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October 2010

We examine position auctions where the search engines such as Google, Microsoft, 
and Yahoo! sell advertising slots on internet to their sponsors.  These three giant search 
engines use a generalized per-click second-price auction procedure where the least valuable 
spot is allocated earlier and the payment of a slot is determined by the per-click price for the 
slot multiplied by the realized number of clicks.   Literature shows that their procedure raises 
the same expected revenue as the VCG mechanism although truth telling is not an equilibrium 
strategy.  We notice that a Japanese advertisement company uses a different procedure for 
position auctions.  Its procedure is a sequential first-price sealed-bid auction where the order 
of the sales is opposite to the big three’s auction procedure and the most valuable slot is 
auctioned off earlier.   In addition, it does not adopt per-click price mechanism and auctions 
off each slot as a whole.  We characterize the equilibrium bidding function and calculate the 
expected revenue of the Japanese company’s auction procedure.   Further, we compare them 
with the big three’s auction procedure and conclude that it achieves an efficient allocation and 
raises the same expected revenue as the big three’s auction procedure and the VCG 
mechanism.  
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The giant internet search engine, Google, sells slots on online advertisement linked to keyword 

search.  It is almost the only revenue source for Google whose market value is more than 

$150 billion.  When one types some keywords, several sponsored links appear at the top and 

on the right side of the search results.  Usually, the slot on the top is more valuable to those on 

the right side.  Among slots on the right side, ranked slot is more valuable than )1(

ranked slot.  Google sells these slots via per-click price auctions which is called position 

auctions.  In its dynamic auction, the highest bidder wins the slot and pays the 

)1( highest bid.  Edelman, Ostrovsky, and Schwarz (2007) (hereafter EOS) analyze this 

auction and show that it is not equivalent to the VCG mechanism in the sense that truth telling 

is not an equilibrium strategy, but it raises the same expected revenue as the VCG 

mechanism.  If we use a dynamic ascending price auction to implement the EOS mechanism, 

the less valuable slot is allocated earlier than the more valuable slots.  Chen and He (2006) and 

Athey and Ellison (2008) keep the basic features of the EOS mechanism and endogenize the 

values of the slots.  Chen and He (2006) introduce product differentiation where a consumer 

learns about her valuation and the desirability of the product only when she pays search cost 

and clicks the website of a sponsor.  Athey and Ellison (2008) introduce costly consumer 

search to the EOS mechanism to determine the values of the slots.  

Although the giant search engine, Google, adopts a generalized second price auction 

procedure to position auctions, D2 communication in Japan uses a different auction 

procedure from Google.  In D2 communication’s auction, highest bidder wins slot as 
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in the case of the EOS auction, but pays the highest bid, that is, pays his own bid. In 

addition, the more valuable slot is auctioned off earlier than the less valuable slot in D2 

communication’s auction procedure.  Therefore, the order of sales is completely opposite to 

the EOS auction.

We characterize the equilibrium bidding function of D2 communication’s auction and the 

expected revenue.  Then, we compare them to those of the EOS auction.  We conclude that 

D2 communication’s auction achieve an efficient allocation and raise the same expected 

revenue as the EOM auction and the VCG mechanism although the payment system and the 

order of sales are quite different from the EOS auction.

Our paper is also related to literature identifying the source of decreasing prices observed in 

practical auctions.  Ashenfelter (1989) reported evidences from wine auctions that prices 

decrease in sequential auctions.  Kahn and Wiggans (1997) observed the same phenomenon 

in livestock auctions and Vanderporten (1992) did in the condominium auctions. McAfee and 

Vincent (1993) attributed it to buyer’s being risk averse.  Black and Meza (1993) introduced 

“buyer’s option” to explain decreasing prices.  “Buyer’s option” means that the winner of the 

first auction has an opportunity to buy additional objects at the same price that he paid for the 

first one.  Since this option increases the value of the first object, they obtain decreasing 

prices. Lambson and Thurston (2006) analyzed a sequential ascending auction with two 

identical items and positive minimum bid increments are imposed.  Each bidder demands 

more than one item and the winner of the first auction has the privilege of beginning the 

starting price of the second auction.  They showed that the price in the second auction can be 

lower than that in the first auction, but only by minimum bid increment.  Bernhardt and 

Scoones (1994) and Engelbrecht-Wiggans (1994) considered stochastically equivalent objects 

thk
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in two objects model on the unit demand assumption and obtain decreasing prices. Our model 

appeals to an alternative reason for decreasing prices: Price decreases when the more valuable 

objects are sold earlier and it happens when the seller can endogenously choose the order of 

selling the heterogeneous items.

The rest of the paper is organized as follows: Section 2 explains the model.  Section 3 analyzes 

the sequential sealed-bid first-price auction.  Section 4 characterizes the expected revenue 

maximizing auction mechanism and addresses how to implement it.  Section 5 summarizes 

the result, mentions about the author’s contribution to the advancement of business, shows 

several directions to extend the basic model, and discuss future research prospects.  All the 

proofs are collected in the appendices.

There are +1> ( 1) potential buyers for objects.  is the set of potential buyers and 

is the set of items.  Each buyer draws his private signal independently from some 

common probability distribution function ( ) whose support is [0, ]1 which has a 

continuous density function ( )There are common public signals, 1 2 ... .  When 

buyer with private signal obtains the th item at price , he receives net utility of 

( , ) where ( , ) is a supermodular.  We also assume that each potential buyer 

demands at most one object, or equivalently, that the seller restricts each buyer to obtain at 

                                                  

1 We address a bidder “he” for simplicity and there is no intention of sexual differentiation.
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most one object.  The structure of a game is common knowledge among the players except 

each bidder only knows his realized private signal but not others.

First, we analyze sequential sealed-bid first-price auctions with price announcements. There, 

the seller auctions one object at each period following a predetermined order.  At the 

beginning of each period, the seller announces the price paid in the previous period.  This 

allows all losing bidders to form the same belief on their opponents’ private signals at the 

beginning of each period.  Further, the bidder who submits the highest bid obtains the object 

and pays the amount of his own bid.  It is possible to consider other information releasing 

procedures such as no announcement at all about the price of the previous period’s auction.  

In this case, losing bidders only know that the fact that they “lost.”  However, it is worth 

noting that we can show that bidders’ strategies remain the same on the equilibrium path as 

the case with price announcement.

We adopt the Bayesian perfect equilibrium as an equilibrium concept and analyze symmetric 

equilibrium strategies.  A strategy for a bidder, ( ; ) ( ), is a combination of 

functions whose domain is 1 and whose range is .  The first argument indicates his

realized private signal and the second represents any information available up to period such 

as the realized prices in the previous auctions.  In other words, ( ; ) indicates how much a 

bidder is willing to bid in the period auction when he loses all the auctions prior to period .  

Later, we need to consider each bidder's belief on their opponents’ private signals at the 

beginning of each period to characterize equilibrium bidding strategies.  For this purpose, we 

need additional notation. is a random variable of bidder ’s private signal ( ) and is 
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its realization.  Further, ( =1,2,...,n) is  the th higher order statistics of 2 , 3 , ..., 1 and 

is a realization of . 

First, we analyze the model with price announcement, that is, the seller announces the price of 

the previous auction at the beginning of each period before bidders submit their bids.  This 

allows all the remaining bidders to have the same belief on the opponents’ private signals in 

each period.  The following proposition characterizes the symmetric Bayesian perfect 

equilibrium strategies in this case.

Monotonically increasing equilibrium bidding functions, ( ; 1, 2, ..., 1) = ( ) ( ,

exist if the objects are sold by the predetermined order of 1 2 ... and characterized as 

follows: 

If 1 ,

( ) ( 1) ( )
( )

1
( )
( )

( ( , ) ( 1, )) 1( )
0

1 1

( ) ( ,
0

)( 1) ( )
( )

1
( )
( )

Otherwise,  ( ) ( 1

1
( 1)) 1 .

See Appendix.
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3. Sequential Sealed-Bid First-Price Auctions

Proposition 1 (with price announcement):
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We can immediately obtain the following corollary from proposition1.

Suppose that the seller does not announce the price of the auctions at all.  Then, there exists 

equilibrium bidding functions that are the same as those in Proposition 1 on the equilibrium 

path. 

Next, we define unadjusted and adjusted prices to examine the price path

The unadjusted price in period ( ), , is the winning bid of the period auction for 

the sequential sealed-bid first-price auction and the highest loser’s bid for the sequential 

sealed-bid second-price auction.

   

The adjusted price at period ( ) is defined as the unadjusted price divided by , (i.e., 

) when ( , ) .        

The following proposition and corollary examine the pattern of the price paths.

  

In the sequential sealed-bid first-price auction with predetermined selling order of 

1 2 ... , the unconditional expected adjusted prices decline on the equilibrium path.

Corollary1 (without price announcement)

Definition (unadjusted price):

Definition (adjusted price):

Proposition 2 (declining adjusted prices):
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See Appendix.

We can immediately obtain the following corollary from proposition2.

In the sequential sealed-bid first-price auction with predetermined selling order of 

1 2 ... , the unconditional expected adjusted prices decline on the equilibrium path.

This section characterizes the expected revenue maximizing (optimal) auction mechanism in 

our setting and shows that both the sequential sealed-bid first-price and second-price auctions 

implement the optimal auction mechanism.  First, we characterize the optimal auction 

mechanism.  To simplify the analysis, we impose the following regularity condition.

  

The regularity condition is satisfied if ( , )
( , ) 1 ( )

( )
increases w.r.t. , 

and .

Proof:

Corollary2 (declining unadjusted prices):

4. The Expected Revenue Maximizing Auction Mechanism

Regularity condition:

Proposition 3 (the optimal mechanism):
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Assume that the regularity condition holds and bidders are symmetric ex-ante.  Then, the 

optimal auction mechanism is characterized by the following three conditions:  

(1) The payment of player ( )who reports his private signal as is 

       c( )= ( , ) ( )
( , )

( , )
01

,

       where,

     ( 1, 2 , ..., 1), ( 1, 2 ,..., 1), ( 1, 2 ,..., 1, 1, ..., 1)

(2) ( )
1

0

(3) The required minimum reported private signal is ( ) s.t. 

( , )
( , ) 1 ( )

) ( )
=0.

Proof is omitted because we can obtain the result by slight modification of the argument in 

Myerson (1981).                                                                                                                Q.E.D.

The sequential sealed-bid first-price auctions with or without price announcement with the 

minimum required reported private signal ( ) implement the optimal selling 

mechanism.
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Obvious from propositions1 and3.                                                                                    Q.E.D.

This paper analyzes the position auction procedure adapted by D2 communication in Japan.  

Their auction procedure to sell advertising slots on internet keyword search is quite different 

from the one designed by Google. Google uses a generalized VCG mechanism where (1) 

highest bidder wins the slot and pays the )1( highest bid, (2) the payment is “per 

click,” and (3) the less valuable slot is auctioned off earlier than the more valuable slot.  D2 

communication in Japan uses a very different auction procedure.  First, highest bidder 

wins the slot as in the case of Google’s auction, but pays his own bid, namely it is a first-

price sealed-bid auction.  Secondly, the payment is not “per click,” but highest bidder 

pays for being awarded the slot regardless of the actual number of clicks realized later.  

Thirdly, the order of sales is reversed and the more valuable slot is auctioned off earlier in D2 

communication’s auction procedure.  Nevertheless, we show that D2 communication’s 

auction procedure achieves an efficient allocation and raises the same expected revenue as the 

EOS auction and the VCG mechanism.  

Further, decreasing prices anomaly is observed in the sealed-bid first-price auctions.  

Although researches on decreasing prices are originated from the Ashenfelter’s wine auctions' 

example and, accordingly, they assume some kind of homogeneity across items (either in 

deterministic or stochastic sense), we believe that showing that auctions of heterogeneous 

items can also experience decreasing prices because of the seller’s strategic behavior sheds a 

5. Discussion
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new light on this stream of the literature.  Note that “prices decreasing anomaly” implies 

unequal treatment of the winners and it causes serious problem when the government designs 

a selling procedure to privatize state-owned properties2.  For example, in the Japanese land 

auctions, it means that different winners pay different per square meter price for the adjacent 

pieces of land are sometimes not approval.   

There are a few important points for future research.  First, though we assume that bidders’ 

private signals are i.i.d., this should be only the first step to analyze more practical cases such 

as affiliation.  Next, there are examples in the practical world where each bidder is demands 

more than one objects.  The FCC radio spectrum license auctions are one of the most 

important examples among others.  There, we also need to consider the interdependency 

across different objects to characterize bidders’ strategies.  This will complicate the analysis, 

but be worth challenging.   

   

We use mathematical induction to prove Proposition 1. There are four steps in the argument.  

The first two steps characterize bidding functions on the equilibrium path.  The third step 

examines the off-the-equilibrium -path strategies.  The fourth step shows that the strategies in 

Proposition 1 attain global maximum. 

Step 1 (period ).  

                                                  

2 Possibility of auctions satisfying efficiency, revenue maximization, and equal treatment of 

Appendix

Proof of Proposition 1:

m
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Without loss of generality, we can focus on the problem for bidder 1. Assume that bidder 1 

loses all the ( -1) auctions held prior to period and consider bidder 1’s problem for the last 

period (period ) auction.  Since we assume that the seller announces the price of the 

previous period auction at the beginning of the next before bidders submit their bids, all the 

remaining bidders have the same belief on the opponents’ private signals at the beginning of 

the last period’s auction.  Namely, all the bidders know the value of the winning bids up to 

period -1, which we denote by 1 , 2 , ..., 1 . 

On the equilibrium path, this means that the remaining bidders actually know the value 

of 1, 2 ,..., 1 from 1 , 2 , ..., 1 by inverting bidding functions, since we assume that there 

exists monotonically increasing equilibrium bidding strategy w.r.t. private signal.  This means 

that all the remaining bidders know that all the remaining opponents’ private signals are i.i.d. 

from the probability distribution function 
(.)

( 1 )
.   So, the bidder 1’s problem in period 

auction is the same as one in the situation where there are 1 1 potential buyers 

whose private signals are i.i.d. of the truncated probability distribution function (.)
( 1 )

.  

Therefore, we can write bidder 1’s problem as follows:

   
( )

( 1)

1

( ( , ) ( ))

The F.O.C. w.r.t. evaluating (1) at yields

( 1)
( )

( 1)
( )

( 1)
( ( , ) ( ))

( )
( 1 )

' ( ) 0           ...(2)

                                                                                                                                                             

the winners is analyzed in Baba (1999).
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Solving (2) with boundary condition of (0 ) 0 leads to

( ) = ( ,
0

) 1
( )
( )

( )
( )

                                                        ...(3)

Step 2 (period =1,2,..., -1).   

Suppose that there exist monotonically increasing bidding functions from period +1 to 

period , 1( ), 2 ( ),..., ( ) ,  which do not depend on the realization of the price path.  

Then, we would like to show that there exists a monotonically increasing bidding function in 

period , ( ) , which does not depend on the realization of the price path, either. 

Bidder 1’s problem is expressed as follows: 

    , ; 1 1, 2 2, ..., 1 1

where, , ; 1 1, 2 2, ..., 1 1 is the expected utility of  bidder 1 when his 

true private signal is and his reported private signal is , given that 

1 1 , 2 2 ,..., 1 1.  The first order condition w.r.t. for the case of and 

for the case of evaluated at coincide and is expressed as follows.

( ) ( 1)
( )
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( ) ( 1)
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( ( , ) ( 1 , ) 1( ))     ...(4)                             

Solving (4) for ( ) with the boundary condition (0) 0 yields
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Together with (3), the bidding functions ( ) ( ) are recursively determined as follows:
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( ) (
0

, )
( )
( )

1
( )
( )

                                                                          .

or ( ) = ( 1)
( )
( )

1
( )
( )

( , ) ( 1, ) 1( )
0

, for 1 m-1

Step 3 (off the equilibrium path).

If the sequence of the realized values of 121 ,...,, obtained from inverting 121 ,...,,

is not decreasing, let bidders re-order 121 ,...,, to yield a decreasing sequence of 

121 ,...,, and apply the argument in step 1 and 2 to the sequence of 121 ,...,, .  Since 

we characterize the Bayesian perfect equilibrium, this procedure works.

Step 4 (Global maximum).

The global optimality follows from the usual argument and it is straightforward.

                                                                                                                                           Q.E.D.

The following two lemmata are useful to prove proposition2.

  

Suppose that there are ( +1) bidders and that homogeneous objects are up for sequential 

sealed-bid first-price or second-price auction.   Then unconditional expected values of the 

prices remain the same for all the periods for both types of auction.
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Lemma 1  (Weber 1983):

Lemma 1’:
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Suppose {1,2,..., 1}, 1 2 ... .  Then, the unconditional expected

values of both the adjusted and the unadjusted prices are the same for period and period 

( +1) for both sequential sealed-bid first-price and second-price auctions.

We can obtain the results from plugging 1 into (15) in the proof of proposition 1.   

Q.E.D.

We use Lemma1’ later.  First, recall that proposition 1 tells us the equilibrium bidding 

functions in our case are: 
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Using (3),
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( +1) auctions equals to 0 when 1 , or equivalently, 1 =1.  Further, (4) and (7) imply 

that the difference between unconditional expected adjusted prices of the period and ( +1) 

auctions is a decreasing function w.r.t. 1 .  Therefore, we know that the difference between 

unconditional expected adjusted prices of the period and ( +1) auctions are strictly positive 

as long as 1 and this is the desired conclusion.   Q.E.D.
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