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Abstract

In this paper we propose a concept of coalitional fair allocation in order to solve the tension
that may exist between efficiency and envy-freeness when the equity of allocations is evaluated
at the interim stage and agents are asymmetrically informed.
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1 Introduction

The problem of a fair distribution of resources among agents has been widely investigated and many
notions of fair allocation have been adopted to evaluate equity. Since Foley [3], one of the most
extensively studied concept is the one according to which an allocation is fair if it is envy-free and
efficient. Under an analysis conducted on the individualistic level, an allocation is said to be envy-
free if each individual prefers to keep his bundle rather than to receive the bundle of some other
agent. Stronger notions of equity require that bundle comparisons are allowed between groups of
agents and lead to coalitional fairness notions. Varian [9] introduces the concept of coalitional fair
(c-fair) allocations attributing it originally to Vind [10]. Gabszewicz [4] also introduces c-fairness
under a slightly different base. An allocation is c-fair if no coalition envies the aggregate bundle,
and this is Varian’s definition, or, and this is Gabszewicz approach, the net trade of some other
coalition. It comes out that c-fair allocations are Pareto optimal.

At the individualistic level, it is known that in a pure exchange economy fair allocations always
exist (see Theorem 2.3 in [9]). This is so simply because any competitive allocation that results from
an equal sharing of the total initial endowment is fair. On the other hand, also c-fair allocations
do always exist. Moreover, despite of differences due to technical requirements about the measures
of potentially envious coalitions, c-fair allocations introduced in both papers [9] and [4] provide
a complete characterization of competitive market equilibria (see also [12] and [14] for analogous
results).

Envy-freeness may be incompatible with efficiency when production is allowed as well as agents
are asymmetrically informed at the time of contracting. Recent papers by de Clippel [2] and Gajdos
and Tallon [5] exhibit the tension between the concepts of envy-freeness and efficiency in models
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that explicitly encompasses uncertainty. The incompatibility may occur if the allocation is judged
before or after the realization of uncertainty, as well as according to an interim stage evaluation.

The aim of this paper is to identify the coalitional fairness notion à la Gabszewicz as a suitable
criterion to evaluate allocations on an equitable basis when agents are asymmetrically informed.
As in [11], we assume that the true state of nature is commonly known at the time of implementing
the contracts, focusing on interim fairness notions. The straightforward extension to differential
information economies of the c-fairness criterion introduced by Varian cannot serve the same pur-
pose since, when uncertainty is involved and agents are asymmetrically informed, a fair allocation
(and, a fortiori, a c-fair one) may not exist, as shown by de Clippel [2].

Therefore, we extend to our context the coalitional fairness notion introduced by Gabszewicz
[4], so that an allocation is qualified c-fair if it is not possible to find an alternative allocation such
that in each state of nature a coalition of agents can redistribute among its members the net trade
of a disjoint coalition and each of them, using his own private information, is better off. Our main
result shows that this set of c-fair allocations is non-empty.

We do it by proving that c-fair allocations of a differential information economy correspond to
c-fair allocations of an auxiliary Arrow-Debreu exchange economy with uncertainty and symmet-
ric information. Agents of the auxiliary economy are defined adapting the idea used by Harsanyi
[7] to define Bayesian games. A type-agent is a couple (t, E), where t is an agent and E is an
event of his information partition. The future state of the fictitious economy is uncertain, but
each type-agent has no private information. Moreover, since contracts are contingent on the future
state of the economy, standard Arrow-Debreu equilibrium notions can be applied. We adapt this
representation in the framework of mixed markets. We prove that there is a natural correspondence
between the original and the auxiliary economy. A correspondence that preserves c-fair allocations
and constrained market equilibria. This allows us to conclude that the set of c-fair allocations is
non-empty, since it contains the set of constrained market equilibria. This inclusion may be strict
in general and becomes an equivalence under additional assumptions.

The paper is organized as follows. In Section 2 we present the model, describe main ideas and
state our results. Proofs are collected in the final section.

2 Coalitional fairness in differential information economies

We consider an exchange economy E with uncertainty and differential information. Uncertainty
about nature is, as usual, depicted by means of a probability space (Ω,F , π), where Ω is a finite
set representing all possible states of nature. The set of all the events is given by the field F ; while
the common prior π describes the relative probability of the states. We assume, without loss of
generality, that π(ω) > 0 for each ω ∈ Ω.

There is a finite number of private goods, so that the commodity space is IR`
+.

As in Gabszewicz [4] we refer to mixed markets by considering a complete, finite measure space
(T, T , µ) as space of agents. T is the set of agents, T is the σ-field of all eligible coalitions, whose
economic weight on the market is given by the measure µ. An arbitrary finite measure space of
agents makes us deal simultaneously with the case of discrete economies, non-atomic economies as
well as economies that may have atoms. Indeed, discrete economies are covered by a finite set T
with a counting measure µ. Atomless economies are analyzed by assuming that (T, T , µ) is the
Lebesgue measure space with T = [0, 1]. Finally, mixed markets are those for which T is composed
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by two sets: T0 and T1, where T0 is the atomless sector that describes an ocean of uninfluential
agents and T1 a set of atoms.

Each agent t ∈ T is characterized by:

- A private information field Ft generated by a partition Πt of Ω. The interpretation is usual:
if the prevailing state is ω, agent t observes the unique element Πt(ω) of Πt containing ω
or, in other words, he is informed that the prevailing state is in the event Πt(ω). His beliefs
are described from π by Bayesian updating. Agents may be not equally informed concerning
the true state of nature when they write contracts, but when consumption takes place, the
realized state of nature is commonly known. Since Ω is finite, there exists a finite collection
{Πi}i∈{1,...,N} of partitions of the set Ω. For each i ∈ {1, . . . , N}, let T (i) = {t ∈ T : Πt = Πi}
be the information type set. T (i) is assumed to be measurable and of positive measure1.

- A state-dependent utility function representing his preferences:

ut : Ω× IR`
+ → IR

(ω, x) → ut(ω, x).

We assume that for all ω, ut(ω, ·) is strictly increasing, continuous and concave, and the
mapping (t, x) 7→ ut(ω, x) is T ⊗B-measurable, where B is the σ-field of Borel subsets of IR`

+.

- An initial endowment of physical resources represented by the function

et : Ω → IR`
+.

Thus, summing up the economy E is modeled by the following collection:

E =
{

(Ω,F , π); (T, T , µ); IR`
+; (Ft, ut, et)t∈T

}
.

Decisions are taken today about the way to redistribute the endowments when the state will be
common knowledge. Therefore, incentive and measurability constraints are irrelevant.

An allocation is a function x : Ω× T → IR`
+ such that x(ω, ·) is integrable for all ω ∈ Ω. If, for

each ω ∈ Ω, ∫
T
xt(ω)dµ 6

∫
T
et(ω)dµ,

then the allocation x is said to be feasible.
Given an event E, the interim expected utility of agent t for some allocation x conditional on

the event E is given by

Vt(xt|E) =
∑
ω∈Ω

ut(ω, xt(ω))π(ω|E) =
∑
ω∈E

ut(ω, xt(ω))
π(ω)
π(E)

.

Definition 2.1. A feasible allocation y Pareto dominates an allocation x if almost all agents, given
their own private information, prefer y over x in each state, i.e.,

Vt(yt|Πt(ω)) > Vt(xt|Πt(ω))

for almost all t ∈ T and each ω ∈ Ω.

1This assumption implies that the following correspondence has measurable graph: Π : T → 2F defined by
Π(t) = Πt. It means that the set GΠ = {(t, E) : E ∈ Πt} belongs to the product σ-algebras T ⊗ B(2F ), where B
denotes the Borel σ-algebra.
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A feasible allocation is efficient (or Pareto optimal) if it is not Pareto dominated by any other
feasible allocation (for a similar definition see [13]).

The two notions of coalitional fair allocations of Varian [9] and Gabszewicz [4] differ for what
follows: Varian requires that a c-fair allocation must be such that no coalition envies the aggregate
bundle of any other coalition of the same or smaller size. According to Gabszewicz’s definition,
different groups of agents compare their net trades without any requirement on the measure of the
potentially envious coalition. In both cases, differently from individual fairness, the efficiency is
implicitly satisfied, and the existence is guaranteed under standard assumptions.

To the best of our knowledge, coalitional fairness of allocations has not been widely studied in
economies involving uncertainty and asymmetric information2. Our goal is to address the following
question: do coalitional fair allocations still exist when agents are asymmetrically informed?

Consider first the natural extension to differential information economies of the Varian c-fair
notion according to which we agree that an allocation x is c-fair if it is efficient3 and also envy-free
in the sense that it is not possible to find an alternative allocation y such that, for each state ω ∈ Ω,
there exist two coalitions S1(ω) and S2(ω) for which

(i) µ(S1(ω)) ≥ µ(S2(ω))
(ii) t ∈ S1(ω) ⇒ t ∈ S1(ω′) for all ω′ ∈ Πt(ω)
(iii) Vt(yt|Πt(ω)) > Vt(xt|Πt(ω)), for almost all t ∈ S1(ω)

(iv)
∫

S1(ω)
yt(ω)dµ ≤

∫
S2(ω)

xt(ω) dµ,

with µ(S1(ω)) > 0 in at least one state of nature.
For each state of nature ω ∈ Ω, S1(ω) may be interpreted as the coalition which envies at state

ω the aggregate bundle of the coalition S2(ω). Thus, it is natural to require that if t ∈ S1(ω) for
some state ω, that is t is envious in state ω, then t is also envious in each state that he cannot
distinguish.

Obviously, in the case of perfect information, the above definition reduces to the standard one
given by Varian [9]. Moreover, an allocation with all properties just above described is interim fair
according to [2]. Hence, we can’t guarantee the existence in general of such an allocation due to
the fact that interim fair allocation may form an empty set. For this reason we shall focus our
attention to coalitional fairness of net trades, extending to differential information economies the
Gabszewicz notion of c-fair allocation.

Before doing this, for our sake of completeness, we explicitly show an example of a differential
information economy for which it is impossible to reconcile efficiency and the envy-freeness described
above.
Example. Consider an economy with: two equiprobable states of nature Ω = {a, b}; three asym-
metrically informed agents {1, 2, 3}, with Π1 = Π3 = {{a, b}} and Π2 = {{a}, {b}}; only one good.
In each state ω, agents equally share the total initial endowment e(ω): ei(a) = e(a)

3 = 4 and
ei(b) = e(b)

3 = 9. Moreover, for all ω ∈ Ω, ut(ω, x) = x for t = 2, 3 and u1(ω, x) =
√
x. Even if

the economy described above satisfies all the standard assumptions, the set allocations that are
2See [6] for an analysis on coalitional fairness notion in differential information economies in which agents receive

no signal at the time of contracting.
3Differently from the perfect information notions, we will explicitly require Pareto efficiency due to the free disposal

condition imposed on allocations.
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simultaneously efficient and envy-free is empty.

The reason of the non existence of allocations that are efficient and envy-free at the same time,
bases on the fact that even if agents have the same initial endowment, they may have different
information and hence different budget set. Therefore the scheme used by Varian, that deduces
the existence of a c-fair allocation simply by showing that any competitive equilibrium alloca-
tion resulting from an equal sharing of the total initial endowment among agents is c-fair, doesn’t
apply whenever agents are asymmetrically informed. In a differential information economy, a con-
strained market equilibrium, the proper equilibrium concept to consider, resulting from an equal
sharing of the total initial endowment may not be simultaneously efficient and free of envy (just
think about constrained market equilibria, certainly existing, of the economy given in the example).

Thus, we move our attention to the notion due to Gabszewicz [4], according to which different
groups of agents compare their net trades without any requirement on the measure of the potentially
envious coalition. A natural extension to differential information economies is proposed in the
following.

Definition 2.2. A feasible allocation x is said to be c-fair if there does not exist an alternative
allocation y such that for all ω ∈ Ω there exist two coalitions S1(ω) and S2(ω) for which

(i) S1(ω) ∩ S2(ω) = ∅
(ii) t ∈ S1(ω) ⇒ t ∈ S1(ω′) for all ω′ ∈ Πt(ω)
(iii) Vt(yt|Πt(ω)) > Vt(xt|Πt(ω)) for almost all t ∈ S1(ω)

(iv)
∫

S1(ω)
(yt(ω)− et(ω)) dµ ≤

∫
S2(ω)

(xt(ω)− et(ω)) dµ,

with µ (S1(ω)) > 0 in at least one state of nature.

An allocation is qualified c-fair (in the sense of Gabszewicz) if it is not possible to find an
alternative allocation such that in each state of nature a coalition of agents can redistribute among
its members the net trade of a disjoint coalition and each of them, using his own private information,
is better off. For each ω ∈ Ω, S1(ω) is the coalition of agents envying the net trade of the disjoint
coalition S2(ω) in state ω. Thus, it is natural to require that if an agent t is envious at state ω, he
is still envious in each state he cannot distinguish.

Notice that we do not require that S2(ω) has positive measure, neither that x is efficient. In-
deed, with standard arguments4, it is easy to show that any c-fair allocation is Pareto optimal.

In pure exchange economies Gabszewicz shows that the set of c-fair allocations is non empty
since it contains the set of competitive equilibria. This inclusion may be strict, it becomes an
equivalence in atomless economies. Our goal is to show that, contrary to what we have seen
about Varian’s notion, the results obtained by Gabszewicz are still valid in differential information
economies. Such results are stated below.

Theorem 2.3. In a differential information economy, any constrained market equilibrium alloca-
tion is c-fair.

It directly follows from the existence of constrained market equilibrium allocations (see [11])
and Theorem 2.3 that in a differential information economy, c-fair allocations exist.

Theorem 2.4. If E is atomless, then constrained market equilibria are the only c-fair allocations.
4It is just needed to put for all ω, the envious coalition S1(ω) equal to the whole set of agents T and the other

coalition S2(ω) equal to the empty set.
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3 Proofs

We start by detailing about the incompatibility of efficiency and envy-freeness in the previous
example. Assume, indeed, that the allocation x is envy-free.

Notice that x1 = x2. For if x1(b) > x2(b), for example, then the coalitions

S1(a) = ∅ S1(b) = {2}
S2(a) = ∅ S2(b) = {1},

and the allocation

y1(a) = x1(a) y1(b) = x1(b)
y2(a) = x2(a) y2(b) = x1(b)
y3(a) = x3(a) y3(b) = x3(b),

satisfy conditions (i)− (iv) above, against envy-freeness of x.
Now, if x1(b) < x2(b), then the coalitions

S1(a) = {1} S1(b) = {1}
S2(a) = {1} S2(b) = {2},

and the allocation

y1(a) = x1(a) y1(b) = x2(b)
y2(a) = x2(a) y2(b) = x2(b)
y3(a) = x3(a) y3(b) = x3(b),

would exhibit the envy of S1 against S2. Hence, x1(b) = x2(b) and similarly we can show that
x1(a) = x2(a). If x1(b) = x2(b) < x3(b), a contradiction will appear by considering the coalitions

S1(a) = ∅ S1(b) = {2}
S2(a) = ∅ S2(b) = {3},

and the allocation

y1(a) = x1(a) y1(b) = x1(b)
y2(a) = x2(a) y2(b) = x3(b)
y3(a) = x3(a) y3(b) = x3(b).

Thus, x1(b) = x2(b) ≥ x3(b) and, similarly, x1(a) = x2(a) ≥ x3(a). Finally, if x1(b) = x2(b) >
x3(b), consider the coalitions

S1(a) = {3} S1(b) = {3}
S2(a) = {3} S2(b) = {2},

and the allocation

y1(a) = x1(a) y1(b) = x1(b)
y2(a) = x2(a) y2(b) = x2(b)
y3(a) = x3(a) y3(b) = x2(b),
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to contradict that x is envy-free. Thus, x1(b) = x2(b) = x3(b). Similarly, we can show that
x1(a) = x2(a) = x3(a). Hence, from the feasibility condition it follows that for each agent, xt(a) = 4
and xt(b) = 9. Consider now, the following feasible allocation

y1(a) = 6.3 y1(b) = 6.4
y2(a) = 4.1 y2(b) = 9.1
y3(a) = 1.6 y3(b) = 11.5,

and notice that
Vt(yt|Πt(ω)) > Vt(xt|Πt(ω)), for all t ∈ T and all ω.

Thus, x is not efficient. 2

Now we prove the existence and the characterization of a c-fair allocation. For this purpose,
following Wilson (see [11]) we associate to E an economy E∗ with uncertainty and without asym-
metric information. This allows us to deduce Theorems 2.3 and 2.4 from Gabszewicz [4].

An auxiliary economy. In the type-agent representation E∗ of the economy E the uncertainty
about nature is described by the measure space (Ω,F , π) as before.

The measure space (T ∗, T ∗, µ∗), representing the space of type agents, is constructed in the
following way:

- T ∗ coincides with the graph of the correspondence Π : T → 2F defined by Π(t) = Πt. More
precisely, T ∗ is the set of pairs (t, E), where t is an agent and E is an event of his information
partition.

- T ∗, the family of coalitions, consists of measurable subsets S∗ of T ∗, i. e. subsets that belong
to T ⊗ B(2F ).

- The measure µ∗ on T ∗ is defined as the product measure of µ and the counting measure.

Each type agent (t, E) is characterized by:

- A state-dependent utility function u(t,E) defined as

u(t,E)(ω, x) =
{
ut(ω, x) if ω ∈ E
0 otherwise.

- An initial endowment of physical resources e∗(t,E) defined as

e∗(t,E)(ω) =
{
et(ω) if ω ∈ E
0 otherwise.

Type-agents decide today about the way to redistribute their endowments when the state will be
common knowledge. The presence of uncertainty in this economy, as well as the possibility of
writing contracts that are contingent on the future state of the economy, allows us to apply the
standard notion of competitive and c-fair allocations. We shall rewrite, for reader convenience, the
main equilibrium notions in the economy E∗.
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An allocation in the fictitious economy E∗ is a function x∗ : Ω× T ∗ → IR`
+ such that x∗(ω, ·) is

integrable for all ω ∈ Ω. x∗ is feasible if∫
T ∗
x∗(t,E)(ω)dµ∗ ≤

∫
T ∗
e∗(t,E)(ω)dµ∗ for all ω ∈ Ω.

where x∗(t,E) : Ω→ IR`
+ represents the bundle that the type-agent (t, E) receives under the allocation

x∗, in each state ω.

Definition 3.1. Let S∗ be a coalition with positive measure, i.e. µ∗(S∗) > 0. An allocation y∗

Pareto dominates x∗ for S∗ if for almost all (t, E) ∈ S∗

V(t,E)(y
∗
(t,E)) > V(t,E)(x

∗
(t,E)),

where V(t,E)(x∗(t,E)) =
∑

ω∈Ω u(t,E)(ω, x∗(t,E)(ω))π(ω).

Definition 3.2. A feasible allocation x∗ is said to be c-fair in the economy E∗ if there do not exist
an alternative allocation y∗, two coalitions S∗1 and S∗2 , such that

(1) µ∗(S∗1) > 0, S∗1 ∩ S∗2 = ∅
(2) V(t,E)(y

∗
(t,E)) > V(t,E)(x

∗
(t,E)) for almost all (t, E) ∈ S∗1

(3)
∫

S∗1

(y∗(t,E)(ω)− e∗(t,E)(ω)) dµ∗ ≤
∫

S∗2

(x∗(t,E)(ω)− e∗(t,E)(ω)) dµ∗ for all ω ∈ Ω.

Definition 3.3. An allocation x∗ is a competitive equilibrium in the economy E∗ if it is feasible
and there exists a price system p : Ω→ IR`

+ such that

x∗(t,E) ∈ arg max
y∗
(t,E)∈B(t,E)(p)

V(t,E)(y
∗
(t,E))

where for all (t, E) ∈ T ∗

B(t,E)(p) =

{
y∗(t,E)|

∑
ω∈Ω

p(ω) · y∗(t,E)(ω) ≤
∑
ω∈Ω

p(ω) · e∗(t,E)(ω)

}
.

It is easy to construct a natural isomorphism between the economies E and E∗.

Given an allocation x ∈ E , its type-agent representation is the allocation x∗ such that for each
(t, E) in T ∗

x∗(t,E)(ω) =
{
xt(ω) if ω ∈ E
0 otherwise.

Given an allocation x∗ ∈ E∗, its associated allocation x in the original economy E is such that for
each t in T and each ω in Ω

xt(ω) = x∗(t,Πt(ω))(ω).

We show below that any c-fair allocation in the economy E corresponds to a c-fair allocation in
the associated type-economy E∗ and vice versa.

Proposition 3.4. If x is a c-fair allocation for E, then the corresponding allocation x∗ is c-fair
for E∗
Conversely, if x∗ is a c-fair allocation for E∗, then the corresponding allocation x is c-fair for E .
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proof: It is easy to show that if x is a feasible allocation for the economy E , the associated
allocation x∗ is feasible in E∗, and vice versa. Let x be a c-fair allocation for E and assume on the
contrary that the corresponding allocation x∗ ∈ E∗ is not c-fair. Since, x∗ is feasible in E∗, this
means that there exist an assignment y∗ and two coalitions S∗1 and S∗2 such that

(1) µ∗(S∗1) > 0, S∗1 ∩ S∗2 = ∅

(2) V(t,E)(y∗(t,E)) > V(t,E)(x∗(t,E)) for almost all (t, E) ∈ S∗1

(3)
∫

S∗1

(y∗(t,E)(ω)− e∗(t,E)(ω)) dµ∗ ≤
∫

S∗2

(x∗(t,E)(ω)− e∗(t,E)(ω)) dµ∗ for all ω ∈ Ω.

Notice that without loss of generality we can assume that for all (t, E) ∈ T ∗, y∗(t,E)(ω) = 0 for all
ω /∈ E.
Let us consider the allocation y such that

yt(ω) =
{
y∗(t,Πt(ω))(ω) if (t,Πt(ω)) ∈ S∗1
0 otherwise.

Let us define for each ω ∈ Ω, the sets

S1(ω) = {t ∈ T : (t,Πt(ω)) ∈ S∗1} and S2(ω) = {t ∈ T : (t,Πt(ω)) ∈ S∗2}.

Then, for i = 1, 2 Si(ω) is a measurable subset of T , since it coincides with the projection over T
of the measurable subset of T ∗ defined by S∗i ∩ {(t,Πt(ω)) : t ∈ T}5. Clearly, if t ∈ S1(ω) then
t ∈ S1(ω′) for each ω′ ∈ Πt(ω), simply because, (t,Πt(ω)) = (t,Πt(ω′)) for any ω′ ∈ Πt(ω).

Moreover, for all ω ∈ Ω, S1(ω) ∩ S2(ω) = ∅ and, from (1), µ(S1(ω)) > 0 in at least one state of
nature. Then we get∫

S1(ω)
(yt(ω)− et(ω)) dµ =

∫
S∗1

(y∗(t,E)(ω)− e∗(t,E)(ω)) dµ∗ ≤

≤
∫

S∗2

(x∗(t,E)(ω)− e∗(t,E)(ω)) dµ∗ =
∫

S2(ω)
(xt(ω)− et(ω)) dµ.

This contradicts the assumption that x is c-fair.

We now prove the converse. Let x∗ be a c-fair allocation for E∗ and assume on the contrary
that the corresponding allocation x is not c-fair. Since x is feasible in E , this means that there
exists an assignment y such that, for all ω ∈ Ω, one can find S1(ω) and S2(ω) for which

(1) S1(ω) ∩ S2(ω) = ∅

(2) t ∈ S1(ω) ⇒ t ∈ S1(ω′) for all ω′ ∈ Πt(ω)
(3) Vt(yt|Πt(ω)) > Vt(xt|Πt(ω)) for almost all t ∈ S1(ω)

(4)
∫

S1(ω)
(yt(ω)− et(ω)) dµ ≤

∫
S2(ω)

(xt(ω)− et(ω)) dµ,

with µ (S1(ω)) > 0 in at least one state of nature.
5Since the measure space of agents is assumed to be finite and complete, the measurability of the projection

ProjTS
∗ for each measurable subset S∗ of T ∗ follows by the Projection Theorem (see [1, Theorem 14.84])
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Then let us consider a new assignment z defined as follow, for all ω ∈ Ω,

zt(ω) =
{
yt(ω) t ∈ S1(ω)
xt(ω) otherwise

Hence, from (2) and (3) it follows that for each ω ∈ Ω, Vt(zt|Πt(ω)) > Vt(xt|Πt(ω)) if and only if
t ∈ S1(ω).

Consider the following subsets of T ∗

S∗1 = {(t, E) ∈ T ∗ : Vt(zt|E) > Vt(xt|E)} =
⋃
ω∈Ω

N⋃
i=1

(S1(ω) ∩ Ti)× {Πi(ω)},

S∗2 = {(t, E) ∈ T ∗ : t ∈ S2(ω̄), ω̄ ∈ E} =
⋃
ω∈Ω

N⋃
i=1

(S2(ω) ∩ Ti)× {Πi(ω)}.

Hence S∗1 and S∗2 are measurable and µ∗(S∗1) > 0. Moreover, we can observe that S∗1 ∩ S∗2 = ∅.
Let us define a new allocation z∗ as follows: for each (t, E) ∈ T ∗ and for all ω ∈ Ω

z∗(t,E)(ω) =
{
zt(ω) if ω ∈ E and (t, E) ∈ S∗1
0 otherwise

Thus, for each (t, E) ∈ S∗1
V(t,E)(z

∗
(t,E)) > V(t,E)(x

∗
(t,E))

and for each ω in Ω

∫
S∗1

(z∗(t,E)(ω)− e∗(t,E)(ω)) dµ∗ =
∫

S1(ω)
(zt(ω)− et(ω)) dµ =

∫
S1(ω)

(yt(ω)− et(ω)) dµ ≤

≤
∫

S2(ω)
(xt(ω)− et(ω)) dµ =

∫
S∗2

(x∗(t,E)(ω)− e∗(t,E)(ω)) dµ∗.

This contradicts the assumption that x∗ is a c-fair allocation for E∗. 2

We are now ready to prove Theorem 2.3.
Proof of Theorem 2.3. Let x be a constrained market equilibrium for the economy E , we want to
show that it is c-fair. First, we notice that the associated allocation x∗ is a competitive equilibrium
of the economy E∗ (see [11]), which is a c-fair allocation (see [4, Proposition 1]). Then, from
Proposition 3.4, it follows that x is c-fair for the economy E . 2

Remark 3.5. From [4, Proposition 2] and Proposition 3.4, it follows that the set of c-fair allocations
may differ from the set of constrained market equilibria.

Proof of Theorem 2.4. Let E be atomless, i.e., T1 = ∅, and x be a c-fair allocation, then by
Proposition 3.4 the associated allocation x∗ is c-fair and hence, by the Core-Warlas equivalence, it
is a competitive equilibrium. Then, as proved by Wilson, x is a constrained market equilibrium. 2
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Remark 3.6. Observe that similar arguments cannot be used to deduce in differential information
economies the existence of a c-fair allocation (in the sense of Varian), simply because in the type-
agent economy E∗ we lose the needed equal income property (see Theorem 4.4 in [9]). Indeed, even
if et(ω) = e for each t ∈ T and each ω ∈ Ω, in the associated economy E∗,

e∗(t,E)(ω) =
{
et(ω) if ω ∈ E
0 otherwise,

and hence different agents may have different initial endowment.
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