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Abstract. The present work establishes a suitable multidimensional extension of a fundamental the-

orem of inequality measurement, namely the characterization of the Lorenz (or dually majorization)

preorder of real-valued univariate (income) distributions, via a class of reasonable welfare functions

(or dually inequality indices) due to Hardy, Littlewood and Polÿa (henceforth HLP, (1934)).

JEL Classi�cation : D31, D63, I31

1. Introduction

TO BE WRITTEN

Theoretical analysis of inequality compares discrete distributions of individual (or household) in-

comes. Such a �univariate approach�is now widely considered to be inadequate because it does not

take into account that people di¤er in many aspects (as. e.g. gender, life expectancy, needs, etc) be-

sides income and therefore individual disparities can arise in more than one dimension. Moreover, the

standard classes of unidimensional inequality indices do not provide su¢ cient information on individ-

ual deprivation because, taking income as the unique explanatory variable, they neglect fundamental

problems as e.g. individual lack of access to health care or to education.

However, the problem of extending the theory of inequality measurement from the unidimensional

to the multidimensional setting is a quite complex and unexplored research �eld.1 Several orderings

have been used to compare multidimensional distributions in terms of inequality, but there is not yet

a criterion that �universally�recognizes a redistribution of resources as more equitable than another

one.

In the present work, we address the issue of assessing multidimensional inequality by introducing

a new ordering that compares (discrete) multivariate distributions representing households that di¤er

in several characteristics besides income and that could have di¤erent size and weights.

The relevance of the problem arises from the following considerations.

The Lorenz curve and the related Lorenz dominance criterion 2 are the principal tools for ranking

income distributions in terms of inequality. They apply whenever distributions are de�ned over a

Key words and phrases. Multidimensional Inequality, Socila Welafre Functions, Equivalence Scales, Lorenz Criterion,

Hardy-Littlewood-Polya Theorem.
1For an almost complete analysis of the economic literature on multidimensional inequality see the three surveys of

Savaglio, Trannoy and Weymark in [4].
2See e.g. Marshall and Olkin [9] chapter 1 for a formal de�nition of the Lorenz curve and the Lorenz criterion.
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�xed population and have identical means. These assumptions severely restrict the usefulness of this

approach in many important practical situations.[....]

The present work establishes a suitable multidimensional extension of a fundamental theorem of

inequality measurement, namely the characterization of the Lorenz (or dually majorization) preorder

of real-valued univariate (income) distributions, via a class of reasonable welfare functions (or dually

inequality indices) due to Hardy, Littlewood and Polÿa (henceforth HLP, (1934)). In particular, we

compare multidimensional distributions in terms of inequality starting from a certain partial preorder-

ing that ranks matrices representing the distribution of commodities among households with di¤erent

weights.

Our analogue to the classic HLP theorem consists in proving that a version of the result due to Schur

and Ostrowski on the class of majorization order-preserving functions (see Marshall and Olkin (1979)

ch. 1) also holds in our setting of distributions of individual goods. In particular, we focus on the class

of real-valued functions which preserve the majorization preorder as de�ned on the space of height

vectors. The importance of de�ning an order-preserving function in such a setting relies on the one-to-

one correspondence between isotone functions, maps that preserve the majorization relation, and the

so-called social evaluation functions (SEF)). SEFs are widely used to de�ne inequality indices, which

in turn provide the basis for welfare comparisons between and within populations by equity-concerned

policy-makers.

Motivation. When non-income attributes are regarded as relevant for the purposes of inequality and

the observations of common data sets usually are weighted. Indeed, we know that economists often

confront (and are urged to do so) di¤erent and welfare-relevant non-income personal characteristics be-

tween and within countries. Therefore, it seems natural to investigate criteria for ranking multivariate

distributions with di¤erent population, where multiple attributes of well-being have to be compared

simultaneously. Moreover, scholars typically analyze grouped data where the frequency denotes the

weights of the groups of households in a population. More recently, theoretical and empirical works

on the equivalence scales have emphasized the importance of weights for distributive analysis in the

case of heterogeneous households.3

2. Preliminaries

Let N = f1; :::; ng with n � 2 be a �xed set of individuals and @ =
�
z 2 Rn :

nP
i=1

zi = T

�
be the

set of all real-valued distribution vectors of a total amount of income T . An element zi 2 z with
i = 1; :::; n represents the income received by the i-th individual. We denote with z# =

�
z[1]; :::; z[n]

�
the vector whose components are rearranged from the richest to the poorest. Then, the most applied

criterion to compare an income distribution x with another one y in terms of inequality is the Lorenz

(or dually majorization) preorder (LP) that establishes:

De�nition 1. For any x,y 2 @, x is a more even distribution of income than y, denoted to as x �LP y,
if:

(2.1)
kX
i=1

x[i] �
kX
i=1

y[i] k = 1; :::n� 1.

3See e.g. Ebert (????)
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In a celebrated result of their joint e¤ort, Hardy, Littlewood and Polya (see Marshall and Olkin

[9] ch.1) have proved the so-called fundamental result of the (unidimensional) inequality measurement

theory, which states:

Theorem 1 (HLP, (1929)). For any x, y 2 @, the following two conditions are equivalent:
(1) x �LP y if x = By for some n� n bistochastic matrix B;4

(2) the inequality
nX
i=1

f(xi) �
nX
i=1

f(yi)

holds for any f : R! R that is convex and symmetric, that is invariant under any permutation
of the coordinates.5

In words, Theorem 1 says that comparing two income distributions x and y according to the Lorenz

preorder is equivalent to the fact that distribution x is obtained from y through a �nite number of

income transfers that take place from the richer to the poorer6 or it is tantamount to saying that there

exists an additive class of (convex) evaluation functions consistent with (i.e. preserving) the ordering

induced by the Lorenz criterion.

In what follows, our aim is to extend the foregoing result to the more general case in which people

could di¤er with respect to several characteristics besides income and the households of a populations

of variable size could have di¤erent weights. In order to pursue our aim, for k 2 N and for each n 2 N,
we de�ne with:

�kn =
�
(x1; :::;xn) : xi 2 Rk; 1 � i � n

	
the real vector space of (n; k) matrices with real entries, where the generic xi is a row vector of length k.

We could interprete an element xi;j of a multivariate ditribution X2�kn as the quantity of the jth (real-
valued) attribute (such as the net annual �ow of the jth commodity) belonging to the ith individual.

The ith row of X is denoted rowi or xi;�, the jth column colj or x�;j . Given X = (x1; :::;xn) 2 �kn, we
denote with XT its transpose and with Mm;n the set of all row-stochastic m� n matrices R, namely
nonnegative rectangular matrices with all its row sums equal to one.7 Finally, we de�ne:

�n =

(
(a1; :::; an) : ai 2 (0; 1) , 1 � i � n,

nX
i=1

ai = 1

)
.

the set of all possible weight systems and with �kn = �kn 
 �n the space of all possible pairs of
distribution matrices and (households�) weights.

3. Results

3.1. A new multidimensional inequality criterion. We now introduce a binary relational system
to compare (in terms of relative inequality) multidimensional distributions (of individual/attributes)

4A bistochastic matrix B is a square matrix where all entries are non-negative and the sum of all rows and columns

are equal to one.
5See Marshall and Olkin [9] for a wide review of the present proposition.
6Notice that a bistochastic matrix B just collects such a (�nite) sequence of income transfers (see Marshall and Olkin

[9] chapters 1 and 2).
7Any row-stochastic matrix whose sum of all components of each column is equal to one is of course a bistochastic

matrix (see footnote 4).
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in the most general case in which a population could di¤er in size and its members (individuals,

households, groups) (could) have di¤erent weights. Therefore, we state:

De�nition 2. Let (X;a) 2 �km and (Y;b) 2 �kn. Then, we say that (X;a) is less unequal than (Y;b),
denoted to as (X;a) �h (Y;b), if there exists a matrix R 2Mm;n such that

XT = RY T and b = aR.

In words, if we interpret the rows of a matrix as households with di¤erent endowments, then it is

as if we would rank di¤erent countries (of course with di¤erent population size) in terms of inequality

by also considering the fact the households are not homogeneus within and between countries. Indeed,

households di¤er not only with respect to their income, but also in size, number of adults, number and

age of children, the health status of family members, the place where they live and other important

socio-economical characteristics. Since these di¤erent household characteristics are observable, they

are typically employed to assign a value re�ecting the needs and the standard of living of the respective

households. In most empirical situations, scholars in fact take into account of such diversity among

households by using equivalence scales, namely factors expressing how the necessities of a household

grow with each additional member. The preordering �h proposed here could then be considered as a
theoretical justi�cation to the use of equivalence scales in the general case in which households di¤er

for several characteristics besides income and needs.

According to De�nition 2, the cost of comparability of two multivariate distributions in the present

general setting is that two contraints must be satis�ed at a time: the elements of both the more even

distribution matrix and of its weight vector has to be a convex combination of both the elements

of the more unequal distribution matrix and of its weight vector. The bene�ts of our criterion is

that it allows for possibly di¤erent weighting schemes and impose a minimalistic structure on the

equality-enhancing transformations to be used in order to make a multivariate distribution �smoother�.

Moreover, preordering �h represents a theoreticl guide to a policy maker who would like to ajust
bundles of households�characteristics (or attributes) by means of a scaling factor and then comparing

adjusted multidimensional distributions by means of a suitable inequality criterion.8

We now illustrate De�nition 2 by considering the following:

Example 1. Let (X;a) 2 �23 and (Y;b) 2 �22 be two matrices representing a population of three and
two individuals respectively endowed with the same two goods with di¤erent a­ uence and two weights�

systems representing for example two equivalence scales of two di¤erent States:

Y T =

"
3 1

1 4

#
and XT =

264 2 2:5

1:7 3

1:8 2:8

375
a = (0:2, 0:3, 0:5) and b = (0:4, 0:6) .

Since there exists a row-stochastic matrix:

R =

264 1=2 1=2

1=3 2=3

2=5 3=5

375
8In a unidimensional context, see Blackorby and Donaldson (1993) for for a wide analysis of adult-equivalence scales

and their potential implications for applied welfare economics.
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such that XT = RY T and b = aR, (X;a) �h (Y;b) then we conclude that Y has a greater level

of disparity than X as each column j, for j = 1; 2, of the latter is a convex combination of the

corresponding column of the former.9

Example 2. Consider as a suitable example of weight vectors a = (0:281; 0:273; 0:208; 0:178; 0:059)

representing the percentage of Italian households with one, two,..., �ve or more components respectively

as reported by ISTAT for the year 2009 and b = (28:8; 58:9; 12:3) representing the percentage of single

adult, monogamous and polygamous households respectively as reported by de Laiglesia and Morrisson

(2008) for Cote d�Ivoire. Then, if a Statistical Boureau want to compare Italy with Cote d�Ivoire

in terms of multidimensional (i.e. with respect to several monetary and non-monetary indicators)

inequality taking into account that the family structure of such African country di¤ers from Italian one

could eventualy use the criterion we propose.

3.2. A representation theorem on weights and measures of the multivariate distributions.
We know that h-criterion only provides a preordering of the possible distributions of attributes. Then,

following the traditional approach to unidimensional inequality measurement in the economic litera-

ture, we introduce the class of functions preserving10 the preordering �h into the present multidimen-
sional framework by stating the following generalization of the Theorem 1 above:

Theorem 2. Let (X;a) 2 �km and (Y;b) 2 �kn. The following conditions are equivalent:
(i): (X;a) �h (Y;b);
(ii): For any continuous convex function � : Rk ! R

mX
i=1

ai� (xi) �
nX
j=1

bi� (yj) .

Proof. The implication (i) ) (ii) is an immediate consequence of Jensen�s inequality, i.e. that a

�convex transformation of a mean is less or equal than the mean after a convex transformation�.

Then, assume (ii) holds and de�ne the following set:

M (X;Y ) =

8<:A = (aij) 2Mm;n j xi =
nX
j=1

aijyj , 1 � i � m

9=; .
We �rst show thatM (X;Y ) is a non-empty closed convex subset of Mm;n. Now, thatM (X;Y ) is

closed and convex is obvious. To prove thatM (X;Y ) 6= ?, it is su¢ cient to show that if Theorem 2.(ii)
holds, then xi = conv (y1; :::;yn) for any i = f1; :::;mg, where conv (y1; :::;yn) represents the convex
hull of vectors y1; :::;yn. So doing, suppose that xj =2 conv (y1; :::;yn) for some j 2 f1; :::;mg and then
consider the function � : Rk ! R de�ned as � (t) = � (t; conv (y1; :::;yn)), where � is the Euclidean

distance in Rk and note that � (xj) > 0, � (yl) = 0 for 1 � l � n, and � (t) is a convex function

since conv (y1; :::;yn) is a non-empty convex subset of Rk. Thus, it follows that
Pm

i=1 ai� (xi) >

9It is worth reminding here that in a multidimensional context the e¤ect of an equality-enhancing transformation

could be ambiguous. Indeed, the rearrangement of the components of a multivariate distribution by means of a row-

stochastic matrix R might sometimes produce an uneven allocation of attributes (see e.g. Dardanoni [2] Savaglio in [4]

p. 279), because the obtained multidimensional distribution could be smoother in the tails and more polarized in the

middle with an uncertain total e¤ect of the inequality-decreasing operator R on the whole distribution.
10A function preserving the ranking induced by a given binary relation is referred to as order-preserving, isotonic or

convex in the sense of Schur (see Marshall and Olkin [9] ch. 2)
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j=1 bi� (yj) which contradicts condition (ii) in Theorem 2. Hence, xi = conv (y1; :::;yn) for any

i = f1; :::;mg, as required.
Given M = (mi;j) 2 M (X;Y ), we now de�ne a vector s (M) = (s1 (M) ; :::; sn (M)) 2 Rn by

sj (M) =
Pm

i=1mi;jai, 1 � j � n. Set

F (X;Y ) = fs (M) :M 2M (X;Y )g .

Note that �s (M) + (1� �) s (N) = s (�M + (1� �)N) for any M;N 2 M (X;Y ) and � 2 [0; 1], so
that F (X;Y ) is a convex subset of Rn. Moreover, sinceM (X;Y ) is closed the same must be true for

F (X;Y ). We �nally need to show that if b 2 F (X;Y ), then there exists a matrixM0 2M (X;Y ) such

that s (M0) = b. In order to show that, assume that b =2 F (X;Y ). Since F (X;Y ) is a closed convex
set, it follows from the Hahn-Banach theorem (see [10]) that there exists a c 2 R and (t1; :::; tn) 2 Rn

such that:

(3.1)
nX
j=1

tjsj < c <
nX
j=1

tjbj for (s1; :::; sn) 2 F (X;Y ) .

Given an arbitrary vector y 2 conv (y1; :::;yn), we de�ne the set:

�(y) =

8<:(�1; :::; �n) 2 [0; 1]n : y =
nX
j=1

�jyj ,
nX
j=1

�j = 1

9=; .
Note that �(y) is compact for any y 2 conv (y1; :::;yn) since it is complete (closed) and totally

bounded. We may therefore de�ne a function C : conv (y1; :::;yn)! R by setting

C (y) = max

8<:
nX
j=1

�jtj : (�1; :::; �n) 2 �(y)

9=; for y 2 conv (y1; :::;yn) .

Let �j (y) 2 [0; 1], 1 � j � n, be such that C (y) =
Pn

j=1 tj�j (y). Since �j (yi) = �i;j , one has

C (yj) � tj for any 1 � j � n and thus:

(3.2)
nX
j

bjC (yj) �
nX
j

bjtj > c.

On the other hand, the left inequality in 3.1 implies that for any matrix M=(mi;j) 2 M (X;Y ) one

has:

(3.3) c >
nX
j

tjsj (M) =
mX
i

nX
j

aitjmi;j .

Let us now consider the extension bC of the function C to Rk given by:( bC (y) = C (y) if y 2 conv (y1; :::;yn) andbC (y) = 0 for y =Rknconv (y1; :::;yn) .

Now, bC (y) is a concave function on Rkand by a previous argument xi 2 conv (y1; :::;yn), for any
1 � i � m, so that the numbers �j (xi) are well-de�nd for any 1 � i � m, 1 � j � n. Note that

�j (xi) 2M (X;Y ) and that by 3.2 and 3.3 the following holds:

mX
i=1

ai bC (xi) = mX
i=1

nX
j=1

aitj�j (xi) <
nX
j=1

bjtj �
nX
i=1

bi bC (yi) .
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However, this contradics condition (ii) of Theorem 2 and thus the thesis. It follows that b 2 F (X;Y ),
which complete the proof. �

COMMENTS: TO BE WRITTEN

If m = n and ai = bj =
1
n , 1 � i; j � n, then the following criterion compares multivariate

distributions with the same marginals:

De�nition 3. Let X, Y 2 �kn, then Y is said to majorize X, written X �u Y , if there exists a n� n
bistochastic matrix B, such that X = BY .

The foregoing de�nition extends the notion of majorization under Theorem 1.(i) to the multivariate

case. It essentially means that the average is a smoothing-operation, making the components of X

more spread out than the components of Y . Then, Theorem 2 and Birkho¤-Von Neumann�s Theorem

(see Marshall and Olkin (1979) ch.1) imply that �h induces �u and therefore:

Corollary 1 (Marshall and Olkin [9] and Koshevoy [7, 8]). If X;Y 2 �kn then the following conditions
are equivalent:

(i) There exists some bistochastic matrix B such that X = BY ;

(ii) The inequality
Pn

i=1 � (xi) �
Pn

i=1 � (yi) holds for any convex function � : Rk ! R.

It is worth noticing that for k = 1, Corollary 1 amounts to Theorem 1 stated above.

4. Conclusions

TO BE WRITTEN
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