).
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Figure 2: Conditional distribution of residual growth with bias,

the conditional mean (thick line), its confidence bands (dotted lines)

and the unconditional mean (thin vertical line).

In Figure 2 we report the result of the test for the case where regressiors include only a constant,

which represents the extreme omitted-variable case; as expected the test suggests the presence of

omitted variables which have a different impact on growth conditioned to the level of initial produc-

tivity.

3.3 The Unconditional Distribution Dynamics

As benchmark, in this section we study the unconditional distribution dynamics of labour produc-

tivity. All stochastic kernels are estimated considering a time lag of 10 years, i. e. the whole period.

In each figure displaying the estimate of the stochastic kernel we report: a solid line representing the

estimated median value of productivity at t + τ conditioned on the productivity level at time t; the

corresponding confidence band at 95% significance level (indicated by dotted lines) obtained by a

bootstrap procedure,16 and the 45◦ line.

First of all, we present the actual stochastic kernel of productivity in Figure 3, and the actual

distributions (AD) of productivity in 1992 and 2002, along with the actual ergodic distribution (AED)

in Figure 4.

16The procedure is illustrated in Appendix D.
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Figure 3: Actual stochastic kernel of productivity. Thick line:

median of the stochastic kernel; dotted lines: 5% confidence bands.
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Figure 4: AD 1992 (dotted line), AD 2002 (solid line) and AED

(dashed line) distributions of productivity

Figure 3 shows that most of the mass is concentrated around the 45◦ line and, in particular, the

median value crosses the 45◦ line from below in two points. This is reflected in the 1992 distribution

and even more in the 2002 distribution, showing two peaks in the proximity of the values of 0.8

and 1.2.17 Accordingly, this tendency is apparent in the ergodic distribution (see Figure 4), which

shows the long-run effects of the distribution dynamics implied by the actual stochastic kernel. The

presence of two peaks in productivity and the evidence of strong persistence of the initial levels of

productivity is consistent with a multiple equilibria model.18

In the following sections we examine the effects on the distribution dynamics of selection of

explanatory variables.

3.4 Conditional Distribution Dynamics

Given the results of the estimation of the growth model in Eq. (3), reported in Table 1, and once

controlled for the potential presence of distributional effects in residual growth, the analysis proceeds

by calculating and discussing the distributional impact of some variables present in the preferred

specification of Table 1. In particular we present the results on variables of different nature: country

17Tests of multimodality show that the null hypothesis of unimodality for both 1992 and 2002 distributions

can be rejected at 1% of significance level. Tests of multimodality follow the bootstrap procedure described in

Silverman (1986, p. 146), and are performed using 1000 bootstraps.
18See Fiaschi and Lavezzi (2007) for further discussion on polarization across European regions.
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3.4 Conditional Distribution Dynamics 3 EMPIRICAL APPLICATION

dummies, e.g. a typical qualitative variable; initial productivity, and some standard regressors, such

as the variables reflecting the accumulation of factors: employment growth and investment rates.19

3.4.1 Country Dummies

For the initial productivity level, we highlight the effect for region i of belonging to a certain state.

Figure 5 reports: the estimate of the marginal growth effect (MGE) of country dummies conditioned

on the initial level of productivity φ̂M (ĝM
k |y(0)), where ĝM

k is calculated as ĝM
k = µ̂k(Xk); the es-

timated mean of MGE conditioned on the initial level of (relative) productivity (thick solid line), i.

e. E
[
ĝM
k |y(0)

]
, and its confidence bands (dotted lines)20 and, finally, the unconditional mean (thin

vertical solid line), i. e. ¯̂gM
k . Figure 6 displays the effect on growth of country dummies conditional

on the initial productivity level, highlighting the membership of regions to a state.

In Figure 5 we notice that for regions with an initial level of productivity below the average, the

conditional mean of marginal growth ascribable to country dummies is statistically different from

its unconditional mean. In particular, the initially poorer regions (mostly from Greece, Portugal and

Italy, see Figure 6) have a conditional mean remarkably below the unconditional mean. Regions with

initial productivity below, but closer, to the average (especially regions of Ireland, Spain and UK,

see Figure 6) have a conditional mean generally far above its unconditional mean.21 Regions with

above-average initial productivity display a conditional mean of marginal growth which is generally

not statistically different from the unconditional mean. However, within a large confidence band,

regions of France and Germany present conditional mean values below the unconditional mean,

while regions of Belgium, Netherlands, Luxembourg and Denmark have conditional mean near or

above the unconditional mean (see Figure 6).

19The results on the distributional impact of the other explanatory variables are available upon request.
20Confidence bands are based on 300 bootstraps.
21Figure 6 shows that regions from Italy, albeit having initial conditions similar to those of Ireland, Spain

and UK, had a lower MGE related to country-specific factors.
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Figure 5: MGE conditioned on the initial level of productivity,

estimated mean of MGE conditioned on initial level of productiv-

ity (thick solid line), its confidence bands (dotted lines), and un-

conditional mean (thin solid vertical line). Counterfactual variable:

Country Dummies
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Figure 6: Impact of country dummies on growth, conditioned

on the initial level of productivity and its unconditional mean (solid

vertical line).

To highlight the country-effects on the distribution dynamics, we first of all compare in Figure 7

the ADs in 1992 and 2002, and the counterfactual distribution (CD) in 2002.22

22To save space we do not report the estimate of actual and counterfactual kernels. They are available upon

request by authors.
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Figure 7: AD in 1992 (dotted line), AD in 2002 (solid line), and

CD in 2002 (dashed line). Counterfactual variable: Country Dum-

mies.

0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.
0

0.
5

1.
0

1.
5

2.
0

Relative Productivity
D

en
si

ty

AED
CED

Figure 8: AED (thick line) and CED (thin line) with confidence

bands at 95% level (dotted lines). Counterfactual variable: Country

Dummies.

We notice that, the ADs in 1992 and 2002 display two peaks, although the distribution in 2002

contains less mass in the tails. In addition, in 2002 the CD overlaps with the AD in the tails which

implies that country factors have no significant effects at those productivity ranges. However, in the

central part of the distribution, we find that the CD displays more polarization than the AD, as there is

more mass in the peaks and less mass close to the value of one which, given that productivity is nor-

malized with respect to sample average, represents the average productivity level. Hence, country

factors seem to favour convergence only in an intermediate range of the productivity distribution.

This effect is also visible in the long run, as shown by the actual ergodic distribution (AED) and

the counterfactual ergodic distribution (CED) in Figure 8. The differences among the two distribu-

tions, however, are not statistically significant, as they are both included in the 95% confidence bands

which largely overlap. Hence, we conclude that there is evidence of a contribution of country-wide

factors on convergence in the middle range of the productivity distribution only, but this contribution

is not statistically significant in the long run.

Finally, computation of the values of a synthetic index of dispersion such as the Gini index, pre-

sented in Table 2 confirms these findings. Between 1992 and 2002 overall inequality decreases, al-

though the Gini index is unable to capture the persistence of two peaks in the distribution. The

comparison between AD and the CD in 2002, and between the AED and the CED, confirms that the

latter displays higher inequality, although the differences are not statistically significant.

16



3.4 Conditional Distribution Dynamics 3 EMPIRICAL APPLICATION

AD 1992 AD 2002 CD 2002 AED CED

Gini 0.18 0.16 0.18 0.16 0.19

s.e. (0.008) (0.008) (0.007) (0.035) (0.043)

Table 2: Gini Indexes and their standard errors of AD, CD, AED and CED. Counterfactual variable: Country Dummies.

3.4.2 Initial Productivity

In Figure 9 we present the MGE for initial productivity. The identified pattern is consistent with

conditional convergence, as the result in Table 1: the conditional mean of MGE is above the uncon-

ditional mean for every regions with an initial productivity below the average, while the opposite

holds for regions with above-average initial productivity.
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Figure 9: MGE conditioned on the initial level of productivity,

estimated mean of MGE conditioned on initial level of productivity

(thick solid line), its confidence bands (dotted lines), and uncondi-

tional mean (thin solid vertical line). Counterfactual variable: Initial

Productivity.
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Figure 10: AD in 1992 (dotted line), AD in 2002 (solid line), and

CD in 2002 (dashed line). Counterfactual variable: Initial Produc-

tivity.

The overall distributional impact seems sizeable, as highlighted by the comparison between the

AD and CD in 2002 (see Figure 10) and the AED and CED (see Figure 11). If each region had had the

same level of productivity in 1992 the distribution would have been more dispersed. This is already

evident in the CD in 2002, but it is much more evident in the CED. Gini indexes reported in Table

3 quantify the fall of inequality from 1992 to 2002 in about 2 base points (the difference between

indexes related to AD and CD are indeed statistically significant).
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Figure 11: AED (thick line) and CED (thin line) with their confidence

bands at 95% level (dotted lines). Counterfactual variable: Initial Produc-

tivity.

AD 1992 AD 2002 CD 2002 AED CED

Gini 0.18 0.16 0.18 0.16 0.18

s.e. (0.008) (0.008) (0.009) (0.035) (0.047)

Table 3: Gini Indexes and their standard errors of AD, CD,

AED and CED. Counterfactual variable: Initial Productiv-

ity.

Overall, although initial productivity contributes to reduce inequality, it only slightly affects

the tendency towards polarization. That is, the inverse relationship between initial productivity

and the growth rate holds on average, as shown also by the negative and significant coefficient of

PROD.REL.1992 in Table 1. However, as Figure 9 clearly shows, this effect is not constant across dif-

ferent initial productivity ranges. For the two ranges located around the values of 0.8 and 1.2, we

observe two peaks in the distribution of MGE in which the slope of the mean MGE is higher than in

other productivity ranges. This means that, for regions in those ranges, the marginal growth effect

of initial conditions has been similar and, therefore, the distances among them has not decreased.

What decreased was the distance of regions in the tails of the distribution from the average, and the

distance between the peaks. This result is in line with the remark of Bernard and Durlauf (1996) on

the misleading implications of a negative coefficient of initial productivity in growth regressions, and

is consistent with the presence of multiple equilibria.

3.4.3 Employment Growth and Investment Rate

In a cross-country analysis, Beaudry et al. (2005) find that changes in the patterns of accumulation of

factors of production, labour and capital, play a very important role in the formation of two peaks in

the distribution of productivity. In this section we examine the distributional effect of employment

growth and investment rate which have, respectively, a nonlinear negative effect and a linear positive
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3.4 Conditional Distribution Dynamics 3 EMPIRICAL APPLICATION

effect on productivity growth (see Table 1).23

The conditional mean of MGE of employment growth is not statistically different from the un-

conditional mean for the whole range of initial productivity, with the exception of some high-initial

productivity regions presenting a conditional mean slightly higher than unconditional mean (see Fig-

ure 12). This is reflected in the CD in 2002 (see Figure 13): if all regions had had the same level of

employment growth, there would have been more mass in the high-productivity peak. Hence, in the

short run, employment growth acts as a force favouring divergence, in particular by pushing some

high-productivity regions further above the mean. However, the tendency towards twin-peakedness

does not seem to be affected.

This tendency also appears in the CED, shown in Figure 14. The difference in the high-productivity

peak is almost significant at 5% confidence level.
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Figure 12: MGE conditioned on the initial level of pro-

ductivity, estimated mean of MGE conditioned on initial level

of productivity (thick solid line), its confidence bands (dotted

lines), and unconditional mean (thin solid vertical line). Coun-

terfactual variable: Employment Growth.
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Figure 13: AD in 1992 (dotted line), AD in 2002 (solid line),

and CD in 2002 (dashed line). Counterfactual variable: Em-

ployment Growth.

23The figure on the effect of employment growth is omitted for reasons of space and is available upon re-

quest.
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Figure 14: AED (thick line) and CED (thin line) with their

confidence bands at 95% level (dotted lines). Counterfactual

variable: Employment Growth.

As regards the investment rate Figure 15 shows that its MGE is higher, and statistically significant,

only for regions with above-average initial productivity, hence this factor acts a source of divergence.

This is confirmed in Figure 16 where we notice that the CD in 2002 displays more mass near the

central value of one. This tendency also characterizes the long run (see Figure 17), although the

difference between the AED and CED is not statistically significant at 95% confidence level.
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Figure 15: MGE conditioned on the initial level of pro-

ductivity, estimated mean of MGE conditioned on initial level

of productivity (thick solid line), its confidence bands (dotted

lines), and unconditional mean (thin solid vertical line). Coun-

terfactual variable: Investment Rate.
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Figure 16: AD in 1992 (dotted line), AD in 2002 (solid line),

and CD in 2002 (dashed line). Counterfactual variable: Invest-

ment Rate.
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Figure 17: AED (thick line) and CED (thin line) with their

confidence bands at 95% level (dotted lines). Counterfactual

variable: Investment Rate.

Overall, the effects from the accumulation of factors (labor and capital) is similar: for both vari-

ables, regions with higher initial productivity levels had a significant positive effect on growth. This
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4 CONCLUDING REMARKS

is in stark contrast with the effect suggested by the estimation of the coefficients for the employment

growth and investment in Table 1 which are broadly in line with the Solow model which predicts,

respectively, a negative and positive effect on growth.24

4 Concluding Remarks

In this paper we proposed a method to analyze the factors driving convergence and divergence pro-

cesses in the growth dynamics. The proposed methodology combines the growth regression ap-

proach, albeit allowing for a semiparametric specification, with the distribution dynamics approach.

In particular, the potential distributional impact of a given variable is evaluated by the comparison of

actual, counterfactual and ergodic distributions (and the related actual and counterfactual stochastic

kernels), where counterfactuals are calculated by removing cross-section heterogeneity in the vari-

able of interest through the imputation of sample averages to all the units of the cross-section. The

methodology also allows for testing for the possible presence of distributional effects in the residuals

of growth regression, as a means to assess the goodness of fit of the estimated model.

We applied our methodology to a sample of European regions, and showed its potential to shed

light on the identified tendency for polarization, by the analysis of the distributional effect of country

dummies, initial conditions and the accumualation of factors, labor and capital. In all cases it was

possible to obtain information otherwise missed by existing methods of investigation of the determi-

nants of distribution dynamics.

24This result is in line with Durlauf et al. (2001, p. 934), who find that the effect on growth of population

growth and investment is highly sensitive to initial productivity.
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A List of NUTS2 Regions in the Sample

AT11 Burgenland DEA1 Düsseldorf FR26 Bourgogne IT52 Umbria UKD1 Cumbria

AT12 Niederösterreich DEA2 Köln FR3 Nord - Pas-de-Calais IT53 Marche UKD2 Cheshire

AT13 Wien DEA3 Münster FR41 Lorraine IT6 Lazio UKD3 Greater Manchester

AT21 Kärnten DEA4 Detmold FR42 Alsace IT71 Abruzzo UKD4 Lancashire

AT22 Steiermark DEA5 Arnsberg FR43 Franche-Comté IT72 Molise UKD5 Merseyside

AT31 Oberösterreich DEB1 Koblenz FR51 Pays de la Loire IT8 Campania UKE1 East Riding, North Lincol.

AT32 Salzburg DEB2 Trier FR52 Bretagne IT91 Puglia UKE2 North Yorkshire

AT33 Tirol DEB3 Rheinhessen-Pfalz FR53 Poitou-Charentes IT92 Basilicata UKE3 South Yorkshire

AT34 Vorarlberg DEC Saarland FR61 Aquitaine IT93 Calabria UKE4 West Yorkshire

BE1 Rég. Bruxelles DEF Schleswig-Holstein FR62 Midi-Pyrénées ITA Sicilia UKF1 Derbyshire, Nottingh.

BE21 Antwerpen DK Danmark FR63 Limousin ITB Sardegna UKF2 Leicestershire, Rutland

BE22 Limburg (B) ES11 Galicia FR71 Rhône-Alpes LU Luxembourg and Northamptonshire

BE23 Oost-Vlaanderen ES12 Principado de Asturias FR72 Auvergne NL11 Groningen UKF3 Lincolnshire

BE24 Vlaams Brabant ES13 Cantabria FR81 Languedoc-Roussillon NL12 Friesland UKG1 Herefordshire, Worcest.

BE25 West-Vlaanderen ES21 Pais Vasco FR82 Prov.-Alpes-Côte d’Azur NL13 Drenthe and Warwickshire

BE31 Brabant Wallon ES22 Comunidad de Navarra FR83 Corse NL21 Overijssel UKG2 Shropshire and Staffordshire

BE32 Hainaut ES23 La Rioja GR11 Anatoliki Mak., Thraki NL22 Gelderland UKG3 West Midlands

BE33 Liège ES24 Aragón GR12 Kentriki Makedonia NL31 Utrecht UKH1 East Anglia

BE34 Luxembourg (B) ES3 Comunidad de Madrid GR13 Dytiki Makedonia NL32 Noord-Holland UKH2 Bedfordshire, Hertford.

BE35 Namur ES41 Castilla y León GR14 Thessalia NL33 Zuid-Holland UKH3 Essex

DE11 Stuttgart ES42 Castilla-la Mancha GR21 Ipeiros NL34 Zeeland UKI1 Inner London

DE12 Karlsruhe ES43 Extremadura GR22 Ionia Nisia NL41 Noord-Brabant UKI2 Outer London

DE13 Freiburg ES51 Catalua GR23 Dytiki Ellada NL42 Limburg (NL) UKJ1 Berkshire, Buckinghamshire

DE14 Tübingen ES52 Comunidad Valenciana GR24 Sterea Ellada PT11 Norte and Oxfordshire

DE21 Oberbayern ES53 Islas Baleares GR25 Peloponnisos PT12 Centro (P) UKJ2 Surrey, East, West Sussex

DE22 Niederbayern ES61 Andalucia GR3 Attiki PT13 Lisboa, Vale do Tejo UKJ3 Hampshire, Isle of Wight

DE23 Oberpfalz ES62 Región de Murcia GR41 Voreio Aigaio PT14 Alentejo UKJ4 Kent

DE24 Oberfranken ES63 Ceuta y Melilla GR42 Notio Aigaio PT15 Algarve UKK1 Gloucestershire, Wiltshire

DE25 Mittelfranken ES7 Canarias GR43 Kriti PT2 Açores and North Somerset

DE26 Unterfranken FI13 Itä-Suomi IE01 Border, Mid., Western PT3 Madeira UKK2 Dorset, Somerset

DE27 Schwaben FI18 Etelä-Suomi IE02 Southern and Eastern SE01 Stockholm UKK3 Cornwall, Isles of Scilly

DE5 Bremen FI19 Länsi-Suomi IT11 Piemonte SE02 Östra Mellansverige UKK4 Devon

DE6 Hamburg FI1A Pohjois-Suomi IT12 Valle d’Aosta SE04 Sydsverige UKL1 West Wales, The Valleys

DE71 Darmstadt FI2 land IT13 Liguria SE06 Norra Mellansverige UKL2 East Wales

DE72 Gießen FR1 Île de France IT2 Lombardia SE07 Mellersta Norrland UKM1 North Eastern Scotland

DE73 Kassel FR21 Champagne-Ardenne IT31 Trentino-Alto Adige SE08 Övre Norrland UKM2 Eastern Scotland

DE91 Braunschweig FR22 Picardie IT32 Veneto SE09 Småland med öarna UKM3 South Western Scotland

DE92 Hannover FR23 Haute-Normandie IT33 Friuli-Venezia Giulia SE0A Västsverige UKM4 Highlands and Islands

DE93 Lüneburg FR24 Centre IT4 Emilia-Romagna UKC1 Tees Valley UKN Northern Ireland

DE94 Weser-Ems FR25 Basse-Normandie IT51 Toscana UKC2 Northumberland
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B DESCRIPTIVE STATISTICS

B Descriptive Statistics

log.PROD.REL.1992 log.INV.RATE log.EMP.GR OB1.CF

Mean -0.05 -1.67 -3.33 0.01

Stand. Dev. 0.33 0.39 0.22 3.04 0.02

log.ECO.DEN.1992 AGRI.1992 MANU.1992 CON.1992

Mean 0.86 0.05 0.2 0.06

Stand. Dev. 1.34 0.04 0.08 0.02

NON.MKT.SER.1992 FIN.1992 HOT.1992 TRANS.1992

Mean 0.22 0.05 0.04 0.06

Stand. Dev. 0.05 0.02 0.04 0.02

WHOLE.1992 OTHER.SER.1992

Mean 0.11 0.17

Stand. Dev. 0.02 0.04

Table 4: Mean and Standard Deviation of variables used in the growth regressions

log.PROD.REL.1992 log.INV.RATE log.EMP.GR OB1.CF

log.PROD.REL.1992 1.00 0.11 0.01 -0.47

log.INV.RATE 0.11 1.00 0.08 0.33

log.EMP.GR 0.01 0.08 1.00 0.03

OB1.CF -0.47 0.33 0.03 1.00

log.ECO.DEN.1992 0.49 -0.27 0.07 -0.24

AGRI.1992 -0.51 0.28 -0.01 0.37

MANU.1992 0.26 -0.26 -0.18 -0.45

CON.1992 -0.21 0.24 -0.14 0.21

NON.MKT.SER.1992 -0.07 0.07 0.11 0.37

FIN.1992 0.15 -0.04 0.19 -0.12

HOT.1992 -0.36 0.13 0.17 0.24

TRANS.1992 -0.05 -0.08 0.17 0.19

WHOLE.1992 -0.24 0.11 0.12 0.24

OTHER.SER.1992 0.58 -0.13 -0.09 -0.35

Table 5: Correlations among the variables used in the growth regressions
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C BOOTSTRAP MORAN’S I

log.ECO.DEN.1992 AGRI.1992 MANU.1992 CON.1992

log.PROD.REL.1992 0.49 -0.51 0.26 -0.21

log.INV.RATE -0.27 0.28 -0.26 0.24

log.EMP.GR 0.07 -0.01 -0.18 -0.14

OB1.CF -0.24 0.37 -0.45 0.21

log.ECO.DEN.1992 1.00 -0.75 0.23 -0.42

AGRI.1992 -0.75 1.00 -0.14 -0.07

MANU.1992 0.24 -0.35 1.00 -0.14

CON.1992 -0.41 0.28 -0.14 1.00

NON.MKT.SER.1992 -0.04 -0.07 -0.47 -0.02

FIN.1992 0.46 -0.34 -0.15 -0.19

HOT.1992 -0.32 0.27 -0.44 0.00

TRANS.1992 0.28 -0.21 -0.41 -0.05

WHOLE.1992 0.07 0.15 -0.45 -0.11

OTHER.SER.1992 0.51 -0.50 -0.05 -0.19

Table 6: Continued: Correlations among variables used in the growth regressions

NON.MKT.SER.1992 FIN.1992 HOT.1992 TRANS.1992 WHOLE.1992 OTHER.SER.1992

log.PROD.REL.1992 -0.07 0.15 -0.36 -0.05 -0.24 0.58

log.INV.RATE 0.07 -0.04 0.13 -0.08 0.11 -0.13

log.EMP.GR 0.11 0.19 0.17 0.17 0.12 -0.09

OB1.CF 0.37 -0.12 0.24 0.19 0.24 -0.35

log.ECO.DEN.1992 -0.04 0.46 -0.32 0.28 0.07 0.51

AGRI.1992 -0.07 -0.34 0.27 -0.21 0.15 -0.50

MANU.1992 -0.47 -0.15 -0.44 -0.41 -0.45 -0.05

CON.1992 -0.02 -0.19 0.00 -0.05 -0.11 -0.19

NON.MKT.SER.1992 1.00 -0.10 -0.07 0.08 0.12 -0.02

FIN.1992 -0.10 1.00 -0.07 0.43 0.15 0.29

HOT.1992 -0.07 -0.07 1.00 0.22 0.16 -0.31

TRANS.1992 0.08 0.43 0.22 1.00 0.25 0.11

WHOLE.1992 0.12 0.15 0.16 0.25 1.00 0.01

OTHER.SER.1992 -0.02 0.29 -0.31 0.11 0.01 1.00

Table 7: Continued: Correlations among variables used in the growth regressions

C Bootstrap Procedure to Compute Moran’s I Test

We apply a bootstrap procedure to perform the Moran’s I test for residual spatial dependence of our

semiparametric models in presence of general heteroskedasticity.

Given the semiparametric model:

g = α+

K∑

k=1

µk(Xk) + u; (14)

where g is the N × 1 vector of growth rates, α is the N × 1 vector of constant terms, X is the N ×K

matrix of explanatory variables, µ(·) are nonparametric functions, and u is the N × 1 vector of error
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terms such thatE(u|X) = 0 and var(u|X) = σ2(X), the bootstrap procedure consists in the following

five steps (see Härdle et al. (2004, pp. 127-128)).

1. Estimate Model (14) and obtain the residuals û.

2. Compute the observed Morans’ I statistics:

Iobs =
N

S

(
û′Wû

û′û

)

,

where W is the weight spatial matrix and S is the sum of the elements of W.

3. Select B independent bootstrap samples of residuals {û∗1, ..., û∗B} in three steps:

(a) draw with replacement N residuals u∗i = ûiηi (i = 1, ..., N ) where ηi are independent

drawings from one of the following two-point distributions:

η =

{

−1 with p = 1/2

1 with 1− p
(15)

or,

η =

{
(1−

√
5)

2 with p = (5 +
√
5)/10

(1+
√
5)

2 with 1− p
(16)

We call symmetric wild bootstrap the method corresponding to Eq. (15), and asymmetric

wild bootstrap that corresponding to Eq. (16).

(b) generate g∗ = α̂+
∑K

k=1 µ̂k(Xk) + u∗;

(c) estimate Model (14) using g∗ and take the residuals û∗.

4. Compute for each bootstrap sample, b = 1, ..., B, the Moran’s I statistic I∗b .

5. Compute the corresponding equal-tail bootstrap P value (see Davidson and MacKinnon (2007)):

P ∗(Iobs) = 2min

(

1

B

B∑

b=1

#{I∗b ≤ Iobs},
1

B

B∑

b=1

#{I∗b > Iobs}
)

(17)

In our estimates we set B=1000 and we consider two different definitions for the spatial weight

matrix (see Anselin (1988)), W1 and W2, respectively based on the distance between regions and on

the presence of a common border. Specifically, for two regions (i, j), the values of the elements ofW1

and W2 are respectively given by:

• w1(i, j) = w∗
1(i, j)/

∑

j w
∗
1(i, j) where:

w∗
1(i, j) =

{

0 if i = j

d−2
ij otherwise

• w2(i, j) = w∗
2(i, j)/

∑

j w
∗
2(i, j) where:

w2(i, j)
∗ =

{

1 if i and j share a common border

0 otherwise.
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D Bootstrap Procedure to Compute Confidence Intervals

The bootstrap procedure used to calculate the confidence bands for the estimated median of the

stochastic kernels and ergodic distributions is respectively based on the procedure in Bowman and Azzalini

(1997, p. 44) and in Fiaschi and Romanelli (2009).

Given a sample of observations Y = {Y1, ...,Ym} where Yi is a vector of dimension n, the boot-

strap algorithm consists of three steps.

1. Estimate from sample Y the stochastic kernel, the median of the stochastic kernel and the cor-

responding ergodic distribution ψ̂.

2. Select B independent bootstrap samples {Y∗
1, ...,Y

∗
B}, each consisting of n data values drawn

with replacement from Y.

3. Estimate the the stochastic kernel, the median of stochastic kernel and the corresponding er-

godic distribution ψ̂∗
b corresponding to each bootstrap sample b = 1, ..., B.

4. Use the distribution of ψ̂∗
b about ψ̂ to mimic the distribution of ψ̂ about ψ.

We set B=500 and in each bootstrap the bandwidth is set equal to the one calculated for the estimation

of the density of the observed sample Y.
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