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Abstract

In this study we examine differential mortality by income in Italy. We ap-

proximate individual’s lifetime income with pension income. In addition, we

obtain insights into the impact of early-life conditions on old-age mortality.

We capture cohorts’ life conditions by means of mortality rates at differ-

ent early-life stages and exploit exogenous variation provided by a series of

abrupt mortality events which severely affected specific cohorts. We account

for non-linear cohort effects in the computation of life expectancy.

We find that in Italy differential mortality is less strong than in most other

industrialized countries. The difference in life expectancy at age 65 between

high-income and low-income males is about 1.7 years. For females, this

difference is about 1.2 years. Early-life conditions have a long lasting effect

on males’ mortality, suggesting the existence of a “scarring effect”: males

grown in worse times have higher death probabilities at old-ages than those

grown in better times. For females, we do not find a significant impact

of early-life conditions on mortality. Finally, we show that by neglecting

cohort effects in mortality the age profile is upward-biased thus leading to

underestimation of life expectancy.
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1 Introduction

Since the seminal work of Kitagawa and Hauser (1973) for the US, many em-

pirical studies have quantified the difference in mortality risk across socioe-

conomic groups in various countries. Income, wealth or levels of education

are used to proxy individuals’ socioeconomic status (SES). A significant neg-

ative correlation between SES and mortality is nearly always found. The

ratio of mortality risk of individuals in the lowest part of the income or

wealth distribution over that of individuals in the highest part ranges from

two in European countries to up to three in the US.1

The theoretical framework for most of the empirical studies on differen-

tial mortality by SES is given by the Grossman’s model (Grossman 1972).

According to it, individuals at the beginning of their life cycle are endowed

with a stock of knowledge capital and health. Their stock of health depreci-

ates over time and at a rate that decreases with knowledge capital. When it

falls below a given threshold, individuals die. At the same time, knowledge

capital positively affects income, e.g. through higher investments in educa-

tion. These mechanisms result in a positive association between income and

life expectancy.

Differential mortality by SES has important implications for pension

policy (Whitehouse and Zaidi 2008). One of the most debated is related

with the progressivity of pension systems. The retirement period is longer,

and therefore pension wealth is higher, for longer-living individuals. The

degree of redistribution of a pension system may be reduced or even reversed

if richer individuals live longer than the poorer. Another key pension policy

issue is pricing of retirement annuities and actuarial fairness (Brown 2002).

Very often the quantification of the gradient SES-mortality is given in

terms of relative risks of death (like the ratios we mentioned in the first

paragraph). The key information that policy makers needs to known is

however life expectancy at retirement - more than relative death risks -

by SES. Quantifying life expectancy is more data demanding than relative

death risks, since one needs to model risks of death by age. A simplified way

to obtain life expectancy by SES consists in applying death probabilities by

age - obtained from external sources, such as official statistics - to computed

1See Kalwij, Alessie, and Knoef (2011) for the Netherlands, Attanasio and Emmer-

son (2003) for the UK, von H.M. Gaudecker and Scholz (2007) and Hupfeld (2009) for

Germany; see Duleep (1986) and Attanasio and Hoynes (2000) for the US.
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relative risks. This simplification can be misleading for two main reasons.

First, it implicitly assumes that relative risks are constant by age. Second,

the two components may refer to different populations: e.g. relative risks

are computed for a population of workers or retirees whereas death proba-

bilities by age refer to the overall populations. A proper way to compute life

expectancy by SES is to include both age and a proxy of SES (e.g. income)

as explanatory variables of mortality risk.

Models which explain mortality dynamics standardly include age, period

and cohort (APC models). Age captures the biological process of human’s

body deterioration. Period controls for improvements in hygiene, public

health and medical technology innovations as well as historical events and

environmental factors (wars, famines, epidemics) which influence mortality

of all society members (Omran 1982). Period effects influence the probabil-

ity to die of individuals irrespective of age, in a reversible way, and for a

short period of time (Caselli and Capocaccia 1989). The cohort component

capture endogenous (e.g. genetic) and exogenous factors (e.g. malnutrition

and inflammatory infections in utero and during early life) which influence

the probability to die of individuals for a long period after the exposure.

Due to the perfect collinearity between age, period and cohort variables,

APC models require additional restrictions for identification. A common

solution is to impose an equality constraint on two (or more) adjacent age,

period or cohort coefficients. Although such assumptions seem innocuous,

their impact on the estimates may be dramatic (Ree and Alessie 2011) Mor-

tality models which focus on differential mortality by socioeconomic status

usually assume absence of cohort effects. In some cases a short time span

covered by the data used in these studies does not permit disentangling time

from cohort effects (e.g. Attanasio and Emmerson 2003, von H.M. Gaudecker

and Scholz 2007). In other cases the authors are not interested in quanti-

fying life expectancy or no attention was paid to the consequences of this

assumption on its computation. Predicted life expectancies may be severely

biased by omitting cohort variables, since age and cohort effects are mixed

together. An alternative identifying strategy - which we pursue in this paper

- is to approximate cohort effects by means of variables capturing socioe-

conomic conditions in which each cohort of individuals was born and/or

grown.

There is an extensive literature evaluating the impact of individuals’
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early-life conditions on mortality at older ages. The risks of death over an

individual’s life cycle can be linked through “scarring” and/or “immunity”

(Preston, Hill, and Drevenstedt 1998). Scarring determines a positive link

across death risks at different ages. Certain diseases or conditions often

acquired in childhood and at birth may permanently weaken the survivor

and increase his probability to contract a disease and die at all subsequent

ages.2 Immunity leads to an inverse association across death risks over the

life cycle. Individuals exposed to certain diseases such as influenza acquire

immunization and might me expected to have a lower probability to contract

similar diseases at subsequent ages.3

Various studies use mortality rates (in utero, at birth and during child-

hood) as indicators of cohort early-life conditions. The evidence is inconclu-

sive. Kermack, McKendrick, and McKinlay (1934) reported that mortality

up to age 15 correlate with subsequent cohort mortality in Great Britain and

Sweden. Pearson (1912) discovered instead an inverse association between

infant mortality and death rates from age 1 to 5 for England and Wales.

Bengtsson and Lindström (2003), using historical data on parish registers in

Sweden, find a positive and strong correlation between local infant mortality

rate and mortality at ages 55-80 while do not find any effect of the disease

load on mothers during pregnancy. Catalano and Bruckner (2006) find a

positive relation between mortality at ages up to 5 and life expectancy at

age 5 for Sweden, Denmark, England and Wales. Bruckner and Catalano

(2009) report that the association between infant mortality and later mor-

tality decreases with age, and disappears in adulthood. An interesting study

for this paper is Caselli and Capocaccia (1989). These authors use Italian

life table data for the cohorts 1882-1953 to study the relation between cohort

mortality risk at birth and during childhood and mortality risk at ages 25-

2Many possible causal pathways connecting early life experiences and later mortality

have been discussed (see Elo and Preston 1992). Barker (1994) and Barker (1995) sug-

gested that preconditions for various diseases (e.g. coronary hearth disease, hypertension)

are initiated in utero and become manifest much later in life (so called “fetal origin hy-

pothesis”). Fridlizius (1989) suggested that exposure to certain infectious diseases (as

smallpox) in the first 5 years after birth reduce immunity to other diseases and increase

the risk of other infectious diseases in later life stages. Fogel (1994) proposes mechanisms

based on malnutrition in utero and during early life and development of chronic diseases.
3At the population level, there can also be a “selection” effect, i.e. as a consequence of

a bad event, weaker members of a cohort die, survivors are stronger and live longer. The

effect of immunity and selection go in the same direction.
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79. They find an age-varying effect: mortality risks are positively correlated

up to age 45 and negatively correlated (but to a small extent, and only for

males) at old ages.4

Due to lack of good data, the existing evidence on differential mortality

by income in Italy is very limited.5 Few epidemiological studies (e.g. Agabiti,

Picciotto, and Cesaroni 2007, Agabiti, Picciotto, and Cesaroni 2008, Petrelli,

Gnavi, Marinacci, and Costa 2006) exploit data available at metropolitan

level to analyze morbidity and (often cause-specific) mortality differentials

by income in some Italian cities. Results of these analysis have to be inter-

preted with caution since the data they are based on are not representative

of the whole Italian population. The only nationwide study on differential

mortality by income in Italy is provided by Leombruni, Richiardi, Demaria,

and Costa (2010). This research is based on WHIP (Working History Italian

Panel) data and reports evidence of limited relative risks by SES. Due to

data limitations, Leombruni, Richiardi, Demaria, and Costa (2010) cannot

properly quantify life expectancy at retirement by SES.

The contribution of this paper to the literature is twofold. First, we

quantify differential mortality by income in Italy. As mentioned above,

due to the lack of appropriate data, the evidence obtained so far for this

country is very preliminary. Improving on Leombruni, Richiardi, Demaria,

and Costa (2010), we calculate life expectancy at age 65 by income levels.

Second, we obtain insights into the impact of early-life conditions on old-age

mortality. We account for non-linear cohort effects in the estimation of the

age profile and thus in the computation of life expectancy; this issue has

been neglected in previous studies on differential mortality.

The quantification of mortality differential in Italy has been made pos-

4A recent series of studies show that the state of the business cycle at birth (van den

Berg, Lindeboom, and Portrait 2006) and in the first years of life (van den Berg, Dobl-

hammer, and Christensen 2009) are important determinants of later mortality. They also

find that macroeconomic variables at birth other than the state of the business cycle do

not contribute to explain death pathways. Finally, full life course epidemiology (see Kuh

and Ben-Shlomo 1997, Ben-Shlomo and Kuh 2002) expands the links between early life

and later mortality further to include the accumulation of risk through the full life course.
5There is some more, but still limited, evidence on differential mortality by education

(see Maccheroni 2008, Mazzaferro and Savegnago 2008). Huisman and Kunst (2004)

analyze SES inequalities in mortality among the elderly in 11 European populations.

The Italian contribution is limited to the city of Turin. Results highlight that mortality

differences across educational groups persist al old ages.
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sible thanks to a new available pension file drawn from an administrative

archive held by the main Italian Social Security Institution. This data re-

ports all the pensions paid by INPS since its set up and until 2001. We

have a precise proxy variable of the individual’s lifetime income at our dis-

posal, namely the amount of the pension benefit. The size of our data,

which is pretty big until quite old ages, allows us to compute life expectancy

at age 65. We capture cohorts’ early-life conditions by means of mortality

rates during childhood. We allow for different postnatal human develop-

ment stages to have a different impact on old-age mortality. The cohorts

we analyze (1901-1936) experienced an overall declining trend in mortality.

Further variation is provided by a series of abrupt mortality events - such

as the earthquakes of 1908 and 1915, the Word War I and the Spanish’ flu

of 1918 - which severely hit their childhood and adolescence lives.

The paper proceeds as follows. Section 2 presents the data, the sample

selection and the main variables used in the empirical analysis. Section 3

describes the mortality risk model. Section 4 shows the main results and

section 5 concludes.

2 Data and sample selection

2.1 Micro data

We exploit a pension file drawn from an administrative archive held by the

main Italian Social Security Institution (INPS). It is a new file available for

research scopes. It reports pensions paid by INPS since its set up and until

2001; it covers approximately 1/90 of the ex-private sector workforce plus

social assistance beneficiaries (in total around 289,000 individuals). Civil

servants are therefore not included. The first recorded pensions date back

to the beginning of the XX century and were paid to voluntary enrolled

private sector blue collar workers.

The data include all the pension schemes managed by INPS. Major

schemes are the FPLD (covering private sector employees, paying 55 per-

cent of the pensions recorded in the sample), and the schemes for the self-

employed (artisans, traders and farmers, 22 percent of the sample). Special

schemes managed by INPS cover e.g. miners, pilots, sailors, clerical person-

nel.6 The following variables are available: month and year in which the

6The data also include information on pension schemes managed by non-INPS insti-
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pension was first paid to the individual, month and year in which the pen-

sion flow ended (if ended), monthly amount (first payment), pension scheme

and benefit type (e.g. old-age, early retirement, disability, survivors’, social

assistance benefits). In addition, there is information on the individuals date

and region of birth and gender.

When an individual deceases, INPS records the end of all pension pay-

ments the person was receiving. We assume that the individual dies in the

month of last payment by INPS. In case an individual obtains more than

one pension during his life, this means that we look at the most recent end-

ing date. In this way it is possible to sufficiently deal with some inaccuracy

that could result from the existence of other possible reasons for stopping a

specific pension payment, such as conversion of disability into old-age pen-

sions, temporary illness or re-marrying (which terminates survivor benefits).

We checked the level of accuracy of our reconstructed variable by computing

death rates and comparing them with those from Human Mortality Database

(HMD)7 and we find that they are very close.8

2.2 Sample selection

Our estimation sample includes Italian-native ex-private sector employees

aged 65 and older in the period 1979-2001. We include cohorts between

1901 and 1936. Individuals born before 1914 are only observed in the data

at ages greater than 65.

The age selection (65+) is dictated by the data, which is on pension

beneficiaries, and by the retirement rules applied to employees. Until 1994

males (females) could claim an old-age pension at age 60 (55). After a

phase characterized by gradual increments, the minimum age for the old-

age pension was set to 65 (60) for males (females) in 2001. Empirically,

at age 65 almost everybody is retired in the analyzed period (Belloni and

Alessie 2009).9 Including individuals younger than 65 would have raised an

tutions (public sector, special schemes managed by big firms). However, this additional

information is incomplete and limited to the period 1994-2001. We do not use it in our

main empirical analysis; however we exploit it in a sensitivity analysis (note: sensitivity

not included in this version).
7www.mortality.org
8Death rates computed in our data only slightly underestimate official death rates,

especially for males. It should however be realized that the two populations are different,

since we consider ex-workers whereas HMD includes the whole population.
9To facilitate comparisons, we apply the same age selection to both of the genders.
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issue of sample self-selection: e.g. those with worse health status may have

retired earlier and be over-represented.

Years before 1979 could not be considered in the econometric analysis.

From a first introspective investigation it in fact appeared that the qual-

ity of the variable “date in which the pension flow ended” is rather poor

before year 1979 (we find a big increase in the number of deaths in 1979

which is not present in official statistics). To be clear, if e.g. an individual

claimed a disability pension in 1960 at age 50, he/she is included in the

sample but his/her mortality probabilities are evaluated starting from age

69 (year 1979). We excluded pensions claimed before 1950 and individuals

born before 1901 (0.4 percent of the sample) since the coverage of the pen-

sion system for private-sector employees was partial and participation was

voluntary for them. Immigrants (less than 2 percent of the sample) are also

excluded since we do not know their early-life conditions.

We proxy individuals’ lifetime income by means of the amount of the

pension benefit they receive. This is a good proxy variable if we restrict our

analysis to ex-private sector employees. In their case, the pension formula

summarizes the salient characteristics of the working career: (last) average

wages and seniority (years of contribution to the scheme). For the same

reason, we were forced to exclude the the self-employed.10 Due to their

pension rules, benefits they received for most of the period covered by the

data were not informative on their lifetime earnings.11

A possible issue of underestimation of total pension income (and thus

lifetime income) may arise for private sector employees who contributed

to other pension schemes managed by non-INPS institutions during their

working career. For example, if an individual partly worked in the private

10We include ex-employees who also receive self-employment pensions, provided that

the latter is a minor part in their total pension income.
11Up to 1990, pensions of self-employed were contributory-based, and contributions

paid were a low constant per-year sum. Thus, the big majority of the pensions claimed

by the self-employed until 1990 were below the minimum pension and were subsidized.

Starting from 1990, the pension benefits of self-employed have been earnings-related and

are more informative on lifetime earnings. We find a confirmation of these facts in the

data. The coefficient of variation of earnings is equal to 0.7 for the self-employed and

to 2.6 for employees. We also compare the distribution of pension income before and

after 1990: while before 1990 the self-employed were mostly situated in the lowest 2

quintiles, afterward they represent a relevant part of the central and highest quintiles. As

a sensitivity analysis we also include the self-employed in the estimation sample and we

find that results for the income gradient do not change.
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and in the public sector for a sufficiently long period to accrue pension rights

in both of the funds we underestimate his total pension income. We will

evaluate the relevance of this issue in a sensitivity analysis (see footnote 6).

The lifetime income which we correlate to death rates is the individual’s

income. It is possible that, especially for females, household’s income better

represents their socioeconomic status than individual’s income.12 In the

literature there is evidence that individual’s income, more than spouse’s

income, is correlated with mortality. Kalwij, Alessie, and Knoef (2011)

find that partner’s income is only weakly associated with mortality risk for

women.

2.3 Demographic data

As previously outlined, we proxy cohort effects in mortality by means of

mortality rates at young ages. We therefore merge the micro data on pension

benefits described above with cohort-level demographic data.

Mortality rates by age and gender for the cohorts 1901-1936 are taken

from Human Mortality Database. We first impute age x period t mortality

probabilities (qtx) to each cohort (from qtx to qyobx , where yob = t − x and

x = 0 . . . 15). We then define Syobx−y =
∏y
j=x

(
1− qyobj

)
as the (gender-

specific) conditional survival probabilities from age x to age y for cohort

yob.

Survival probabilities by cohort and gender are illustrated in figure 1

separately for the age groups 0 and 1-5 (top panel), 6-10 and 11-15 (bottom

panel). The figure makes clear that the cohorts we analyze experienced an

overall increasing trend in survival at all childhood ages. It also reveals

a series of mortality peaks (see e.g. S 0), corresponding to some known

12Moreover, females are under-represented in the sample, since their participation in

the labour market was lower than males’. In the estimation sample we do not account for

survivor’s benefits as a proxy for lifetime income. We carry out an empirical quantification

of females’ underrepresentation in the sample, by computing the percentage of females

versus males by age in the sample and comparing these figures with corresponding values

from HMD database. We find an underestimation of the percentage of females in our

data by around 8 percentage points. Notice that, even if we included survivors’ benefits

beneficiaries in the analysis, females would be underrepresented. They would not be

observed in the data if the following three conditions jointly occurred: a) they did not

work enough to receive a pension, b) they are married and c) their husband died later

than them. In other words, the data misses the group of married females belonging to

households which income comes from the husband.
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historical events, which halted this increase: the devastating earthquakes

of 1908 and 1915, Word War I (1915-1918), the 1918 Spanish flu and the

1919-20 smallpox outbreak.

Mortality was very heterogeneous across Italian regions, especially in

correspondence of the above outlined abrupt events. The 1908 earthquake

hit Calabria and Sicily while in 1915 earth tremors shocked the Marsican

area and the Abruzzi. The Spanish’ flu epidemic affected mainly Central

and Northern Italy, although some regions such as Liguria and Veneto were

left relatively untouched (Pinnelli and Mancini 1999).

2.4 Variables definitions and descriptive statistics

The unit of time of our analysis is the calendar year. Age is defined at the 1st

January of each year. The mortality risk it is the probability to die during

the calendar year. The analysis is carried out separately by gender. The

final estimation sample includes 594,784 observations for males and 522,023

observations for females. We observe 27,369 deaths for males and 14,938 for

females, corresponding to unconditional death probabilities equal to 4.60

and 2.86 percent respectively.

Figure 2 show average mortality rates by age for selected cohorts (males

and females). Mortality rates increase by age. The vertical distance between

two lines at the same age can be interpreted as a first evidence of time/cohort

effects in mortality. Overall, a declining trend in mortality over time/cohorts

emerges for both of the genders. This trend is somewhat more pronounced

for males than for females. This evidence finds a confirmation in survival

curves (not shown, they can only be computed for cohorts younger than

1913 in the sample at age 65). For males, the cumulated probability to

survive from age 65 until age 75 increases incessantly from 69 percent for

the cohorts 1914-1916 up to 77 percent for the cohorts 1926-28. For females,

this figure is equal to 85 percent for the cohorts 1914-16, it remains almost

constant for the cohorts 1917-22, and only for younger cohorts it increases

by 2 percentage points to reach a value of 89 percent for the youngest cohort.

Summary statistics for monthly pension income (2009 prices) are re-

ported in table 1. Median pension income is equal to e 543 for males and

e 360 for females. Mean values are e 1104 and e 567. In figure 3 we

draw the average monthly pension income by age for selected cohorts. For

each cohort, average pension increases by age only if poorer individuals die
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Figure 1: Survival probabilities by cohort: males
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Figure 2: Average mortality rates by age for selected cohorts: males (top)

and females (bottom)
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Figure 3: Average monthly pension income by age for selected cohorts:

males (top) and females (bottom)

Notes: 100 euros, 2009 constant prices
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Table 1: Monthly pension income: descriptive statistics
Statistic M F

Mean 1104 567

Std. Dev. 2693 1429

Skewness 11.45 15.47

Percentiles:

10 256 217

25 340 276

50 543 360

75 1091 467

90 1912 781
Notes: euro, 2009 constant prices

before the richer. Curves are indeed generally upward-sloping, revealing ev-

idence of differential mortality by income. The figure also shows marked

differences across cohorts, due to both income growth over time and social

security reforms. Important reforms were implemented during the 1990s,

affecting pension income of the youngest cohorts. Mortality risk by cohort,

age and income quartile are shown in the appendix.

3 Mortality risk model

Consider the following latent variable model for the mortality risk:

Hit = −αt−yobi − γt −Xiβ − εit (1)

where Hit is the individual’s i stock of health at time t. We do not observe

Hit, but we do observe Mit, where:

Mit = 1 if Hit < 0 (2)

Mit = 0 otherwise

i.e. if the health stock of individual i at time t falls below a given threshold

(normalized to zero in equation 1), we observe that the individual dies. α

and γ are age and time-specific intercepts, X is a vector of time-invariant

individual characteristics including year of birth and lifetime income, β a

corresponding vector of parameters, and ε is an error term. Further, we

assume that ε is i.i.d. across individuals and time, independent on all the

r.h.s. variables and follows a logistic distribution with mean zero and vari-

ance π2/3.
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Therefore:

Pr (Mit = 1|αt−yobi , γt, Xi,Mit−1 = 0) = Λ (αt−yobi + γt +Xiβ) (3)

where Λ is the logistic cumulative distribution function.

In the empirical specification, Xi includes pension income, cohort and

region of birth. We parameterize model (1) as:

−Hit = β0 +
A∑
j=2

αjDage(j)it +
T∑
τ=2

γτDyear(τ)it +
C∑
c=2

β1cDyob(c)i+

+ β2 log(Yi) +

R∑
r=2

β3rDrob(r)i + εit (4)

where Dage(j)it, Dyear(τ)it and Dyob(c)i are a full set of age, year and year

of birth dummies; A, T and C the number of ages, years and cohorts included

in the sample; log(Yi) is the logarithm of pension income approximating

individual’s i lifetime income and Drob(r)i is a full set of region of birth

dummies.13 The key parameters are β2 and the α’s. The former quantifies

the association between lifetime income and mortality. The latter are used

to predict life expectancy.

Due to the perfect collinearity between age, year, and year of birth vari-

ables, model (4) is not identified. Typically, APC models are identified

by placing an equality constraint on two (or more) coefficients (this ap-

proach has been referred to as the CGLIM approach, see Yang, Fu, and

Land (2004)). Imposing such constraints on even only two adjacent ages,

periods or cohorts is sufficient to reach identification. Although such as-

sumptions seem innocuous, their impact on the estimates may be dramatic

(Ree and Alessie 2011). Moreover, in very few cases there is some a priori

or external information on which one can rely to decide the restrictions to

impose.

In the literature on differential mortality, typically cohort variables are

ignored and there is no issue of identification. However, if cohort effects in

mortality exist and they are not explicitly accounted for, they are captured

by the age and year variables thus leading to inconsistent estimates for the

α and the γ parameters (Ree and Alessie 2011). Specifically, if there are

positive cohort effects, i.e. younger cohorts live longer than older ones, the

13The dummy variables are normalized, i.e. Dage(1)it = 1 if individual i at time t is

the youngest individual in the sample.
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estimates of α’s are upward-biased and predicted life expectancy is likely

downward-biased.

To break the perfect collinearity between APC variables in equation (4) -

drawing from the extensive literature on the long-lasting effects of early-life

conditions - we proxy cohort effects by means of cohort-level demographic

variables, namely mortality rates during childhood (ages 0-15). We allow

for different postnatal human development stages to have a different impact

on old-age mortality. Specifically, we consider the following age periods

separately: infancy (first year of life), preschooler (ages 1-5), primary school

age (6-10), preteen-adolescence (11-15). Formally, we adjust model (4) in

the following way:

−Hit = β0 +

A∑
j=2

αjDage(j)it +
T∑
τ=2

γτDyear(τ)it

+ β10 log(Syobi0 ) + β11−5 log(Syobi1−5 )+

+ β16−10 log(Syobi6−10) + β111−15 log(Syobi11−15)+

+ β2 log(Yi) +

R∑
r=2

β3rDrob(r)i + εit (5)

where Syobix−y are (gender-specific) conditional survival probabilities from age

x to age y for the cohort yob to which individual i belongs (see section 2.1)

and β1s are 4 unknown parameters capturing the effect of different child

development stages on old-age mortality. Including a full set of dummy

variables for region of birth is important for the consistent estimation of

cohort effects. In the data section we mentioned that mortality in Italy

has been very heterogeneous across regions. Controlling for regions of birth

partly account for that.

As outlined in the introduction, early-life conditions may have an impact

on later mortality in two ways: through “scarring” and/or “immunity”. The

two effects counteract, and empirically only the net effect can be identified.

If the scarring effect prevails, the estimates of β1s have a negative sign;

viceversa they have a positive sign. The estimation of each β1 exploits

the (exogenous) variation over cohorts of the corresponding mortality rates

(see figure 1). Figure 1 also shows that mortality rates at various child

developments stages are not collinear thus allowing for a joint estimation of

all β1s.14

14We tried alternative specifications based on the cycle/trend decomposition of mortality
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We also tested the foetal origins hypothesis (Barker 1994) by including in

the model females mortality rates at fertile ages (between age 20 and 40) in

the conception year. This additional variable should capture mothers’ con-

ditions during pregnancy. We find no evidence that intrauterine conditions

affect mortality at old age. We also investigated the effect of socioeconomic

conditions at birth on mortality. Unlike van den Berg, Lindeboom, and Por-

trait (2006), we do not find a significant effect of the state of the business

cycle at birth. It should be recognized that most of the studies which find an

effect of GDP at birth-type of variables on later mortality pertain to periods

dating back to the XIX century or earlier, whereas we analyze mortality in

more recent times.

Model (5) is entirely additive, i.e it rules out interactions of age, period

and cohort (APC) variables each other and with respect to lifetime income.

We experimented with a specification (as in Caselli and Capocaccia 1989)

which includes a full set of interaction terms between log(Y ) and APC vari-

ables, and we did not find joint significance for any of the three groups of

interaction terms. In the introduction we stressed the importance of test-

ing the assumption on the relationship between the socioeconomic gradient

and age. The results of these tests (especially those regarding the interac-

tions between log(Y ) and age dummies) allow us to assume an age-constant

income gradient.

4 Results

4.1 Main findings

Parameters estimates for the mortality risk model (1) are shown in tables

2 and 3 for males and females respectively. They present results for two

specifications: I (where the effect of the log(S) variables is restricted to

zero) and II, our main model based on (4)-(5). For the log(Y ) variable, they

also exhibit marginal effects (in italics).

The parameter estimate for the log(Y ) variable is negative and signif-

icant at 1 percent level for both of the genders: as expected, lifetime in-

probabilities using the Hodrick-Prescott filter (with filter values 100 and 500). This is

a well known approach in the literature (see Bengtsson and Lindström 2003, van den

Berg, Lindeboom, and Portrait 2006, van den Berg, Doblhammer, and Christensen 2009,

Myrskylä 2010). Results were very similar.
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come is inversely correlated with death risk. Marginal effects provide a first

quantification of this correlation. They suggest that a 1 percent increase in

lifetime income (from its mean, i.e. from e1104 to e1115 for males and from

e567 to e573 for females) reduces the mortality risk by 0.00437 percentage

points for males and by 0.00318 percentage points for females. Illustrative

predictions by income levels are provided in the next subsection.

Early-life conditions have a long-lasting effect on male mortality. A

likelihood-ratio test of spec. I against spec. II indicates joint significance

for the log(S) variables (χ2
(4) = 11.10, p-value=0.0254). Between the child

development stages included in the model, preschooler seem to matter the

most to determine old-age mortality: the estimate of the log(S1−5) variable

is highly significant (p-value=0.011). Also circumstances during primary

school age are found important (the null β11−5 = β16−10 is not rejected by

a Wald-test). Negative signs for these two variables suggest the existence

of a “scarring effect”: individuals grown in worse times have higher death

probabilities at old ages than those grown in better times. For females,

we do not find a significant impact of the log(S) variables on mortality

(χ2
(4) = 1.91, p-value=0.76).15

Figure 4 shows marginal effects by age and gender. For males, it com-

pares spec. I (no cohort effects) and II. It turns out that, since there is

evidence of scarring, the age profile is upward-biased if one does not account

for cohort effects (in terms of trend, older individuals belong to older co-

horts which spent their early-life in more difficult times).In turn, an upward-

biased estimate of the age parameters may lead to underestimation of life

expectancy (see predictions below).

We tested whether the log(S) variables completely capture nonlinear

cohort effects. Following Kapteyn, Alessie, and Lusardi (2005) we estimated

an augmented model which includes, in addition to the variables included

in spec. II, a set of 30 year of birth dummies (35 cohorts from 1901 to 1956

minus 4 log(S) variables minus the reference category). The likelihood-ratio

15Results for females are in line with those in Caselli and Capocaccia (1989). For males

these authors report evidence of a negative correlation across death risks over the life cycle

for individuals aged 45 and older. However, the comparison with our results (age 65+)

is difficult since they find an age-varying effect of early-life conditions on mortality. A

tentative comparison can be made from figure 3 of Caselli and Capocaccia (1989). From

this figure it looks that for ages 65+ the effect is very small; moreover, s.e. of the estimates

are not reported in the paper.
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Figure 4: Marginal effects by age

Note: reference category is age 65; the other variables are set at their sample

means; for females results refer to model II

tests of this augmented model versus spec. II do not reject the hypothesis

of no additional year of birth effects (χ2
(30) = 28.88, p-value=0.52).

The time dummy coefficients highlight a declining mortality over the

period 1979-2001. Results for the regional dummies highlight heterogeneity

in old-age mortality across Italian regions. Males old-age mortality risk is

highest in the North (Lombardy, Veneto, Friuli) and lowest in the South

(e.g. Calabria, Basilicata, Molise, Sicily) with the exception of Campania.

On the contrary, females live longer in the Centre of the country (e.g. Molise,

Marche, Tuscany) and shorter in Campania and in Southern Italy (Sicily,

Apulia, Calabria). These gender differences in mortality over the Italian

territory are well documented (see ISTAT various years, Caselli, Peracchi,

Balbi, and Lipsi 2003) and are typically attributed to different causes of

death.

4.2 Model predictions

In this section we predict conditional death probabilities and life expectan-

cies at age 65 (e65) using the parameters estimates reported in tables 2 and

3.
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Figure 5: predicted death probabilities by age and e65: 10th, 50th and 90th

income percentiles

Note: representative individual is: year 1979, region of birth ”Piedmont”, cohort

variables set at sample means

Figure 5 shows predicted death probabilities by age and e65 for the 10th,

the median and the 90th percentile of the gender-specific income distribution,

according to spec. II. For males (left panel) the relative death rates between

the lowest and the highest illustrated percentiles are about 1.26. The cor-

responding difference in life expectancy is equal to 1.74 years (e65 = 17.18

years for p90 versus e65 = 15.44 for p10). For females we find a lower in-

come gradient: relative death rates between the 10th and the 90th percentiles

are about 1.22, corresponding to a difference in life expectancy at age 65

equal to 1.47 years (e65 = 22.27 years for p90 versus e65 = 20.80 for p10).16

Spec. I, which provides upward-bias age parameters, predicts a lower life

expectancy for males. According to this model, e65 is found equal to 15.46

years for the median income male (cf. with 16.09 years from spec. II).

Figure 6 finally reports the predicted change in e65 for males due to

changes in their early-life conditions.17 In comparison with the oldest cohort

16Relative death rates between the 25th and the 75th percentiles are equal to 1.15 for

males and to 1.08 for females.
17In this simulation, we allow for the log(S) variables to vary by cohort, while keeping
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Figure 6: Predicted change in life expectancy at age 65 due to changes in

early-life conditions: males

Note: difference in years with respect to 1901 cohort; representative individual

is: year 1979, region of birth ”Piedmont”, median income

in the data, younger cohorts live longer because of improved early-life cir-

cumstances. These improvements especially concern individuals born after

the World War I, who experienced crucial improvements in living standards

during their childhood with respect to the pre-war conditions. The figure

highlights that the cohort of 1932 has the greatest benefit from improved

early-life conditions: due to these changes, its e65 would be almost one year

higher than that of the 1901 cohort.

5 Conclusions

In this study we examine differential mortality by income in Italy. Due to

the lack of appropriate data, the evidence obtained so far for this country

is very preliminary. This exercise has been made possible thanks to a new

available pension file drawn from a social security administrative archive.

We approximate individual’s lifetime income with pension income. In addi-

all the other variables constant. Notice that, since we do not model time effects, we are

not able to predict life expectancies by cohort.
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tion, we obtain insights into the impact of early-life conditions on old-age

mortality. We capture cohorts’ life conditions by means of mortality rates

at different early-life stages and exploit exogenous variation provided by a

series of abrupt mortality events which severely affected specific cohorts. We

account for non-linear cohort effects in the estimation of the age profile and

thus in the computation of life expectancy.

We find that in Italy differential mortality is less strong than in most

other industrialized countries. The difference in life expectancy at age 65 be-

tween high-income (90-th percentile of income distribution) and low-income

(10-th percentile) males is about 1.7 years. For females, this difference is

about 1.2 years. Early-life conditions have a long-lasting effect on males’

mortality. Results suggest the existence of a “scarring effect”: males grown

in worse times have higher death probabilities at old-ages than those grown

in better times. For females, we do not find a significant impact of early-life

conditions. The impact on old-age mortality of the historical improvement

in early-life conditions experienced by the cohorts in our sample - especially

those born after the World War I - is considerable. A male born in 1932

alive at age 65 may expect to live 1 year longer than a male born at the

beginning of the XX-th century due to improved early-life conditions. Fi-

nally, we show that by neglecting cohort effects in mortality the age profile

is upward-biased thus leading to underestimation of life expectancy.
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Table 2: Estimation results for males

I II

dep.: dead coef se aster coef se aster

log(Y ) -0.118 (0.00602) *** -0.117 (0.00602) ***

-0.00439 (0.000223) *** -0.00437 (0.000223) ***

log(S0) 0.0430 (0.502)

log(S1−5) -1.119 (0.442) **

log(S6−10) -2.491 (1.628)

log(S11−15) 0.208 (2.583)

age==66 0.182 (0.0478) *** 0.177 (0.0479) ***

age==67 0.263 (0.0473) *** 0.254 (0.0476) ***

age==68 0.306 (0.0471) *** 0.291 (0.0479) ***

age==69 0.410 (0.0464) *** 0.389 (0.0478) ***

age==70 0.525 (0.0457) *** 0.500 (0.0479) ***

age==71 0.574 (0.0458) *** 0.543 (0.0489) ***

age==72 0.728 (0.0450) *** 0.693 (0.0492) ***

age==73 0.742 (0.0454) *** 0.703 (0.0508) ***

age==74 0.814 (0.0454) *** 0.770 (0.0523) ***

age==75 0.959 (0.0449) *** 0.912 (0.0535) ***

age==76 1.066 (0.0448) *** 1.015 (0.0552) ***

age==77 1.117 (0.0453) *** 1.063 (0.0573) ***

age==78 1.208 (0.0454) *** 1.149 (0.0592) ***

age==79 1.360 (0.0455) *** 1.297 (0.0616) ***

age==80 1.390 (0.0467) *** 1.321 (0.0648) ***

age==81 1.468 (0.0477) *** 1.394 (0.0677) ***

age==82 1.600 (0.0483) *** 1.522 (0.0701) ***

age==83 1.792 (0.0484) *** 1.709 (0.0726) ***

age==84 1.871 (0.0497) *** 1.784 (0.0756) ***

age==85 1.927 (0.0515) *** 1.837 (0.0788) ***

age==86 2.042 (0.0532) *** 1.949 (0.0820) ***

age==87 2.051 (0.0571) *** 1.957 (0.0866) ***

age==88 2.196 (0.0598) *** 2.099 (0.0909) ***

age==89 2.411 (0.0623) *** 2.311 (0.0952) ***

age==90 2.282 (0.0722) *** 2.181 (0.104) ***

age==91 2.659 (0.0741) *** 2.556 (0.107) ***

age==92 2.788 (0.0852) *** 2.686 (0.117) ***

age==93 2.873 (0.101) *** 2.771 (0.131) ***

age==94 2.817 (0.128) *** 2.717 (0.153) ***

age==95 2.947 (0.154) *** 2.846 (0.176) ***

age==96 3.157 (0.185) *** 3.053 (0.204) ***

age==97 3.352 (0.239) *** 3.246 (0.254) ***

age==98 3.586 (0.360) *** 3.472 (0.370) ***
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Aage 99 100 3.199 (0.575) *** 3.072 (0.581) ***

year==1980 0.153 (0.0572) *** 0.155 (0.0573) ***

year==1981 0.116 (0.0567) ** 0.120 (0.0569) **

year==1982 0.0351 (0.0568) 0.0420 (0.0574)

year==1983 0.188 (0.0546) *** 0.199 (0.0557) ***

year==1984 0.199 (0.0540) *** 0.214 (0.0558) ***

year==1985 0.138 (0.0539) ** 0.157 (0.0565) ***

year==1986 0.144 (0.0532) *** 0.167 (0.0569) ***

year==1987 0.146 (0.0527) *** 0.174 (0.0576) ***

year==1988 0.0730 (0.0528) 0.106 (0.0592) *

year==1989 0.0934 (0.0522) * 0.130 (0.0602) **

year==1990 0.0541 (0.0522) 0.0954 (0.0618)

year==1991 0.0361 (0.0520) 0.0818 (0.0634)

year==1992 -0.0660 (0.0523) -0.0160 (0.0655)

year==1993 0.0129 (0.0515) 0.0672 (0.0667)

year==1994 -0.00247 (0.0513) 0.0563 (0.0684)

year==1995 -0.0406 (0.0513) 0.0229 (0.0703)

year==1996 -0.138 (0.0517) *** -0.0701 (0.0725)

year==1997 -0.0898 (0.0512) * -0.0177 (0.0742)

year==1998 -0.118 (0.0512) ** -0.0414 (0.0762)

year==1999 -0.128 (0.0511) ** -0.0472 (0.0783)

year==2000 -0.203 (0.0514) *** -0.118 (0.0806)

year==2001 -0.458 (0.0531) *** -0.369 (0.0838) ***

region ob==V Aosta 0.0214 (0.153) 0.0161 (0.153)

region ob==Liguria -0.0725 (0.0438) * -0.0734 (0.0438) *

region ob==Lombardia 0.117 (0.0292) *** 0.116 (0.0292) ***

region ob==Trentino A A -0.0923 (0.0611) -0.0915 (0.0611)

region ob==Veneto 0.0436 (0.0314) 0.0433 (0.0314)

region ob==Friuli V G 0.0256 (0.0448) 0.0267 (0.0448)

region ob==E Romagna -0.0602 (0.0321) * -0.0606 (0.0321) *

region ob==Marche -0.169 (0.0434) *** -0.172 (0.0434) ***

region ob==Toscana -0.0506 (0.0328) -0.0509 (0.0328)

region ob==Umbria -0.220 (0.0532) *** -0.221 (0.0532) ***

region ob==Lazio -0.0889 (0.0374) ** -0.0893 (0.0374) **

region ob==Campania 0.0142 (0.0328) 0.0135 (0.0328)

region ob==Abruzzo -0.222 (0.0458) *** -0.224 (0.0458) ***

region ob==Molise -0.205 (0.0774) *** -0.208 (0.0775) ***

region ob==Puglia -0.138 (0.0336) *** -0.138 (0.0336) ***

region ob==Basilicata -0.227 (0.0575) *** -0.226 (0.0575) ***

region ob==Calabria -0.266 (0.0387) *** -0.266 (0.0388) ***

region ob==Sicilia -0.155 (0.0313) *** -0.156 (0.0313) ***

region ob==Sardegna -0.221 (0.0450) *** -0.221 (0.0450) ***

Constant -3.149 (0.0706) *** -3.319 (0.156) ***

Observations 594,784 594,784
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Log-likelihood -105377.86 -105372.31

Specification tests (p-value):

LR-test joint significance log(S) vars. 0.0254

LR-test no additional cohort effects 0.52

Notes: the reference individual is aged 65, lives in year 1979 and is born in the region

”Piedmont”. *** p < 0.01, ** p < 0.05, * p < 0.1. Marginal effects (in italics) are

computed at the sample means.
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Table 3: Estimation results for females

I II

dep.: dead coef se aster coef se aster

log(Y ) -0.155 (0.0109) *** -0.155 (0.0110) ***

-0.00318 (0.000224) *** -0.00318 (0.000225) ***

log(S0) -0.0907 (0.718)

log(S1−5) -0.729 (0.566)

log(S6−10) -1.735 (1.712)

log(S11−15) -2.497 (2.551)

age==66 -0.0475 (0.0819) -0.0520 (0.0820)

age==67 0.159 (0.0783) ** 0.150 (0.0786) *

age==68 0.147 (0.0789) * 0.133 (0.0798) *

age==69 0.369 (0.0755) *** 0.350 (0.0771) ***

age==70 0.404 (0.0753) *** 0.379 (0.0779) ***

age==71 0.405 (0.0757) *** 0.376 (0.0795) ***

age==72 0.556 (0.0740) *** 0.521 (0.0793) ***

age==73 0.718 (0.0723) *** 0.678 (0.0792) ***

age==74 0.869 (0.0710) *** 0.824 (0.0800) ***

age==75 0.950 (0.0708) *** 0.899 (0.0819) ***

age==76 1.019 (0.0707) *** 0.964 (0.0842) ***

age==77 1.140 (0.0701) *** 1.080 (0.0860) ***

age==78 1.305 (0.0692) *** 1.240 (0.0877) ***

age==79 1.406 (0.0693) *** 1.335 (0.0908) ***

age==80 1.529 (0.0694) *** 1.452 (0.0941) ***

age==81 1.670 (0.0694) *** 1.587 (0.0972) ***

age==82 1.771 (0.0700) *** 1.683 (0.100) ***

age==83 1.946 (0.0696) *** 1.852 (0.103) ***

age==84 1.952 (0.0711) *** 1.853 (0.107) ***

age==85 2.083 (0.0714) *** 1.981 (0.110) ***

age==86 2.327 (0.0710) *** 2.221 (0.113) ***

age==87 2.468 (0.0722) *** 2.358 (0.116) ***

age==88 2.537 (0.0745) *** 2.423 (0.121) ***

age==89 2.663 (0.0768) *** 2.543 (0.126) ***

age==90 2.716 (0.0810) *** 2.592 (0.132) ***

age==91 2.994 (0.0828) *** 2.867 (0.136) ***

age==92 2.910 (0.0928) *** 2.779 (0.145) ***

age==93 3.194 (0.0971) *** 3.059 (0.150) ***

age==94 3.295 (0.109) *** 3.157 (0.160) ***

age==95 3.424 (0.125) *** 3.283 (0.173) ***

age==96 3.336 (0.156) *** 3.195 (0.198) ***

age==97 3.273 (0.196) *** 3.134 (0.229) ***

age==98 3.134 (0.257) *** 2.994 (0.283) ***
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age==99 3.248 (0.322) *** 3.110 (0.343) ***

age==100 2.486 (0.735) *** 2.342 (0.745) ***

year==1980 0.110 (0.0979) 0.114 (0.0979)

year==1981 0.0126 (0.0974) 0.0215 (0.0977)

year==1982 0.117 (0.0934) 0.130 (0.0942)

year==1983 0.203 (0.0905) ** 0.222 (0.0918) **

year==1984 0.166 (0.0895) * 0.190 (0.0918) **

year==1985 0.123 (0.0887) 0.152 (0.0918) *

year==1986 0.246 (0.0860) *** 0.281 (0.0906) ***

year==1987 0.228 (0.0852) *** 0.268 (0.0913) ***

year==1988 0.167 (0.0849) ** 0.213 (0.0928) **

year==1989 0.142 (0.0843) * 0.193 (0.0940) **

year==1990 0.154 (0.0836) * 0.209 (0.0953) **

year==1991 0.0561 (0.0838) 0.116 (0.0975)

year==1992 0.134 (0.0827) 0.199 (0.0987) **

year==1993 0.0955 (0.0825) 0.165 (0.101)

year==1994 0.0929 (0.0822) 0.167 (0.103)

year==1995 0.102 (0.0818) 0.181 (0.105) *

year==1996 0.00825 (0.0821) 0.0919 (0.108)

year==1997 -0.0162 (0.0819) 0.0721 (0.110)

year==1998 -0.0266 (0.0817) 0.0661 (0.113)

year==1999 -0.0528 (0.0817) 0.0447 (0.115)

year==2000 -0.0603 (0.0815) 0.0420 (0.118)

year==2001 -0.439 (0.0839) *** -0.332 (0.123) ***

region ob==V Aosta -0.0791 (0.258) -0.0772 (0.258)

region ob==Liguria -0.0527 (0.0589) -0.0525 (0.0589)

region ob==Lombardia -0.0499 (0.0339) -0.0504 (0.0339)

region ob==Trentino A A -0.121 (0.0713) * -0.122 (0.0713) *

region ob==Veneto -0.165 (0.0389) *** -0.165 (0.0389) ***

region ob==Friuli V G -0.0611 (0.0552) -0.0624 (0.0553)

region ob==E Romagna -0.151 (0.0374) *** -0.151 (0.0374) ***

region ob==Marche -0.238 (0.0585) *** -0.238 (0.0585) ***

region ob==Toscana -0.177 (0.0429) *** -0.176 (0.0429) ***

region ob==Umbria -0.128 (0.0724) * -0.129 (0.0724) *

region ob==Lazio -0.0140 (0.0488) -0.0144 (0.0488)

region ob==Campania 0.0540 (0.0433) 0.0535 (0.0433)

region ob==Abruzzo -0.148 (0.0722) ** -0.148 (0.0722) **

region ob==Molise -0.276 (0.134) ** -0.279 (0.134) **

region ob==Puglia -0.0251 (0.0438) -0.0255 (0.0438)

region ob==Basilicata -0.141 (0.0854) * -0.141 (0.0854) *

region ob==Calabria -0.0496 (0.0497) -0.0497 (0.0497)

region ob==Sicilia 0.0110 (0.0437) 0.0106 (0.0437)

region ob==Sardegna -0.114 (0.0648) * -0.114 (0.0648) *

Constant -3.745 (0.114) *** -3.922 (0.206) ***
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Observations 522,023 522,023

Log-likelihood -62380.59 -62379.64

Specification tests (p-value):

LR-test joint significance log(S) vars. 0.76

LR-test no additional cohort effects 0.16

Notes: the reference individual is aged 65, lives in year 1979 and is born in the region

”Piedmont”. *** p < 0.01, ** p < 0.05, * p < 0.1. Marginal effects (in italics) are

computed at the sample means.
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Appendices

Table 4: Mortality risk by cohort, age and income quartile: males
Cohort: 1901-1907 1908-1913

Age Q1 Q2 Q3 Q4 Q1/Q4 Q1 Q2 Q3 Q4 Q1/Q4

65-69 3.5 3 3.4 2.5 1.4

70-74 4.4 3.4 4.8 3.2 1.4 4.5 4.6 4.2 3.7 1.2

75-79 6.1 6.2 6.9 6.3 1 7 6.4 6.9 5.4 1.3

80-84 10.1 10.1 9.8 9.2 1.1 9.3 9.2 8.8 8.2 1.1

85-89 15.9 14.5 14.9 13.4 1.2 12.3 12 12.1 11 1.1

90-94 21.4 17.4 20.9 21.1 1 14.6 15.6 16.2 13.4 1.1

95+ 22.5 30.1 21.6 29.9 0.8

All 13.4 13.6 13.2 13.8 1 8.5 8.5 8.6 7.4 1.2

Cohort: 1914-1919 1920-1924

Age Q1 Q2 Q3 Q4 Q1/Q4 Q1 Q2 Q3 Q4 Q1/Q4

65-69 3.3 2.8 2.9 2.2 1.5 3.2 2.4 2.5 2 1.6

70-74 4.5 4.1 3.9 3.6 1.2 4.1 3.7 3.5 2.6 1.6

75-79 6.4 5.8 5.5 4.9 1.3 5 4.6 5 3.8 1.3

80-84 8.2 7.5 8.1 6.6 1.2 4.8 5.4 7.1 4.8 1

85-89 9.5 8.6 10 7.4 1.3

90-94

95+

All 6.4 5.8 6.1 5 1.3 4.3 4 4.5 3.3 1.3

Cohort: 1925-1929 1930-1936

Age Q1 Q2 Q3 Q4 Q1/Q4 Q1 Q2 Q3 Q4 Q1/Q4

65-69 3 2.1 2 1.4 2.1 2.2 1.8 1.8 1.4 1.6

70-74 3.1 3.3 3 2.5 1.3 2 2.3 2.2 1.9 1

75-79 3.7 3.9 3.1 3 1.3

80-84

85-89

90-94

95+

All 3.3 3.1 2.7 2.3 1.4 2.1 2 2 1.6 1.3
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Table 5: Mortality risk by cohort, age and income quartile: females
Cohort: 1901-1907 1908-1913

Age Q1 Q2 Q3 Q4 Q1/Q4 Q1 Q2 Q3 Q4 Q1/Q4

65-69 1.4 1.6 1.3 0.9 1.6

70-74 2.4 1.6 2.6 1.7 1.4 2 1.7 1.8 1.8 1.1

75-79 3.8 3 2.5 3.2 1.2 3.9 2.9 3.8 3.3 1.2

80-84 6.7 5.2 6.1 5.8 1.2 5.9 6 5.6 4.7 1.3

85-89 11.7 10.3 9.6 8.6 1.4 8.9 8 8.9 8.8 1

90-94 16 14.3 17.1 14 1.1 11.5 10.7 12.4 12 1

95+ 17.4 20.7 14.2 17.5 1

All 9.7 9.2 8.7 8.5 1.1 5.6 5.2 5.6 5.2 1.1

Cohort: 1914-1919 1920-1924

Age Q1 Q2 Q3 Q4 Q1/Q4 Q1 Q2 Q3 Q4 Q1/Q4

65-69 1.4 1.2 1.4 0.9 1.5 1.6 1 1 0.8 2

70-74 2.3 2 1.8 1.4 1.7 2.3 1.8 1.5 1.2 1.9

75-79 3.6 3.2 2.5 2.6 1.4 2.7 2.3 1.8 2.2 1.3

80-84 5.4 5.1 4.1 4 1.4 2.7 2.7 2.9 3 0.9

85-89 6.5 8.4 5.9 7.1 0.9

90-94

95+

All 3.9 4 3.1 3.2 1.2 2.3 2 1.8 1.8 1.3

Cohort: 1925-1929 1930-1936

Age Q1 Q2 Q3 Q4 Q1/Q4 Q1 Q2 Q3 Q4 Q1/Q4

65-69 1.3 0.9 0.7 0.7 1.8 1.1 0.7 0.8 0.7 1.6

70-74 1.7 1.2 1.2 1.2 1.4 0.9 0.7 0.6 1 0.9

75-79 1.9 1.6 2.2 1.3 1.4

80-84

85-89

90-94

95+

All 1.6 1.2 1.4 1.1 1.5 1 0.7 0.7 0.8 1.2
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