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Abstract 

A main distinguishing feature of the Vickrey sale auction is that bidding the own reserve 

price is a weakly dominant strategy. Therefore, although the auction can allow for multiple 

Nash Equilibria, the possibility of relying upon a weakly dominant strategy greatly simplifies 

bidders’ strategic decisions. Yet, because of the equilibrium multiplicity, the auctioneer can 

never be sure if players truly revealed their reserve prices. In the paper we introduce second 

price Tullock auctions, as a main example of lottery auctions, to see whether revelation of 

reserve prices could still occur in alternative second price mechanisms. With complete and 

private information our main finding is that in equilibrium, the auctioneer can now perfectly 

infer players’ reserve prices, however not because each bidder submits his maximum 

willingness to pay but rather because his reserve price is disclosed by his opponents. For this 

reason we named this “mirror revelation”. In such auctions, offering the own reserve price is 

not even a Nash Equilibrium.  

 

 

 

 

 

 

 



1.Introduction 

 A main distinguishing feature of the second price Vickrey sale auction (Vickery, 1961; Milgrom 

2004; Krishna, 2009) is that revealing the truth, bidding one’s reserve price, is a weakly dominant 

strategy. Therefore, although the auction can admit multiple Nash Equilibria, included inefficient 

ones, the possibility of relying upon a weakly dominant strategy greatly simplifies bidders’ 

strategic decisions and, moreover, allows for the auctioneer to be informed about their reserve 

price. Based on this remarkable property of the design, the presumption is that whenever in such 

an auction players submit an offer they would fully reveal their maximum willingness to pay. 

However, given the possibility of multiple equilibria the auctioneer, at least in principle, can never 

be sure whether submitted and reserve prices coincide.  

Taking the above considerations as a starting point in the paper we tackle the following main 

issue. That is if, and under what conditions, reserve price revelation could be obtained in 

alternative second-price auctions mechanisms. We address the issue by considering “second-

price” lottery auctions. In particular, as a main example, we do so within a generalized version of 

Tullock auctions (Tullock 1980), that is auctions where the winner is determined probabilistically, 

and the winning probability is proportional to the own submitted price. Tullock contests and 

associated winning probabilities, have been extensively studied in a variety of contexts (see among 

others Paul-Whilhite, 1990; Skaperdas 1996; Anderson et al, 1998; Corchon, 2007; Konrad, 2009; 

Alcaide et al, 2010; Cason et al, 2010). In particular, the Tullock mechanism has been widely 

adopted to model rent-seeking and lobbying activities, sport competitions, R&D incentives 

(Konrad, 2009). Such applications are typically formalized as first price all-pay contests, that is 

auctions where all players pay what they bid, and the highest price wins. A further motivation for 

considering these auctions is that lotteries, included National Lotteries, where the size of the 

prizes is determined by the amount invested by participants, can be seen as a form of all-pay 

(lottery) auctions, in which a bidder’s value is endogenous and the winning probability is a Tullock 

contest function.   

In the paper we introduce and investigate second-price Tullock lottery auctions, both winner 

only-pays and all-pay, with the following two main questions in mind. First to see whether 

revealing one’s reserve price keeps being a weakly dominating strategy, as in the standard Vickrey 

auction, and then whether revelation of bidders’ reserve price can be made more precise. In 

particular, when bidders have positive reserve values, if and where observation of positive offers 

could perfectly reveal their maximum willingness to pay.  

In the initial, simplest, two player auction model that we discuss the answer is negative to the 

first question and positive to the second. As for the first question, introducing a lottery to award 

the object not only prevents truth telling from being a weakly dominant strategy but also to be a 

Nash Equilibrium. As for the second question however the set of Nash Equilibria, unlike the 

Vickrey mechanism, enjoys the nice property that the only equilibrium pair where both players bid 

positive prices perfectly reveals to the auctioneer bidders’ reserve price. However, there is a main 

difference with respect to the Vickrey auction, since in equilibrium a player’s willingness to pay is 

revealed by the opponent’s offer and not by his own submitted price. In the paper we call this 



phenomenon “Mirror Revelation” (MR) and it would now be a sharp, unequivocal, identification of 

players’ reserve prices.  

We then extend the analysis to     players to see if and how the above results go through. 

We see that MR still occurs though in a more general way, namely not only with profile of bids 

containing strictly positive entries but also with profiles having some zero bids. In this case, 

sharpness of revelation is guaranteed by the fact that no MR equilibrium profile of bids can 

include maximum bids. Finally, we consider a simplest two-player, two-values, incomplete 

information model to see that there could be a multiplicity of symmetric equilibrium, increasing 

and decreasing, bidding functions.       

 

2 The Model with Complete and Private Information 

 

We begin by setting the general framework. Consider one indivisible object on sale in a sealed 

bid auction, with         competing bidders. Players have private values and complete 

information about their reserve prices        ̅ , with  ̅            for all         . 

Though finite, we assume  ̅ to be “much larger” than   , more explicitly greater than    . From 

now on   (        )  (      ), as usual, will indicate the  -dimensional profile of bids, as 

expressed by the bid    of player   and the     dimensional profile of bids of his opponents    . 

The object is awarded according to the following mechanism. Each player   submits his sealed bid 

    . Upon having received them the auctioneer publicly opens the envelopes and assigns the 

object randomly, with probabilities proportional to the price bid. In particular, player     winning 

probability is the one adopted in Tullock contests and defined by  

  (       )   

{
 

 
  

        
               

 

 
                                

 

It is important to anticipate here however that the main results of the paper will be valid   for 

more general winning probability functions, as long as they satisfy the following properties of the 

above Tullock probabilities:  

i) 
   (       )

   
                    

ii)   (       )  
 

 
              

iii)   (               )                      

After having assigned the object the auctioneer excludes the price submitted by the winner 

and proceeds with a second random draw from the remaining prices. The outcome of the second 

draw will be the price paid by the winner.  



Therefore, given the random nature of the object assignment and price determination, 

there is no guarantee that the highest submitted price will win and that the second highest price 

will be paid. Indeed, though offering a high price increases the chance of winning, there could still 

be positive probability for the auctioneer of assigning the object to the lowest submitted bid and 

be paid the highest price. As we shall see below such randomization mechanism, in deciding 

winner and paid price, will meaningfully affect bidders’ behavior.  

We now introduce the idea of a Mirror Revelation Equilibrium (MRE) in the auction game.  

Definition (Mirror Revelation Equilibrium) A profile of bids   is a MRE if it is a Nash Equilibrium of 

the game and if for each          there exists a function   (   )    .  

In words, a MRE is a Nash Equilibrium where the reserve price of each player is revealed by 

some function of the bids submitted by his opponents. In what follows we shall see that such 

functions can take various forms, depending upon the auction type and the number of players.  

 

3 The Second Price Winner-Only-Pays Tullock Auction (SWOPTA) with Two Bidders 

 

To gain the fundamental insights of the model, in this section we begin considering its 

simplest version, with     bidders.  In this case, player     payoff is given by  

  (  )  

{
 

                               
  

     

                                      
  

     

 

and the expected payoff by  

   (  )  (     ) 
  

     
 

Therefore, the best reply correspondence   (  ) for player 1 is given by  

  (  )  

{
 

 
   (   ̅                                                    
    ̅                                                (    ) 
       ̅                                                    

                                                       (     

 

and symmetrically for the other player. Hence, the following result holds.  

Proposition 1 In a complete information SWOPTA with two players the set of pure strategies Nash 

Equilibria is given by the following pairs (   (    ̅      ); (            )  (         

(    ̅ )  



Proof From the best reply correspondences observe that the pairs (    ̅      (    )) cannot 

be equilibria. Indeed, if     ̅ then player     best reply would be        The rest of the 

proposition follows immediately.  

Some comments are in order. The equilibrium pairs in the above proposition are a subset 

of the Nash Equilibria in the standard Vickery auction, which could be seen as selected by the 

Tullock randomization device, according to a “behavioral discontinuity” induced by the 

mechanism.   

The intuition behind such equilibrium selection is simple. If player  , and symmetrically for player 

 , thinks the opponent will bid above his reserve price then, because of the randomized 

assignment, it would be best for him to offer a zero price since by submitting a positive price, 

however small, he would run the risk of being drawn as winner and make negative profits. 

Alternatively, if player   thinks the opponent bids below    then he will want to maximize his 

chance of winning by offering a price above   , which player   will not want to outbid. Finally, if 

player   thinks that       then his profit will be zero whether or not he wins. Therefore, any 

offer could be a best reply, included      .  

The only pair with strictly positive components fully reveals the players’ reserve price, 

however each player does not reveal the own price but his opponent’s, and so it is a MRE. 

Moreover, notice also that the MRE would not be in weakly dominant strategies and that truth 

revealing is not even a Nash Equilibrium. Of course, for a MRE to be effective in practice the 

auctioneer has to count on players being well informed about each other reserve price. In this 

sense, exact revelation may turn out to be more difficult in this context.  

As for the auctioneer’s revenue, the following corollary points out how the SWOPTA Nash 

Equilibria compare to the weakly dominant equilibrium of the Vickrey auction.  

Corollary 1 For the auctioneer the MRE of a complete information SWOPTA with two players is 

preferable to the equilibrium in weakly dominant strategies of the Vickrey auction, while the other 

two SWOPTA equilibria are not.     

Proof Immediate. Indeed, the equilibrium pair (            ) provides an expected revenue 

of 
     

     
 to the auctioneer which, since      , will be no lower than his payoff in the weakly 

dominant equilibrium of the Vickrey auction. The same would not occur with the other two 

equilibrium pairs, since both provide the auctioneer with zero expected payoff.  

Finally, the following proposition clarifies that with complete information no other equilibria 

can exist.  

Proposition 2 In a complete information model with     bidders there is no mixed strategy Nash 

equilibrium.  

Proof In a mixed strategy equilibrium players expected payoff must be constant over their 

support. However, it is immediate to see that player 1 expected payoff    (  )   (     ) 
  

     
 



is increasing for         and decreasing for        , which implies that there cannot be a 

support (except for      ) for a mixed strategy equilibrium of player 2, where    (  ) is 

constant. An analogous reasoning holds for player   and the result follows.     

 

4. The SWOPTA with     Bidders 

 

In this section we extend the model to     bidders and discuss to what extent the previous 

results generalize. We’ll see if and how the main findings for     could carry through. In this 

case, player     payoff, with          is defined by   

   (  )  

{
 
 

 
                               

  

(∑   
 
   )(

  

∑   )
 
   

                                                          
∑   

 
   

∑   
 
   

 

 

where    . Hence the expected payoff becomes  

   (  )  (       ) 
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where  

     ∑   
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is the expected value of the second price drawn, conditionally to having selected    in the first 

draw. Therefore, player     best reply correspondence would now be given by  

  (   )  {

   (   ̅                                                             
    ̅                                                          (    ) 
       ̅                                                             

                                                                (    ̅ 

 

Thus, the following proposition holds 

Proposition 3 In a complete information SWOPTA with     bidders the MRE profiles solve the 

system of   equations   (   )         , with         . Moreover, there always exists an 

MRE.  

Proof First notice that at a MRE, for all           it must be ∑   
 
      since otherwise 

∑   
 
      would imply              contradicting MRE. Then, from the best reply 

correspondence, it follows immediately that for all           at any MRE the equation  



     ∑
(  )

 

(∑   
 
   )

 

   
    

must be solved. Since the domain of bid profiles   is       ̅  , hence compact and convex, 

Brouwer’s fixed point theorem guarantees that the following non-linear, continuous,  -variables 

mapping  ( )     defined as     

  ( )  
∑  (  )

  
          

 

      
 ∑   

 

   

               

where   ( ) is the      component of the mapping and         , has a fixed point. This proves 

the existence of an MRE since a fixed point   ( )     exists if an only if    (     )        .   

The next result clarifies that reserve prices will be offered only under specific 

circumstances.      

Corollary 2 Consider a complete information SWOPTA with     bidders where at least two 

players have different reserve value. Then there is no Nash Equilibrium where each reserve price 

will be offered by some player. Therefore there is no equilibrium where each player bids his own 

reserve price.        

Proof Immediate by observing that if at least two reserve prices are different and if all reserve 

prices are bid by some player then         which would imply     ̅    , with         , 

contradicting the initial assumption.   

Proposition 2 and Corollary 2 suggest that MRE can still occur, though not at individual 

level, but considering averages of bids. Moreover, for specific values an MRE profile may contain 

some zero components, as the following example with     illustrates. The system of equations 

now becomes  

(  )
  (  )

  (     )                

(  )
  (  )

  (     )                  

(  )
  (  )

  (     )              

It is easy to check that there cannot be two zero bids since otherwise one of the equations 

could not be solved. The system would however allow for a solution vector with a zero 

component. In particular provided that    
(  )  (  ) 

     
 the vector   (                ) 

is the only MRE profile of bids solving the system and such that         . Notice however 

that non MRE vectors could not have only a    zero component, hence the auctioneer could not 

mistake them for an MRE. Indeed, suppose      is the only zero component of a non MRE. Then 

if       it must be     . Alternatively, if       then     ̅     and so     . Both 

conclusions would contradict the initial assumption. Therefore no MRE can be “mistaken” for non 

MRE and, even with zero bids components, mirror revelation can still be the case.   



 Moreover, for example, from the second equation of the above system it follows that 

   
   √  

           
 

 
 

The largest of the two solutions is maximized when the expression   
     (     ) 

inside the square root, seen as function of     is maximum that is when    
  

 
, leading to  

   
  (  √ )

 
     

By a similar reasoning it also follows that        and       . That is, at a MRE all bids are 

bounded above by     . Therefore, with three players the only MRE where all components are 

positive have bid components strictly below    But at a non MRE with all positive bids, the system 

of weak inequalities     

(  )
  (  )

  (     )                

(  )
  (  )

  (     )                  

(  )
  (  )

  (     )              

must be satisfied (because otherwise one component would be zero) with at least one of them 

being satisfied as strict inequality (since otherwise it would be an MRE). This implies that one of 

the bid components has to be equal to  . As a consequence, when observing a profile of non-zero 

bids the auctioneer knows that the offers are revealing if no component is equal to  . The above 

observations generalize to any finite number of players as follows              

Proposition 4 For each MRE of a complete information SWOPTA, with      no positive 

component of the equilibrium profile of bids could be equal to        

Proof Start considering MRE with only positive components. At such equilibria the following 

system of equalities must be satisfied  

∑   
    (

 

   
∑   )

 

   
                             ( ) 

Take, for simplicity,     and express ( ) as a quadratic equation in    as follows 
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 Solving ( ) we obtain  
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where the largest solution cannot be greater than 
  (  √   )

 
  . Since this holds for all 

         it follows that no MRE profile can contain bids equal to   . Instead, at least one   will 

have to be contained by a non MRE profile with all positive components.  

Consider now a MRE with            zero components. Indeed, there could not be     zero 

components otherwise the remaining     component would be associated to a zero value, 

contradicting the assumption that all values are positive. Moreover, by   and    we indicate the 

subset of components with, respectively, zero and non-zero bids. Hence, at an MRE it is  

∑   
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Hence, by a similar reasoning it is immediate to check that also in this case no   can appear in the 

bids profile while, instead, at least one of them must appear in a non MRE profile of bids.        

 

5 The Second Price All-Pay Tullock Auction (SAPTA) with Two Bidders  

 

We now consider the more common version of the Tullock contest, that is the all-pay auction, 

where players pay what they submit, whether or not they win the object. However in this case the 

standard all-pay mechanism must be adjusted to take account of the randomizing awarding device 

as well as of the second price mechanism. Hence, if bids represent sunk investments, players here 

have an additional strategic component to deal with, namely that they have to calibrate their 

offers considering the risk of over-investment. That is, the risk of offering a price higher than the 

one they would end up paying, and in so doing waste resources. A way the auctioneer could take 

account of this could be simply to compensate the winner of the difference between the price 

offered and the price received, in case the latter is smaller than the former. This is indeed the 

mechanism we shall consider in this section though, of course, there could be alternative ways  to 

formalize the point, such as defining the price paid by the winner as the maximum between the 

first and the second price drawn.  

Therefore, in the simplest model with two players bidder 1’s payoff function is given by     

  (  )  

{
 

                               
  

     

                                     
  

     

 

with the expected payoff now defined as    
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Hence, the best reply function   (  ) for player 1 is given by  

  (  )  
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and symmetrically for the other player. Since   (  ) now has the same structure, as in the winner-

only-pays auction, the next result follows immediately.. 

Proposition 5 In SAPTA with two players the pure strategies Nash Equilibria are given by the 

following pairs (   (
  

 
  ̅      ); (    

  

 
    

  

 
)   (         (

  

 
  ̅ )   

 The all-pay structure affects only the bids level but not the nature of the equilibria. Indeed, 

as in Proposition 1, the only equilibrium with strictly positive bids is an MRE where each player 

offers half the opponent’s reserve price.  As a consequence, the auctioneer expected profit 
    

     
 is 

lower than   . Therefore, the SAPTA is always less desirable than the truth revealing equilibrium 

of the Vickrey auction.           

 

6 The SAPTA with     Bidders  

  

With more than two players bidder     profit would be defined as follows  
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 and the expected payoff given by   
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Consequently, bidder     best reply function now is  
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and the following proposition would hold 

Proposition 6 In a complete information SAPTA with     bidders the MRE profiles solve the 

system of   equations      ∑   
 
      , with         . Moreover, MRE always exist.  

Proof Analogous to that of Proposition 2, except that now the fixed point theorem applies to the  

function  ( )     defined as   

  ( )  
∑  (  )

  
          

  (∑           )
  

   

      
 ∑   

 

   

          

Similar considerations  as in Proposition 4, hold as for MRE. Only equlibria without   components 

could be  

   

7 The SWOPTA with Two Bidders and Incomplete Information 

 

In this section we discuss incomplete information on bidder’s values, in the simplest 

SWOPTA two-players, two-values game. In particular, we assume    and    to be independently 

and identically distributed random variables that can take only two values,        , with 

(respectively) probability       and       

In what follows we fully characterize symmetric Bayes-Nash equilibrium bidding functions 

    ( )   ( )    ( )    and observe that there is a multiplicity of them. To do so start 

considering player       who, upon having observed       bids   ( )  Assuming player 

        to adopt   ( )  player     expected payoff function is given by   

   (  ( ))   (    ( ))
  ( )

  ( )    ( )
 (   ) (    ( ))

  ( )

  ( )    ( )
      ( ) 

Differentiating ( ) with respect to   ( ) leads to 



    (  ( )

   ( )
  (    ( ))

  ( )

(  ( )    ( )) 
 (   ) (    ( ))

  ( )

(  ( )    ( )) 
     ( )      

Similarly, if player   observes      then bids   ( ), with his expected payoff function 

given by   

   (  ( ))   (    ( ))
  ( )

  ( )    ( )
 (   ) (    ( ))

  ( )

  ( )    ( )
      ( ) 

which differentiated with respect to   ( ) leads to 
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  ( )

(  ( )    ( )) 
 (   ) (    ( ))

  ( )

(  ( )    ( )) 
     ( )      

Hence, we can formulate the main finding of this section  

Proposition 7 There are multiple symmetric Bayes-Nash equilibria such that  ( )    and 

 ( )    or  ( )    and  ( )    

Proof Notice first that there cannot be a symmetric equilibrium where both  ( ) and  ( ) are 

either lower than   or higher than  . Indeed, if   ( )   ( )    then ( ) and ( ) are negative 

and for player   would be optimal to choose   ( )      ( ). Analogously, if   ( )   ( )    

then ( ) and ( ) are positive and it is optimal to choose   ( )      ( ), which prove the 

claim. By a similar reasoning, there cannot exist symmetric equilibria with  ( )     ( )     

 ( )     ( )   ,    ( )     ( )     ( )     ( ). Finally, from ( ) and ( ) it 

follows also that at a symmetric equilibrium  ( ) and  ( ) must differ from   and  .  

Hence, still from ( ) and ( ), at such equilibrium it must either be (   ( ))    and 

(   ( ))    or (   ( ))    and (   ( ))   .        

Consider first (   ( ))    and (   ( ))   . Because at a symmetric equilibrium it is 

  ( )   ( )    ( ), rearranging ( ) we obtain  

(   ( ))

( ( )   )
 

(   )  ( ) ( )

 ( ( )   ( )) 
         ( ) 

and, again, by symmetry   ( )   ( )    ( ) and rearranging ( ) it follows that  

(   ( ))
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   ( ) ( )
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Hence, from ( ) and ( ) it is     

  ( ) ( )
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and so  



(   ( ))(   ( ))  (
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)
 

( ( )   )( ( )   )              ( ) 

Left and right hand side of ( ) are both convex, quadratic, equations respectively in 

 ( ) and  ( )   crossing the horizontal axis at   and  . Hence, for increasing bidding functions 

 ( )     and  ( )    it easy to check that there would be multiple solutions of the kind  

 (   )  
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(   )  √(   )  (
 

(   )
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      (  ) 

where        is the value that the two quadratic functions in ( ) can take, with the upper 

bound      solving  (   )   .   

Similarly, if  (   ( ))    and (   ( ))    the two solutions would be  

 (   )  
(   )  √(   )    
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(   )  √(   )  (
 

(   )
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      (  ) 

which completes the proof. 

 

It is worth noticing that the two solutions in (  ) are asymmetric unless the probability 

distribution is uniform, that is   
 

 
. In this case  ( )   ( )     , and when      the two 

solutions take the particular simple form of  ( )    and  ( )     . Observe also that when 

  becomes small  (   ) tends to  , that is to truthful revelation, while as   goes to one then 

 (   ) gets large. That is, for any given        the factor (
 

(   )
)
 

 is what induces 

asymmetry, by affecting the scale of the quadratic on the right had side of ( )  so that whenever 

the quadratic on the left hand side is equal to   the one on the right hand side is equal to 

(
 

(   )
)
 

    

Of course, solutions (  ) could have been formulated as  

 (   )  

(   )  √(   )  (
   

 )
 

  

 
   (   )  

(   )  √(   )    

 
      (  ) 

that is in such a way that         would now fix the value of the quadratic on the right hand 

side, with the factor (
   

 
)
 

 this time affecting the scale of the quadratic on the right hand side. In 

this case, for any fixed        as   tends approaches one  (   ) tends to   while as   gets 

small  (   ) tends to zero.       



Similar considerations hold for (  ) except that now bids would tend to a form of “probabilistic” 

mirror revelation, that is it would not tend to reveal the associated value but the other one. We 

specify probabilistic because, for example, if one players observes   it is with probability     

that the opponent would observe  . Hence, if   tends to one, then the probability of mirror 

revelation is small while with higher probability both would reveal nobody’s   

 

 8 Conclusions   

  

In the paper we introduced the Tullock second price mechanism to investigate whether 

second price auctions, alternative to the Vickery Auction, could also enjoy the property that 

revealing one’s reserve price is a weakly dominant strategy. Since the Vickrey Auction has multiple    

Nash Equilibria the auctioneer, in principle, can never be sure whether players truly revealed their 

reserve prices. Therefore, we further asked whether in alternative second price mechanisms 

revelation could be more precise than in the Vickery Auction, namely if the auctioneer by 

observing a certain profile of offers could immediately infer whether or not players’ maximum 

willingness to pay is disclosed. We found that in second price Tullock Auctions, with complete 

information revelation of reserve prices can indeed be made unequivocal for the auctioneer, 

however neither because bidders choose weakly dominating strategies nor because players offer 

their own prices.  

Indeed, the first main finding of the paper is that revelation of one’s reserve price is made 

by his opponents, not by the player himself, which for this reason we named “Mirror Revelation”. 

Though somewhat surprising at first, the intuition behind it is simple. For example, with two 

players revelation occurs only when both bidders are uncertain to win, and offering the 

opponent’s price guarantees zero expected profit and prevents losses. A similar reasoning extends 

to more than two players.  

The second main finding is that, in equilibrium, reserve prices can be exactly inferred by 

the auctioneer so that, with respect to the Vickrey Auction, in principle revelation can be made 

more precise. Finally, due to the lottery structure of the model not only truth telling is not a 

weakly dominant strategy but is not even a Nash Equilibrium.  
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